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Abstract

A new and alternative quantile regression estimator is developed and it is shown that
the estimator is

p
n-consistent and asymptotically normal. e estimator is based on a

minimax ‘deviance function’ and has asymptotically equivalent properties to the usual
quantile regression estimator. It is, however, a different and therefore new estimator. It
allows for both linear- and nonlinear model specifications. A simple algorithm for com-
puting the estimates is proposed. It seems to work quite well in practice but whether it
has theoretical justification is still an open question.

Keywords: Quantile regression, non-linear quantile regression, estimating functions,
minimax estimation, empirical process theory
JEL Classifications: C1,  C4, C5, C6

1. Introduction

e regression quantiles methodology, as introduced some thirty years ago by Koenker
and Bassett (1978), has become a well established and popular empirical tool amongst re-
searchers and practitioners. It compliments its more mature cousin, that of least squares,
in providing a (sometimes)more complete picture of distributional relationships between
variables of interest. Here, ‘more mature’ is meant to express that some modelling chal-
lenges are better understood and have elegant solutions in the least squares methodology
while they still keep researchers busy with searching for quantile regression (QR) ana-
logues. Examples present themselves when faced with selection issues, dependent data,
unobserved heterogeneity, etc. Much work has been done in dealing with these (and
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other) common problems, yet there still seems to be work to do, which is also indicated
by the rapidly increasing QR literature.

e contribution of this paper is not a solution to such problems per se; rather, the pa-
per offers a new and alternative approach to QR, which may then serve as a new ‘building
block’ for such investigations. is alternative approach to regression quantiles is based
on an artificially constructed ‘deviance’ criterion function, for which the minimax is a
consistent solution to appropriate estimating equations for QR. e minimax approach
allows for linear and non-linear regression functions (with certain regularity restrictions).
One potential drawback of such minimax estimators is that the powerful linear program-
ming algorithms, in which one usually puts ones faith to provide numerical estimates
of the linear QR model, no longer apply. To remedy this, the paper provides a simple
intuition-based algorithm. In practice it seems to work quite well for some problems, but
the numerical aspect is a most welcomed topic for future research.

2. Some Notation

Let (Ω,F ,P) denote the underlying probability space. We shall investigate relations be-
tween Y (ω) ∈R, a real continuous random variable, and X (ω) ∈X , a k-dimensional ran-
dom vector. Define S =R×X , and let (S,A ) be the sample space with distribution law π.
By y and x we will refer to the first and the last k elements, respectively, of a point s ∈ S,
i.e. points inR and X . emarginal distribution laws will be written as πy and πx respec-
tively. e observed sample, {si}= {yi, xi}, with i = 1, . . . ,n, is assumed independent and
identically distributed according to π. Denote byΘ0 the parameter set, an analytic subset
of the compact metric space (Θ,d). We set out to find a (A ,B0)-measurable criterion
function D : S×Θ0 →R, where B0 =B0(Θ0) is the Borel σ-algebra onΘ0, with the help
of which we can estimate the parameters, θ0 ∈Θ0, in a model for the quantiles of Y (ω),
conditional on X (ω) = x. Let µ : X ×Θ0 be such a (known and fixed) model for a given
quantile index τ ∈ (0,1). e dependence on τ is usually omitted from notation. For con-
venience, µθ

i , µ
θ
x and µθ

ω is sometimes used to abbreviate µ(xi,θ), µ(x,θ) and µ(X (ω),θ).
Finally, denote by E the expectation operator, which unless otherwise specified is with
respect to π.

3. QR Estimating Functions and the Minimax Criterion

First, consider the task of computing a sample τ-quantile. For the moment we let F(y)=
P(Y (ω)É y) denote the continuously differentiable distribution function of Y (ω). Given
a sample, the minimiser, q̂, of the asymmetric loss-function

∑n
i=1ρτ(yi−q), with ρτ(u)=
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u(τ− 1{u É 0}), is well-known as a consistent estimator of the τth sample-quantile of
Y (ω), i.e. QY (τ)≡ F−1(τ)= inf{y : F(y)Ê τ}. e argument roughly goes that

d
dq

[
τ

∫ ∞

q
(Y − q)dF − (1−τ)

∫ q

−∞
(q−Y )dF

]
= F(q)−τ,(1)

so the population minimum is obtained at F(q) = τ. Koenker and Basset’s quite clever
and fruitful idea, then, was to extend this to a regression setting, letting q ≡ µ(x,θ), with
x being covariates of y and θ ∈Θ0 being the unknown parameter vector of interest. e
(conditional quantile) function µ is assumed to be known, and in their original paper
it is linear in the parameters. It is perhaps not intuitive (to some), without the above
argument, that the resulting regression curve implied by θ̂ = θ̂(τ), the minimiser of the
regression version of the asymmetric loss-function, ‘splits’ the regression residuals {ϵ}n

i=1
such that a fraction, τ, of these are non-positive. is property, however, can in some
sense be taken as a ‘defining property’ of the quantile regression curve, and it is therefore
a natural starting point. We will now explore this in more detail for quantile regression
models where the (approximation to the) conditional quantile function for Y (ω) is known
and of the form Qτ(y|x)=µ(x,θ0). Here, θ0 = θ0(τ) ∈Θ0 denotes the ‘true’ parameter (or,
as µ is most likely viewed as an approximation of the true conditional quantile function,
‘population solution’ may be a more appropriate term).

Let

H(s,θ)= τ−1{yÉµθ
x}(2)

and define

H(θ)=
∫

S
H(s,θ)π(ds)=

∫
S

[
τ−1{yÉµθ

x)}
]
π(ds)= E

[
τ−1{Y (ω)Éµθ

ω}
]

(3)

We shall make the identifying assumption that

H(θ0)= 0 and H(θ) ̸= 0 ∀θ ̸= θ0(i1)

Hence, as argued, we have the natural starting point in this (unbiased) estimating func-
tion. e empirical counterpart, where dependence on the observed sample is suppressed
from notation, is

Hn(θ)= 1
n

n∑
i=1

hi(θ)= 1
n

n∑
i=1

[
τ−1{yi Éµθ

i }
]

(4)

e term ‘estimating function’, usually used for nHn(θ) and not H(θ), is here to be un-
derstood in the sense of Godambe (1960) and the vast amount of literature following
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this work. An obvious question is then whether this estimating function is optimal. It
is typical to consider a class of (empirical) estimating functions, where each summand
is weighted, i.e. G := {

Gn : Gn(θ)= 1
n

∑n
i=1 ai(θ)hi(θ)

}
. e following proposition states

the theoretically optimal (but unfortunately impractical) estimating function within this
class, i.e. it defines the optimal ai(θ).

Proposition: Jointly optimal estimating functions for regression quantiles. Let G and
hi(θ) be defined as above. en the optimal estimating function G∗

n ∈G , is given by

G∗
n(θ)= 1

n

n∑
i=1

a∗
i (θ)hi(θ), where(5)

a∗
i (θ)=− f i(µ

θ
i )

τ(1−τ)
µ̇θ

i .

Here, f i denotes the density of Y (ω) given that X (ω) = xi ; µ̇θ
i is the vector of first-order

derivatives of µθ
i (w.r.t. θ); and τ(1−τ) = var(hi(θ0)). e optimality statement is to be

understood in the ‘Godambe sense’, which for real-valued estimating functions states that

E{(G∗
n)2}

{E∂Gn i∗/∂θ}2
É E{G′2

n }
{E∂G′

n/∂θ}2
∀G′

n ∈G ,(6)

and for vector-valued estimating functions thatΣG′
n
−ΣG∗

n
is non-negative definite, where

ΣGn is the variance-covariance matrix of {E∂Gn/∂θ}−1Gn. With non-differentiable func-
tions, as the Gns in the present case, one exchanges differential and expectation operators,
cf Godambe and ompson (1984).

Proof. A classic result in estimating function theory (we shall not prove this) is that

a∗
i (θ)= Eπy{h

2
i (θ0)}−1Eπy{∂hi(θ)/∂θ},(7)

where we treat xi as fixed. For references, see e.g. Godambe (1985), Godambe (1987),
and Ferreira (1982). To make the expression in (7) defined, we shall exchange differential
and expectation operators, due to non-differentiability of hi(θ). Write

∂

∂θ

∫
R
[τ−1{yÉµθ

i }]πy(dy)= ∂

∂θ
[τ−Fi(µ

θ
i )]=− f i(µ

θ
i )µ̇θ

i .(8)

Clearly, Eπy{h
2
i (θ0)}= τ(1−τ), and the result follows. �

is result is similar to the one by Jung (1996) for quasi likelihood estimation of the
median, and that by Godambe (2001) for median estimating functions. However, the
presence of the density evaluated at the quantile in the optimal estimating function is
problematic, since this is unknown, and distributional assumptions aremostly unwanted.
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One could consider a semi-paramtetric approach in which the density is estimated non-
parametrically, but one should be careful that the estimating function remains unbiased
if the density is made a random quantity. is is not dealt with in the present paper.
Instead, we drop all but the derivative term from the estimating function, at the cost of
some efficiency, and focus on Gn(θ)= 1

n
∑n

i=1 µ̇
θ
i [τ−1{yi Éµθ

i }]
A note on the (vector-) estimating function Gn is that it equals the vector of first-

order derivatives of the classical QR objective function, where they exist. e minimiser
of the latter, therefore (heuristically speaking), is one consistent solution to the functions
Gn (but may not necessarily imply exact roots in finite samples). We shall next turn to
the main result of this paper, namely another consistent solution: the minimax of an ar-
tificially constructed deviance function.

e minimax approach presented here is inspired by the results for a variety of esti-
mating functions provided by Li (1996, 1997). e estimating function Gn(θ) does not,
however fall into the category of functions considered there, but it will be shown here
that a similar deviance function can be constructed, and that consistency is preserved.
e proof, however, requires a small extension. We shall present the full consistency
proof for completeness.

Let G(s,θ) = µ̇θ
x[τ−1{y É µθ

x]. From the discussion of estimating functions, we have
that (only) the parameter of interest, θ0, will satisfy the vector-valued estimating equation

G(θ0)= 0, where(9)

G(θ)=
∫

S
G(s,θ)π(ds)=

∫
S
µ̇(x,θ)[τ−1{yÉµ(x,θ)}]π(ds),

where, again, µ̇ is the vector of first-order derivatives with respect to θ. e empirical
counterpart, which we derived above, is

Gn(θ)= 1
n

n∑
i=1

µ̇θ
i (τ−1{yi Éµθ

i })(10)

Solving Gn(θ)= 0 is not particularly practical and it may not have an exact solution. e
claim, however, is that we can make use of the following function (from S×Θ×Θ into
R):

D(s,θ,ϑ)= [µ(x,ϑ)−µ(x,θ)][τ−1{yÉ µ̄(θ,ϑ)}], where(11)

µ̄(θ,ϑ)= [µ(x,θ)+µ(x,ϑ)]/2.

Let

D(θ,ϑ)=
∫

S
[µ(x,ϑ)−µ(x,θ)][τ−1{yÉ µ̄(θ,ϑ)}]π(ds).(12)
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Further, define that

D(θ,ϑ)=
∞, if θ ∈Θ\Θ0

−∞, if θ ∈Θ0,ϑ ∈Θ\Θ0.
(13)

Make the following observations:

(i) D(θ0,ϑ)< 0 ∀ϑ ̸= θ0.

(ii) D(θ,θ)= 0.

(iii) D(θ,ϑ)=−D(ϑ,θ).

We now impose an additional, but quite weak identifying assumption¹:

∀θ ̸= θ0 ∃ ϑ :

µ(x,θ)>µ(x,ϑ)> 2µ(x,θ0)−µ(x,θ) if µ(x,θ)>µ(x,θ0)

µ(x,θ)<µ(x,ϑ)< 2µ(x,θ0)−µ(x,θ) if µ(x,θ)<µ(x,θ0).
(i2)

is allows us to add the following to the list above:

(iv) ∀θ ̸= θ0 ∃ϑ : D(θ,ϑ)> 0.

Observation (i) follows from the definition of µ(x,θ0) and τ; (ii)-(iii) are evident; and to
realise (iv), fix x and choose ϑ according to (i2). is will make D(θ,ϑ), conditional on x,
positive. By the law of iterated expectations, (iv) then follows. From these observations,
it follows that

sup
ϑ∈Θ0

D(θ0,ϑ)= inf
θ∈Θ0

sup
ϑ∈Θ0

D(θ,ϑ),(14)

or in other words:

θ0 = arg inf
θ∈Θ0

sup
ϑ∈Θ0

D(θ,ϑ).(15)

Also, we have that

inf
θ∈Θ0

sup
ϑ∈Θ0

D(θ,ϑ)= 0.(16)

¹For example, including a continuous intercept parameter in the model will ensure that the assumption
is valid.
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A final, but important note, is the connection between D(s,θ,ϑ) and the estimating func-
tion G(s,θ). Now, where the derivative exists, we have that

G(s,θ)= ∂D(s,θ,ϑ)
∂ϑ

∣∣∣∣
ϑ=θ

(17)

e empirical criterion is given by

Dn(θ,ϑ)= 1
n

n∑
i=1

[µϑ
i −µθ

i ][τ−1{yi É µ̄i}](18)

and based on the aforementioned properties, it is natural to estimate θ0 by

θ̂n := arg inf
θ∈Θ0

sup
ϑ∈Θ0

Dn(θ,ϑ)(19)

As Li also points out, the properties of such deviance functions are closely related to
properties of the likelihood-ratio. With these constructed deviance functions, however,
one gets similar properties without assuming the existence of a likelihood function. Some
applications, including the present, do not have a likelihood function as a natural starting
point. More generally, estimating functions need not be the score or derivative of any
function. Further, we need not require differentiability of Dn, and it is therefore consis-
tent even when the estimating function (when viewed as derivative of Dn) does not exist.
Consistency of the minimax estimator is given in theorem 1 below. e asymptotic dis-
tribution is given in eorem 2.

eorem 1. Consistency of the minimax estimator: Under the assumptions (i1), (i2)
and those in Section 2, the minimax estimator

θ̂n = arg inf
θ∈Θ0

sup
ϑ∈Θ0

Dn(θ,ϑ)(20)

is consistent, i.e. θ̂n
p→ θ0.

Proof: Let D(θ) := D(θ,θ0)= EDn(θ,θ0) and D◦
n(θ)= Dn(θ,θ0)−D(θ).

First, we shall consider the uniform convergence properties of D◦
n(θ), which are es-

sential to the proof. To this end, we will utilise some nice results from the theory of em-
pirical processes. Let C be a collection of subsets of the sample space S. is collection
is said to pick out a certain subset, Z say, of a finite set S(n) = {s1, . . . , sn} ⊂ S if it can be
written as Z = S(n)∩C, for some C ∈C . If C picks out all of the possible 2n subsets, then
it is said to shatter S(n). Let V (C ) be the smallest n such that no set of size n is shattered
by C. If V (C ) is finite, then C is called a Vapnik-Čhervonenkis class (or VC-class). A
class of real-valuedmeasurable functions on S is said to be a VC-subgraph class if the col-
lection of subgraphs of these functions forms aVC-class of sets in S×R. We shall find that
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the relevant class of functions for Dn is a VC-subgraph class. First, the class of indicator
functions I := {

1{yÉ (µ(θ, x)+µ(ϑ, x))/2} : s ∈ S, (θ,ϑ) ∈Θ0 ×Θ0
}
is a classic example of

a VC-subgraph class. Let µ̃(θ,ϑ, x) = µ(ϑ, x)−µ(θ, x). Now, τ and µ̃ are fixed functions
from Θ0 ×Θ0 ×S into R, and thus by Lemma 2.6.18 (iv)-(v) of Van der Vaart and Well-
ner (1996), the classes −I := {−ı : ı ∈ I } and τ−I := {τ− ı : ı ∈ I } are VC-subgraph
classes. Finally, (v) of the same lemma gives that D := {Dn : s ∈ S, (θ,ϑ) ∈ Θ0 ×Θ0} is
a VC-subgraph class. is property implies that it is uniformly Glivenko-Cantelli in π

(sometimes called a GC-π class), i.e. it is a sufficient condition for the following to hold:

sup
Dn∈D

|Dn −D|→ 0 a.s., and thus(21)

sup
θ∈Θ0

|D◦
n(θ)|→ 0 a.s.(22)

Now, we will derive the result that for any ε> 0

lim
n→∞P

{
inf
θ∈Θ0

sup
ϑ∈Θ0

Dn(θ,ϑ)< ε
}
= 1.(23)

en we show that this is contradicted if the assertion of the theorem is false. Let T ⊆Θ0

and note that

inf
θ∈T

Dn(θ,θ0)Ê inf
θ∈T

D◦
n(θ)+ inf

θ∈T
D(θ).(24)

Since −supθ∈T |D◦
n(θ)| É infθ∈T D◦

n(θ) É supθ∈T |D◦
n(θ)|, then by (22) the first term on

the right-hand side of (24) converges in probability to 0. So, for any ε > 0 we now have
that

lim
n→∞P

{
inf
θ∈T

Dn(θ,θ0)Ê inf
θ∈T

D◦
n(θ)+ inf

θ∈T
D(θ),

∣∣ inf
θ∈T

D◦
n(θ)

∣∣< ε
}
= 1.(25)

If T =Θ0, then infθ∈T D(θ)= 0 and (25) implies

lim
n→∞P

{
sup
ϑ∈Θ0

Dn(θ0,ϑ)< ε
}
= lim

n→∞P
{

inf
θ∈Θ0

Dn(θ,θ0)>−ε
}
= 1.(26)

e first equality is due to the anti-symmetry of Dn. is confirms the validity of (23).
Let O be a small open ball centered at θ0. Now, if the theorem was false we would

have limsupn→∞ P
{
θ̂n ̸∈O

}> 0. We shall use this to contradict (23). Let T =Θ0\O in
(25), which then implies

lim
n→∞P

{
inf
θ ̸∈O

Dn(θ,θ0)> δ
}
= 1,(27)
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since we can take ε = δ and infθ∈T D(θ) = 2δ > 0 by (i2) and the properties of D and µ.
is, in turn, implies

lim
n→∞P

{
inf
θ ̸∈O

sup
ϑ∈Θ0

Dn(θ,ϑ)> δ
}
= 1.(28)

Now, write

limsup
n→∞

P
{

inf
θ∈Θ0

sup
ϑ∈Θ0

Dn(θ,ϑ)Ê δ
}
Ê(29)

limsup
n→∞

P
{

inf
θ∈Θ0

sup
ϑ∈Θ0

Dn(θ,ϑ)= inf
θ ̸∈O

sup
ϑ∈Θ0

Dn(θ,ϑ), inf
θ ̸∈O

sup
ϑ∈Θ0

Dn(θ,ϑ)> δ
}
.

By (28) the right-hand side reduces to

limsup
n→∞

P
{

inf
θ∈Θ0

sup
ϑ∈Θ0

Dn(θ,ϑ)= inf
θ ̸∈O

sup
ϑ∈Θ0

Dn(θ,ϑ)
}
Ê limsup

n→∞
P

{
θ̂n ̸∈O

}
> 0.(30)

is is in contradiction to (23) and proves the theorem. �

eorem 2. Asymptotic normality of the minimax estimator: Let f i and Fi denote the
density and distribution functions of Y (ω) given X = xi . Write µi for µ(xi,θ0) and µx for
µ(x,θ0). Assume that

(i) 0< fY |X=x < M ∀x ∈X , for some M ∈R+.

(ii) V ≡ limn→∞ 1
n

∑n
i=1 µ̇iµ̇i

⊤ = ∫
X µ̇xµ̇x

⊤π(dx) has full rank.

(iii)
∫
X

∥∥µ̇(X (ω),θ)
∥∥2

π(dx)<∞ ∀θ ∈Θ0.

(iv) θ0 ∈ interior(Θ0).

en,
p

n(θ̂n −θ0) d→N (0,τ(1−τ)Γ−1VΓ−1), where

Γ= lim
n→∞

1
n

n∑
i=1

f i(F
−1
i (τ))µ̇iµ̇i

⊤.

Proof: We show that the conditions for eorem 3.3 of Pakes and Pollard (1989) are
satisfied. We will refer to these as (p-i) – (p-v) to avoid confusion with the assumptions of
this theorem. Let DL(θ) denote the vector of le partial derivatives of Dn with respect to
ϑ, evaluated at ϑ= θ. Since θ̂n is the optimiser of Dn, the summands of DL(θ̂n) for which
yi ̸=µ(xi, θ̂n) cancel out. us, the only ‘important’ contributions to Gn(θ̂n) occur at the
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‘kinks’ yi = µi(xi, θ̂n). We can therefore bound the absolute value of the jth coordinate
of Gn(θ̂n) by

|Gn, j(θ̂n)| É max
1ÉiÉn

{∥∥µ̇(xi, θ̂n)
∥∥} 1

n

n∑
i=1

1{yi =µ(xi, θ̂n)}(τ−1)(31)

By assumption (iii), max1ÉiÉn{∥µ̇(xi, θ̂n)∥} ∈ op(n1/2), and since Y (ω) is continuously
distributed, the normalised sum is Op(n−1).

Combined, we therefore have that |Gn, j(θ̂n)| ∈ op(n−1/2), and thus also ∥Gn(θ̂n)∥ ∈
op(n−1/2). is argument is similar to one made by Honoré (1992) and shows that (p-i)
is satisfied.

Next, write G(θ) as

G(θ)=
∫

S
µ̇θ

x[τ−1{yÉµθ
x}]π(ds)=

∫
X

µ̇θ
x[τ−FY |X=x (µ

θ
x)]πx(dx)(32)

Assumption (iii) allows us to differentiate under the integral sign (Billingsley, 2008), so:

Γ≡ ∂G
∂θ

∣∣∣
θ=θ0

=−
∫
X

fY |X=x (µx)µ̇xµ̇x
⊤πx(dx)=− lim

n→∞
1
n

n∑
i=1

f i(µi)µ̇iµ̇i
⊤,(33)

which by (i) and (ii) exists and is finite. is concludes on (p-ii).
Regarding the condition (p-iii), we will use that the function class I := {

1{yi Éµθ
i } :

si ∈ S,θ ∈Θ0
}
is universally P-Donsker, and so is−I and {τ−µθ

i ı : ı ∈I }. eproperty is
retained under addition, cf VanderVaart andWellner (1996,eorem2.10.6 and example
2.10.7). erefore, for all positive sequences {δn} with δn ∈ o(1),

sup
||θ−θ0||Éδn

||Gn(θ)−G(θ)−Gn(θ0)||
n−1/2 +||Gn(θ)||+ ||G(θ)|| ∈ op(1),(34)

cf Chen et al. (2003, Section 4).
Finally, for condition (p-iv), the iid assumption allows an application of the standard

central limit theorem:

Gn(θ0) d→N (0, J), where(35)

J = τ(1−τ)
∫
X

µ̇xµ̇x
⊤π(dx)

= τ(1−τ)V .

Condition (p-v) is simply assumption (iv). us, all conditions for eorem 3.3 of
Pakes and Pollard (1989) are satisfied, and the result of this theorem follows.

�
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4. Example: e linear model

As an illustration, let µ(x,θ)= x⊤θ. en,

Dn(θ,ϑ)= 1
n

n∑
i=1

x⊤i [ϑ−θ][τ−1{yi É (x⊤i [ϑ+θ])/2}].(36)

e limiting distribution is then

p
n(θ̂n −θ0) d→N (0,τ(1−τ)Γ−1

l HlΓ
−1
l )(37)

Γl = lim
n→∞

1
n

n∑
i=1

f i(F
−1
i (τ))xixi

⊤

Hl = lim
n→∞

1
n

n∑
i=1

xixi
⊤.

It is seen that the asymptotic distribution of the minimax estimator is equivalent to
that of the usual QR estimator (Koenker, 2005, Section 3.2.3). However, the estimator is
not necessarily coinciding with the QR estimator numerically and it may give different
estimates.

5. Behavior of the deviance function

e preceding section presented the deviance criterion function and showed the con-
sistency and asymptotic normality of the minimax estimator θ̂n. We now inspect the
function a little more closely closer to get an idea of the behaviour it displays. At first,
it appears intractable, since it is piecewise linear with discontinuities. It does, however,
reveal some properties that might be exploited for numerical aspects, something we will
return to later. First, what does it look like? For ease of graphical exposition, consider
the one-dimensional case of estimating a sample quantile. en we have Θ0 ⊂ R and no
covarites. Figure 1 shows Dn(θ,ϑ) as a function of ϑ for three different fixed values of θ,
given the sample points {−5,−4, . . . ,5}, with τ = ½. As it is seen, the further away θ is
from the sample median, the easier it becomes to choose ϑ in order to get a large (posi-
tive) function value. As θ approaches the sample median, the function “flattens”, and the
supremum function value decreases. When θ equals the sample median, here θ = 0, the
best one can do, in terms of choosing ϑ is to set ϑ= θ and get a function value of 0. Also,
note that when θ < θ0, the maximum function value is achieved by setting ϑ> θ, and vice
versa. is gives an indication of the direction in which one should direct θ to find, in
this case, the sample median.

11



.

.-4 .-2 .0 .2 .4

.-1
0

.-5
.0

.5

.ϑ

.D
n
(θ

i,
ϑ

)

Figure 1: e deviance function Dn(θ,ϑ) as a function of ϑ for three different θs. e dashed
line represents θ1 = −2; the solid is for θ2 = −1; and when θ3 = 0, the sample median, we
get the solid bold graph.

An alternative geometric interpretation is as follows. Again, let us stick with the sim-
plest possible case of finding a sample quantile. Let

∆(ϑ)= #
{
i : yi 6 (θ+ϑ)/2

}
(38)

be the number of observations with value less than µ̄i = (θ+ϑ)/2, viewed as a function of
ϑ. en, if the sample is ordered with y1 6 y2 6 · · ·6 yn, and we fix θ = θ∗, we can write

nDn(ϑ)= nDn(θ∗, ϑ)= [ϑ−θ∗]
∆(ϑ)∑
i=1

(τ−1)+ [ϑ−θ∗]
n∑

i=∆(ϑ)+1
τ(39)

= [ϑ−θ∗][nτ−∆(ϑ)].

Given a θ, thenϑ is chosen tomaximise the area of a rectangle where one side is increasing
in ϑ and the other is decreasing. e job is then to chose a θ for which no ϑ can make this
area positive. In higher dimensions, it is a little more complicated. As the [µϑ

i −µθ
i ] term

no longer can be taken outside the sums, we have many rectangles for which the sides are
determined by a common parameter vector. θ must then be chosen such that no ϑ can
make the sum of the areas positive (where some can be negative). is does not as such
get us closer to how one would go about computing this value of θ. e next section gives
a suggestion on how to do this in practice.
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6. Computing the minimax regression quantiles.

It is not the aim of this paper to develop a definitive algorithm for computing theminimax
estimates. However, there is a simple intuition-based algorithm, by which is meant that
convergence is not theoretically guarantied as of yet, but it seems to work quite well in
practice. e procedure is discussed briefly below, and further work on numerical aspects
of the estimator is encouraged by the author.

In the one-dimensional case, we saw that for a given value of the θ, then by evaluating
whether Dn(θ,ϑ) takes on positive values for ϑ to the le or to the right of θ we will know
in which direction to move θ. A simple algorithm, then, is the following:

(i) first trap the minimiser, θ̂n, of supϑ∈Θ0
Dn(θ,ϑ) beween two points. One point

where positive values occur to the le, and one where they occur to the right.

(ii) then, bisect the interval iteratively while updating the boundaries.

(iii) At some convergence-level, stop.

Actually, as seems evident from the discussion, the optimising value of θ is located at a
sample-point, i.e θ̂n = yi for some i. Hence, instead of (iii), simply trap a single sample-
point in such an interval, and this point will be the solution.

In high dimension, i.e. k > 2, it may or may not be justified to use a component-
wise version of this scheme, i.e. to fix k−1 parameters, where θ j = ϑ j for these, and use
the above procedure for the remaining parameter. en, move on to the next and repeat
for all k parameters. Of course, there is a dependence between parameter values, and
one should not expect to find the solution by only cycling through the parameters once.
However, although I have as yet no theoretical justification, believing that a number of
cycles will lead you to the solution is almost irresistible. And it turns out, that in practice
this is the case in many situations where the initial guess for θ is reasonable.²

e first step of trapping the parameter in some interval is not too hard in many
situations: if µ(x,θ) is monotone in the parameters, then let ε > 0 be a small number
and set ϑ j = θ j + ε for some j and ϑ j = θ j for the remaining k−1 parameters. en if
Dn(θ,ϑ) > 0, one has found the le boundary, otherwise one has found the right. Now
choose a value, for the parameter of interest, sufficiently far in the relevant direction to
make Dn(θ,ϑ) change sign. Now, the other boundary has been found.

Of course, the nature of the specific µ may induce specific considerations, but the
method just described oen sufficient. e convergence criterion for the bisection steps
could initially be set rather loose to quickly get within a reasonable neighbourhood of the
solution, and then tightened aer the first couple of cycles.

²At least for those situations experienced by the author.
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7. Directions and motivation for future research.

eminimax estimator of this paper offers a newway to perceive regression quantiles: the
estimating functions described provide an intuitive description of the quantity of interest
as the roots of these functions. ey do not, however, give a practical way to obtain this
quantity as they may not have exact roots in finite samples. e deviance function is
constructed to give consistent roots to these functions and it has restated the problem as
that of a certain type of extremum estimators. is is interesting in itself, as it provides
a quantile regression framework which incorporates a wide class of regression functions.
e framework, as a building block,may prove useful in alleviating someproblems related
to quantile regression. To round off the discussion, here are two observationswhich could
find use in further developing the ideas of this paper.

First, panel models with dependent data pose trouble for quantile regression estima-
tors, see e.g. Bache et al. (2010) for a review. In the estimating function literature, this is
oen dealt with using ‘generalized estimating equations’. Li (1997) presents a minimax
framework for such estimating equations. It is quite possible, in the spirit of these findings
and this paper, that given an n×T panel, one could construct a function, say

(40) Dn(θ,ϑ)= 1
n

n∑
i=1

{1
2

W−1
i (α(θ))[µϑ

i −µθ
i ][τ−1{yi 6µθ

i }]

+ 1
2

W−1
i (α(ϑ))[µϑ

i −µθ
i ][τ−1{yi 6 µϑ

i }]
}
,

where Wi is a specified (up to an estimable parameter α that may depend on θ) T ×T
working variance-covariance matrix, and yi , µi , and the indicators are T-vectors.

A second potential is for non-linear quantile functions. Here, with classical non-
linear QR, one encounters numerical difficulties, since linear programming is no longer
an option. Further, some quantile regression models have criterion functions which are
flat, and therefore hard to optimise. Examples are Powell’s censored regression quantiles
(1986) and Manski’s maximum score-type estimators (1975, 1985). Perhaps, using the
minimax approach, one could construct non-flat criterion functions which could lead to
easier optimisation. Also, the numerical aspect of theminimax estimator is still uncharted
territory and could very well turn out some positive and useful directions.
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