
School of Economics and Management 
Aarhus University 

Bartholins Allé 10, Building 1322, DK-8000 Aarhus C 
Denmark 

 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 

CREATES Research Paper 2010-56 
 
 
 
 

Oracle Efficient Variable Selection in Random and Fixed 
Effects Panel Data Models 

 
 

Anders Bredahl Kock  

 



ORACLE EFFICIENT VARIABLE SELECTION IN RANDOM
AND FIXED EFFECTS PANEL DATA MODELS

ANDERS BREDAHL KOCK
CREATES AND AARHUS UNIVERSITY

Abstract. This paper generalizes the results for the Bridge estimator of
Huang et al. (2008) to linear random and fixed effects panel data models

which are allowed to grow in both dimensions. In particular, we show that the

Bridge estimator is oracle efficient. It can correctly distinguish between rele-
vant and irrelevant variables and the asymptotic distribution of the estimators

of the coefficients of the relevant variables is the same as if only these had been

included in the model, i.e. as if an oracle had revealed the true model prior to
estimation.

In the case of more explanatory variables than observations we prove that

the Marginal Bridge estimator can asymptotically correctly distinguish be-
tween relevant and irrelevant explanatory variables. We do this without as-

suming sub-Gaussianity of the error terms. However, a partial orthogonality
condition of the same type as in Huang et al. (2008) is needed.

Key words: Panel data, high dimensional modeling, variable selection, Bridge

estimators, oracle property.

JEL codes: C1, C23.

1. Introduction

When building a model one of the first steps is to decide which variables to
include. Sometimes theory can guide the researcher towards a set of potential
explanatory variables but which variables in this set are relevant and which are
to be left out? Huang et al. (2008) showed that the Bridge estimator is able to
discriminate between relevant and irrelevant explanatory variables in a cross section
setting with fixed covariates whose number is allowed to increase with the sample
size. In fact, oracle efficient estimation has received quite some attention in the
statistics literature in the recent years, see (among others) Zou (2006), Candes and
Tao (2007), Fan and Lv (2008), and Meinshausen and Yu (2009). However, we
are not aware of any similar results for panel data models. For the case of fewer
explanatory variables than observations we show that the oracle efficiency of the
Bridge estimator carries over to linear panel data models with random regressors
in the random and fixed effects settings. More precisely, it suffices that either the
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number of cross sectional units (N) or the number of observations within each
cross sectional unit (TN ) goes to infinity in order to establish consistency and
correct elimination of irrelevant variables. To obtain the oracle efficient asymptotic
distribution (the distribution obtained by only including the relevant covariates) of
the estimators of the nonzero coefficients, further restrictions are needed. In the
classical setting of fixed TN and large N these restrictions are satisfied. Further
sufficient conditions for oracle efficiency are given. Fixing TN and the number of
covariates we obtain as a corollary that the asymptotic distribution of the estimators
of the non-zero coefficients is exactly the classic fixed effects or random effects limit
law.

If the set of potential explanatory variables is larger than the number of ob-
servations we show that the Marginal Bridge estimator can be used to distinguish
between relevant and irrelevant variables in random and fixed effects panel data
models. A partial orthogonality condition restricting the dependence between the
relevant and the irrelevant variables of the same type as in Huang et al. (2008) is
imposed. As opposed to Huang et al. (2008) we do not assume that the error terms
are sub-Gaussian and avoid the use of Orlicz space based maximum inequalities.
The price paid for the absence of sub-Gaussian error terms is that the number of
irrelevant variables must be o(N2) (this is for fixed TN for comparability to the
known cross sectional results) as opposed to o(exp(N)). However, the number of
relevant variables may still be o(N1/2) (again TN is considered fixed for compari-
son). Furthermore, the Marginal Bridge estimator is very fast to implement which
also makes it useful as an initial screening device to weed out the most irrelevant
variables before initiating the actual modeling stage.

Since cross section data can be viewed as panel data with only one observa-
tion per individual, all our results are also valid for cross section data and hence
generalize the results for these.

The plan of the paper is as follows. Section 2 puts forward the general frame-
work. Section 3 introduces the Bridge estimator and its properties while Section 4
discusses the Marginal Bridge estimator. Section 5 illustrates the results by simu-
lation and Section 6 concludes. Section 7 contains proofs of the propositions.

2. Setup and assumptions

Consider the following linear panel data model on (Ω,F , P ).

ỹit = x̃′itβ0 + ci + ε̃it, i = 1, ..., N, t = 1, ..., TN(2.1)

x̃it is a pN × 1 vector of covariates indicating that the number of covariates is
allowed to increase with the sample size. The interpretation of (2.1) is that N
individuals are observed in TN time periods, totaling NTN observations. The ci
indicate the unobserved heterogeneity, i.e. unobserved time invariant variables
such as intelligence of an individual or start up capital of a firm. The ε̃it are
the idiosyncratic error terms. Some of the elements of β0 may be zero. It is our
objective to locate these while still estimating the nonzero coefficients consistently.
N as well as TN are allowed to tend to infinity. However, all results are valid

as long as N tends to infinity. Hence, the traditional large N , fixed TN setting is
covered. Notice that TN is indexed by N . Some of our results put no restrictions
on how TN depends on N .
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Equation (2.1) can equivalently be written as

ỸiN = X̃iNβ0 + ciN + ε̃iN , i = 1, ..., N,(2.2)

where ỸiN = (yi1, ..., yiTN )′, X̃iN = (xi1, ..., xiTN )′, ε̃iN = (ε̃i1, ..., ε̃iTN ), ciN =
ciN ιTN , ι

′
TN

= (1, ..., 1), i = 1, ..., N .

2.1. Fixed Effects. In the fixed effects setting one assumes:

(FE1) Random sampling: (X̃iN , ciN , ε̃i)Ni=1 is i.i.d.
(FE2) x̃itl, ε̃it ∈ L4(P ), i = 1, ..., N, t = 1, ..., TN , l = 1, ..., pN
(FE3) a) E(ε̃it|X̃iN , ciN ) = 0 and b) E(ε̃iN ε̃′iN |X̃iN , ciN ) = σ2ITN

For our proofs we may replace (FE3) by E(ε̃it|X̃iN ) = 0 and E(ε̃iN ε̃′iN |X̃iN ) =
σ2ITN which is less restrictive but since (FE3) is standard in the literature we stick
to this. Next, carry out the forward orthogonal deviations transform of Arellano
(2003). This transformation removes the unobserved heterogeneity while keeping
the error terms uncorrelated. In particular, define the (TN − 1)× TN matrix

D =


−1 1 0 · · · 0 0
0 −1 1 0 0
...

. . .
...

0 0 0 · · · −1 1


and multiply (2.2) through by

(
DD′

)−1/2
D to get

YiN = XiNβ0 + εiN , i = 1, ..., N,(2.3)

where YiN =
(
DD′

)−1/2
DỸiN , XiN =

(
DD′

)−1/2
DX̃iN and εiN =

(
DD′

)−1/2
Dε̃iN .

Clearly, (FE3) implies

(FE3’) a) E(εiN |XiN ) = 0 and b) E(εiN ε′iN |XiN ) = σ2ITN−1

which is what will be used in the proofs. Arellano (2003) gives the specific form of(
DD′

)−1/2
D. The number of time series observations for each individual is reduced

from TN to TN − 1 by the forward orthogonal deviations transform. However,
for notational convenience, we will keep using TN for the number of time series
observations in the transformed model. In a cross section setting this transform
does not need to be carried out.

2.2. Random Effects. In the random effects setting (FE1)-(FE3) are maintained
while

(RE4) a) E
(
ciN |X̃iN

)
= 0 and b) E

(
ciNc′iN |X̃iN

)
= σ2

c ιTN ι
′
TN

is added to the fixed effects assumptions. This extra assumptions restricts the
dependence between XiN and ciN sufficiently in order allow merging the latter
with the error term while still being able to prove the desired results. The gain
from these stronger assumptions is that they (as opposed to fixed effects) allow
for the inclusion of a covariate which is constant over time and only varies over
individuals. Defining viN = ciN + ε̃iN , (FE3) and (RE4) imply E

(
viN |X̃iN

)
= 0

and
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E(viNv′iN |X̃iN ) = E([ciN + ε̃iN ][ciN + ε̃iN ]′|X̃iN ) =


σ2
c + σ2 σ2

c · · · σ2
c

σ2
c σ2

c + σ2
ε̃ · · ·

...
...

. . . σ2
c

σ2
c σ2

c + σ2

 = Ω

The presence of the unobserved heterogeneity renders the error terms correlated.
Since the structure of the correlation is known the correlation is easily removed by
premultiplying (2.2) by1 σΩ−1/2 (GLS transform). This yields

YiN = XiNβ0 + εiN , i = 1, ..., N,(2.4)

where YiN = σΩ−1/2ỸiN , XiN = σΩ−1/2X̃iN and εiN = σΩ−1/2viN . Hence,
(RE3’) a) E(εiN |XiN ) = 0 and b) E(εiN ε′iN |XiN ) = σ2ITN
which is what will be used in the proofs. In a cross section setting the random
effects transform does not need to be carried out.

3. The bridge estimator

The bridge estimator estimates β0 by minimizing

LN (β) =
N∑
i=1

TN∑
t=1

(
yit − x′itβ

)2 + λN

pN∑
k=1

|βk|γ(3.1)

=
NTN∑
j=1

(
yj − x′jβ

)2

+ λN

pN∑
k=1

|βk|γ , γ > 0(3.2)

where summation from 1 to NTN indicates summation over all time periods for each
individual (So the first TN terms in the sum correspond to all TN observation on
individual 1, the next TN terms to all observations on individual 2 and so on. This
convention is adopted in the sequel). The bridge estimator, denoted β̂N , may hence
be seen as a sort of penalized/regularized least squares. The objective function
consists of two parts; the first part being the least squares objective function and
the second part penalizing parameters different from 0. The larger λN , the larger
the penalty. For γ = 1 the minimizer of (3.2) could be called the LASSO panel
estimator, (Tibshirani (1996)). For γ = 2 it could be called the ridge regression
estimator (Tikhonov regularization) for panel data models. In a cross sectional
setting the ridge regression is frequently used to deal with multicollinearity. The
Tikhonov regularization is more generally used to solve ill-conditioned (singular)
overdetermined systems of linear equations.

Let β0 denote the true value of β where the dependence on N is suppressed as
in Huang et al. (2008). Partition β0 as β0 = (β′10, β

′
20)′ where β10 6= 0 is kN × 1

and β20 = 0 is mN × 1. Hence, the β10 are the coefficients corresponding to the
relevant variables denoted wit. β20 are the coefficients of the irrelevant variables
denoted zit. So xit is partitioned as xit = (w′it, z

′
it)
′. Accordingly, we define

XN =
(
x11, ...,xNTN

)′, WN =
(
w11, ...,wNTN

)′ and ZN =
(
z11, ..., zNTN

)′. Let

1The sole reason for multiplying Ω−1/2 by σ is that (FE3’) and (RE3’) become identical except
for the dimension of the covariance matrix. Since (FE3’) and (RE3’) are the assumptions used

in the proofs this indicates that the proofs only have to be carried out in either the fixed or the
random effects setting.
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ΣN = (NTN )−1X′NXN as well as Σ1N = (NTN )−1W′
NWN are the scaled Gram

matrices of XN and X1N , respectively. Let ρ1N and ρ2N be the smallest and the
largest eigenvalue of ΣN . Similarly, define τ1N and τ2N as the smallest and the
largest eigenvalue of Σ1N . Set WiN =

(
wi1, ...,wiTN

)′ and for x ∈ Rp ‖x‖ =√∑p
k=1 x

2
k denotes the Euclidean norm on Rp stemming from the dot product.

Finally, xk = (x1,k, ..., xNTN ,k)′ denotes the k’th explanatory variable.
Next, we state and discuss the assumptions needed to establish consistency and

oracle efficiency of bridge estimators in random effects panel data models. Notice
how N and TN enter symmetrically indicating that what matters is their product,
i.e. the total number of observations, and not whether it is N or TN which gets
large (however, some theorems require further assumptions restricting the rate at
which TN increases relative to N).

(A1) 1
NTNpN

∑N
i=1

∑TN
t=1

∑pN
k=1 x

2
itk is bounded in L2(P ), i.e.,

sup
1≤N<∞

E

 1
NTNpN

N∑
i=1

TN∑
t=1

pN∑
k=1

x2
itk

 = sup
1≤N<∞

1
TNpN

TN∑
t=1

pN∑
k=1

E
(
x2

1tk

)
= K <∞

(A2) There exist constants 0 < τ1 < τ2 < ∞ such that τ1 ≤ τ1N ≤ τ2N ≤
τ2 P − a.s.

(A3) λN (kN/(NTN ))1/2 → 0
(A4) λNρ

2−γ
1N (NTN )−γ/2pγ/2−1

N →∞ P − a.s.
(A5) There exist constants 0 < b0 < b1 <∞ such that b0 ≤ min

{
|β10j | |1 ≤ j ≤ kN

}
≤

max
{
|β10j | |1 ≤ j ≤ kN

}
≤ b1

(A6) (pN + λNkN )/(NTNρ1N )→ 0 P − a.s.
(A7) ρ1Nρ

1/2
2N

p
1/2
N

∈ Op(1) P − a.s.

Assumption (A1) may be dropped altogether if the covariates are normalized as
1

NTN

∑NTN
j=1 x2

jk = 1
NTN

∑N
i=1

∑TN
t=1 x

2
itk = 1 for all 1 ≤ k ≤ pN . Alternatively (A1)

is satisfied if {xitk} is bounded in L2 (P ) – this is in turns satisfied if, e.g, the covari-
ates are uniformly bounded. If the covariates are identically distributes over time,
then the assumption reduces to boundedness of the Cesàro sum 1

pN

∑pN
k=1E

(
x2

11k

)
.

Finiteness of pN or convergence of
{
E
(
x2

11k

)}∞
k=1

are sufficient for this. Finally, it

may be noted that convergence of 1
TNpN

∑TN
t=1

∑pN
k=1E

(
x2

1tk

)
is also sufficient for

the desired boundedness in L2 (P ).
Huang et al. (2008) mention that assumption (A2) is likely to be satisfied in

sparse systems, where kN is relatively small.
Regarding condition (A3) one notices that if the number of relevant covariates

kN stays fixed λN/(NTN )1/2 → 0. Hence, λN ∈ o((NTN )1/2).
Assumption (A4): Assume 0 < a1 < ρ1N ≤ ρ2N < a2 < ∞ for some constants

a1 and a2 and that the number of covariates stays constant. Then it must be the
case that λN (NTN )−γ/2 → ∞. This excludes γ ≥ 1 by (A3). Hence, 0 < γ < 1
and λN ∈ o((NTN )1/2) ∩ ω((NTN )γ/2)

Assumption (A5) requires that the non-zero coefficients are uniformly bounded
away from 0 and infinity. This is trivially satisfied if the number of covariates is
finite. Also note that all results remain valid (with slight modifications) if b1 is
replaced by a sequence b1N which is allowed to tend to infinity.
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By assumption (A3) assumption (A6) is satisfied if 0 < a1 < ρ1N < ρ2N < a2 <
∞ for some constants a1 and a2 and the number of covariates is finite. Since the
Gramian ΣN is positive semidefinite (A6) also implies that ρ1N > 0 in order for
the condition to be well defined. This excludes pN > NTN since the rank of ΣN
can be no larger than NTN .

Assumption (A7) is satisfied if 0 < a1 < ρ1N < ρ2N < a2 <∞ for some constants
a1 and a2.

Our first theorem states that the bridge estimator is consistent in the random as
well as the fixed effects setting. Throughout we will assume that (FE1)-(FE3) (fixed
effects setting) or (FE1)-(FE3) and (RE4) (random effects setting) are satisfied.

Theorem 1. Let β̂N denote the minimizer of (3.2). Suppose that γ > 0 and that
conditions (A1), (A3), (A5), and (A6) hold. Then ||β̂N −βN || ∈ Op(min(hN , h′N ))
where hN = ρ−1

1N (pN/(NTN ))1/2 and h′N =
[
(pN + λNkN )/(NTNρ1N )

]1/2.

Theorem 1 shows the consistency of the bridge estimator by assumptions (A3)
and (A6). Notice that if there exists a constant a1 such that 0 < a1 < ρ1N and pN
is constant then the bridge estimator converges at the same rate as the least squares
estimator. The faster the arrival rate of new explanatory variables (pN increases)
the slower the rate of convergence of the bridge estimator since hN as well as h′N are
increasing in pN . If ρ1N tends to 0 (approaching a singular design) the convergence
rate is also slowed down. It is also seen that N and TN enter symmetrically. This is
not immediate on the outset since only independence of {XiN}∞i=1 has been assumed
while the TN rows of each XiN may have any dependence structure between them.
What provides the result is that E(εiN ε′iN |XiN ) = σ2ITN , i.e. the conditional
uncorrelatedness of the rows.

The next theorem reveals that the bridge estimator performs variable selection
and gives the limiting law of the estimator of the nonzero coefficients.

Let U1N = α′
(
E
[

1
TN

W′
1NW1N

])−1

T
−1/2
N W′

1N ε1N .

Theorem 2. Assume 0 < γ < 1. Then under (A1)-(A7),

(i) β̂2N = 0 with probability converging to 1.

(ii) Let kN be a fixed number k, α be a k × 1 vector, and sN =
√
σ2α′Σ−1

1Nα.

If
{
U2

1N

}∞
N=1

is uniformly integrable,

max1≤t≤TN V ar (w1tlw1tm)
N

→ 0 for all 1 ≤ l,m ≤ k

and

lim
N→∞

1
NTN

NTN∑
j=1

E
(
wjw′j

)
= lim
N→∞

E

(
1
TN

W′
1NW1N

)
exists then,

(NTN )1/2s−1
N α′

(
β̂1N − β10

)
d→ N(0, 1)

Part (i) states that not only does does β̂2N → 0 in P -measure (Theorem 1), the
bridge estimator actually sets β̂2N = 0 with probability converging to 1. The latter
of course implies the former while the converse is not true. The fact that β̂2N is set
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exactly equal to 0 with probability converging to 1 means that the bridge estimator
performs variable selection.

Part (ii) states that the asymptotic distribution of the estimators of the non
zero coefficients is the same as if the true model had been known in advance –
i.e. as if an oracle had revealed which variables to include and which to exclude.
This is a very useful result in practice. One simply includes the whole set of
potential explanatory variables. The irrelevant ones will be kicked out (β̂2N = 0
with probability converging to 1) while the relevant ones are estimated with the
same asymptotic efficiency as if the irrelevant ones had been left out from the
outset. However, notice that the price paid for letting the covariates be random is
that kN must be fixed. Alternatively, one may continue to let kN increase in N
while conditioning on the covariates and establish the limiting law along the lines
of Huang et al. (2008).

The following Theorem gives sufficient conditions under which
{
U2

1N

}∞
N=1

is
uniformly integrable.

Theorem 3.
{
U2

1N

}∞
N=1

is uniformly integrable if either of the following conditions
is satisfied.

(i) TN = T for a fixed T
(ii) The rows in W1N are identically distributed and WiN ⊥⊥ εiN , i = 1, ..., N .

(iii) W1N and ε1N are uniformly bounded in N .

The assumption max1≤t≤TN V ar (w1tlw1tm) /N → 0 for all 1 ≤ l,m ≤ k in part
(ii) of Theorem 2 is not restrictive. It is clearly satisfied if TN is fixed. It is also
satisfied if max1≤t≤TN E

(
[w1tlw1tm]2

)
≤ M < ∞ for all TN and 1 ≤ l,m ≤ k

(second moments uniformly bounded in t) which in turn is satisfied if the variables
themselves are uniformly bounded in t. The assumption is also satisfied if w1t

are identically distributed across t. If the variances are linearly increasing, i.e.
V ar (w1tlw1tm) = almt for some alm > 0, it suffices that TN/N → 0.2

If TN is fixed, limN→∞
1

NTN

∑NTN
j=1 E

(
wjw′j

)
= limN→∞E

(
1
TN

W′
1NW1N

)
exists. The same is true if w1tl is identically distributed across t for all 1 ≤ l ≤ k.

Part (ii) of Theorem 2 is made more precise in the following corollary which
considers the classical situation of fixed TN . Let W̃i denote the matrix containing
the k untransformed relevant variables of individual i in all time periods and ¨̃W1

its column demeaned version.

Corollary 1. Under the assumptions of Theorem (2), TN fixed
(i) and (FE1)-(FE3) and the forward orthogonal deviations transform

N1/2
(
β̂1N − β10

)
d→ N

0, σ2

[
E

(
¨̃W′

1
¨̃W1

)]−1
(3.3)

(ii) and (FE1)-(FE3), (RE4) and the GLS transform

N1/2
(
β̂1N − β10

)
d→ N

(
0, σ2

[
E
(
X̃′1Ω

−1X̃1

)]−1
)

(3.4)

2More generally, if V ar (w1tlw1tm) ∈ O
(
g(t)

)
for all 1 ≤ l,m ≤ k for some positive increasing

function g it suffices that
g(TN )
N

→ 0.
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Notice that the asymptotic distribution in (3.3) is the same as for a fixed effects
estimator with known sparsity pattern of β0. This underscores the oracle property
of the panel bridge estimator. Similarly, (3.4) is the asymptotic distribution of the
random effects estimator with known sparsity pattern of β0.

4. The Marginal Bridge estimator

Since the bridge estimator is not applicable when pN > NTN (though it does
allow pN → ∞) a different approach is needed for this situation. As in Huang
et al. (2008) we will employ the Marginal Bridge estimator which estimates β0 by
minimizing

UN (β) =
pN∑
k=1

NTN∑
j=1

(
yj − xjkβk

)2 + λN

pN∑
k=1

|βk|γ(4.1)

=
pN∑
k=1

NTN∑
j=1

(
yj − xjkβk

)2 + λN |βk|γ
(4.2)

From (4.2) it is clear that the objective function is nothing else than the sum of
the marginal objective functions for each variable – hence the name Marginal Bridge
estimator. Let β̃N denote the minimizer of (4.2). We show that the Marginal Bridge
estimator is able to correctly distinguish between relevant and irrelevant variables
even when there are more explanatory variables than observations (pN > NTN ).
(FE2) and (FE3) will be strengthened to

(FE2MB) x̃itl, ε̃it ∈ L8(P ), i = 1, ..., N, t = 1, ..., TN , l = 1, ..., pN
(FE3MB)

(
X̃iN , ciN

)
⊥⊥ ε̃iN , ε̃i1, ..., ε̃iTN is i.i.d. for all 1 ≤ i ≤ N , E (ε̃it) = 0, and

E
(
ε̃2it
)

= σ2.3

Even though we do not impose sub-Gaussianity4 on the error terms the require-
ment of existence of the eight moment does discipline their tail behavior. (FE3MB)
clearly implies (FE3) while the reverse need not be the case (see e.g. Stoyanov
(1997) for an example). However, this strengthening is not likely to be of any
practical importance since it is hard to imagine practical examples where (FE3) is
satisfied while (FE3MB) is not. After carrying out either the fixed effects or the
random effects transform (FE3MB) implies that XiN ⊥⊥ εiN , εi1, ..., εiTN is i.i.d. for
all 1 ≤ i ≤ N , E (εit) = 0, and E

(
ε2it
)

= σ2.
Let KN = (1, ..., kN ) denote the active set, i.e. the set of indices of the relevant

variables, and JN = (kN + 1, ..., pN ) the inactive set, i.e. the set of indices of the
irrelevant variables. Standardize the covariates such that 1/(NTN )

∑NTN
j=1 x2

jk = 1
for all k = 1, ..., pN and define ξNk = 1/ (NTN )

∑NTN
j=1 w′jβ10xjk. Assume

(B1) There exists a constant ξ0 > 0 such that mink∈kN |ξNk| > ξ0 with proba-
bility approaching 1.

(B2) λN/(NTN )→ 0.

3It is sufficient to assume X̃iN ⊥⊥ ε̃iN for all 1 ≤ i ≤ N but for comparison with (FE3) we

refrain from this (see also the comment after (FE3)).
4A random variable X is said to sub-Gaussian if P

(
|X| > x

)
≤ A exp(−Bx2) for some positive

constants A and B.
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(B3) kN

(λN (NTN )−γ/2)1/(2−γ) → 0.

(B4) mN

(λN (NTN )−γ/2)4/(2−γ) → 0.

(B5) For all δ > 0 there exists a c0 > 0 and a N0 ∈ N such that

P

(∑NTN
j=1 xjkxjl

(NTN )1/2
≤ c0, k ∈ KN , l ∈ JN

)
≥ 1− δ for N ≥ N0.

(B6) There exists a constant 0 < b1 <∞ such that maxk∈KN |β10k| ≤ b1.
Assumption (B1) is a technical assumption needed to prove that no variables

from the active set will be discarded by the Marginal Bridge. In a fixed regressor
setting it is similar to assuming that the covariance between the left hand side
variable and the relevant covariates is bounded away from 0.

Assumption (B2) requires that λN ∈ o(NTN ).
Assumption (B3) combined with assumption (B2) implies that kN ∈ o((NTN )1/2).

In the classical case of fixed TN this amounts to kN ∈ o(N1/2). This is in line with
the results of Huang et al. (2008).

Using (B2) in (B4) implies mN ∈ o
(
(NTN )2

)
. Hence, in the classical situation

of fixed TN , mN ∈ o(N2). This of course still allows the number of irrelevant
variables to increase at a much higher rate (almost quadratic) than the sample size.
For 0 < γ < 2 (B4) also implies that λN (NTN )−γ/2 →∞. Together with (B3) this
yields that λN ∈ o(NTN ) ∩ ω

(
(NTN )γ/2

)
.

Assumption (B5) is a partial orthogonality assumption limiting the dependence
between the variables in the active and the inactive set. It rules out correlations
of −1 or 15. However, it is not too restrictive and as will be seen from the Monte
Carlo simulations in Section 5 the Marginal Bridge also works quite well even when
the covariates in the active and inactive set are highly correlated.

Assumption (B6) is a uniform bound on the size of the coefficients belonging
to the relevant variables. This assumption may be relaxed in the same way as
assumption (A5) at the price of a lower growth rate of the number of relevant
variables.

Theorem 4. Under assumption (B1)-(B6) and if 0 < γ < 1,

P
(
β̃2N = 0

)
→ 1 and P

(
β̃1Nk = 0, k ∈ KN

)
→ 0(4.3)

Hence, the Marginal Bridge estimator is able to screen out the irrelevant variables
while retaining the relevant ones. Notice that this is true even without sub-Gaussian
error terms. The price paid is that the number of irrelevant variables can not tend
to infinity as fast as in Huang et al. (2008). However, mN ∈ o(N2) (TN fixed) is
not very restrictive in practice since it still allows the number of irrelevant variables
to arrive at a considerably faster rate than the sample size.

The nonzero coefficients are not estimated consistently. In order to obtain con-
sistent estimates the same two step procedure as in Huang et al. (2008) can be
applied. In the first step the bridge estimator is applied to distinguish between
the relevant and irrelevant variables. In the second step, where only the relevant

5If xj1 and xj2 are perfectly correlated and (assume for simplicity) have an empirical mean of

zero xj2 = bxj1 P − a.s. for some constant b. Then

∑NTN
j=1 xj1xj2

(NTN )1/2
= b(NTN )1/2 which violates

(B5).
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variables are left, these may be estimated by any consistent estimator (e.g. least
squares or the bridge estimator).

5. Simulations

In this section the finite sample properties of the proposed estimators will be
investigated. The bridge estimator will be implemented by means of the MM-
algorithm of Hunter and Li (2005) which in the present case reduces to a series of
ridge regressions.

Implementing the Marginal Bridge is very fast. Since
∑NTN
j=1 x2

jk = NTN for
k = 1, ..., pN it follows from Lemma A in Knight and Fu (2000) that βk = 0 iff

λN
NTN

> cγ

∣∣∣∣∣∣
∑NTN
j=1 yjxjk

NTN

∣∣∣∣∣∣
2−γ

(5.1)

where cγ =
(

2
2−γ

)(
2(1−γ)

2−γ

)1−γ
. Hence, variable selection is extremely fast6 even

in vast dimensional models, since the inclusion of a variable is solely based on the
criterion (5.1) which roughly amounts to checking whether the correlation between
the left hand side variable and the covariate is sufficiently high to deem the latter
relevant. Notice how only marginal information is used to decide whether a variable
is to be included or not. Having decided on the sparsity pattern the second step
estimates of β10 are found by means of least squares7.

The following issues will be investigated
(1) How often do the Bridge and the Marginal Bridge estimator select the

correct sparsity pattern, i.e. how good are they at distinguishing the active
from the inactive set? This is highly relevant in applied work investigating
which variables help explaining the left hand side variable.

(2) The median number of variables included, i.e how well do the Bridge and
the Marginal Bridge reduce the dimension of the problem? This median is
ideally equal to the cardinality of the active set.

(3) The explanatory power of the Bridge and the Marginal Bridge. To inves-
tigate this the estimated parameters are used to fit values on a validation
data set drawn from the same distribution as the training set.

(4) In connection to the explanatory power it is investigated how often the
procedures retain all relevant explanatory variables. As can be expected,
retention of all relevant explanatory variables is important for achieving a
good fit. It is also highly desirable if the procedures are to be used as initial
screening devices in vast dimensional data sets.

(5) The precision of the parameter estimates using the mean square error of β̂.
(6) The asymptotic distribution of the estimator of the non-zero β0’s. This

is done by comparing the standard deviation of β̂1 to the corresponding
quantities for the least squares estimator with only the active set included.
The latter (in practice infeasible) estimator will be called the OLS Oracle
henceforth.

6A model with 100 observations and 2500 potential explanatory variables takes between 0.2

and 0.3 seconds to estimate on a 2.66 GHz i7 processor.
7The Bridge estimator was also tried in the second step but did not outperform least squares

while being considerably slower.
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The Bridge and the Marginal Bridge estimators will be compared to the LASSO
estimated by pathwise coordinate descent, the Schwarz information criterion (BIC),
the OLS Oracle, and OLS on the system including all covariates. Only the Marginal
Bridge, the LASSO and the OLS Oracle are applied when pN > NTN . To limit
the computational burden, BIC is only applied for the designs with 15 or fewer
covariates which implies a maximum of 215 − 1 = 32.767 regressions per Monte
Carlo replication. All experiments are carried out with 1.000 replications.

The data is generated from equation (2.2). In all experiments TN = 10. Initial
experiments indicated that γ = 0.5 works quite well for the Bridge as well as the
Marginal Bridge estimator and this value will be used throughout. ε̃it and ci are
N(0, 1) with σ2

ε̃ = σ2
c = 1 in all experiments.

The regularization parameter λN is usually chosen by 10-fold cross validation.
Here we try this as well as the significantly faster BIC to determine λN for the
Bridge, the Marginal Bridge and the LASSO.

5.1. The experiments.
(A) N=10, β0 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ and the covariates are inde-

pendent N(0,1) variables.
(B) β0 is as in (A). The correlation between the k’th and l’th covariate is ρ|k−l|

with ρ = 0.50.
(C) As (B) but with ρ = 0.95.
(D) As (A) but with N=100.
(E) As (B) but with N=100.
(F) As (C) but with N=100.
(G) N=10 and 5 relevant explanatory variables with a coefficient of 1. 245

irrelevant variables. All covariates are independent.
(H) N=10 and 5 relevant explanatory variables with a coefficient of 1. 495

irrelevant variables. All covariates are independent.
(I) N=10 and 5 relevant explanatory variables with a coefficient of 1. 2495

irrelevant variables. All covariates are independent.
Note that even though the covariates are independent in Experiments G-I the max-
imum spurious sample correlation, i.e. the maximum observed sample correlation
between covariates, may still be very high (see Fan and Lv (2008) for examples).
In particular, if a relevant and irrelevant covariate are highly correlated it will be
difficult to distinguish between these.

5.2. Results. Table 1 holds the results for experiments A-F, where pN < NTN .
Experiment A reveals that the Bridge, Marginal Bridge and Schwarz information

criterion all perform quite well in the independent covariates setting. They all detect
the correct sparsity pattern in more than half of the cases irrespective of whether
cross validation or BIC is used to determine λN . In all respects their performance
is comparable to the OLS Oracle.

As seen from Experiment B making the covariates moderately correlated does not
deteriorate the performance of the procedures with respect to the fraction of times
the right sparsity pattern is chosen or the fraction of times all relevant covariates
are retained. However, all procedures get more imprecise. Since this is also the case
for the OLS Oracle this is not a particular artifact of the Bridge class of estimators.

Experiment C reveals that as the correlation gets very high the performance of
the Bridge and BIC deteriorate. On the other hand the Marginal Bridge continues
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Cross Validation BIC

Bridge Marg Bridge LASSO Bridge Marg Bridge LASSO BIC OLS Oracle OLS All
E

xp
er

im
en

t
A Sparsity pattern 0.6040 0.5190 0.0130 0.6700 0.7830 0.0990 0.6590 1.0000 0.0000

Median #Var 5.0000 5.0000 10.0000 5.0000 5.0000 8.0000 5.0000 5.0000 15.0000
Loss 2.1128 2.1062 2.1544 2.0947 2.0794 2.1643 2.1007 2.0667 2.2125

Relevant retained 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Median Beta MSE 0.0764 0.0725 0.0950 0.0706 0.0647 0.0971 0.0712 0.0584 0.1131

Stdv 0.1188 0.1145 0.1206 0.1172 0.1145 0.1236 0.1148 0.1135 0.1198

E
xp

er
im

en
t

B Sparsity pattern 0.6560 0.6520 0.0540 0.7170 0.9220 0.2910 0.6870 1.0000 0.0000
Median #Var 5.0000 5.0000 8.0000 5.0000 5.0000 6.0000 5.0000 5.0000 15.0000

Loss 2.1048 2.1009 2.1288 2.0898 2.0740 2.1374 2.0959 2.0667 2.2125
Relevant retained 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Median Beta MSE 0.0863 0.0843 0.0952 0.0827 0.0740 0.0927 0.0841 0.0710 0.1441

Stdv 0.1387 0.1327 0.1362 0.1351 0.1306 0.1393 0.1314 0.1301 0.1365

E
xp

er
im

en
t

C Sparsity pattern 0.0760 0.5600 0.1370 0.0180 0.6400 0.2750 0.0070 1.0000 0.0000
Median #Var 5.0000 5.0000 7.0000 4.0000 5.0000 6.0000 4.0000 5.0000 15.0000

Loss 2.1566 2.1106 2.1048 2.1664 2.1011 2.0984 2.1828 2.0667 2.2125
Relevant retained 0.3230 0.8920 0.8960 0.0290 0.6870 0.8840 0.0110 1.0000 1.0000
Median Beta MSE 0.4038 0.2854 0.2625 0.4809 0.2840 0.2496 0.4862 0.2189 0.4799

Stdv 0.5042 0.4080 0.3548 0.6046 0.5138 0.3551 0.6123 0.3497 0.3680

Cross Validation BIC

Bridge Marg Bridge LASSO Bridge Marg Bridge LASSO BIC OLS Oracle OLS All

E
xp

er
im

en
t

D Sparsity pattern 0.7570 0.6590 0.0190 0.9350 0.9860 0.4570 0.9110 1.0000 0.0000
Median #Var 5.0000 5.0000 10.0000 5.0000 5.0000 6.0000 5.0000 5.0000 15.0000

Loss 2.0089 2.0092 2.0135 2.0073 2.0066 2.0195 2.0074 2.0065 2.0176
Relevant retained 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Median Beta MSE 0.0210 0.0209 0.0279 0.0191 0.0179 0.0335 0.0186 0.0178 0.0326

Stdv 0.0334 0.0331 0.0340 0.0333 0.0330 0.0354 0.0330 0.0330 0.0331

E
xp

er
im

en
t

E Sparsity pattern 0.7660 0.7100 0.1180 0.9340 0.9930 0.6230 0.9110 1.0000 0.0000
Median #Var 5.0000 5.0000 8.0000 5.0000 5.0000 5.0000 5.0000 5.0000 15.0000

Loss 2.0085 2.0084 2.0114 2.0070 2.0066 2.0136 2.0073 2.0065 2.0176
Relevant retained 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Median Beta MSE 0.0239 0.0247 0.0278 0.0222 0.0215 0.0276 0.0225 0.0214 0.0410

Stdv 0.0391 0.0387 0.0391 0.0390 0.0386 0.0395 0.0387 0.0386 0.0389

E
xp

er
im

en
t

F Sparsity pattern 0.6960 0.7020 0.1570 0.9310 0.9930 0.4690 0.9240 1.0000 0.0000
Median #Var 5.0000 5.0000 7.0000 5.0000 5.0000 6.0000 5.0000 5.0000 15.0000

Loss 2.0092 2.0088 2.0094 2.0075 2.0066 2.0096 2.0072 2.0065 2.0176
Relevant retained 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000 0.9990 1.0000 1.0000
Median Beta MSE 0.0802 0.0795 0.0775 0.0721 0.0662 0.0725 0.0684 0.0659 0.1362

Stdv 0.1134 0.1067 0.1069 0.1120 0.1066 0.1079 0.1066 0.1066 0.1078

Table 1. Top panel: Experiments A-C (N=10). Bottom panel: Experiments
D-F (N=100). Cross Validation and BIC indicate which procedure was used to
determine λN . Sparsity pattern: The fraction of times the correct sparsity pattern
is detected. Median #Var: The median number of variables included. Loss: The
MSE when using the estimated parameters on a validation data set drawn from the
same distribution as the training set. Relevant retained: The fraction of relevant
variables retained in the model. Median Beta MSE: Calculated as explained in
the main text. Stdv: Standard deviation of the estimated coefficient of the first
variable (which is always in the active set).

to detect the right sparsity pattern in more than half of the cases. However, even
the latter fails to retain all relevant variables in all cases.

Experiments D-F illuminate the asymptotic properties of the Bridge and the
Marginal Bridge. In particular the Marginal Bridge with BIC used to determine λN
detects the correct sparsity pattern in almost all cases irrespective of the correlation
structure imposed on the covariates. The performance of the Bridge also gets
significantly better as the sample size is increased while the LASSO only improves
moderately. The Loss of all procedures is reduced and and the parameters are
estimated more precisely.

Notice that the Marginal Bridge performs quite well even in the high correlation
experiments C and F indicating that the partial orthogonality assumption (B5) is
not overly restrictive.
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Cross Validation BIC

Bridge Marg Bridge LASSO Bridge Marg Bridge LASSO BIC OLS Oracle OLS All
E

xp
er

im
en

t
G Sparsity pattern 0.1380 0.0020 0.3380 0.0420 1.0000

Median #Var 9.0000 20.0000 6.0000 9.0000 5.0000
Loss 2.3302 2.4744 2.2263 2.6162 2.0784

Relevant retained 0.9820 1.0000 0.9390 0.9990 1.0000
Median Beta MSE 0.0299 0.0413 0.0204 0.0470 0.0141

Stdv 0.1465 0.1358 0.1612 0.1448 0.1081

E
xp

er
im

en
t

H Sparsity pattern 0.0710 0.0010 0.2300 0.0290 1.0000
Median #Var 12.0000 23.5000 7.0000 10.0000 5.0000

Loss 2.5162 2.5763 2.3593 2.7642 2.0891
Relevant retained 0.9350 1.0000 0.8830 0.9980 1.0000
Median Beta MSE 0.0257 0.0320 0.0177 0.0368 0.0101

Stdv 0.1714 0.1414 0.2045 0.1553 0.1100

E
xp

er
im

en
t

I Sparsity pattern 0.0100 0.0000 0.0540 0.0130 1.0000
Median #Var 19.0000 35.0000 9.0000 11.0000 5.0000

Loss 3.1359 2.8733 2.8479 3.2288 2.0331
Relevant retained 0.7450 0.9950 0.6730 0.9540 1.0000
Median Beta MSE 0.0178 0.0183 0.0147 0.0213 0.0045

Stdv 0.2428 0.1470 0.2657 0.1690 0.1056

Table 2. Cross Validation and BIC indicate which procedure was used to de-
termine λN . Sparsity pattern: The fraction of times the correct sparsity pattern
is detected. Median #Var: The median number of variables included. Loss: The
MSE when using the estimated parameters on a validation data set drawn from the
same distribution as the training set. Relevant retained: The fraction of relevant
variables retained in the model. Median Beta MSE: Calculated as explained in
the main text. Stdv: Standard deviation of the estimated coefficient of the first
variable (which is always in the active set).

It is seen that in general the BIC is a better way of determining λN than cross
validation. BIC detects the correct sparsity pattern more often and only in Exper-
iment C one finds that cross validation is superior with respect to the number of
relevant variables retained.

Table 2 holds the results for the Experiments G-I which investigate the perfor-
mance of the Marginal Bridge in the pN > NTN case. As can be expected the
correct sparsity pattern is detected less frequently. However, all relevant variables
are retained very often while only few irrelevant variables are kept in the model.
Hence, the Marginal Bridge is still a very effective tool for dimension reduction.

The LASSO and the Marginal Bridge perform equally well in Experiments G
and H (slight advantage for the LASSO) while the LASSO is superior in Experi-
ment I. However, the LASSO also takes a lot longer to compute and the models it
chooses are bigger. The following idea which builds on the thoughts of Fan and Lv
(2008) could potentially improve the performance of the Marginal Bridge: estimate
the Marginal Bridge one or several times more using the residuals from the first
(previous) step as left hand side variables. This will lower the priority of those
irrelevant variables which seemed relevant only through their high correlation with
some of the relevant variables already included.

6. Conclusions

This paper introduces the Bridge and Marginal Bridge estimator in a linear
panel data setting allowing for random as well as fixed effects. When p < NTN it
is shown that the Bridge estimator (and Marginal Bridge) has the oracle property.
It sets all coefficients that are truly zero to zero and the asymptotic distribution
of the estimator of non zero coefficients is the same as if the sparsity pattern had
been known. Monte Carlo experiments underscore this conclusion and are used to
investigate the finite sample properties of the procedures. They also reveal that
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the Schwarz information criterion is more useful than 10 fold cross validation for
selecting λN . This is encouraging since BIC is also faster than cross validation.

When p > NTN it is shown that the Marginal Bridge estimator still detects
the correct sparsity pattern with probability converging to one. This is true in the
random as well as the fixed effects setting under a partial orthogonality assumption
on the covariates. However, the Marginal Bridge works well even when the relevant
and irrelevant covariates are highly correlated. Furthermore, the Marginal Bridge
estimates are extremely fast to compute since it only uses marginal information to
decide whether a variable is relevant or not. The Marginal Bridge is also shown to
perform well in the pN < NTN setting. In pN > NTN setting the Marginal Bridge
does not always retain all relevant variables. An iterative procedure was proposed
to solve this problem. Working out the properties of this procedure is left for future
research.

7. Appendix

Lemma 1. Let u be a pN × 1 vector. Then

E

 sup
‖u‖≤δ

∣∣∣∣∣∣
NTN∑
j=1

εjx′ju

∣∣∣∣∣∣
∣∣∣∣∣XN

 ≤ δσ (NTNpN )
1
2

 1
NTNpN

N∑
i=1

TN∑
t=1

pN∑
k=1

x2
itk

 1
2

Proof.
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where the first inequality follows from the Cauchy-Schwarz inequality. Since

E
(
εitx′itεisxis|XN

)
= E

(
x′itxisεitεis|XiN

)
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(
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)
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and the result follows from the conditional Jensen inequality. �
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Lemma 2. Let {Xn}n∈N and {Yn}n∈N be sequences of nonnegative random vari-
ables. If there exists an integer N0 and a constant C such that for n ≥ N0

E

(
Xn

Yn

)
≤ C

then

Xn ∈ Op(Yn)

Proof. It suffices to show that for any ε > 0 P

({
Xn
Yn

> C
ε

})
≤ ε for n ≥ N0.

Assume the opposite is true for some ε > 0 to reach a contradiction. Then,

E

(
Xn

Yn

)
=
∫
Xn

Yn
dP ≥
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{XnYn >

C
ε }

Xn

Yn
dP ≥

∫
{XnYn >

C
ε }

C

ε
dP ≥ C

ε
P
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Xn

Yn
>
C

ε

})
> C

which is the desired contradiction. �

Proof of Theorem 1. We first show that
∥∥∥β̂N − β0

∥∥∥ ∈ Op

([
pN+λNkN
NTNρ1N

] 1
2

)
. Since
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and by the sub additivity of x 7→ x1/2 yields ||δN −DN εN || ≤ ||DN εN ||+ η
1/2
N . By

sub additivity of the norm ‖.‖ this implies ||δN || ≤ ||δN − DN εN || + ||DN εN || ≤
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2||DN εN || + η
1/2
N . Since (x + y)2 ≤ 2x2 + 2y2 for x, y ∈ R by the convexity of

x 7→ x2 one has

||δN ||2 ≤ 4||DN εN ||2 + 2ηN

Letting dj denote the j’th column of DN we may write DN εN =
∑NTN
j=1 djεj .

Using that DN is measurable with respect to XN conclude
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= E(δ′NδN ) = E(||δN ||2) ≤ 4σ2pN + 2ηN

Since the number of non zero coefficients is kN

ηN = λN

pN∑
k=1

|β0j |γ = λN

kN∑
k=1

|β0j |γ ≤ λNkNbγ1

where the inequality is a consequence of assumption (A5). Since ρ1N is the
smallest eigenvalue of ΣN

ρ1N ||β̂N − β0||2 = ρ1N

(
β̂N − β0

)′ (
β̂N − β0

)
≤
(
β̂N − β0

)′
ΣN

(
β̂N − β0

)
Hence,

E
(
ρ1N ||β̂N − β0||2

)
≤ NTN
NTN

E

((
β̂N − β0

)′
ΣN

(
β̂N − β0

))
≤ 4σ2pN + 2ηN

NTN
≤ 4σ2pN + 2λNkNb

γ
1

NTN

≤ C pN + λNkNb
γ
1

NTN
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for C = max
(
4σ2, 2bγ1

)
. This implies

E

 ||β̂N − β0||2(
pN+λNkN
ρ1NNTN

)
 ≤ C

By Lemma 2 this establishes ||β̂N − β0|| ∈ Op

([
pN+λNkN
Nρ1N

] 1
2

)
. Next we show

that ||β̂N − β0|| ∈ Op
(
ρ−1

1N

(
pN/(NTN )

)1/2). Like Huang et al. (2008) we use the
idea from the proof of Theorem 3.2.5 in Van der Vaart and Wellner (1996). Let
rN = ρ−1

1N

(
pN/(NTN )

)1/2. For every N partition the parameter space (excluding
β0) into the disjoint shells Sl,N =

{
β : 2l−1 <‖β − β0‖ /rN ≤ 2l

}
where l ∈ Z. If

2M <
∥∥∥β̂N − β0

∥∥∥ /rN for a given integer M then β̂N ∈
⋃
l>M Sl,N . For the shell

which β̂N belongs to the infimum of the map β 7→ LN (β)−LN (β0) is non positive.
Hence,8

P

(∥∥∥β̂N − β0

∥∥∥ /rN > 2M
)

≤
∑
l>M

2l−1<δ/rN

P

(
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

)
+ P

(∥∥∥β̂N − β0

∥∥∥ > δ

)
(7.1)

The last term in (7.1) converges to 0 by the consistency of β̂N established in the
first part of the theorem. The theorem is established by showing that the first term
on the right hand side can be made arbitrarily small by choosing M sufficiently
large. To this is end let β ∈ Sl,N for an arbitrary l summed over, and notice that

8Note that

{∥∥∥β̂N − β0

∥∥∥ /rN > 2M
}
⊆
⋃
l>M

{
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

}

⊆

 ⋃
l>M

{
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

}
∩
{∥∥∥β̂N − β0

∥∥∥ ≤ δ}
 ∪{∥∥∥β̂N − β0

∥∥∥ > δ

}

=

 ⋃
l>M

{
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

}
∩
{∥∥∥β̂N − β0

∥∥∥ /rN ≤ δ/rN}
 ∪{∥∥∥β̂N − β0

∥∥∥ > δ

}

⊆
⋃
l>M

2l−1<δ/rN

{
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

}
∪
{∥∥∥β̂N − β0

∥∥∥ > δ

}

and conclude using the subadditivity of P .
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LN (β)− LN (β0) =
NTN∑
j=1

(
yj − x′jβ

)2

+ λN

kN∑
k=1

|β1k|γ + λN

mN∑
k=1

|β2k|γ

−
NTN∑
j=1

(
yj − x′jβ0

)2

−
kN∑
k=1

|β01k|γ

≥
NTN∑
j=1

(
yj − x′jβ

)2

+ λN

kN∑
k=1

|β1k|γ −
NTN∑
j=1

(
yj − x′jβ0

)2

−
kN∑
k=1

|β01k|γ

=
NTN∑
j=1

(
x′j [β − β0]

)2

− 2
NTN∑
j=1

εjx′j (β − β0) + λN

kN∑
k=1

(
|β1k|γ − |β01k|γ

)
(7.2)

Regarding the first term in (7.2),

NTN∑
j=1

(
x′j [β − β0]

)2

= [β − β0]′
NTN∑
j=1

xjx′j [β − β0] = NTN [β − β0]′ΣN [β − β0]

≥ NTN‖β − β0‖2 ρ1N > NTN22(l−1)r2
N

Regarding the third term in (7.2) we notice that β ∈ Sl,N and 2l−1 < δ/rN
implies that‖β − β0‖ /rN ≤ 2l < 2δ/rN . Hence, it suffices to consider β’s satisfying
‖β − β0‖ < 2δ. Since δ > 0 is arbitrary and the entries of β01 are bounded uniformly
away from the 0 by b0 the mean value theorem may be applied to conclude that for
some ζk between β1k and β01k

∣∣∣∣∣∣λN
kN∑
k=1

(
|β1k|γ − |β01k|γ

)∣∣∣∣∣∣ =

∣∣∣∣∣∣λNγ
kN∑
k=1

|ζk|γ−1sign(ζk) (β1k − β01k)

∣∣∣∣∣∣
≤ cλN

kN∑
k=1

|β1k − β01k| ≤ cλNk1/2
N ‖β − β0‖ ≤ cλNk1/2

N 2lrN

where c = max
(
(b0 − 2δ)γ−1, (b1 + 2δ)γ−1

)
and the second to last estimate

follows from Jensen’s inequality. Hence, on Sl,N , λN
∑kN
k=1

(
|β1k|γ − |β01k|γ

)
≥

−cλNk1/2
N 2lrN . Therefore, on Sl,N ,

LN (β)− LN (β0) ≥ −

∣∣∣∣∣∣2
NTN∑
j=1

εjx′j (β − β0)

∣∣∣∣∣∣+ ρ1NNTN22(l−1)r2
N − cλNk

1/2
N 2lrN

Hence, by the conditional Markov inequality and Lemma 1
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P

 inf
β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

∣∣∣∣∣XN


≤ P

 sup
β∈Sl,N

∣∣∣∣∣∣2
NTN∑
j=1

εjx′j (β − β0)

∣∣∣∣∣∣ ≥ ρ1NNTN22(l−1)r2
N − cλNk

1/2
N 2lrN

∣∣∣∣∣XN



≤

E

supβ∈Sl,N
∣∣∣2∑NTN

j=1 εjx′j (β − β0)
∣∣∣∣∣∣∣∣XN


ρ1NNTN22(l−1)r2

N − cλNk
1/2
N 2lrN

≤
(NTNpN )1/22lrN

(
1

NTNpN

∑N
i=1

∑TN
t=1

∑pN
k=1 x

2
itk

)1/2

ρ1NNTN22(l−1)r2
N − cλNk

1/2
N 2lrN

=
2
(

1
NTNpN

∑N
i=1

∑TN
t=1

∑pN
k=1 x

2
itk

)1/2

2l−2 − cλN
(
kN/(NTN )

)1/2
By assumption (A3) λN

(
kN/(NTN )

)1/2 → 0 and so 2l−2−cλN
(
kN/(NTN )

)1/2 ≥
2l−3 for N sufficiently large. Hence, by iterated expectations and assumption (A1)

P

(
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

)
≤ K

2l−4

Finally, this implies that

∑
l>M

2l−1<δ/rN

P

(
inf

β∈Sl,N

(
LN (β)− LN (β0)

)
≤ 0

)
≤
∑
l>M

K

2l−4

which is convergent and so the tail can be made arbitrarily small by choosing M
sufficiently large. �

Lemma 3. Suppose 0 < γ < 1. Let β̂N =
(
β̂1N , β̂2N

)
. Then β̂2N = 0 with

probability converging to 1 under assumptions (A1)-(A7).

Proof. By Theorem 1 ||β̂N − β0|| ∈ Op (hN ) with hN = ρ−1
1N (pN/(NTN ))1/2 so for

all ε > 0 there exists a constant C such that for N sufficiently large

P
(
||β̂N − β0||/hN > C

)
< ε⇔ P

(
||β̂N − β0|| ≤ ChN

)
≥ 1− ε

Put differently, β̂N ∈
{
β : ||β − β0|| ≤ ChN

}
with probability converging to 1. Let

β̂1N = β10 +hNu1 and β̂2N = β20 +hNu2 = hNu2. Choosing β̂N is then equivalent
to choosing u1 and u2. Since ||u|| = ||β̂N − β0||/hN which is bounded by C with
probability approaching 1 we may assume ||u||2 = ||u1||2 + ||u2||2 ≤ C2 and define

VN (u1,u2) = LN (β̂1N , β̂2N ) = LN (β10 + hNu1, hNu2)
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To establish the lemma it now suffices to show that for any u with ‖u‖ ≤
C, VN (u1,u2)− VN (u1,0) > 0 with probability converging to 1 if u2 6= 0. Now,

VN (u1,u2)− VN (u1,0) =
NTN∑
j=1

(
yj − β′01wj − hNu′1wj − hNu′2zj

)2 + λN

kN∑
k=1

|β01k + hNu1|γ

+ λN

mN∑
k=1

|hNu2|γ −
NTN∑
j=1

(
yj − β′01wj − hNu′1wj

)2 − λN kN∑
k=1

|β01k + hNu1|γ

=
NTN∑
j=1

−hN (u′2zj)
[
2(yj − β′01wj − hNu′1wj)− hNu′2zj

]
+ λN

mN∑
k=1

|hNu2|γ

= h2
N

NTN∑
j=1

(z′ju2)2 + 2h2
N

NTN∑
j=1

(w′ju1)(z′ju2)− 2hN
NTN∑
j=1

(z′ju2)εj + λNh
γ
N

mN∑
k=1

|u2j |γ

Regarding the sum of the first two terms since 2xy ≥ −(x2 + y2)

h2
N

NTN∑
j=1

(z′ju2)2 + 2h2
N

NTN∑
j=1

(w′ju1)(z′ju2) ≥ h2
N

NTN∑
j=1

(z′ju2)2 − h2
N

NTN∑
j=1

[
(w′ju1)2 + (z′ju2)2

]
= −h2

NNTNu′1Σ1Nu1 ≥ −ρ−2
1NpNτ2C

2

where the last inequality follows from assumption (A2) and the fact that ||u1|| ≤ C.
Hence,

h2
N

∑NTN
j=1 (z′iu2)2 + 2h2

N

∑NTN
j=1 (w′iu1)(z′iu2)

pNρ
−2
N

≥ −τ2C2

Regarding the third term it follows from Jensen’s inequality (conditional version)

E


∣∣∣∣∣∣
NTN∑
j=1

(z′ju2)εj

∣∣∣∣∣∣
∣∣∣∣∣XN

 ≤
E

NTN∑
j=1

(z′ju2)εj

2∣∣∣∣∣XN


1/2

=

σ2
NTN∑
j=1

(z′ju2)2

1/2

= σ

NTN∑
j=1

u′2zjz
′
ju2

1/2

= σ(NTN )1/2
(
u′2Σ2Nu2

)1/2 ≤ σ(NTN )1/2ρ
1/2
2N C

where the last inequality used that

ρ2N = max
u∈RpN

u′ΣNu
u′u

≥ max
u2∈RmN

(0,u2)′ΣN (0,u2)
(0,u2)′(0,u2)

= max
u2∈RmN

u′Σ2Nu2

u′2u2

Hence, since hN is measurable wrt. σ(XN ),

E


∣∣∣∣∣∣−2hN

NTN∑
j=1

(ziu2)εiN

∣∣∣∣∣∣
∣∣∣∣∣XN

 ≤ 2hN (NTN )1/2ρ
1/2
2N C

and so

E


∣∣∣−2hN

∑NTN
j=1 (zju2)εj

∣∣∣
hN (NTN )1/2ρ

1/2
2N

 ≤ 2C
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which by Lemma 2 shows that −2hN
∑NTN
j=1 (zju2)εj is Op(hN (NTN )1/2ρ

1/2
2N ) =

Op(ρ−1
1Nρ

1/2
2N p

1/2
N ). Hence,∣∣∣−2hN
∑NTN
j=1 (ziu2)εj

∣∣∣
pNρ

−2
1N

∈ Op

(
ρ−1

1Nρ
1/2
2N p

1/2
N

pNρ
−2
1N

)
= Op

(
ρ1Nρ

1/2
2N

p
1/2
N

)
⊆ Op(1)

by assumption (A7). Regarding the fourth term since u2 6= 0 we have

λNh
γ
N/(pNρ

−2
1N ) = λN

[
ρ−1

1N (pN/NTN )1/2
]γ
/(pNρ−2

1N ) = λNρ
2−γ
1N (NTN )−γ/2pγ/2−1

N →∞

by assumption (A4) and so the fourth term diverges to infinity. Since pNρ−2
1N ∈

Ωp(1) this completes the proof. �

Proof of Theorem 2. The first part has been established in Lemma 3. Since β̂N is
consistent it follows from assumption (A5) that for an arbitrary ε > 0

P

({
min

{
|β̂1Nj | |1 ≤ j ≤ k

}
+ ε < b0

})
= P

 k⋃
j=1

{
|β̂1Nj |+ ε < b0

}
= P

 k⋃
j=1

{
b0 − |β̂1Nj | > ε

} ≤ P
 k⋃
j=1

{
|β10j | − |β̂1Nj | > ε

}
≤ P

 k⋃
j=1

{
|β10j − β̂1Nj | > ε

} ≤ P (||β10 − β̂1Nj || > ε
)
→ 0

Choosing ε = b0/2 shows that with probability converging to one min
{
|β̂1Nj | |1 ≤ j ≤ k

}
≥

b0/2 and so β̂1N is bounded away from 0. Hence LN is differentiable at β̂1N with
probability converging to one. And so β̂1N satisfies

∂

∂β1
LN (β̂1N , β̂2N ) = 0

That is,

−2
NTN∑
j=1

(
yj −w′j β̂1N − z′j β̂2N

)
wj + λNγψN = 0

with probability converging to 1 where ψN is a k × 1 vector with l’th entry given
by ψNl = |β̂1Nl|γ−1sign(β̂1Nl). This can be rewritten as

−2
NTN∑
j=1

(
εj −w′j(β̂1N − β10)− z′j β̂2N

)
wj + λNγψN = 0⇔

−2
NTN∑
j=1

εjwj + 2
NTN∑
j=1

wjw′j(β̂1N − β10) + 2
NTN∑
j=1

z′j β̂2Nwj + λNγψN = 0⇔

Σ1N (β̂1N − β10) =
1

NTN

NTN∑
j=1

εjwj −
λNγψN
2NTN

− 1
NTN

NTN∑
j=1

z′j β̂2Nwj
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Hence, for any k × 1 vector α

(NTN )1/2α′(β̂1N − β10) = (NTN )−1/2
NTN∑
j=1

α′Σ−1
1N εjwj

−(1/2)γ(NTN )−1/2λNα
′Σ−1

1NψN − (NTN )−1/2
NTN∑
j=1

α′Σ−1
1Nz′j β̂2Nwj

Since P (β̂2N = 0) → 1 the last term equals 0 with probability converging to 1.
From the Cauchy-Schwarz inequality in Rk it follows that

|α′Σ−1
1NψN | ≤ ||α

′Σ−1
1N ||||ψN ||

Since

||α′Σ−1
1N ||

2 = α′Σ−1
1NΣ−1

1Nα = α′Σ−2
1Nα ≤ τ

−2
1N ||α||

2 ≤ τ−2
1 ||α||2

by assumption (A2), we get with probability converging to one

|(1/2)(NTN )−1/2γλNα
′Σ−1

1NψN | ≤ (1/2)(NTN )−1/2γλNτ
−1
1 ||α||||ψN ||

≤ (1/2)(NTN )−1/2γλNτ
−1
1 ||α||k

1/2
N (b0/2)(γ−1)

= (1/2)γτ−1
1 ||α||(b0/2)(γ−1)T

−1/2
N N−1/2λNk

1/2
N → 0

by assumption (A3). Hence,

(NTN )1/2α′(β̂1N − β10) ∈ (NTN )−1/2
NTN∑
j=1

α′Σ−1
1N εjwj + op(1)

Since s−1
N = 1/

√
σ2α′Σ−1

1Nα ≤ τ
1/2
2 /(σ||α||) by assumption (A2) it is also true that

(NTN )1/2s−1
N α′(β̂1N − β10) ∈ (NTN )−1/2s−1

N

NTN∑
j=1

α′Σ−1
1N εjwj + op(1)(7.3)

Now, defining Wi,N = (wi1, ...,wiTN )′ and εi,N = (εi1, ..., εiNTN )′ one first notices
that9

1
NTN

NTN∑
j=1

wjw′j → lim
N→∞

1
NTN

NTN∑
j=1

E
(
wjw′j

)
= lim
N→∞

E

(
1
TN

W′
1NW1N

)(7.4)

where the first limit is in P -measure. To see why (7.4) is true let Zj be a fixed
entry in wjw′j , j = 1, ..., NTN . Letting η > 0 be arbitrary and using the Markov

9All limits are taken elementwise in the matrices.
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inequality

P


∣∣∣∣∣∣ 1
NTN

NTN∑
j=1

Zj −
1

NTN

NTN∑
j=1

E
(
Zj
)∣∣∣∣∣∣ > η

 ≤ E

(
1

NTN

∑NTN
j=1

[
Zj − E

(
Zj
)])2

η2

=
E
(∑N

i=1

∑TN
t=1

[
Zit − E (Zit)

])2

(NTNη)2
=

∑N
i=1E

(∑TN
t=1

[
Zit − E (Zit)

])2

(NTNη)2

=
N
(∑TN

t=1 V ar(Z1t) + 2
∑TN
t=1

∑TN
s>t Cov (Z1t, Z1s)

)
(NTNη)2

≤
N
(
TN max1≤t≤TN V ar (Z1t) + 2TN (TN − 1)/2 max1≤t≤TN V ar (Z1t)

)
(NTNη)2

=
max1≤t≤TN V ar (Z1t)

Nη2
→ 0

Hence,

(NTN )−1/2s−1
N

NTN∑
j=1

α′Σ−1
1N εjwj =

(NTN )−1/2
∑NTN
j=1 α′

(
1

NTN

∑NTN
j=1 wjw′j

)−1

εjwj√
σ2α′

(
1

NTN

∑NTN
j=1 wjw′j

)−1

α

∈ N−1/2√
σ2α′

(
E
[

1
TN

W′
1NW1N

])−1

α

N∑
i=1

α′

(
E

[
1
TN

W′
1NW1N

])−1

T
−1/2
N W′

iN εiN + op(1)

Now,

E

 N∑
i=1

α′

(
E

[
1
TN

W′
1NW1N

])−1

T
−1/2
N W′

iN εiN

 = 0

by iterated expectations and

r2
N : = E


 N∑
i=1

α′

(
E

[
1
TN

W′
1NW1N

])−1

T
−1/2
N W′

iN εiN

2


=
N∑
i=1

E

α′(E [ 1
TN

W′
1NW1N

])−1

T
−1/2
N W′

iN εiN ε
′
iNWiNT

−1/2
N

(
E

[
1
TN

W′
1NW1N

])−1

α


= σ2Nα′

(
E

[
1
N

W′
1NW1N

])−1

α

Finally, let UiN = α′
(
E
[

1
TN

W′
1NW1N

])−1

T
−1/2
N W′

iN εiN . Since E(U2
iN ) =

σ2α′
(
E
[

1
TN

W′
1NW1N

])−1

α is convergent it is bounded. Hence, the Lindeberg

condition is satisfied since for all δ > 0
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lim
N→∞

r−2
N

N∑
i=1

∫
{
|Ui,N |>δrN

} U2
iNdP

 ≤ lim
N→∞

τ2
α′ασ2

∫{
|U1N |>δ

√
α′ασ2
τ2

√
N

} U2
1NdP = 0

since for any ρ > 0 (let δ
√

α′ασ2

τ2
= K)

lim
N→∞

P

(
U2

1N1{|U1N |>K
√
N} > ρ

)
≤ lim
N→∞

P

({
|U1N | > K

√
N
})
≤ lim
N→∞

E
(
U2

1N

)
K2N

= 0

and
{
U2

1N

}∞
N=1

is uniformly integrable10. Hence,

N−1/2√
σ2α′

(
E
[

1
TN

W′
1NW1N

])−1

α

N∑
i=1

α′

(
E

[
1
TN

W′
1NW1N

])−1

T
−1/2
N W′

iN εiN
d→ N(0, 1)

And so by (7.3),

(NTN )1/2s−1
N α′(β̂1N − β10) d→ N(0, 1)

or equivalently,

(NTN )1/2(β̂1N − β10) d→ N

0, σ2

(
lim
N→∞

E

[
1
TN

W′
1NW1N

])−1
(7.5)

�

Proof of Theorem 3. (i) If TN = T for a fixed T U1N = U1 for all N where U1 is
defined in the obvious way, does not depend on N and belongs to L2(P ). Hence,

lim
K→∞

sup
1≤N<∞

∫
{|U1N |>K}

U2
1NdP = lim

K→∞

∫
{|U1|>K}

U2
1 dP = 0

by Lebesgue’s Dominated Convergence Theorem.
(ii) By the Cauchy-Schwarz inequality

|U1N | ≤

∥∥∥∥∥∥α′
(
E

[
1
TN

W′
1NW1N

])−1
∥∥∥∥∥∥
∥∥∥T−1/2

N W′
1N ε1N

∥∥∥
Since

∥∥∥∥∥α′
(
E
[

1
TN

W′
1NW1N

])−1
∥∥∥∥∥ is convergent it is bounded by a constant C.

Hence,

U2
1N ≤ C2

∥∥∥T−1/2
N W′

1N ε1N

∥∥∥2

= C2
k∑
i=1

1
TN

TN∑
j=1

(
Wji

1N ε
j
1N

)2

where Wji
1N is jth row in the ith column of W1N . Since the rows of W1N are

identically distributed and Wji
1N ⊥⊥ ε

j
1N Wji

1N ε
j
1N ∼W1i

1N ε
1
1N where W1i

1N ε
1
1N ∼ Zi

10The uniform integrability of
{
U2

1N

}∞
N=1

implies that

{
U2

1N1{
|U1N |>K

√
N
}}∞

N=1

is uni-

formly integrable which is what we really need.
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for some Zi ∈ L1(P ). Hence,
{(

Wji
1N ε

j
1N

)2
}∞
N=1

is uniformly integrable for all

1 ≤ i ≤ k since

lim
K→∞

sup
1≤N<∞

sup
1≤j≤TN

∫
{
(Wji

1N ε
j
1N)2

>K
} (Wji

1N ε
j
1N

)2

dP

= lim
K→∞

∫
{
|W1i

1N ε
1
1N |>K

} ZidP = 0

by Lebesgue’s Dominated Convergence Theorem. By Hoffmann-Jørgensen (1994)

(page 338)11 this implies that
{

1
TN

∑TN
j=1

(
Wji

1N ε
j
1N

)2
}∞
N=1

is uniformly integrable

which in turn implies that
{∑k

i=1
1
TN

∑TN
j=1

(
Wji

1N ε
j
1N

)2
}∞
N=1

is uniformly inte-

grable by Hoffmann-Jørgensen (1994) (page 337)12. Since
{
C2
∑k
i=1

1
TN

∑TN
j=1

(
Wji

1N ε
j
1N

)2
}∞
N=1

dominates
{
U2

1N

}
this yields the desired result.

(iii) If W1N and ε1N are uniformly bounded U1N has moments of any order and
so
{
U2

1N

}∞
N=1

is uniformly integrable. �

Proof of Corollary 1. For fixed TN (7.5) reads

N1/2(β̂1N − β10) d→ N

(
0, σ2

(
E
[
W′

1W1

])−1
)

where absence of subscript N indicates that the matrices no longer depend on TN .
In the fixed effects setting W1 =

(
DD′

)−1/2
DW̃1 and so

E
(
W′

1W1

)
= E

(
W̃′

1D
′ (DD′

)−1/2 (
DD′

)−1/2
DW̃1

)
= E

(
W̃′

1D
′ (DD′

)−1
DW̃1

)
= E

(
¨̃W
′
1

¨̃W1

)
where the last inequality used that D′

(
DD′

)−1
D is symmetric and idempotent

and that premultiplication of it corresponds to columnwise demeaning.
The proof of part (ii) is similar using W1 = Ω−1/2W̃1. �

Next we turn to the properties of the Marginal Bridge Bridge estimator.

Lemma 4. For any wN > 0,

P

wN > max
1≤k≤m

∣∣∣∣∣∣
NT∑
j=1

xjkεj

∣∣∣∣∣∣
 ≥ 1− Km

w4
N

11The partial averages of a uniformly integrable sequence are themselves uniformly integrable.
12Finite sums of uniformly integrable sequences are themselves uniformly integrable.
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Proof. By the Markov inequality,

P

wN > max
1≤k≤m

∣∣∣∣∣∣
NT∑
j=1

xjkεj

∣∣∣∣∣∣
 = 1− P

 max
1≤k≤m

∣∣∣∣∣∣
NTN∑
j=1

xjkεj

∣∣∣∣∣∣ ≥ wN


≥ 1−
E

(
max1≤k≤m

∣∣∣∑NT
j=1 xjkεj

∣∣∣4)
w4
N

Since for any sequence of random variables {Zk}mk=1 ⊆ L4(P )

E

(
max

1≤k≤m
Z4
k

)
≤ E

 m∑
k=1

Z4
k

 ≤ m max
1≤j≤m

E
(
Z4
j

)

it suffices to show that E
(∑NT

j=1 xjkεj

)4

≤ K for all k ∈ {1, ...,m}. By the multi-
nomial theorem

E

NT∑
j=1

xjkεj

4

= E

NTN∑
j=1

x4
jkε

4
j

+ 6E

NTN∑
j1=1

NTN∑
j2>j1

x2
j1kε

2
j1x

2
j2kε

2
j2


+ 4E

NTN∑
j1=1

NTN∑
j2>j1

x3
j1kε

3
j1xj2kεj2

+ 12E

NTN∑
j1=1

NTN∑
j2>j1

NTN∑
j3>j2

x2
j1kε

2
j1xj2kεj2xj3kεj3


24E

NTN∑
j1=1

NTN∑
j2>j1

NTN∑
j3>j2

NTN∑
j4>j3

xj1kεj1xj2kεj2xj3kεj3xj4kεj4


Since (XiN , εiN ) is i.i.d. and XiN ⊥⊥ εiN it follows that (X1N , ε1N , ...,XNN , εNN )
are independent (calculate the characteristic function and observe that it factor-
izes). This implies XN ⊥⊥ εN . Finally, it is seen that ε11, ..., εNTN are independent
(again calculate the characteristic function and observe that it factorizes). From
these observations it follows that the last three expectations above are all 0. And
so,

E

NT∑
j=1

xjkεj

4

= E

NTN∑
j=1

x4
jkε

4
j

+ 6E

NTN∑
j1=1

NTN∑
j2>j1

x2
j1kε

2
j1x

2
j2kε

2
j2


=
NTN∑
j=1

E
(
x4
jk

)
E
(
ε4j

)
+ 6

NTN∑
j1=1

NTN∑
j2>j1

E
(
x2
j1kx

2
j2k

)
E
(
ε2j1ε

2
j2

)

= σ4
4E

NTN∑
j=1

x4
jk

+ 6σ4E

NTN∑
j1=1

x2
j1k

NTN∑
j2>j1

x2
j2k

 ≤ σ4
4 + 6σ4 := K

where the estimate follows from the fact that
∑NTN
j>1 x2

jk ≤
∑NTN
j=1 x2

jk = 1 and∑NTN
j=1 x4

jk ≤
∑NTN
j=1 x2

jk = 1 since xjk ≤ 1 for all j = 1, ..., NTN . �
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Proof of Theorem 4. Let εN = (ε1, ..., εNTN )′ and recall ξNk = 1/ (NTN )
∑NTN
j=1 w′jβ10xjk.

Then,

UN (β) =
pN∑
k=1

NTN∑
j=1

(
yj − xjkβk

)2 + λN

pN∑
k=1

|βk|γ

=
pN∑
k=1

NTN∑
j=1

y2
j +NTNβ

2
k − 2

NTN∑
j=1

yjxjkβk

+ λN

pN∑
k=1

|βk|γ

=
pN∑
k=1

NTN∑
j=1

ε2j +
NTN∑
j=1

(w′jβ01)2 + 2
NTN∑
j=1

(w′jβ01)εj +NTNβ
2
k − 2

NTN∑
j=1

(εj + w′jβ01)xjkβk

+ λN

pN∑
k=1

|βk|γ

=
pN∑
k=1

NTN∑
j=1

ε2j +
NTN∑
j=1

(w′jβ01)2 + 2
NTN∑
j=1

(w′jβ01)εj +NTNβ
2
k − 2(ε′Nxk +NTNξNk)βk

+ λN

pN∑
k=1

|βk|γ

So minimizing UN is equivalent to minimizing
∑pN
k=1

[
NTNβ

2
k − 2(ε′Nxk +NTNξNk)βk + λN |βk|γ

]
Since 0 < γ < 1 it follows from Lemma A of Knight and Fu (2000) βk = 0 if and
only if

λN/(NTN ) > |ε′Nxk/(NTN ) + ξNk|2−γcγ

where cγ =
(

2
2−γ

)(
2(2−γ)

2−γ

)1−γ
. Defining wN = c

−1/(2−γ)
γ (λN/(NTN )γ/2)1/(2−γ)

the above inequality is equivalent to

wN > (NTN )−1/2|ε′Nxk + (NTN )ξNk|

So to prove the theorem it is enough to show

P

(
wN > (NTN )−1/2 max

k∈JN

∣∣ε′Nxk + (NTN )ξNk
∣∣)→ 1(7.6)

and

P

(
wN > (NTN )−1/2 min

k∈KN

∣∣ε′Nxk + (NTN )ξNk
∣∣)→ 0(7.7)

We first prove (7.6). On AN =

{∣∣∣∑NTN
j=1 xjkxjl

∣∣∣
(NTN )1/2

≤ c0, k ∈ KN , l ∈ JN

}
and under

assumption (B6)

max
l∈JN

(NTN )1/2|ξNl| = max
l∈JN

1
(NTN )1/2

∣∣∣∣∣∣
NTN∑
j=1

kN∑
k=1

xjkβ10kxjl

∣∣∣∣∣∣
= max
l∈JN

1
(NTN )1/2

∣∣∣∣∣∣
kN∑
k=1

β10k

NTN∑
j=1

xjkxjl

∣∣∣∣∣∣ ≤ max
l∈JN

kN∑
k=1

|β10k|

∣∣∣∣∣∣ 1
(NTN )1/2

NTN∑
j=1

xjkxjl

∣∣∣∣∣∣
≤ b1c0kN
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Hence,

P

(
wN > (NTN )−1/2 max

k∈JN
|ε′Nxk + (NTN )ξNk|

)
≥ P

(
wN > (NTN )−1/2 max

k∈JN
|ε′Nxk|+ (NTN )1/2 max

k∈JN
|ξNk|, AN

)
≥ P

(
wN > (NTN )−1/2 max

k∈JN
|ε′Nxk|+ b1c0kN , AN

)
≥ P

(
wN > (NTN )−1/2 max

k∈JN
|ε′Nxk|+ b1c0kN

)
+ P (AN )− 1

where the last estimate follows from the inclusion-exclusion principle. By Lemma
4

P

(
wN − b1c0kN > (NTN )−1/2 max

k∈JN
|ε′Nxk|

)
≥ 1− KmN

(wN − b1c0kN )4

= 1− KmN/w
4
N(

1− b1c0kN/wN
)4

Furthermore, by assumption (B4)

mN/w
4
N ∈ O(1)

mN(
λN (NTN )−γ/2

)4/(2−γ)
→ 0

and by assumption (B3)

b1c0kN/wN ∈ O(1)
kN(

λN (NTN )−γ/2
)1/(2−γ)

→ 0

Finally, P (AN ) can be made arbitrarily close to 1 by assumption (B5) which es-
tablishes (7.6). Next we verify (7.7).

P

(
wN > (NTN )−1/2 min

K∈kN
|ε′Nxk + (NTN )ξNk|

)
= P

 ⋃
k∈KN

{
wN > |(NTN )−1/2ε′Nxk + (NTN )1/2ξNk|

}
≤
∑
k∈KN

P

({
wN > |(NTN )−1/2ε′Nxk + (NTN )1/2ξNk|

})
(7.8)

Since mink∈KN |ξNk| ≥ ξ0 > 0 by assumption (B1) we may write,

P

({
wN > |(NTN )−1/2ε′Nxk + (NTN )1/2ξNk|

})
≤ P

({
wN > (NTN )1/2|ξNk| − (NTN )−1/2|ε′Nxk|

})
≤ P

({
wN > (NTN )1/2ξ0 − (NTN )−1/2|ε′Nxk|

})
= P

({
(NTN )−1/2|ε′Nxk| > (NTN )1/2ξ0 − wN

})
= 1− P

({
(NTN )1/2ξ0 − wN ≥ (NTN )−1/2|ε′Nxk|

})
≤ 1− P

({
(NTN )1/2ξ0 − wN > (NTN )−1/2|ε′Nxk|

})
By Lemma 4,

P

({
(NTN )1/2ξ0 − wN > (NTN )−1/2|ε′Nxk|

})
≥ 1− K

((NTN )1/2ξ0 − wN )4

(7.9)
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And so for all k ∈ KN

P

({
wN > |(NTN )−1/2ε′Nxk + (NTN )1/2ξNk|

})
≤ K

((NTN )1/2ξ0 − wN )4

Inserting this into (7.8) yields

P

(
wN > (NTN )−1/2 min

k∈kN
|ε′Nxk + (NTN )ξNk|

)
≤ KkN

((NTN )1/2ξ0 − wN )4

=
KkN/(NTN )2(

ξ0 − wN/(NTN )1/2
)4

By assumption (B2),

wN
(NTN )1/2

∈ O(1)

(
λN (NTN )−γ/2

(NTN )(2−γ)/2

)1/(2−γ)

= O(1)
(
λN/(NTN )

)1/(2−γ) ⊆ o(1)

Furthermore, by (B3) kN/(NTN )2 → 0. Hence,

P

(
wN > (NTN )−1/2 min

k∈KN
|ε′Nxk + (NTN )ξNk|

)
→ 0.

�
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