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ABSTRACT. This paper generalizes the results for the Bridge estimator of
Huang et al. (2008) to linear random and fixed effects panel data models
which are allowed to grow in both dimensions. In particular, we show that the
Bridge estimator is oracle efficient. It can correctly distinguish between rele-
vant and irrelevant variables and the asymptotic distribution of the estimators
of the coefficients of the relevant variables is the same as if only these had been
included in the model, i.e. as if an oracle had revealed the true model prior to
estimation.

In the case of more explanatory variables than observations we prove that
the Marginal Bridge estimator can asymptotically correctly distinguish be-
tween relevant and irrelevant explanatory variables. We do this without as-
suming sub-Gaussianity of the error terms. However, a partial orthogonality
condition of the same type as in Huang et al. (2008) is needed.

Key words: Panel data, high dimensional modeling, variable selection, Bridge
estimators, oracle property.
JEL codes: C1, C23.

1. INTRODUCTION

When building a model one of the first steps is to decide which variables to
include. Sometimes theory can guide the researcher towards a set of potential
explanatory variables but which variables in this set are relevant and which are
to be left out? Huang et al. (2008) showed that the Bridge estimator is able to
discriminate between relevant and irrelevant explanatory variables in a cross section
setting with fixed covariates whose number is allowed to increase with the sample
size. In fact, oracle efficient estimation has received quite some attention in the
statistics literature in the recent years, see (among others) Zou (2006), Candes and
Tao (2007), Fan and Lv (2008), and Meinshausen and Yu (2009). However, we
are not aware of any similar results for panel data models. For the case of fewer
explanatory variables than observations we show that the oracle efficiency of the
Bridge estimator carries over to linear panel data models with random regressors
in the random and fixed effects settings. More precisely, it suffices that either the
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number of cross sectional units (N) or the number of observations within each
cross sectional unit (T%) goes to infinity in order to establish consistency and
correct elimination of irrelevant variables. To obtain the oracle efficient asymptotic
distribution (the distribution obtained by only including the relevant covariates) of
the estimators of the nonzero coefficients, further restrictions are needed. In the
classical setting of fixed Ty and large N these restrictions are satisfied. Further
sufficient conditions for oracle efficiency are given. Fixing T and the number of
covariates we obtain as a corollary that the asymptotic distribution of the estimators
of the non-zero coefficients is exactly the classic fixed effects or random effects limit
law.

If the set of potential explanatory variables is larger than the number of ob-
servations we show that the Marginal Bridge estimator can be used to distinguish
between relevant and irrelevant variables in random and fixed effects panel data
models. A partial orthogonality condition restricting the dependence between the
relevant and the irrelevant variables of the same type as in Huang et al. (2008) is
imposed. As opposed to Huang et al. (2008) we do not assume that the error terms
are sub-Gaussian and avoid the use of Orlicz space based maximum inequalities.
The price paid for the absence of sub-Gaussian error terms is that the number of
irrelevant variables must be o(NN?) (this is for fixed T for comparability to the
known cross sectional results) as opposed to o(exp(N)). However, the number of
relevant variables may still be o(N'/2) (again Ty is considered fixed for compari-
son). Furthermore, the Marginal Bridge estimator is very fast to implement which
also makes it useful as an initial screening device to weed out the most irrelevant
variables before initiating the actual modeling stage.

Since cross section data can be viewed as panel data with only one observa-
tion per individual, all our results are also valid for cross section data and hence
generalize the results for these.

The plan of the paper is as follows. Section 2 puts forward the general frame-
work. Section 3 introduces the Bridge estimator and its properties while Section 4
discusses the Marginal Bridge estimator. Section 5 illustrates the results by simu-
lation and Section 6 concludes. Section 7 contains proofs of the propositions.

2. SETUP AND ASSUMPTIONS

Consider the following linear panel data model on (92, F, P).
(21) git:i;tﬂo—i-ci—l—ét, ’izl,...,N, t= 1,...,TN

X;¢+ 1s a py X 1 vector of covariates indicating that the number of covariates is
allowed to increase with the sample size. The interpretation of (2.1) is that N
individuals are observed in Tx time periods, totaling NTy observations. The ¢;
indicate the unobserved heterogeneity, i.e. unobserved time invariant variables
such as intelligence of an individual or start up capital of a firm. The €; are
the idiosyncratic error terms. Some of the elements of 5y may be zero. It is our
objective to locate these while still estimating the nonzero coefficients consistently.

N as well as Ty are allowed to tend to infinity. However, all results are valid
as long as N tends to infinity. Hence, the traditional large N, fixed Ty setting is
covered. Notice that Ty is indexed by N. Some of our results put no restrictions
on how T depends on N.
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Equation (2.1) can equivalently be written as
(2.2) ?iN:XiN/BO+CiN+giN7 i=1,..,N,

where YiN = (yilam»yz’TN)/a XiN = ($i17-~~73€¢TN)'7 6N = (gihm,giTN), CiN =
CiNlTys tpy = (1,..,1), i =1,...,N.

2.1. Fixed Effects. In the fixed effects setting one assumes:

(FE1) Random sampling: (X;n,cin, &)Y, is i.i.d.
(FEQ) Titl, €t €~L4(P), i=1,..,N, t=1, ...,T]\[, l=1,...,pNn
(FE?)) a) E(Q”XiN,CiN) = 0 and b) E(EiN€;N|XiN7CiN) = UzITN

For our proofs we may replace (FE3) by E(¢:|X;n) = 0 and E(&n&y|[Xin) =
0?11, which is less restrictive but since (FE3) is standard in the literature we stick
to this. Next, carry out the forward orthogonal deviations transform of Arellano
(2003). This transformation removes the unobserved heterogeneity while keeping
the error terms uncorrelated. In particular, define the (T — 1) x Ty matrix

-1 1 0 0 0

0 -1 1 0 0
D:

0o 0 0 -1 1

and multiply (2.2) through by (DD’)_l/2 D to get
(2.3) Yin =XinGBo +€in, 1 =1,..., N,

-1/2 -1/2 —-1/2

where Y,y = (DD’)
Clearly, (FE3) implies

(FE3’) a) E(€¢N|X1‘N) =0 and b) E(6¢N6;N|X1N) = 0'2ITN—1

which is what will be used in the proofs. Arellano (2003) gives the specific form of
(DD’) -1/ D. The number of time series observations for each individual is reduced
from T to Ty — 1 by the forward orthogonal deviations transform. However,
for notational convenience, we will keep using Ty for the number of time series

observations in the transformed model. In a cross section setting this transform
does not need to be carried out.

DYy, X;ny = (DD’)” ""DX;y and ¢;5 = (DD’)” /" Dé,x.

2.2. Random Effects. In the random effects setting (FE1)-(FE3) are maintained
while

(RE4) a) E (cin|Xov ) =0 and b) B (eively Ky ) = o2z, i,

is added to the fixed effects assumptions. This extra assumptions restricts the
dependence between X;ny and c;y sufficiently in order allow merging the latter
with the error term while still being able to prove the desired results. The gain
from these stronger assumptions is that they (as opposed to fixed effects) allow
for the inclusion of a covariate which is constant over time and only varies over
individuals. Defining v,y = ¢;y + &€ n, (FE3) and (RE4) imply E (ViN|XiN) =0
and
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ag + o2 03 ag
2 2 2 :
= . . = o i+ oz
E(vinvin|Xin) = E([cin + &n]cin + &n) [ Xin) = ¢ ¢ e
o
crf O'g + o2

The presence of the unobserved heterogeneity renders the error terms correlated.
Since the structure of the correlation is known the correlation is easily removed by
premultiplying (2.2) by' 0Q~1/2 (GLS transform). This yields

(24) Y,n =X;nyOBo+ €N, i=1,...,N,

where Y,y = o 12Y,n, X;n = 0o 1/2X;y and ¢,y = 02~ /2v, 5. Hence,
(RE?)’) a) E(EileiN) =0 and b) E(EiN€;N|XiN) = O'ZITN

which is what will be used in the proofs. In a cross section setting the random
effects transform does not need to be carried out.

3. THE BRIDGE ESTIMATOR

The bridge estimator estimates §y by minimizing

N T PN

(3.1) Ln(B) = (v — Xétﬂ)Q + AN D 1Bl
=1 =1 -
N;Nt . ka 1

(3:2) =3 (m=x8) +aw DIl >0
j=1 k=1

where summation from 1 to N1 indicates summation over all time periods for each
individual (So the first Ty terms in the sum correspond to all Ty observation on
individual 1, the next Ty terms to all observations on individual 2 and so on. This
convention is adopted in the sequel). The bridge estimator, denoted B ~, may hence
be seen as a sort of penalized/regularized least squares. The objective function
consists of two parts; the first part being the least squares objective function and
the second part penalizing parameters different from 0. The larger Ay, the larger
the penalty. For v = 1 the minimizer of (3.2) could be called the LASSO panel
estimator, (Tibshirani (1996)). For v = 2 it could be called the ridge regression
estimator (Tikhonov regularization) for panel data models. In a cross sectional
setting the ridge regression is frequently used to deal with multicollinearity. The
Tikhonov regularization is more generally used to solve ill-conditioned (singular)
overdetermined systems of linear equations.

Let By denote the true value of G where the dependence on N is suppressed as
in Huang et al. (2008). Partition Sy as By = (819, B5)" where 819 # 0 is ky x 1
and o9 = 0 is my x 1. Hence, the (1¢ are the coefficients corresponding to the
relevant variables denoted w;;. (o9 are the coefficients of the irrelevant variables
denoted z;;. So x;; is partitioned as x;; = (wl;,z},)’. Accordingly, we define

XN = (X117~--7XNTN)/7 WN = (W117~-~7WNTN)/ and ZN = (Z117~-~7ZNTN)/- Let

IThe sole reason for multiplying £2=1/2 by o is that (FE3’) and (RE3’) become identical except
for the dimension of the covariance matrix. Since (FE3’) and (RE3’) are the assumptions used
in the proofs this indicates that the proofs only have to be carried out in either the fixed or the
random effects setting.
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Sy = (NTy) ' X Xy as well as By = (NTy) *W/ Wy are the scaled Gram
matrices of X and Xy, respectively. Let pin and pany be the smallest and the
largest eigenvalue of 3. Similarly, define 7y and 7oy as the smallest and the
largest eigenvalue of Sy. Set Win = (Wi1,...,w;ry) and for x € RP ||x|| =
VD ki x2 denotes the Euclidean norm on R? stemming from the dot product.
Finally, x5 = (21,4, -, NTy k) denotes the k’th explanatory variable.

Next, we state and discuss the assumptions needed to establish consistency and
oracle efficiency of bridge estimators in random effects panel data models. Notice
how N and T enter symmetrically indicating that what matters is their product,
i.e. the total number of observations, and not whether it is N or T which gets
large (however, some theorems require further assumptions restricting the rate at
which T increases relative to N).

(A1) NTNpN SN SN SN 42 is bounded in L2(P), ie.,

1 N Tn pN Tn PN

7supooE 7NTNPN gzz_:xftk = ZZE (Iltk) =K<

t=1 k=1

(A2) There exist constants 0 < 71 < T2 < oo such that 7 < 7y < 7oy <
T P —a.s.

A3) An(kn/(NTy))Y? =0

(Ad) Avp2 (NTw)2pY> ™ — 00 P — aus.

Ab) There exist constants 0 < by < by < oo such that by < min {|510j| 1<j< k:N} <
max {|A1o;] [1 <j<kn} <b

(A6) (pn + )\NkN)/(NTNplN) —0P—as.

(AT) m;:l%N € 0p(1) P—a.s.

N

1<N< Tnpn

Assumption (A1) may be dropped altogether if the covariates are normalized as

%TN Z;\;TlN x?k = NTN ZZ 1 Zt (22, =1forall 1 <k <py. Alternatively (A1)
is satisfied if {1 } is bounded in L? (P) — this is in turns satisfied if, e.g, the covari-
ates are uniformly bounded. If the covariates are identically distributes over time,

then the assumption reduces to boundedness of the Cesaro sum piN SN E (23y,).
o0
Finiteness of py or convergence of {E (z31;) }k are sufficient for this. Finally, it
=1

may be noted that convergence of I SN E(23,,) is also sufficient for
the desired boundedness in L? (P).

Huang et al. (2008) mention that assumption (A2) is likely to be satisfied in
sparse systems, where ky is relatively small.

Regarding condition (A3) one notices that if the number of relevant covariates
kn stays fixed Ay /(NTx)'/? — 0. Hence, Ay € o(NTn)'/?).

Assumption (A4): Assume 0 < a1 < p1y < pan < az < oo for some constants
a1 and ao and that the number of covariates stays constant. Then it must be the
case that Ay (NTx)~"7/? — oco. This excludes v > 1 by (A3). Hence, 0 < v < 1
and Ay € o((NTn)Y2) Nw((NTn)?/?)

Assumption (A5) requires that the non-zero coefficients are uniformly bounded
away from 0 and infinity. This is trivially satisfied if the number of covariates is
finite. Also note that all results remain valid (with slight modifications) if by is
replaced by a sequence by which is allowed to tend to infinity.

TPN
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By assumption (A3) assumption (A6) is satisfied if 0 < a1 < p1y < pan < ag <
oo for some constants a; and as and the number of covariates is finite. Since the
Gramian Xy is positive semidefinite (A6) also implies that p;nx > 0 in order for
the condition to be well defined. This excludes py > N7y since the rank of Xy
can be no larger than NT).

Assumption (A7) is satisfied if 0 < a1 < p1y < pany < ag < oo for some constants
a1 and as.

Our first theorem states that the bridge estimator is consistent in the random as
well as the fixed effects setting. Throughout we will assume that (FE1)-(FE3) (fixed
effects setting) or (FE1)-(FE3) and (RE4) (random effects setting) are satisfied.

Theorem 1. Let ﬁN denote the minimizer of (3.2). Suppose that v > 0 and that
conditions (A1), (A3), (A5), and (A6) hold. Then ||Bn — Bn|| € Op(min(hy, h'y))

where hy = ,91*1\1[(171\,/(NT1\[))1/2 and by = [(pN + )\NkN)/(NTNplN)]l/2

Theorem 1 shows the consistency of the bridge estimator by assumptions (A3)
and (A6). Notice that if there exists a constant a; such that 0 < a1 < p1y and py
is constant then the bridge estimator converges at the same rate as the least squares
estimator. The faster the arrival rate of new explanatory variables (py increases)
the slower the rate of convergence of the bridge estimator since hy as well as by are
increasing in py. If pyy tends to 0 (approaching a singular design) the convergence
rate is also slowed down. It is also seen that N and Ty enter symmetrically. This is
not immediate on the outset since only independence of {X;n };-, has been assumed
while the Ty rows of each X;y may have any dependence structure between them.
What provides the result is that E(e;ne,y|Xin) = 0?Ir,, ie. the conditional
uncorrelatedness of the rows.

The next theorem reveals that the bridge estimator performs variable selection
and gives the limiting law of the estimator of the nonzero coeflicients.

Let Upy = o (E {TINW’WWWD T *W! yern.

Theorem 2. Assume 0 <~y < 1. Then under (A1)-(A7),
(i) Ban = 0 with probability converging to 1.
(ii) Let kn be a fized number k, a be a k x 1 vector, and sy = 1/0’2a/21_1%,0z,

If {UlzN}jvozl is uniformly integrable,

maxi<i<ty Var (Winwiem) — 0 foralll <Im<k

N
and
1 1
Jn o D P () = Jim B (e WiWan )

exists then,
(NTw) 253t/ (Bun = o) 5 N(0, 1)

Part (i) states that not only does does oy — 0 in P-measure (Theorem 1), the
bridge estimator actually sets Gony = 0 with probability converging to 1. The latter
of course implies the former while the converse is not true. The fact that Fo is set
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exactly equal to 0 with probability converging to 1 means that the bridge estimator
performs variable selection.

Part (ii) states that the asymptotic distribution of the estimators of the non
zero coefficients is the same as if the true model had been known in advance —
i.e. as if an oracle had revealed which variables to include and which to exclude.
This is a very useful result in practice. One simply includes the whole set of
potential explanatory variables. The irrelevant ones will be kicked out (BQN =0
with probability converging to 1) while the relevant ones are estimated with the
same asymptotic efficiency as if the irrelevant ones had been left out from the
outset. However, notice that the price paid for letting the covariates be random is
that ky must be fixed. Alternatively, one may continue to let ky increase in IV
while conditioning on the covariates and establish the limiting law along the lines
of Huang et al. (2008).

The following Theorem gives sufficient conditions under which {UZy}% | is
uniformly integrable.

Theorem 3. {UIQN}})Vozl 1s uniformly integrable if either of the following conditions
is satisfied.

(i) Ty =T for a fixzed T

(ii) The rows in Wiy are identically distributed and Wy L e;n, i=1,...,N.

(iii) Win and e1n are uniformly bounded in N.

The assumption maxi<i<ry Var (wigwim) /N — 0 for all 1 <I,m < k in part
(ii) of Theorem 2 is not restrictive. It is clearly satisfied if Ty is fixed. It is also
satisfied if max;<;<y F ([wltlwltm]2) <M< ooforall Ty and 1 < I,m < k
(second moments uniformly bounded in ¢) which in turn is satisfied if the variables
themselves are uniformly bounded in t. The assumption is also satisfied if wi;

are identically distributed across t. If the variances are linearly increasing, i.e.

Var (wigwigm) = aimt for some a;,, > 0, it suffices that Ty /N — 0.2
If Ty is fixed, limy_ oo Ni’}FN ZNTN E (ij’. = limy_o F (ﬁwllelN

Jj=1 J)

exists. The same is true if wyy; is identically distributed across ¢ for all 1 <1 < k.
Part (ii) of Theorem 2 is made more precise in the following corollary which
considers the classical situation of fixed Tx. Let W; denote the matrix containi.pg

the k& untransformed relevant variables of individual 4 in all time periods and Wl
its column demeaned version.

Corollary 1. Under the assumptions of Theorem (2), T fized
(i) and (FE1)-(FE3) and the forward orthogonal deviations transform

E<v-v3wl>]l

(ii) and (FE1)-(FE3), (RE4) and the GLS transform

(3.4) N2 (/3’1N _ glo) 4N (o, o [E (X'lnlfcl)] _1>

(3.3) N1/2 (Bu\/ - 510) 4N 0,0°

2More generally, if Var (wigwiem) € O (g(t)) for all 1 <1, m < k for some positive increasing
function g it suffices that @ — 0.
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Notice that the asymptotic distribution in (3.3) is the same as for a fixed effects
estimator with known sparsity pattern of 3y. This underscores the oracle property
of the panel bridge estimator. Similarly, (3.4) is the asymptotic distribution of the
random effects estimator with known sparsity pattern of 3y.

4. THE MARGINAL BRIDGE ESTIMATOR

Since the bridge estimator is not applicable when py > NTy (though it does
allow py — o0) a different approach is needed for this situation. As in Huang
et al. (2008) we will employ the Marginal Bridge estimator which estimates 5y by
minimizing

pN NTn PN

(4.1) Un(B) = Z Z (y; — $jk5k)2 + An Z |Br|”
k=1 j=1 k=1
PN NTN )

(4.2) = (y; — @jkBk)” + Aw|Bi]”
k=1 \ j=1

From (4.2) it is clear that the objective function is nothing else than the sum of
the marginal objective functions for each variable — hence the name Marginal Bridge
estimator. Let 3y denote the minimizer of (4.2). We show that the Marginal Bridge
estimator is able to correctly distinguish between relevant and irrelevant variables
even when there are more explanatory variables than observations (py > NTy).
(FE2) and (FE3) will be strengthened to

(FE2MB) Titl, €Eit € L8(P), i=1,..N,t=1,... Ty, L =1,...;pN

(FE3MB) (XiN,ciN) L &Ny Gty Eiry ds B4, forall 1 < < N, E (&) = 0, and
E (&) =022
Even though we do not impose sub-Gaussianity* on the error terms the require-
ment of existence of the eight moment does discipline their tail behavior. (FE3MB)
clearly implies (FE3) while the reverse need not be the case (see e.g. Stoyanov
(1997) for an example). However, this strengthening is not likely to be of any
practical importance since it is hard to imagine practical examples where (FE3) is
satisfied while (FE3MB) is not. After carrying out either the fixed effects or the
random effects transform (FE3MB) implies that X;n L €;n, €1, ..., €7y 1s 1.1.d. for
all1 <i< N, E(e4)=0,and E (eft) = o2
Let Ky = (1,...,ky) denote the active set, i.e. the set of indices of the relevant
variables, and Jy = (ky + 1,...,pn) the inactive set, i.e. the set of indices of the

irrelevant variables. Standardize the covariates such that 1/(NTy) Z?g” xfk =

for all k =1,...,pn and define En;, =1/ (NTx) Z;V:va wgﬂloxjk. Assume

(B1) There exists a constant & > 0 such that mingeg, [Enk| > &o with proba-
bility approaching 1.
(B2) An/(NTn) — 0.

3Tt is sufficient to assume XiN 1 &pn for all 1 < i < N but for comparison with (FE3) we
refrain from this (see also the comment after (FE3)).

4A random variable X is said to sub-Gaussian if P (X| > z) < Aexp(—Bz?) for some positive
constants A and B.
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k
(B3) ()\N(NTN)*A;/2)1/(2*W> — 0.
m
(B4) (,\N(NTN)—I:/z)Mz*v) — 0.
(B5) For all § > 0 there exists a ¢ > 0 and a Ny € N such that

ZNTNI'I
P(WSco, ke Ky, leJdy)>1-26for N> N,

(B6) There exists a constant 0 < b; < oo such that maxge g, |Biok] < b1.

Assumption (B1) is a technical assumption needed to prove that no variables
from the active set will be discarded by the Marginal Bridge. In a fixed regressor
setting it is similar to assuming that the covariance between the left hand side
variable and the relevant covariates is bounded away from 0.

Assumption (B2) requires that Ay € o(NTy).

Assumption (B3) combined with assumption (B2) implies that ky € o((NTy)'/?).
In the classical case of fixed Ty this amounts to ky € o(N'/?). This is in line with
the results of Huang et al. (2008).

Using (B2) in (B4) implies my € o ((NTy)?). Hence, in the classical situation
of fixed T, my € o(N?). This of course still allows the number of irrelevant
variables to increase at a much higher rate (almost quadratic) than the sample size.
For 0 < v < 2 (B4) also implies that Ay (NTyx)~?/2 — co. Together with (B3) this

yields that Ay € o(NTy) Nw (( NTNW?).

Assumption (B5) is a partial orthogonality assumption limiting the dependence
between the variables in the active and the inactive set. It rules out correlations
of —1 or 1°. However, it is not too restrictive and as will be seen from the Monte
Carlo simulations in Section 5 the Marginal Bridge also works quite well even when
the covariates in the active and inactive set are highly correlated.

Assumption (B6) is a uniform bound on the size of the coefficients belonging
to the relevant variables. This assumption may be relaxed in the same way as
assumption (A5) at the price of a lower growth rate of the number of relevant
variables.

Theorem 4. Under assumption (B1)-(B6) and if 0 < vy <1,
(43) P(BQNZO)—)l and P(BlNkZO; ]fEKN)—>O

Hence, the Marginal Bridge estimator is able to screen out the irrelevant variables
while retaining the relevant ones. Notice that this is true even without sub-Gaussian
error terms. The price paid is that the number of irrelevant variables can not tend
to infinity as fast as in Huang et al. (2008). However, my € o(N?) (T fixed) is
not very restrictive in practice since it still allows the number of irrelevant variables
to arrive at a considerably faster rate than the sample size.

The nonzero coefficients are not estimated consistently. In order to obtain con-
sistent estimates the same two step procedure as in Huang et al. (2008) can be
applied. In the first step the bridge estimator is applied to distinguish between
the relevant and irrelevant variables. In the second step, where only the relevant

51f x;1 and x ;2 are perfectly correlated and (assume for simplicity) have an empirical mean of
Zj-\f;N Tj1252

(NTIZ = b(NTx)'/2 which violates

zero rj2 = bxj; P — a.s. for some constant b. Then

(B5).
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variables are left, these may be estimated by any consistent estimator (e.g. least
squares or the bridge estimator).

5. SIMULATIONS

In this section the finite sample properties of the proposed estimators will be
investigated. The bridge estimator will be implemented by means of the MM-
algorithm of Hunter and Li (2005) which in the present case reduces to a series of
ridge regressions.

Implementing the Marginal Bridge is very fast. Since Z;V:Tf\’ x?k = NTy for
k=1,...,pn it follows from Lemma A in Knight and Fu (2000) that 8, = 0 iff
2—y
AN Zjv::qN YiTik

5.1 AN
(5-1) NI~ 9T N1y

1—y
where ¢, = (%) (2(2%_77)) . Hence, variable selection is extremely fast® even
in vast dimensional models, since the inclusion of a variable is solely based on the
criterion (5.1) which roughly amounts to checking whether the correlation between
the left hand side variable and the covariate is sufficiently high to deem the latter
relevant. Notice how only marginal information is used to decide whether a variable
is to be included or not. Having decided on the sparsity pattern the second step
estimates of (3¢ are found by means of least squares’.

The following issues will be investigated

(1) How often do the Bridge and the Marginal Bridge estimator select the
correct sparsity pattern, i.e. how good are they at distinguishing the active
from the inactive set? This is highly relevant in applied work investigating
which variables help explaining the left hand side variable.

(2) The median number of variables included, i.e how well do the Bridge and
the Marginal Bridge reduce the dimension of the problem? This median is
ideally equal to the cardinality of the active set.

(3) The explanatory power of the Bridge and the Marginal Bridge. To inves-
tigate this the estimated parameters are used to fit values on a validation
data set drawn from the same distribution as the training set.

(4) In connection to the explanatory power it is investigated how often the
procedures retain all relevant explanatory variables. As can be expected,
retention of all relevant explanatory variables is important for achieving a
good fit. It is also highly desirable if the procedures are to be used as initial
screening devices in vast dimensional data sets.

(5) The precision of the parameter estimates using the mean square error of B

(6) The asymptotic distribution of the estimator of the non-zero y’s. This
is done by comparing the standard deviation of 31 to the corresponding
quantities for the least squares estimator with only the active set included.
The latter (in practice infeasible) estimator will be called the OLS Oracle
henceforth.

6A model with 100 observations and 2500 potential explanatory variables takes between 0.2
and 0.3 seconds to estimate on a 2.66 GHz i7 processor.

"The Bridge estimator was also tried in the second step but did not outperform least squares
while being considerably slower.
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The Bridge and the Marginal Bridge estimators will be compared to the LASSO
estimated by pathwise coordinate descent, the Schwarz information criterion (BIC),
the OLS Oracle, and OLS on the system including all covariates. Only the Marginal
Bridge, the LASSO and the OLS Oracle are applied when py > NTy. To limit
the computational burden, BIC is only applied for the designs with 15 or fewer
covariates which implies a maximum of 2! — 1 = 32.767 regressions per Monte
Carlo replication. All experiments are carried out with 1.000 replications.

The data is generated from equation (2.2). In all experiments T = 10. Initial
experiments indicated that v = 0.5 works quite well for the Bridge as well as the
Marginal Bridge estimator and this value will be used throughout. €;; and ¢; are
N(0,1) with 02 = 62 = 1 in all experiments.

The regularization parameter Ay is usually chosen by 10-fold cross validation.
Here we try this as well as the significantly faster BIC to determine Ay for the
Bridge, the Marginal Bridge and the LASSO.

5.1. The experiments.
(A) N=10, fy = (1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)" and the covariates are inde-
pendent N(0,1) variables.
(B) B is as in (A). The correlation between the k’th and I’th covariate is p*~!I
with p = 0.50.
As (B) but with p = 0.95.
As (A) but with N=100.
As (B) but with N=100.
As (C) but with N=100.
N=10 and 5 relevant explanatory variables with a coefficient of 1. 245
irrelevant variables. All covariates are independent.
(H) N=10 and 5 relevant explanatory variables with a coefficient of 1. 495
irrelevant variables. All covariates are independent.
(I) N=10 and 5 relevant explanatory variables with a coefficient of 1. 2495
irrelevant variables. All covariates are independent.

Note that even though the covariates are independent in Experiments G-I the max-
imum spurious sample correlation, i.e. the maximum observed sample correlation
between covariates, may still be very high (see Fan and Lv (2008) for examples).
In particular, if a relevant and irrelevant covariate are highly correlated it will be
difficult to distinguish between these.

5.2. Results. Table 1 holds the results for experiments A-F, where py < NTy.

Experiment A reveals that the Bridge, Marginal Bridge and Schwarz information
criterion all perform quite well in the independent covariates setting. They all detect
the correct sparsity pattern in more than half of the cases irrespective of whether
cross validation or BIC is used to determine A\y. In all respects their performance
is comparable to the OLS Oracle.

As seen from Experiment B making the covariates moderately correlated does not
deteriorate the performance of the procedures with respect to the fraction of times
the right sparsity pattern is chosen or the fraction of times all relevant covariates
are retained. However, all procedures get more imprecise. Since this is also the case
for the OLS Oracle this is not a particular artifact of the Bridge class of estimators.

Experiment C reveals that as the correlation gets very high the performance of
the Bridge and BIC deteriorate. On the other hand the Marginal Bridge continues
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Cross Validation BIC
Bridge Marg Bridge LASSO Bridge Marg Bridge LASSO BIC  OLS Oracle OLS All

Sparsity pattern  0.6040 0.5190 0.0130  0.6700 0.7830 0.0990  0.6590 1.0000 0.0000
Median #Var 5.0000 5.0000 10.0000  5.0000 5.0000 8.0000  5.0000 5.0000 15.0000
Loss 2.1128 2.1062 2.1544  2.0947 2.0794 2.1643  2.1007 2.0667 2.2125
Relevant retained  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
Median Beta MSE  0.0764 0.0725 0.0950  0.0706 0.0647 0.0971  0.0712 0.0584 0.1131
Stdv 0.1188 0.1145 0.1206  0.1172 0.1145 0.1236  0.1148 0.1135 0.1198

Sparsity pattern  0.6560 0.6520 0.0540  0.7170 0.9220 0.2910  0.6870 1.0000 0.0000
Median #Var 5.0000 5.0000 8.0000  5.0000 5.0000 6.0000  5.0000 5.0000 15.0000
Loss 2.1048 2.1009 2.1288  2.0898 2.0740 21374 2.0959 2.0667 2.2125
Relevant retained  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
Median Beta MSE  0.0863 0.0843 0.0952  0.0827 0.0740 0.0927  0.0841 0.0710 0.1441
Stdv 0.1387 0.1327 0.1362  0.1351 0.1306 0.1393 0.1314 0.1301 0.1365

Sparsity pattern  0.0760 0.5600 0.1370  0.0180 0.6400 0.2750  0.0070 1.0000 0.0000
Median #Var 5.0000 5.0000 7.0000  4.0000 5.0000 6.0000  4.0000 5.0000 15.0000
Loss 2.1566 2.1106 2.1048  2.1664 2.1011 2.0984 2.1828 2.0667 2.2125
Relevant retained  0.3230 0.8920 0.8960  0.0290 0.6870 0.8840  0.0110 1.0000 1.0000
Median Beta MSE  0.4038 0.2854 0.2625  0.4809 0.2840 0.2496  0.4862 0.2189 0.4799
Stdv 0.5042 0.4080 0.3548  0.6046 0.5138 0.3551  0.6123 0.3497 0.3680

Experiment C | Experiment B | Experiment A

Cross Validation BIC

Bridge Marg Bridge LASSO Bridge Marg Bridge LASSO BIC  OLS Oracle OLS All

Sparsity pattern  0.7570 0.6590 0.0190  0.9350 0.9860 0.4570  0.9110 1.0000 0.0000
Median # Var 5.0000 5.0000 10.0000  5.0000 5.0000 6.0000  5.0000 5.0000 15.0000
Loss 2.0089 2.0092 2.0135 2.0073 2.0066 2.0195 2.0074 2.0065 2.0176
Relevant retained  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
Median Beta MSE  0.0210 0.0209 0.0279  0.0191 0.0179 0.0335 0.0186 0.0178 0.0326

Stdv 0.0334 0.0331 0.0340  0.0333 0.0330 0.0354  0.0330 0.0330 0.0331
Sparsity pattern  0.7660 0.7100 0.1180  0.9340 0.9930 0.6230  0.9110 1.0000 0.0000
Median #Var 5.0000 5.0000 8.0000  5.0000 5.0000 5.0000  5.0000 5.0000 15.0000
Loss 2.0085 2.0084 2.0114  2.0070 2.0066 2.0136  2.0073 2.0065 2.0176

Relevant retained ~ 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
Median Beta MSE  0.0239 0.0247 0.0278  0.0222 0.0215 0.0276  0.0225 0.0214 0.0410
Stdv 0.0391 0.0387 0.0391  0.0390 0.0386 0.0395  0.0387 0.0386 0.0389
Sparsity pattern  0.6960 0.7020 0.1570  0.9310 0.9930 0.4690  0.9240 1.0000 0.0000
Median #Var 5.0000 5.0000 7.0000  5.0000 5.0000 6.0000  5.0000 5.0000 15.0000
Loss 2.0092 2.0088 2.0094 2.0075 2.0066 2.0096 2.0072 2.0065 2.0176
Relevant retained  1.0000 1.0000 1.0000  0.9990 1.0000 1.0000  0.9990 1.0000 1.0000
Median Beta MSE  0.0802 0.0795 0.0775  0.0721 0.0662 0.0725  0.0684 0.0659 0.1362
Stdv 0.1134 0.1067 0.1069  0.1120 0.1066 0.1079  0.1066 0.1066 0.1078

TABLE 1. Top panel: Experiments A-C (N=10). Bottom panel: Experiments
D-F (N=100). Cross Validation and BIC indicate which procedure was used to
determine A\ . Sparsity pattern: The fraction of times the correct sparsity pattern
is detected. Median #Var: The median number of variables included. Loss: The
MSE when using the estimated parameters on a validation data set drawn from the
same distribution as the training set. Relevant retained: The fraction of relevant
variables retained in the model. Median Beta MSE: Calculated as explained in
the main text. Stdv: Standard deviation of the estimated coefficient of the first
variable (which is always in the active set).

Experiment F | Experiment E [ Experiment D

to detect the right sparsity pattern in more than half of the cases. However, even
the latter fails to retain all relevant variables in all cases.

Experiments D-F illuminate the asymptotic properties of the Bridge and the
Marginal Bridge. In particular the Marginal Bridge with BIC used to determine Ay
detects the correct sparsity pattern in almost all cases irrespective of the correlation
structure imposed on the covariates. The performance of the Bridge also gets
significantly better as the sample size is increased while the LASSO only improves
moderately. The Loss of all procedures is reduced and and the parameters are
estimated more precisely.

Notice that the Marginal Bridge performs quite well even in the high correlation
experiments C and F indicating that the partial orthogonality assumption (B5) is
not overly restrictive.
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Cross Validation BIC
Bridge Marg Bridge LASSO Bridge Marg Bridge LASSO BIC OLS Oracle OLS All

&  Sparsity pattern 0.1380 0.0020 0.3380 0.0420 1.0000
g Median #Var 9.0000 20.0000 6.0000 9.0000 5.0000
qé Loss 2.3302 2.4744 2.2263 2.6162 2.0784
'S Relevant retained 0.9820 1.0000 0.9390 0.9990 1.0000
& Median Beta MSE 0.0299 0.0413 0.0204 0.0470 0.0141
= Stdv 0.1465 0.1358 0.1612 0.1448 0.1081
o} Sparsity pattern 0.0710 0.0010 0.2300 0.0290 1.0000
g Median #Var 12.0000 23.5000 7.0000 10.0000 5.0000
QE) Loss 2.5162 2.5763 2.3593 2.7642 2.0891
‘% Relevant retained 0.9350 1.0000 0.8830 0.9980 1.0000
& Median Beta MSE 0.0257 0.0320 0.0177 0.0368 0.0101
= Stdv 0.1714 0.1414 0.2045 0.1553 0.1100
— Sparsity pattern 0.0100 0.0000 0.0540 0.0130 1.0000
g Median #Var 19.0000 35.0000 9.0000 11.0000 5.0000
g Loss 3.1359 2.8733 2.8479 3.2288 2.0331
‘Eg‘ Relevant retained 0.7450 0.9950 0.6730 0.9540 1.0000
& Median Beta MSE 0.0178 0.0183 0.0147 0.0213 0.0045

Stdv 0.2428 0.1470 0.2657 0.1690 0.1056

TABLE 2. Cross Validation and BIC indicate which procedure was used to de-
termine An. Sparsity pattern: The fraction of times the correct sparsity pattern
is detected. Median #Var: The median number of variables included. Loss: The
MSE when using the estimated parameters on a validation data set drawn from the
same distribution as the training set. Relevant retained: The fraction of relevant
variables retained in the model. Median Beta MSE: Calculated as explained in
the main text. Stdv: Standard deviation of the estimated coeflicient of the first
variable (which is always in the active set).

It is seen that in general the BIC is a better way of determining Ay than cross
validation. BIC detects the correct sparsity pattern more often and only in Exper-
iment C one finds that cross validation is superior with respect to the number of
relevant variables retained.

Table 2 holds the results for the Experiments G-I which investigate the perfor-
mance of the Marginal Bridge in the py > NTx case. As can be expected the
correct sparsity pattern is detected less frequently. However, all relevant variables
are retained very often while only few irrelevant variables are kept in the model.
Hence, the Marginal Bridge is still a very effective tool for dimension reduction.

The LASSO and the Marginal Bridge perform equally well in Experiments G
and H (slight advantage for the LASSO) while the LASSO is superior in Experi-
ment I. However, the LASSO also takes a lot longer to compute and the models it
chooses are bigger. The following idea which builds on the thoughts of Fan and Lv
(2008) could potentially improve the performance of the Marginal Bridge: estimate
the Marginal Bridge one or several times more using the residuals from the first
(previous) step as left hand side variables. This will lower the priority of those
irrelevant variables which seemed relevant only through their high correlation with
some of the relevant variables already included.

6. CONCLUSIONS

This paper introduces the Bridge and Marginal Bridge estimator in a linear
panel data setting allowing for random as well as fixed effects. When p < NTy it
is shown that the Bridge estimator (and Marginal Bridge) has the oracle property.
It sets all coefficients that are truly zero to zero and the asymptotic distribution
of the estimator of non zero coefficients is the same as if the sparsity pattern had
been known. Monte Carlo experiments underscore this conclusion and are used to
investigate the finite sample properties of the procedures. They also reveal that



14 ANDERS BREDAHL KOCK CREATES AND AARHUS UNIVERSITY

the Schwarz information criterion is more useful than 10 fold cross validation for
selecting A\ . This is encouraging since BIC is also faster than cross validation.

When p > NTy it is shown that the Marginal Bridge estimator still detects
the correct sparsity pattern with probability converging to one. This is true in the
random as well as the fixed effects setting under a partial orthogonality assumption
on the covariates. However, the Marginal Bridge works well even when the relevant
and irrelevant covariates are highly correlated. Furthermore, the Marginal Bridge
estimates are extremely fast to compute since it only uses marginal information to
decide whether a variable is relevant or not. The Marginal Bridge is also shown to
perform well in the py < NTy setting. In py > NTy setting the Marginal Bridge
does not always retain all relevant variables. An iterative procedure was proposed
to solve this problem. Working out the properties of this procedure is left for future
research.

7. APPENDIX

Lemma 1. Let u be a py x 1 vector. Then

Nl

NTN 1 N Tn pN
E | sup Zejx’-u Xy | €80 (NTypn)2 ZZ 2,
/ <
l[all<8] 5= NTNpN i=1 t=1 k=1
Proof.
2
NTnN NTN
2
E | sup Zejx’ju Xy | <E | sup |jul Zejxj XN
luli<s| Jull<s =
NTnN NTnN
S 52E Z GjX;- Z €;X ’XN
P P

where the first inequality follows from the Cauchy-Schwarz inequality. Since
E (€itxi€is%is| Xn) = E (X} Xis€ieis| Xin) = XX E (ei€is|Xin) =0, t#s
B (caxiyejsxsslXn) = B (B [eaxiyejsx;o X, ] X )
—E (eitx;txjsE €61 X v, €3t] |XN) —E (eitxgtxjsE [e;41X,] |XN> —0, i#£j

E (eaxeuxi|Xn) = E [xjxienen| Xin] = xixu E [enen|Xin] = 0%} xi

Hence,
NTN NTN N TN
E | sup g exul | Xy < §%52 g xx]*(;2 2E E X, X4
lull<s| 5= i=1 t=1
N Tn pN
_ 52 2NTNpNNT § :E x2
NPN 2 = =1

and the result follows from the conditional Jensen inequality. (]
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Lemma 2. Let {X, }hen and {Y,}nen be sequences of nonnegative random vari-
ables. If there exists an integer Ny and a constant C such that for n > Ny

X,
E )<
(3)<c

X, € 0,(Yy)

then

Proof. 1t suffices to show that for any ¢ > 0 P <{§: > g}) < e for n > Ny.

Assume the opposite is true for some ¢ > 0 to reach a contradiction. Then,

( ) /—dP / &dpz/ Cap>Cp {X">C} e
X0y Y, {3a>cy € € Y, €

which is the desired contradiction. O

1
Proof of Theorem 1. We first show that HBN — 5OH € 0, ([Im} 2). Since

Bx minimizes (3.2)

NTxN R NTN 2 PN
Z (yj - X;ﬂN) + An Z 1Byl < Z ( j — Xgﬂo) + AN Z |Bok|”
j=1 k=1

Defining nn = Ax >4~ |Bok|” this implies:

N

(yj - X;‘BN)2 - (yj - X}ﬂo)g

J

([yj *X}BN} - [yj X;ﬁoD <[yg *X;‘BN} + [yj X}ﬁoD

NTN

[Xé(ﬂo—ﬂz\r } +2 Z €;X '(ﬂO_BN>

<
Z
E

3

2

Y2
[ivg

2
z
Il
i

I
31

<.
I
—

Now define 6y = (NTn)Y25N?(By — Bo), Dy = (NTy)"Y/253'/?X/, and
en = (€1,..., enTy ). With these definitions

NTN NTN
Z {X;(ﬁo—ﬁ]\f } +2 Z EJ ( ) :(%véN_?(DNGN)/(SN
j=1

= |6 — Dyen|]* = [[Dyen][?
which implies
16 — Dnen|> = [[Dyen|* —ny <0

and by the sub additivity of 2 — 2'/2 yields ||6y — Dyex|| < [[Dyen|| +nx > By
sub additivity of the norm ||.|| this implies ||dx]|] < ||[0x — Dnen|| + [|Dyen]| <
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2||Dyenl|| + 7711\,/2. Since (z + y)? < 22% 4+ 2y? for 7,y € R by the convexity of

x +— z2 one has

16n]1* < 4/[Dyen|l* + 20y
Letting d; denote the j’th column of Dy we may write Dyey = Z;\SN dje;.
Using that Dy is measurable with respect to X conclude
B (djyendiseis) = B (dydis B [eieisXn] ) = B (i [enessXin] ) =0, s # ¢
E (dyeadjeess) = B (diyendsoB e, X e] ) = B (dipeudss [eXn]) =0, i #
E

(dhendiven) = B (@i [eenlXin] ) = B (dj,dir) = 0°F (|/d2]])

Hence,
2 l
NTN NTnN NTN
E(Dxen|®) =B || dies|| | =8 || X des | | 2 diey
j=1 j=1 j=1

= o*E (tr (DyDw)) = oE (tr (DyDY))

2
dj

NTx
=o’E Z ‘

j=1
= o%tr (IpN) =o’pn

And so, E (||6x][*) < 40%pn + 2nn. Hence,

(NTw)E ((BN ~ o) = (B - ﬂo)) = B3 ox) = E(|ox][2) < 40%py + 20y

Since the number of non zero coefficients is kn

PN kn
v =An Y 18" = An D |Bo[" < Anknb]
k=1 k=1

where the inequality is a consequence of assumption (A5). Since piy is the
smallest eigenvalue of X

pin||Bn = Bol?> = pin (BN - 50)/ (ﬁN - ﬁo) < (BN - 50)/ XN (BN - 50)
Hence,
E (plNHBN - ﬁo||2) < %E ((BN - ﬁo)/ XN (BN - 50))

< 40%pN + 2N < 402%pN + 2ANknb]
- NTyn - NTy
PN + ANknD]

NTN

<C
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for C = max (402,2b]). This implies

1y = 5ol |~ .

PNHANEN -
pinNTN

1
By Lemma 2 this establishes ||3x — Go|| € O, ([W} 2). Next we show

that ||Bx — Bol| € O, (pi\l[ (pN/(NTN))l/Q). Like Huang et al. (2008) we use the
idea from the proof of Theorem 3.2.5 in Van der Vaart and Wellner (1996). Let

rn = piy (o /(N TN))I/ ®. For every N partition the parameter space (excluding
Bo) into the disjoint shells S; v = {3 : 27! <||8 — Bo|| /ry < 2'} where | € Z. If
oM <‘ 3

ﬁoH /rn for a given integer M then (y € Ui ar Si,v. For the shell

which By belongs to the infimum of the map 8 — Ly (8) — Ly (0o) is non positive.
Hence,?

(P

NS P<ﬂ€ig£N (LNw)LN<ﬂo>)go>+P(HBNﬁOH>6>

21-1<5/rn

The last term in (7.1) converges to 0 by the consistency of By established in the
first part of the theorem. The theorem is established by showing that the first term
on the right hand side can be made arbitrarily small by choosing M sufficiently
large. To this is end let 8 € S; y for an arbitrary [ summed over, and notice that

8Note that

{Jow = o] rr > 24} < U {ﬁeigiN (L (8) — Lv(30) < }

I>M

(U foar, v st <o) <2} o] )
(1 {1, 010100 20} = ) ] >

U L, - e <ofo |- s >5)

€s
I>M pESLN
2l-1<s/rn

and conclude using the subadditivity of P.
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NTn

Ly(8) — Ln(Bo) = Y (yj_ ;3 ) +>\NZ|61k|’Y+)\NZ|ﬁ2k|—Y

j=1 k=1

2 My
Yj — X}ﬁo) - Z |Bo1k|”
k=1

=
2

|
.
i
i
N

NTn 9 kn NTN 2 kn
> (yj —X;ﬂ) FAN D 1Bl = > (yj —X;ﬂo) _Z‘ﬂmkw
=1 k=1 =1 -
JJVTN NTx ’
72 =3 (5B 2 Z (8= )+ 2 S (18l — el
=1

k=1

Regarding the first term in (7.2),

=
-

NTN

(3 18- 50)) =18 ol > %% 3= ] = N[5 = ol B |8

NTN|8 = Boll” piv > NTw 22 Y2,

(]

1

I\/ T

Regarding the third term in (7.2) we notice that 8 € S,y and 2!7! < §/ry
implies that ||3 — Bo|| /rx < 2! < 26/rx. Hence, it suffices to consider 3’s satisfying
I8 — Boll < 28. Since § > 0 is arbitrary and the entries of 391 are bounded uniformly

away from the 0 by by the mean value theorem may be applied to conclude that for
some (i between (1 and Bp1x

kN kN
AN Y (1Bl = [Borel”) | =|Any Y 16k sign(Ce) (Bik — Borr)
k=1 k=1
kn
<cAy Z|51k — Bok| < C)\Nkjlv/zﬂﬁ — Bol| < C)\Nk]l\]/22er
k=1

where ¢ = max ((bo — 26)~%, (by +20)771) and the second to last estimate
follows from Jensen’s inequality. Hence, on S; n, An ZZL (|ﬁ1;€|'Y — \ﬁmkh) >
—c)\NkJIV/zZlTN. Therefore, on S v,

NTy
Ln(B8) — Ln(Bo) = —|2 Zej (8 — Bo)| + P NTN 22" D0% — eyky 2y

Hence, by the conditional Markov inequality and Lemma 1
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P inf (LN(ﬁ) - LN(BO)) S 0 XN
BESI,N
NTnN
<P| sup |2 Z €;X 6 Bo)| > ,DlNNTNQZ(l 1) )\Nkl/QQI'rN XN
BES, N —

E SHPBESZN‘QZ —1 € ](ﬁ 50)“

<
N plNNTNQQ(lfl)TIQV — C)\Nk]l\,/22l7"]v

NT 1/291 1 N TN PN 2 1/2
(NTnpN) "N \ NTxp~ Doim1 Dot Dokt Tipk
plNNTN22(l 1) C)\Nk / 217"N
1/2
N T
2 (NTi,pN Do 2 le xzztk)

22 — Ay (kn/(NTy))""”

<

By assumption (A3) Ay (k:N/(NTN))l/2 — 0andso 22 —cAn (kN/(NTN))1/2 >

273 for N sufficiently large. Hence, by iterated expectations and assumption (A1)

P ( inf (LN(ﬁ) - LN(ﬁO)) < 0) < 21%

BESI, N

Finally, this implies that

2 7 (ﬁei%fN (Ln(0) = L (Bo)) < 0> <Y 5
= | I>M
21-1<5 /rn

which is convergent and so the tail can be made arbitrarily small by choosing M
sufficiently large. [l

Lemma 3. Suppose 0 < v < 1. Let BN = (BlN, 321\7)' Then BQN = 0 with
probability converging to 1 under assumptions (A1)-(A7).

Proof. By Theorem 1 ||Gn — Bol| € O, (hn) with hx = pya(pn/(NTx))"? so for
all € > 0 there exists a constant C' such that for N sufficiently large

P (11By = Boll/hy > €) < e P (113w = foll < Ch) 21—

Put differently, By € {B 18— Bol| < Chy} with probability converging to 1. Let

ﬂlN = f10+hnyu; and ﬂgN = P20 +hNu2 = hyus. Choosing ﬂN is then equivalent
to choosing u; and uy. Since |[u]| = ||Bx — Bol|/hn which is bounded by C with
probability approaching 1 we may assume |[|u||? = |[uy]|? + ||uz||* < C? and define

Vi (a1, 1) = Ly (Bin, fon) = Ly (Bro + hyuy, hyuy)
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To establish the lemma it now suffices to show that for any u with |ju| <
C, Vn(uay1,uz) — Vy(uy,0) > 0 with probability converging to 1 if uy # 0. Now,

NTx ko
2
V(g ug) = Vv (ug,0) = Y (y; — Bouwy — hawhw; — hyuhz;)” + Ax Y |Bork + haw |
=1 k=1
mN NTN 9 k?N
FAN D " = (g5~ Oows — hawiwy)” = An Y Bowk + by
k=1 =1 k=1

my
N(uhz;) [2(y; — By wy — hawiw,) — hyuhzs] + Ay Y [hyusl?

H'Mq

k=1
NTN NTN NTN myN
= h3 Z (2] uy)? + 213 Z (Wiu)(zjug) — 2hy Z (ziuz)e; + Anh)y Z lug; |
i=1 P s P

Regarding the sum of the first two terms since 2y > — (22 + y?)

NTx NTx NTx NTy
h; Z (zjuz)? + 2h% Z (Whuy)(zjus) > hiy Z (zjuy)? — by Z [(W;ul)2 + (z;ug)z}
J=1 j=1 j=1 j=1

= —hANTyu Ziyu; > —p epnT2C?

where the last inequality follows from assumption (A2) and the fact that ||u;|| < C.
Hence,

1y 20 (2ug)? + 20, ZNT”(WQW)(Zéuz)
pNPN
Regarding the third term it follows from Jensen’s inequality (conditional version)

> —1pC?

2 1/2 1/2
NTN NTN NTN
E Z (zjug)e; || Xy | < |E Z (zjug)e; | | Xy = |o? Z (zuy)?
j=1 j=1 j=1
NTy 1/2
=0 Z U5z, uy = o(NTy)"? (u’QZgNuQ)l/2 < o(NTx)?pil2C
where the last inequality used that
U.IENU (O, UQ)/ZN(O, UQ) ulnguz
pP2N = Iax >  max = x
ueR’N  U'u u2€R™N (0, u2)’(0, usz) u€R™N  ubuy

Hence, since hy is measurable wrt. o(Xy),

NTN
E —QhN Z (ZiUQ)EZ‘N

Jj=1

Xy | < 2hn(NTY)V2p32C

and so

’*QhN Zj | (zjuz)e;
A (NTN)Y2pyha 1/2

2C
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which by Lemma 2 shows that *2hNZ N(zu5)e; is Op(hn (NTN)Y2p3l2) =
1 1/2.1/2

Op(pnPan PN ). Hence,
NTn. ) _
—2hn 32501 (miue)es Pvoien | _ o (oo < )
p =Up 1/2 =P
pNPlN pN’OlN PN

by assumption (A7). Regarding the fourth term since uy # 0 we have
Y _ _ —
M/ (enoid) = A [piw (on /NTW)Y2] " Jowpid) = Anpln) (NTw) 72} = o

by assumption (A4) and so the fourth term diverges to infinity. Since pr;]\% €
Q,(1) this completes the proof. O

Proof of Theorem 2. The first part has been established in Lemma 3. Since By is
consistent it follows from assumption (A5) that for an arbitrary ¢ > 0

k

P ({min{|B1Nj 1<y gk}+e<b0}> =P U {|31Nj|+€<bo}

j=1

- CJ {bo - |31Nj‘ > 6} <P O {|510j| — |51Nj\ > e}
Jj=1 j=1

<P O{|ﬂ10j/@1Nj|>e} §P(||ﬂ107§1Nj||>6>H0
=1

Choosing € = by /2 shows that with probability converging to one min {\Ble| 1<j< k:} >

bp/2 and so Bl ~ is bounded away from 0. Hence Ly is differentiable at Bl N with
probability converging to one. And so (1 satisfies

iLN(ﬁlNaﬁ2N) =0

I
That is,
NTy
-2 Z (yj - W;Bw - Z;B2N> w; + AnvyYn =0
j=1

with probability converging to 1 where ¥ is a k x 1 vector with [’th entry given
by ¥ = |Bini[7 " tsign(Bin;). This can be rewritten as

NTx
—22 ( — Wi (Bin — Bro) — 7 ﬁQN)Wj+)\N71/}N—0<:>

NTN NTN NTN
—QZ€]WJ+QZWJ (Bin = Bro) +2 ) ZiBanw; + Aoy =0 &
J=1
NTN NTN

- 1 A 1 ~
Sin(Bin — Bro) = NTw Z €W — vy 1 Z 2} an W
=1
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Hence, for any k x 1 vector o

NTN
(NTN)20 (Biy = Bro) = (NTw) /2 Y o/ Sy jejw,;
j=1
NTN
—(1/2)y(NTn) " PANa' ST iy — (NTn) 2 Y o/ B3 2) fanw;
j=1

Since P(BQN = 0) — 1 the last term equals 0 with probability converging to 1.
From the Cauchy-Schwarz inequality in R” it follows that

o/ B yn| < Jlo' Syl
Since
lo'Siy|[* = o' By Eiye = o'Ziya < myllall* < 7%l

by assumption (A2), we get with probability converging to one
|(1/2)(NTn) ™ 2 dna Sidon] < (1/2)(NTw) ™2 yan e[|

< (1/2)(NTw) 2 Awry o [kyf (bo/2) 0

= (1/2)yri Hllall(bo/2) DT EN T Ak = 0
by assumption (A3). Hence,

NTn
(NTN)l/QO/(ﬁlN — 610) S (NTN)_1/2 Z a'Ef]\l,ejwj + Op(l)

j=1

Since syt = 1/4/02a/S La < 71/2 ol|al|) by assumption (A2) it is also true that
N 1IN 2

NTN
(73) (NTN)l/QSK/le/(ﬁlN — ﬂlo) S (NTN)71/28N1 Z 05/21_]\1[6jo + Op(l)
j=1

Now, defining W; y = (W1, ..., Wiy )" and €; v = (€1, ..., ;N7 ) one first notices
that?

(7.4)
1 NTnN 1 NTyn .
- ! . ') 1
NTy 21 WiWj T NTy Zl E (WJWJ) i E <TNW1NW1N)
= iz

where the first limit is in P-measure. To see why (7.4) is true let Z; be a fixed
entry in ijé, j=1,...,NTy. Letting n > 0 be arbitrary and using the Markov

9All limits are taken elementwise in the matrices.
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inequality
2
NT,
| NIy | NIy E (NlTN it {Zj —E (ZJ)})
Pl|— i — — E(Z;)| > <
NTN ]; J NTN j;l ( ]) n = ,'72

CB(TLERZ-P@) L E(SE [%- B @)

(NTxn)? (NTnn)?
N (S0 Var(Zu) + 250 ST, Cov (2, 24))
a (NTym)?
< N (TN maxi<¢<Ty Var (th) + QTN(TN — 1)/2 maxi<i<Ty Var (th))
- (NTyn)?
max)<t<Ty Var (ZH)
Hence,
-1
_ NT NT
NTy (NTw)~*/2 Zj:lN o (ﬁ Zj:lN WJ'W;‘) €Wj

—-1/2 -1 Isv—1

(NTy) Sy E o' X NEW; = —
j=1 2 1 NTN ot

\/o a (—NTN dj—1 Wiwi) o«

N—1/2 N ) 1 ) -1 12 )
< 1 ZO‘ E |:TN 1NW1N:| TN "Winein +0p(1)
\/0'20/ <E [TlellelN}> « =t

Now,

N —1
1 .
E|Y o (E [TNW’WWWD Ty *Wiyen | =0
i=1

by iterated expectations and
N 1 -1
7’]2\, =F ZO/ (E |:TN IlelN:|> T];l/Q gNeiN
i=1
N 1 -1 ] -1
=Y E|o <E {TNW’WWWD T PWiyeinenWinTy > <E {TNW’WWWD a

-1
1
:o'zNo/ <E |:NW/1NW1N:|> o

Finally, let Uiy = o (E {TINW’WWWD T *W! ey, Since E(UZ,) =
1

o2a/ (E {ﬁWSNwlN} « is convergent it is bounded. Hence, the Lindeberg

condition is satisfied since for all § > 0
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lim { ry2 / 2.dP % < lim L/ U2 dP =0
N—oo N Z |Uz N|>5TN N—oo o’ao? {|U1N\>5\/%2"2\/N} w
since for any p > 0 (let & %2"2 =K)

E(U2 )
. 2 . INT IN)
A}EEOP(UINHUW»KW}”) SA}L“;OP({WW” N}> S gy O

and {Ufl\,}j\,o:1 is uniformly integrable'®. Hence,

-1
N-1/2 N 1 _
2 <E [TN W’leND T P Wiyein % N(0,1)

\/U2a’ (E [TlNW’lNWuv}) o=t

And so by (7.3),

(NTN)I/2 o (Bin — Bro) < N(0,1)

or equivalently,
) -1
A d .
(75)  (NTw)"*(Bin = Bro) = N | 0,07 <J\}EHOOE |:TN llNWIN:|>

(]

Proof of Theorem 8. (i) If Ty = T for a fixed T U;ny = U; for all N where Uj is
defined in the obvious way, does not depend on N and belongs to L?(P). Hence,

lim  sup / UydP = lim U2dP =0
K=o 1<N<oo J{Uin|>K} K=o Moy >k}
by Lebesgue’s Dominated Convergence Theorem.

(ii) By the Cauchy-Schwarz inequality

1 _
it <o (2 [ wiswn] )l

Since is convergent it is bounded by a constant C.

o <E [TlegNwlNDl

Hence,

v < C’QHT_I/QWINQNH - ¢ Z = Z (WﬂNel'N)2
N

where W{N is jth row in the ith column of Wiy. Since the rows of Wiy are
identically distributed and W' 1L €] v Wi el ~ Wl el o where Wiiel y ~ Z;

s3]

o0
. 2 . .
N=1 implies that {UlNl{U1N>K\/N}} is uni
N=1

formly integrable which is what we really need.

10The uniform integrability of {UlN
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N2
for some Z; € L'(P). Hence, {(Wﬁve{ N) } is uniformly integrable for all

) ] N=1
1 <4 < k since

(Wiely) aP

lim  sup sup /
K—00 1< N<oo 1<j<Ty {(W{}E{N)2>K}

K=oo J{lwigely|>K}

by Lebesgue’s Dominated Convergence Theorem. By Hoffmann-Jergensen (1994)

Lo N\2) ™
(page 338)!! this implies that {TIN zfgl (Wﬁve{ N) } is uniformly integrable
o T
which in turn implies that {Zle ﬁ jTJZVl (Wﬁvejl N) } is uniformly inte-
N=1

N
grable by Hoffmann-Jgrgensen (1994) (page 337)'2. Since {02 Zle ﬁ Z]T]:Vl (W{ZNe]lN) }
N=1

dominates {UZy } this yields the desired result.
(iii) If W1y and €1 are uniformly bounded U; y has moments of any order and
SO {UEN};)VOzl is uniformly integrable. g

Proof of Corollary 1. For fixed Ty (7.5) reads
1/2( 4 d 2 / -1
NY2(Biy — Bio) 2 N (0,0 (E [W1W1]>

where absence of subscript N indicates that the matrices no longer depend on Ty.
In the fixed effects setting W, = (DD/)fl/2 DW,; and so

—1/2

E(WW1) = E (WD’ (DD')"/* (DD) /" DW, )

~ _ ~ [
~ £ (WiD'(DD) "' DW,) = F <W1W1>
where the last inequality used that D’ (DD' )_1 D is symmetric and idempotent
and that premultiplication of it corresponds to columnwise demeaning.

The proof of part (ii) is similar using Wy = Q12w a

Next we turn to the properties of the Marginal Bridge Bridge estimator.

Lemma 4. For any wy > 0,

NT
Km
P | wy > max Tk | =21 ——f
1<k<m|4 w
j=1 N

HThe partial averages of a uniformly integrable sequence are themselves uniformly integrable.
12Finite sums of uniformly integrable sequences are themselves uniformly integrable.
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Proof. By the Markov inequality,

NTy
Pl wy > Jpax g zjk€j| | =1 —P | max E Tjk€j| = WN

1<k<m
4>

NT
E <max1<k<m’2j_l Tjk€j

1
Wy

>1—

Since for any sequence of random variables {Z;},-, C L*(P)

E( max Zk) <F Z:Z;C1 <m max E(Z4)

1<k<m 1<j<m

it suffices to show that E (E; 1 x]kej) < K for all k € {1,...,m}. By the multi-
nomial theorem

NT NTy NTy NTn
_ 4 4 2 2.2 2
Y wjee; | =E Y wie; | F6E | Y Y ade e,
j=1 j=1 J1=1j2>71
NTN NTN NTN NTN NTN
3 3 2 2
+4F Z Z T, 1€}, TjakEia + 12F Z Z Z L5 k€], Tjok€ia Ljsk€ijs
Ji=1jg2>71 J1=1g2>j1 jza>j2

NTN NTN NTN NTN

24F E E E E Ty k€jy Lo k€ Lijsk€ls Ljak€sg

J1=1 j2>j1 j3>j2 ja>js

Since (X;n, €;n) is 1.i.d. and X;n L €y it follows that (Xin,€1n, ..., XNN, ENN)
are independent (calculate the characteristic function and observe that it factor-
izes). This implies X L ex. Finally, it is seen that €11, ..., ex7, are independent
(again calculate the characteristic function and observe that it factorizes). From
these observations it follows that the last three expectations above are all 0. And
S0,

NT NTy NTx NTn
_ 4 4 2 2 2 2
Do | =B Y aget | +6E | D D ad e ad,
j=1 j=1 Jj1=1j2>j1
NTnN NTNn NTn
_ 4 2 2
-Y E (x]k) E( ) 16y Y E( 1kx]2k) E(ejleh)
Jj=1 Ji=1j2>j1
NTnN NTN NTyN
=0oiE Zxk +60'E Z Jlka v | <ol +60 =K
Jji=1 J2>J1
here the estimate follows from the fact that 10N 2, < SSNTN 42— 1 and
where the estimate follows from the fac a i>1 T < D055 wjy = 1 an

ZjV:TlN x?k < Z;V:TlN ZL’?k =1since zj, < 1forallj=1,.., NTy. O
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Proof of Theorem 4. Let ex = (€1, ..., enTy ) and recall Eng = 1/ (NTy) Z T w'. ﬁlom]k

Then,
pN NTn PN
Un(B) = (y; — mjkﬂk)2 +An Z |Bk|”
k=1 j=1 k=1
oy [ NTy
= Z y? + NTw B} —2 Z yiwikBe | + ANZ |Bx
k=1
pn [ NTwx NTx NTx NTx PN
= Y&+ > (Wibn) +22 LBor)ej + NTnBE =2 (65 + WiBo1)zinBe | +An D I8k]
k=1 | =1 =1 =1 k=1
py [Ny NTy NTy PN
= ST+ D (WiBn)?+2 Z LBo1)ej + NTwB7 — 2(enxn + NTnéne)Be | +Av > 1Bel”
k=1 | j=1 j=1 k=1

So minimizing Uy is equivalent to minimizing » 7~ [NTNﬁ,f — 2(elyxk + NITnEnk) B + AN | B M

Since 0 < v < 1 it follows from Lemma A of Knight and Fu (2000) 85 = 0 if and
only if

An/(NTy) > |évxi/(NTN) + Ennl> e

1—
where ¢, = (L) (M) v Defining wy = 051/(2_7)()\N/(NTN)V/Q)I/(Q*V)

2—7y 2—~
the above inequality is equivalent to

wy > (NTN) V2 |eyxi + (NTx)Enk|

So to prove the theorem it is enough to show

(7.6) P (wN > (NTy)~Y/? ;?é%x‘é\ka + (NTN)ka|> —1

N
and
(7.7) r (wN > (NTy) Y2 klg}(n ‘eﬁvxk + (NTN)ka’) — 0

N

|ZN—T1N %‘k%‘t‘

We first prove (7.6). On Ay = W <c¢y, k€ Ky,l € Jy p and under
assumption (B6)

NTnN kn

1/2 _
max(NTN) P leni| = max oo s NTN 172 ; ;xakﬁlok%l
NTN NTN

= max o NTN 73 Zﬂmk Z zipzi| < maxZ\ﬂmH (NTy)72 Z Tk

< bicokn
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Hence,

Pwy > (NTN)—1/2 ]?el?;x |6/1VXk + (NTN)ka|)
N

>P (wN > (NTN)_1/2 ]grelja]}]\(f ‘GGVXM + (NTN)1/2 Igrel%);[ |ka‘, AN>

>P (wN > (NTy)~1/? max levxp| + blcOkN) + P(An) -1
N

where the last estimate follows from the inclusion-exclusion principle. By Lemma
4
Pl wy — bicogky > (NTN)_I/2 max |eyxg| | > 1— A
kedy N - (wn — bicokn)t
Kmy Jwh,
1
(1 — blcOkN/wN)

Furthermore, by assumption (B4)

my

(An(NTy)=7/2)

my/wy € O(1) 0

12—

and by assumption (B3)
kn
e Y
()\N(NTN)f’Y/z)

Finally, P(Ay) can be made arbitrarily close to 1 by assumption (B5) which es-
tablishes (7.6). Next we verify (7.7).

blchN/wN S O(l)

P <wN > (NTy)™2 min |éyx + (NTN)ka|> =r| {wN > [(NTn) 'V 2eyxy + (NTN)l/ngk\}
keK N

78) < 3 2 ({uw > T 24 (VT e} )
keK N

Since mingexy [Enk| = o > 0 by assumption (B1) we may write,
P ({wN > |(NTn) ™ 2eyxy + (NTN)l/ZgNH}) <P ({wN > (NTn)Y?|Enk] — (NTN)1/2|e’ka|}>
<P ({wN > (NTx)Y2¢, - (NTN)—1/2|6;ka|}) =P ({(NTN)_1/2|€INXk| > (NTx)Y2¢, - wN}>

—1-p ({(NTN)1/2§O —wy > (NTN)_1/2|6/1VXk|}> <1-P ({(NTN)1/2§O —wy > (NTN)_1/2|6’]ka}>

By Lemma 4,
(7.9)

P ({(NTN)1/2§O —wy > (NTN)—1/2|6;ka|}) >1- K

(NTn)/2& — wn)*
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And so for all k € Ky

P <{w1v > |(NTw) Y2y + (NTN)l/QENM}) < s

(NTn)Y/2& — wn)*

Inserting this into (7.8) yields

Kk
-1/2 1in € < al
P (wN > (NTy) min lenXk + (NTN)§Nk|> = (INTN) 20 — wm)?
Kkyn/(NTy)?

(S0 — wn/(NTN)/2)"
By assumption (B2),

Wy AN (NTy)~/? Ve 1/(2—7)
— 0(1) (\w/(NTw)) C o(1)

)iz €00 <(NTN)(2—7)/2
Furthermore, by (B3) ky/(NTx)? — 0. Hence,

P (wN > (NTN)_1/2 krél[i(n |6/NXk + (NTN)fNH) — 0.
N
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