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Abstract

The problem of modeling housing prices has attracted considerable attention due to its importance

in terms of households’ wealth and in terms of public revenues through taxation. One of the main

concerns raised in both the theoretical and the empirical literature is the existence of spatial association

between prices that can be attributed, among others, to unobserved neighborhood effects. In this paper,

a model of spatial association for housing markets is introduced. Spatial association is treated in the

context of spatial heterogeneity, which is explicitly modeled in both a global and a local framework. The

global form of heterogeneity is incorporated in a Hedonic Price Index model that encompasses a nonlinear

function of the geographical coordinates of each dwelling. The local form of heterogeneity is subsequently

modeled as a Finite Mixture Model for the residuals of the Hedonic Index. The identified mixtures are

considered as the different spatial housing submarkets. The main advantage of the approach is that

submarkets are recovered by the housing prices data compared to submarkets imposed by administrative

or geographical criteria. The Finite Mixture Model is estimated using the Figueiredo and Jain (2002)

approach due to its ability in endogenously identifying the number of the submarkets and its efficiency

in computational terms that permits the consideration of large datasets. The different submarkets are

subsequently identified using the Maximum Posterior Mode algorithm. The overall ability of the model

to identify spatial heterogeneity is validated through a set of simulations. The model was applied to

Los Angeles county housing prices data for the year 2002. The results suggests that the statistically

identified number of submarkets, after taking into account the dwellings’ structural characteristics, are

considerably fewer that the ones imposed either by geographical or administrative boundaries.
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1 Introduction

The problem of modeling dwelling selling prices is still a challenge for housing analysts, especially in view of
the importance that real estate wealth has in the household’s consumption and thus in the entire economy.
Hedonic market models, which are observed on the equilibrium between demand and supply at a given time,
have been used for this purpose as a common modeling approach. Hedonic models (or indexes) consider
the features of an asset to be the determinants of its actual values. Consequently, a house price can be
estimated by regressing on the number of rooms, the total living area, the number of bathrooms, and
location characteristics. However, it is very difficult to get a complete account of all the relevant location
characteristics, so the regression residuals are often found to be spatially correlated.

The latter issue emerges as a direct consequence of the nature of housing compared to other commodities.
In particular, housing differs in terms of its high cost, its durability, its heterogeneity, and most importantly
its locational fixity. The intrinsic uniqueness of each location gives rise to the spatial heterogeneity property
of housing.

Geographic data are predominantly dependent. As Tobler (1970) suggests in his First Law of Geography

“Everything is related to everything else, but near things are more related than distant things”

This spatial heterogeneity needs to be modeled in order not only to improve the efficiency of the hedonic
models estimates, but also to incorporate this spatial information in order to construct more effective models
for housing valuations. In the literature there are two approaches to modeling spatial heterogeneity. The
first one attempts to model directly the autocorrelation structure of the hedonic model residuals. Dubin
(1992,1998) makes use of kriging in order to model the residuals; their correlation is written as a function
of the distance between two dwellings 1. In a similar fashion, Basu and Thibodeau (1998) model the spatial
autocorrelation of the residuals using semi-variograms. On the other hand, Can (1992), Can and Megbolugbe
(1997), and Dubin et al. (1999), building on Anselin’s (1988) model of spatial autocorrelation, incorporate
spatially lagged variables directly in the hedonic regression. The estimation of these models requires the
construction of weight matrices, which are square matrices with dimension equal to the number of the
observations so as to state the spatial autocorrelations, and their subsequent inversion. When the number
of observations becomes large, inverting the weight matrix becomes problematic even though this effect is
mitigated by the fact that the matrix is sparse.

The second approach to modeling spatial heterogeneity builds on the presumption that we can segment
housing markets to clusters of dwellings that need to satisfy the following three conditions2: (a) homogeneity,
(b) contiguity, and (c) parsimony. Each cluster should constitute a different housing submarket. Thus, the
hedonic model, when estimated for dwellings within each cluster, may be able to provide residuals that are
spatially uncorrelated. This presumption has its origins in the early housing markets literature. Strazsheim
(1974) states:

“The urban housing market” is a set of compartmentalized and unique submarkets with
demand and supply influences likely to result in a different stucture of prices in each.”

1Kriging corresponds to a set of geostatistical techniques to interpolate the value of a random field at an unobserved location
from observations of its value at nearby locations.

2Goodman (1981).
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Housing markets may be away from the long-run equilibrium as a result of segmented demand or in-
flexible supply adjustment processes. The standard long-run analysis assumes instantaneous adjustment of
housing size, location, quality and distribution of dwelling units to changes in income, employment, location,
population, tastes, and transportation (see Strazheim 1975). On the demand side, however, it has been
noticed that prospective owners and renters often examine housing in a limited geographical area because of
search costs, racial discrimination, or desired proximity to friends or workplace. On the supply side, there
are also constraints; capital stock is difficult to modify, and vacant land is scarce especially in urban regions.

The first part of the paper follows the approach of Goodman (1981) and thus it models the spatial
heterogeneity in housing prices in the submarkets setting. This approach emphasizes classification accounting
for spatial heterogeneity, by making groups of observations define potential submarkets. In contrast to a
large part of the literature that defines the location of the submarkets a priori, based on socioeconomic
considerations, political jurisdictions, school districts or market areas as perceived by the real estate agencies
(for example Goodman 1981, Adair et al. 1996, and Goodman and Thibodeau 1998), I estimate the number
and the location of the submarkets endogenously. That is, instead of determining the submarkets based on
some prior view, an alternative approach that allows the data to speak for themselves is followed. Examples
from the literature following the same approach include, among others, Clapp et al. (2002), Ugarte et al.
(2004) and Clapp and Wang (2005).

This method allows the researchers to model rather than impose submarkets. The number and the
corresponding locations of the submarkets will be determined in an optimal way, i.e. in terms of the data’s
statistical properties, in order to identify the areas with similar demand and supply functions. Thus, it
is expected that the model will identify housing submarkets in a more parsimonious way compared with
the determination of submarkets solely in terms of geographically determined or administratively imposed
regions. What may appear to be diverse submarkets could in fact be artificial divisions.

In this paper, I propose a model that consists two modules. The first module involves an extended
version of the hedonic price model; the geographical coordinates of the dwelling are included to the set of
the explanatory variables, as in Clapp and Wang (2005). The hedonic model is estimated using a standard
OLS procedure. This yields prices that are standardized for the dwelling’s structural characteristics. The
second module assumes that the residuals from the first module follow a Finite Mixture Model, with each
of the mixing components corresponding to a housing submarket. I consider this approach as intuitively
appealing; there is a one-to-one correspondence between the mixtures and the housing submarkets.

Similar problems are addressed in engineering applications such as image processing or pattern recognition
and as a result a rather voluminous literature has been formed over the past years. The methods that are
proposed in this literature present desirable properties both in terms of estimation accuracy and computation
efficiency.

I use the Minimum Description Length criterion variant proposed by Figuereido and Jain (2002) for the
estimation of the Finite Mixture Model. The particular approach is selected for these merits: a) the number
of the mixtures, and thus the number of the housing submarkets, are endogenously identified during the
estimation, b) the model estimation algorithm is simple in its implementation since it includes a variant of
the standard Expectation Maximization algorithm, and c) it is computationally more efficient, thus allowing
the examination of considerably larger data sets (100000 dwellings or more), which makes the methodology
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appropriate for mass assessment applications 3.
The final step of the modeling procedure is the re-estimation of the hedonic model for each of the identified

spatial submarkets. The parameters of the index can be subsequently used in order to obtain the value for
any dwelling that belongs to that submarket.

Nowhere in the previous literature were Monte Carlo simulations used to validate the ability of the models
to identify spatial clusters. Here, this evaluation of the validity of the model is undertaken with the result
indicating that the model can be used for the identification of housing submarkets and for the explanation
of the price variation, in data sets containing a large number of observations.

Finally, the model is employed in order to scrutinize the housing market of the Los Angeles county using
values of houses sold in year 2002. The sample size obtained is considerably larger compared to what is used
in past empirical applications (approximately 108000 dwellings). The results suggest that the statistically
identified number of submarkets, after taking into account the dwellings’ structural characteristics, are
considerably fewer by far than the ones imposed either by geographical or administrative boundaries.

The remaining chapter is structured as follows: Section 2 describes the model used in the analysis in
detail. The hedonic price model is reviewed and the estimation procedure for the finite mixture model is
introduced. Section 3 discusses the simulation results. In section 4, the results from the application of
the model to the real estate market of Los Angeles are presented. The chapter ends with some concluding
remarks.

2 The model

2.1 The hedonic model

Since the seminal work of Adelman and Griliches (1961), who provided the rational for the construction of
hedonic indices as a quantification of heterogeneous products’ quality, a vast literature for the determination
of housing prices has emerged. Rosen (1974) provided the theoretical framework for the hedonic models as
an approach to the determination of housing prices. He argued that in equilibrium between demand and
supply, the price of the house can be determined as a function of its characteristics and the weights can be
estimated by running a standard regression. Moreover, Rosen (1974) and Epple (1987) discussed the issues
involved in how to obtain the demand and/or supply functions from the estimated hedonic model.

The hedonic price model can be written as

y = X · β + ε (1)

where y is the dependent variable related with the dwelling price and X corresponds to the set of the dwelling
characteristics such as lot size, number of bedrooms, existence of fireplace, neighborhood amenities, etc. The
model is estimated by Ordinary Least Squares.

Despite its age, the hedonic model approach is still very popular for housing market valuation. It is
preferred over the usual repeat-sales approach used by appraisers as it has been demonstrated (Meese and
Wallace 1997, Pace et al 2002) that: a) it actually yields smaller errors in terms of forecasting the realized

3Data sets in the existing literature involve a number of housing prices in the vicinity of 1000, for example Adair et al.
(1996) consider 1080 transactions, Clapp and Wang (2005)’s sample was of 1069 transactions.
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market price, and b) it enables a rather costless evaluation for every new property once the parameters of
the hedonic model have been estimated.

There are several issues regarding the specification of the hedonic model, as discussed extensively in
Freeman (1979), Mark and Goldberg (1988), Meese and Wallace (1997), Basu and Thibodeau (1998), Reichert
(2002), and Pace et al. (2002) but the most important are related to the functional form and to variable
selection priority.

Rosen (1974) did not preclude any particular form for the function of the characteristics; the hedonic
function could very well take a nonlinear form. The literature addresses the problem of the functional form
by considering a Box-Cox transformation of the data. The most usual functional formulations are the semi-
log (the log of the price is the dependent variable, whereas the structural characteristics remain unaltered),
or the log-log (all variables in the regression function are taken in logs). In this paper the semi-log form
is employed for several reasons: a) it is used in the majority of the recent literature, b) it decreases the
heteroskedasticity in the residuals, and c) it provides a neat interpretation of the estimated coefficients of
the regressions (rate of change in the price for an additional unit of the structural variable).

The dwelling characteristic variables can be separated into two categories. The first one corresponds with
the structural characteristics of the dwelling such as age, lot size, number of rooms, existence of pool, etc
that can be measured with relative accuracy. The second one corresponds with the neighborhood character-
istics such as racial composition, amenities, environmental aspects, etc, which generate the most problems.
Modeling all the neighborhood effects in a coherent way is challenging due to difficulties in identifying the
different effects, and in constructing proper quantitative variables for their description. The problem of
omitted variables which will result in biased and inconsistent estimates for the model will inevitably emerge.
Moreover, quantifying the quality aspects of the particular neighborhood is very cumbersome as it will require
the construction of detailed questionnaires to be completed by a significant number of objective evaluators
(Kain and Quigley 1970). Finally, such a task is simply implausible for the case of Mass Assessment when
the task involves estimating the value of all dwellings in a large city.

In order to circumvent these issues, neighborhood characteristics will not be included in the analysis as
it has been argued before that the explicit modelling of the spatial heterogeneity can capture these effects.

Lastly, a “global” form of heterogeneity is incorporated in the hedonic model by encompassing a non-
linear function of the geographical coordinates of each dwelling. The acquisition of the coordinates is made
possible by the use of geocoding (a Geographic Information Systems (GIS)application that allows the exact
pinpointing of each dwelling, based on its address, in terms of its geographical coordinates). The coordinates
function operates as a proxy for location-specific information. This method is preferred to the one that
simply puts neighborhood dummy variables since it leaves less space for arbitrary decisions such as the
selection of the neighborhoods’ boundaries 4. Moreover, since the focus of this paper is in the endogenously
identification of submarkets the employment of information of that type is not desirable.

2.2 Finite mixture Model

The hedonic price model takes into account the structural characteristics of the dwelling. The spatial
attributes will be estimated by assuming a finite mixture model for the residuals from the OLS estimation

4The selection of the neighborhoods can be done on a variety of criteria (administrative-type boundaries like postal codes
and census tracts, or geographical boundaries like rivers, roads, andrail-tracks) that do not provide a unique answer.
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of the hedonic model. The number of mixtures identified will correspond with the number of the different
submarkets the housing market is segmented into. In what follows, the Finite Mixture Model is presented
along with the standard approach used for its estimation (the Expectation Maximization EM algorithm).
Subsequently, the Minimum Description Length criterion variant proposed by Figuereido and Jain (2002)
will be presented and its relative merits over EM approaches will be discussed. In the folllowing sections,
the random variables Y used in the exposition of the model will correspond to the residuals obtained from
the hedonic model, each residual representing a different dwelling.

2.2.1 The Finite Mixture Model and the EM algorithm

Let Y = [Y1, . . . , Yd]T be a d -dimensional random variable, with y = [y1, . . . , yd]T representing one particular
outcome of Y. It is said that Y follows a k -component finite mixture distribution if its probability function
can be written as:

p (y| θ) =
k∑

m=1

αmp (y| θm) (2)

where α1, . . . , αk are the mixing probabilities, θm corresponds with the parameters defining the mth distri-
butional component, and θ ≡ {θ1, . . . , θk, α1, . . . , αk} is the complete set of parameters needed to define the
mixture. The mixing probabilities αm satisfy the following conditions:

αm ≥ 0, m = 1, . . . , k, and
k∑
m

αm = 1 (3)

Given the set Y =
{
y(1), . . . ,y(n)

}
of n independent and identically distributed samples, the log-likelihood

corresponding to a k -component mixture is

log p (Y| θ) = log
n∏
i=1

p(y(i)|θ) =
n∑
i=1

log
k∑

m=1

αmp(y(i)|θm) (4)

The Maximum likelihood (ML) estimate can not be found analytically. The usual choice for estimating the
parameters of the mixture model is the employment of the Expectation Maximization (EM) algorithm. EM
is an iterative procedure that finds the local maxima of the log p (Y| θ) and is extensively discussed in the
work of McLachlan and Peel (2000) for the case of finite mixtures.

The EM algorithm is based on the interpretation that the data are incomplete. In the case of finite
mixtures, the missing part is a set of n labels Z =

{
z(1), . . . , z(n)

}
associated with the n samples, indicating

which component produced each sample. Each label is a binary vector z(i) = [z(i)
1 , . . . , z

(i)
k ], where z(i)

m = 1
and z(i)

p = 0 for p 6= m, which means that the sample y(i) was produced by the mth component. Consequently,
the complete log-likelihood can be written as

log p (Y,Z| θ) =
n∑
i=1

k∑
m=1

z(i)
m logαmp(y(i)|θm) (5)

The EM algorithm results in a sequence of estimates
{
θ̂(t), t = 0, 1, 2, . . .

}
by iteratively applying 2 alternate

steps:
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• E-step: Computes the conditional expectation of the complete log-likelihood, given Y and the current
estimate θ̂(t). Since log p (Y,Z| θ) is linear with respect to the missing data Z, we have to compute
the conditional expectation W = E[Z | Y, θ̂(t)] and then plug it back into the complete log-likelihood.
The result is the so-called Q-function:

Q(θ, θ̂(t)) ≡ E
[
log p (Y,Z| θ) | Y, θ̂(t)

]
= log p (Y,W| θ) (6)

Since the elements of Z are binary, their conditional expectations are given by

w(i)
m ≡ E

[
z(i)
m |Y, θ̂(t)

]
= Pr

[
z(i)
m = 1|y(i), θ̂(t)

]
(7)

=
α̂m(t) p(y(i)|θ̂m(t))∑k
j=1 α̂j(t) p(y(i)|θ̂j(t))

(8)

• M-step: Updates the parameter estimates according to

θ̂(t+ 1) = arg max
θ

{
Q(θ, θ̂(t)) + log p(θ)

}
(9)

under the constraints of (3).

The problem with working with the EM algorithm is that it assumes that the number of mixture components k
is known. This is never the case in real applications. The employment of the ML criterion is not appropriate;
the class of the k-component models (Mk) is nested in the class of the (k+1) components model (Mk+1), and
thus the likelihood will be increasing even if an extra, unnecessary mixture component is added. Alternative
methods have been proposed in order to estimate the number of the mixture distributions. The most common
ones are of a deterministic nature. A set of candidate models is estimated using EM for a range of values
of k (k ∈ [kmin, . . . , kmax]) which is assumed to contain the true value of k. The number of components can
then be determined according to

k̂ = arg min
k

{
C
(
θ̂(k), k

)
, k = kmin, . . . , kmax

}
(10)

where C
(
θ̂(k), k

)
is some selection criterion and θ̂(k) is the estimate of the set of the mixture parameters

for the given k. The usual form of these criteria is:

C
(
θ̂(k), k

)
= − log p (Y| θ̂(k)

)
+ P(k) (11)

where P(k) is an increasing function penalizing higher values of k. Such criteria are Approximate Bayesian
criteria ( Laplace-empirical criterion LEC, Bayesian inference criterion BIC), approaches based on informa-
tion/coding theory concepts (Akaike’s information criterion AIC, Minimum message length criterion MML),
and methods based on the complete likelihood (5) (Classification likelihood criterion CLC, Integrated clas-
sification likelihood criterion ICL). For a more detailed review and comparison of these methods, the reader
is directed to McLachlan and Peel (2000).
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2.2.2 The Figuereido and Jain (2002) Minimum Message Length Criterion variant

The deterministic methods discussed in the previous section select a model class Mk based on its “best”
representative θ̂(k). Nevertheless, in the mixture models, the distinction between model-class selection and
model estimation is unclear, e.g. a 3-component mixture with one mixing probability equal to zero can
not be distinguished from a 2-component mixture. Moreover, EM algorithms are known to suffer from two
major drawbacks: (a) they are highly dependent on initialization values, and (b) they may converge to
the boundary of the parameter space. Potential methods to correct for (a), include among others repeated
applications of the EM algorithm for different initialization schemes. Nevertheless, these approaches demand
a lot of computation time.

Figuereido and Jain (2002) proposed a different approach in order to circumvent these issues. They
proposed a Minimum Message Length (MML) criterion that endogeneizes the selection of the optimal k.
This is achieved by attempting to identify the “best” overall model in the entire set of available models

kmax⋃
kmin

Mk

rather than selecting one among a set of candidate models.
The main idea behind minimum encoding length criteria (like MML and MDL) is that a model is a good

one if it can be described by using a short code for the data. Consider some dataset Y that it is known
to have been generated according to the probability model p (Y| θ). Our goal is to encode the data and
transmit them without any loss of information. If p (Y| θ) is known to both the transmitter and the receiver,
then they can both build the same code and communicate. However, if the parameters θ are unknown, the
transmitter first needs to estimate them and subsequently transmit them. This leads to a two-part message,
whose total length is given by

Length (θ,Y) = Length (θ) + Length (Y| θ) (12)

All minimum encoding length criteria state that the parameter estimate is the one that minimizesLength (θ,Y).
Figuereido and Jain (2002) obtained the following form of the MML criterion (derived in their Appendix),
where the minimization with respect to θ is simultaneous in both θ (the parameter space) and its dimension
c:

θ̂ = arg min
θ

{
− log p (θ)− log p (Y| θ) +

1
2

log |I (θ)|+ c

2

(
1 + log

1
12

)}
(13)

where I (θ) ≡ −E
[
D2
θ log p (Y| θ)

]
is the (expected) Fisher information matrix and |I (θ)| denotes its deter-

minant5.
The MDL criterion can be obtained as an approximation to (13) and is given by

ĉMDL = arg min
c

{
− log p (Y| θ̂ (c)

)
+
c

2
log n

}
(14)

whose two-part code interpretation is clear: − log p (Y| θ̂ (c)
)

is the data code-length, while each of the
c parameter set components requires a code-length proportional to (1/2) log n. Nevertheless, I (θ) is not

5D2
θ denotes the Hessian matrix.
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available, in general, in analytical form for the case of mixtures. In order to circumvent this problem, we
replace it by the complete-data Fisher information matrix Ic (θ) ≡ −E

[
D2
θ log p (Y,Z| θ)

]
, which is an upper

bound for I (θ). The authors adopt a prior expressing lack of knowledge about the mixing parameters. In
more detail

1. The parameters of the different components are assumed to be a priori independent and also indepen-
dent of the mixing probabilities:

p (θ) = p (α1, . . . , αk)
k∏

m=1

p (θm)

2. For each factor p (θm) and p (α1, . . . , αk), the standard noninformative Jeffrey’s prior is adopted

p (θm) ∝
√∣∣I(1) (θm)

∣∣
p (α1, . . . , αk) ∝

√
|M| = (α1α2 . . . αk)−1/2

for 0 ≤ α1, α2, . . . , αk ≤ 1 and α1 + α2 + . . .+ αk = 1.

Given the above assumption and noticing that for a k -mixture the dimension of θm is c = Nk+ k, where
N is the number of the parameters for each of the mixture distributions, (13) becomes

θ̂ = arg min
θ
L (θ,Y) (15)

with

L (θ,Y) =
N

2

k∑
m=1

log
(nαm

12

)
+
k

2
log

n

12
+
k(k + 1)

2
− log p (Y| θ) (16)

The following intuitive interpretation can be given to this criterion:

1. − log p (Y| θ) is the code-length of the data.

2. The expected number of points generated by the mth component is nαm; this can be thought of as the
effective sample size for the estimation of θm. This gives rise to the term (N/2) log(nαm).

3. The αm’s are estimated from all n observations, giving rise to the term (k/2) log(n).

The objective function in (16) does not make sense if any of the αm’s is equal to zero (it becomes −∞).
Regardless, the only thing that we need to code and transmit are the mixing elements whose probability is
nonzero. Defining by knz the number of the nonzero probability components, (16) becomes

L (θ,Y) =
N

2

∑
m:αm>0

log
(nαm

12

)
+
knz
2

log
n

12
+
knz(k + 1)

2
− log p (Y| θ) (17)

Figueiredo and Jain (2002) also provide the variant of the EM algorithm that is necessary to estimate
the finite mixture using (17). In particular, for fixed knz, the E-step is
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α̂m(t+ 1) =
max

{
0,
(∑n

i=1 w
(i)
m

)
− N

2

}
∑k
j=1 max

{
0,
(∑n

i=1 w
(i)
j

)
− N

2

} , (18)

m = 1, 2, . . . , k

whereas the M-step is

θ̂(t+ 1) = arg max
θ
Q(θ, θ̂(t)), for m : α̂m(t+ 1) > 0 (19)

In the case of univariate Gaussian mixture models, each of the mixing distributions is fully specified by
its mean and variance, i.e. θm =

(
µm, σ

2
m

)
. The M-step of the EM algorithm is then summarized in the

following two equations:

µ̂m(t+ 1) =

(
n∑
i=1

w(i)
m

)−1 n∑
i=1

y(i)w(i)
m (20)

σ̂2
m(t+ 1) =

(
n∑
i=1

w(i)
m

)−1 n∑
i=1

(
y(i) − µ̂m(t+ 1)

)2

w(i)
m (21)

In order to improve the speed of convergence and to avoid problems that EM presents, such as sensitivity
to initial conditions, the authors use the Component-Wise Expectation Maximization Algorithm (CEM2)
proposed by Celeux et al. (1999). CEM2 permits the parameters’ estimation of one mixture distribution at
each iteration. Celeux et al. (1999) prove the convergence properties of CEM2 by using the fact that EM
falls into a class of iteration methods called Proximal Point Algorithms (Chretien and Hero III 2000).

2.2.3 Recovering the location of the submarkets

It was stated earlier that the number of submarkets will be equal to the estimated number of the mixing
distibutions. Given the estimates from the finite mixture model, it is necessary to provide a decision rule that
will reconstruct the market segments. In order to do so, the Maximum Posterior Mode (MPM) algorithm
will be used. The MPM algorithm assigns to each data point, here each dwelling, the mixing distribution
that is the most probable to have generated the particular point value. More specifically, the data point (i)
is allocated to the mth distribution if

w(i)
m > w

(i)
j ,

(
j = 1, 2, . . . , k̂

)
(22)

where w(i)
m comes from (7). The different submarkets are then defined as the collection of the housing data

points assigned to each distribution.

3 Simulation Results

The proposed methodology for the identification of regions has been introduced in the context of engineering
applications, such as image segmentation problems where the input data are pixel intensities. Thus, it is
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of interest to examine the performance of the method when economic data, such as housing prices, are
considered. Two different types of simulations were performed in order to examine the ability of the model
to identify housing submarkets. The first one involved the simple case of identifying regions defined by points
generated as independent draws from different distributions. The second one attempted to imitate a genuine
problem by considering a hypothetical housing market divided into different submarkets.

3.1 Case I: IID regions

This set of simulations investigated the performance of the estimation procedure for the finite mixture model
alone. An two-dimensional area was divided into three different segments. Each segment contained points
generated independently by a Normal distribution. I considered three different cases of increasing variability
for the values of the points. The theoretical parameters for each distribution and their corresponding
estimates are summarized in Tables 1 to 3.

The following criteria need to be satisfied for ensuring the validity of the proposed model. The first
criterion concerns the correct estimation of the underlying distributions’ parameters; the estimates obtained
were quite accurate being more precise for low-variability data. The second criterion corresponds to the
correct identification of the segments’ boundaries; Figures 1 to 3 depict the identified segments as a collection
of points in space with different colors. Points with the same color were identified to have been generated
from the same distribution, i.e. belonging to the same submarket. The separation of the different colored
segments is visible in the figures. Once more, the level of separation was more precise for the low and
medium-variability data. The last criterion amounts to the degree of homogeneity within each identified
segment; high level of homogeneity will be represented in the figures by high color homogeneity as well. The
degree of homogeneity is excellent for the low-variability data (Figure 1), where the segments do not contain
points that are attributed to a different segment (100% homogeneous segments) ,very good for the medium-
variability data (Figure 2), where the segments do contain a few points that are attributed to a different
segment (approximately 99% homogeneous segments), and good for the high-variability data (Figure 3),
where the segments are, on average, approximately 10% homogeneous. Thus, misclassification of points to a
different that their true segment may occur at most at 10% of the time, which can be considered acceptable.

Overall, the performance of the model in terms of the aforementioned criteria was good, especially for
the cases of the low and the medium variance of the underlying distributions.These results validated the
model’s adequacy in estimating finite mixture model for at least the simple case of IID regions.

3.2 Case II: Submarkets

The case of IID regions is not very realistic. Hence the ability of the proposed model should be tested in
cases that emulate an actual housing market as much as possible. In order to do so, a hypothetical housing
market segmented into seven different submarkets (see Figure 4) was constructed. For each submarket, a
hedonic model based on a set of structural characteristics was assumed. The structural characteristics’ values
were created using a variety of distributional configurations. The details of this procedure are presented in
section 2.6.

Preliminary results obtained from the estimation on the Los Angeles data were used for calibrating the
simulation parameters. Most of the structural characteristics’ values were generated independently from
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the values of other characteristics. The only exceptions were the values for the number of bathrooms (the
correlation with the number of bedrooms was about 0.85), the values for the structure area (the correlation
with the number of bedrooms was about 0.87), and whether the dwelling would have a garage or not (the
correlation with the existence of a fireplace was about 0.69). The following functional form that was assumed
in order to generate the dwelling log prices for each of the assumed seven submarkets is6:

log(SV ) = α+ β1lot+ β2structure+ β3age+ β4bed+ β5bath/bed

+ β6fireplace+ β7garages+ β8pool + β9owner + β10Xcor + β11

+Xcor2 + β12Y cor + β13Y cor
2 + ε (23)

The simulation experiment was conducted for two alternative error (ε) variance specifications. The first one
assumed a high standard deviation of 0.5, which corresponded with the unrealistically difficult case in which
the standard error of deviation from the true hedonic value is 50% of the price. The second specification
assumed a lower standard deviation of 0.1, which corresponds with 10% of the house price as the standard
error of the deviation.

The results of the simulations for the two cases are depicted in Figures 5 and 6 and tabulated in Tables
4 to 7. The evaluation of the results will be based on the same criteria as in the IID case; higher degree of
color homogeneity is associated with higher segment homogeneity.

In particular, the following points can be noted. The estimation success is measured in terms of the
adjusted R2 of the regressions for each of the identified regions. These measures suggested that the model
had similar if not higher overall explanatory power when compared to the values of the regressions for the
true regions. Regarding the second criterion of the correct identification of the segments’ boundaries, the
boundaries of the different regions were identified, with the exception of the boundary between regions 2 and
3, as can be seen in the figures (there is no color discrepancy in the regions’ boundary). In particular, the
identification of the boundaries of regions 4 and 7, which are elliptical and thus the most complex, was very
successful. The final criterion of within-region heterogeneity was evaluated, numerically, by the following
measure: for each of the true regions, the percentage of points belonging to each of the identified regions was
calculated. The results are tabulated in Table 5 in detail, and summarized in Table 6. A high value would
indicate a high degree of homogeneity, and thus the true region would be correctly identified. Regions 1 and 7
were “strongly” identified (the maximum proportion rates were above 85% for both variability specifications),
regions 4 and 5 were “identified” (the maximum proportion rates were above 45% and double in size from
the next rate corresponding to another identified region), whereas the other regions were not “identified”
and, as can also be visually verified by the figures, had a large degree of within heterogeneity. These results
are also evident by the color homogeneity within-regions; more colors (submarkets) are appearing in regions
3 and 6. The effect seems to be more pronounced for the case of low error variance compared with the high
error variance, which is something that it is not expected especially in view of the results for the IID regions
case.

The large degree of the heterogeneity and the unexpected higher variation in the identified submarkets
for the low error variance case may be explained by the choice of the way the submarkets are recovered.

6The table with the corresponding parameter values used to construct the log prices is provided in section 2.6 for each one
of the seven submarkets.
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The MPM approach, treats each point individually without taking into consideration the neighboring points,
and although this criterion maximizes the expected number of correct states, there could be some problems
with the resulting identified submarkets (the “optimal” segmentation may, in fact, not even be a valid
segmentation). This occurs because MPM determines the most likely submarket for each dwellings separately,
without regard to the probability of groups of dwellings . In order to circumvent this problem, one may
attempt to maximize the expected numbers of correct assignment to a submarket of pairs of dwellings, or
even of triples of dwellings . The extreme version of this approach, which is the Maximum A Posteriori
(MAP) approach, is to find the single best segmentation for all data points (dwellings) together. This is
accomplished by the Viterbi algorithm, which is an iterative procedure, and thus requiring a large number
of extra calculations that is prohibiting for the case of larger datasets.

Regardless, even with the employment of the MPM criterion for the recovery of the submarkets, the
model seemed to identify adequately most of the imposed submarkets and to explain most of the variation
in sales prices, and thus it can be considered suitable for use in empirical applications.

4 Los Angeles Data

4.1 Data description

The model was applied to the market values of dwellings sold in the Los Angeles county during 2002, with a
map of the area presented in Figure 7. These data are provided by DataQuick, which repackages information
purchased by the Los Angeles county Assessor’s office. The dataset provides a variety of characteristics for
each dwelling in the area of Los Angeles along with its assessed value and the market value for the most
recent transaction. The analysis was focused in the market values (measured in dollars) of single residences.
I considered a semi-logarithmic hedonic model. The chosen structural characteristics entering as independent
variables were the size of the lot (in ft2), the size of the structure (in ft2), the age of the dwelling (in years),
the number of bedrooms, the number of bathrooms, the number of garages, the existence of a fireplace, the
existence of a pool and whether the dwelling was inhabited by its owner or not. For the hedonic model
specification, the ratio of the number of bathrooms over the number of bedrooms was selected instead of just
the number of bathrooms for two reasons; the number of bathrooms is highly correlated with the number of
bedrooms and the presence of both in the regression may cause near-collinearity problems, and we consider
it to be a better measure of the comfort/utility of the house. The geographical coordinates for each dwelling
were obtained by Geocoding performed in ArcGIS software.

The data were not completely unproblematic. Missing values for the structural characteristics that could
be attributed to problems in data collection necessitated some preliminary filtering of the data. Dwellings
for which values for a characteristic were missing were removed from the sample. Moreover, geocoding did
not provide geographical coordinates for all dwellings7. Thus, a final sample of 108488 dwellings, sold in the
year 2002, were available out of a total sample of approximately 2000000 residences. The summary statistics
and the correlation matrix of the market values and the structural characteristics are provided in Table 9.
The following features can be observed:

1. The number of bedrooms, the number of bathrooms and the area of the dwelling structure were highly
7This is not unusual during the application of geocoding, as discussed by Reichert 2002.
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correlated (>85%), as would be anticipated. On the other hand, the large correlation (60%) between
the existence of fireplace and the number of garages might not be so obvious.

2. If the medians are considered, the typical dwelling cost $250000, had 3 bedrooms and 2 bathrooms,
had a garage, its structure area was 1800 ft2 located in a lot of 7600 ft2, it was constructed 45 years
ago, and it was inhabited by its owner.

4.2 Results

A semi-logarithmic hedonic model was estimated according to (23) by Ordinary Least Squares. The obtained
residuals were then used in order to estimate the number and the location of the different submarkets 8.
The algorithm resulted in identifying four different submarkets. The small number of identified submarkets
suggests that the attempt to determine them by using administrative or geographical boundaries might have
been misleading. The Los Angeles county is divided into 88 cities. Thus, where there may appear to be more
diverse submarkets based on administrative boundaries or other considerations, the statistics identify only a
small number. This suggests that neighborhood characteristics and other omitted variables can be captured
more parsimoniously by only a few submarkets with different hedonic parameters. Things are simpler than
might appear in a first glance.

The identified submarkets are depicted in Figure 8 (each color corresponds to a different submarket) and
the mean values of the structural characteristics are tabulated in Table 10. The sizes of the submarkets
differed substantially. Identified submarket 2 contained more than 80% of the total dwellings and it covered
most of the Los Angeles County area. Submarket 3, which was the second largest and accounted for more
than 16% of total dwellings number, also contained points in the entire Los Angeles county. The points that
belonged to the other two submarkets (1,4) presented no particular geographical pattern even though there
seems to be a concentration of dwellings of submarket 1 with dwellings belonging to submarket 3.

Even though, there seems not to exist a closed homogenous regions corresponding to particular submar-
kets, there do exist locations in which there is a high concentration of dwellings that belong to the submarkets
1 and 3. In particular, when Figure 8 is compared with Figure 7 (the map of Los Angeles county), it can
be noticed that such dwellings are found to be concentrated in the areas of Malibu, Beverly Hills and West
Hollywood, Rancho Palos Verdes, Rolling Hill Estates, Long Beach, Pomona and Pasadena. These results
are not a surprise; submarkets 1 and 3 contain houses with higher values that may be attributed to paying a
location premium. The mean dwelling values are around $635.000 for submarket 3 and $782.000 for submar-
ket 1. Thus, a pattern seems to emerge in geographical terms for the case of submarket 3, since dwellings
belonging to this submarket exists in high concentration on premium locations in the Los Angeles county.

Moreover, a closer examination of Table 10 suggests that the existence of the submarkets may be also be
attributed to differences in the structural characteristics of the dwellings besides their prices. For example,
differences in the mean number of bedrooms, the average lot size, and the average structure area exist among
the submarkets. Thus, the identification of different submarkets might be a result of the disparities in the
implicit prices of the structural characteristics across diverse types of dwellings.

The next step in the model was the estimation of the hedonic index for each of the identified submarkets in
8The model was programed in R software and the estimation was done by using a Power Mac G5 dual processor 2.0 GHz

with 4 GB of RAM. The MDL− CEM2 estimation took approximately 24 hours to be completed.
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order to determine the implicit prices for the structural characteristics. The results along with the regression
results for the entire sample are tabulated in Table 11. We note that:

• In all regressions but the one corresponding to the 4th identified region, which is also the smallest of
all with only 963 dwellings (<1% of total dwellings), most of the parameter estimates were statistically
significant and of the expected sign; age contributed negatively to the value of the house, whereas
the size of the lot, the size of the structure, the existence of fireplace, garages contributed positively.
The coefficient for the ratio of the number of bathrooms over the number of bedrooms was positive
indicating that more bathrooms contribute positive to the dwelling value.

• The coefficient for the number of bedrooms was found negative. Although more bedrooms might seem
to have an unambiguously positive effect, if they are considered to represent, for a given living area,
the division of the floor area, then an explanation for this effect can be provided. Much of the housing
stock was developed when families were larger (the median age of dwellings in the sample was 47
years), and thus there was a demand for more bedrooms. Nowadays, the size of the family has reduced
and married couples with no children might want a lot of open area; more bedrooms would replace
the amount of open area given a particular living area size, and thus a lot of bedrooms are no longer
desirable and thus there is a reduced demand for dwellings with many bedrooms. Since the hedonic
model represents the equilibrium point between demand and supply in the real estate market, this
reduced demand can explain the negative effect for an extra bedroom, when the total living area is
accounted for.

• The hedonic models for each submarket have higher R2 compared to the one obtained for the entire
market. In particular, R2 for the regression estimated in the second submarket, which amounted to
79.2% of the total market, was equal to 0.5811, whereas R2 for the regression estimated in the third
submarket, which amounted to 16.6% of the total market, was even higher and equal to 0.8126.

• The F -test confirmed the superiority of the submarkets model over a model that assumed no spatial
heterogeneity with a p-value equal to zero.

• The economic significance of the estimated coefficients for the structural characteristics varied across
submarkets9. The impact of an extra 1000 ft2 for the structure area was an 15% increase in the value
of the dwelling and it was rather stable across submarkets. The impact of extra 1000 ft2 for the lot
area is quite smaller and almost negligible in economic terms leading to an average increase of the
value of about 0.42%. Similar values are also observed in the literature: Palmquist (1992), Goodman
and Thibodeau (1995). On the other hand, the impact of the existence of a fireplace accounted for an
increase in the house price of 54%, 19%, and 22.6% for submarkets 1, 2 and 3 respectively. A similar
pattern of decaying impact on the value across submarkets was apparent for the existence of the pool
(32%,17%, and 10%), and whether the dwelling is inhabited by its owner.

• In dollar terms, the effect of changes of values in the structural characteristics will depend on the
average house values for each identified submarket. The mean dwelling prices are approximately
$780000, $270000, and $630000 for the first, second, and third submarket respectively. Thus, the

9The analysis is concentrated in the first 3 submarkets that amount for more than 99% of the total market.
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existence of a fireplace will amount to an increase in the dwelling value by $421000, $51000, and
$142000 for the each three submarkets respectively, whereas the existence of a pool will increase the
value by $249000, $46000, and $62000.

Consequently, the proposed approach that implicitly models spatial heterogeneity offers an improvement
upon a simple hedonic model by identifying, in a very parsimonious way, the underlying housing submarkets.
In particular, the statistical identification of only four submarkets versus the administrative division of the
Los Angeles county to 88 cities (and even more communities) can be used in order to simplify the mass
assessment processes. In practice, there can be considered only two different relations that can assess
dwellings value that may be based on the identified submarkets no 2 and 3 that account for about 96% of all
single family houses in the county. The first relation will be used in order to assess values in high premium
areas such as Malibu, Beverly Hills, Long Beach etc, and it will be based on the estimated coefficients of
the hedonic specification for submarket 3. The remaining dwellings in the county will be assessed using
the coefficients for submarket 2. The enormous amount of simplification in using the identified submarkets
versus the administratively imposed ones is obvious.

Given that the main focus was the determination of the statistically identified submarkets, no comparison
in terms of the accuracy was provided as such a comparison would be heavily depended on the choice of the
type of administrative boundaries.

5 Conclusion

The approach described here emphasizes classification accounting for heterogeneity, by making groups of
observations define potential submarkets. In hedonic studies, submarkets are typically defined a priori. I
provide a systematic way to identify separate submarkets, and to decompose differences among the sub-
markets into price and quantity/quality effects. This method allows the researcher to model rather than
impose submarkets and allows for the consideration of large datasets. In particular, a mixture model was
applied to let the data determine the market structure and subsequently the hedonic model is re-estimated
for each submarket. The estimation ability of the proposed model was validated through two different sets
of simulations.

The model was subsequently applied to prices of Los Angeles county dwellings that were sold during the
year 2002. The findings suggested that the city’s housing market could be segmented into only 4 different
submarkets with different hedonic specifications compared to a total of 88 submarkets defined by cities’ limits.
The parameter estimates of the hedonic models for each of the segments were significant both in statistical
and economical terms and of the correct sign. Dwellings belonging to one of the identified submarkets are
found to be clustered in high premium residential areas in the county such as Malibu, Beverly Hills, Long
Beach, etc. Additionally, the identified submarkets can be partly explained by differences in the structural
characteristics of dwellings. This points to the observation that the variation attributed to neighborhood
characteristics can be captured by a rather limited number of distinct submarkets of diverse types of dwellings.

Overall, the model managed to identify housing submarkets in a more parsimonious way than would
have resulted from assuming the existence of submarkets solely in terms of geographicaly or administratively
determined regions, thus making mass assessment of dwelling prices considerably simpler and faster.
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A Submarkets simulation study

A.1 Simulated structural characteristics

Str. Characteristic Unit of measurement

Age years
Lot (ft2)

Structure (ft2)
Bed no of bedrooms

Bath/Bed no of baths/no of beds
Fireplace 1/0

Pool 1/0
Owner 1/0

Garages 1/0
Xcor longitude coordinate (projected)
Ycor latitude coordinate (projected)

A.2 Generating the variables

• Number of bedrooms: the values for this variable were obtained by random draws from a normal
distribution rounded up to the nearest integer value. The mean and the variance for each of the
submarkets are given below.

Segment mean variance

1 4.3 50.5
2 3 5.3
3 3.8 6.8
4 6.8 213
5 5 7
6 6.1 180
7 2.8 5.1

• Number of bathrooms: the values for this variable were obtained by random draws from a normal
distribution rounded up to the nearest integer. The mean was the number of bedrooms for each location
point and the variance was constant and equal to unity.
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• Age: the values for the Age variable were obtained by random draws from a mixture of three normal
distributions rounded down to the nearest integer. The parameters for each of the submarkets are
given below.

Segment m1 v1 mixpr1 m2 v2 mixpr2 m3 v3 mixpr3

1 20 70 0.31 50 75 0.41 80 90 0.28
2 20 57 0.36 50 56 0.5 80 70 0.14
3 20 68 0.34 50 73 0.41 80 63 0.25
4 20 60 0.29 50 62 0.48 80 142 0.23
5 20 70 0.3 50 70 0.4 80 85 0.3
6 20 62 0.33 50 60 0.46 80 110 0.21
7 20 55 0.35 50 52 0.49 80 60 0.16

• Pool: the variable Pool (whether the dwelling has a pool or not) was constructed by random draws
from a uniform distribution in [0,1] domain. Values for the entire population were created, but pool
was assigned to the dwelling whose value was below the threshold value given in the table below (the
value corresponds to the proportion of population with a swimming pool).

Segment: 1 2 3 4 5 6 7

Threshold Value: 0.1 0.11 0.12 0.14 0.13 0.15 0.06

• Owner: the variable Owner (whether the owner resides in the dwelling or not) was constructed in an
analogous to the Pool variable way. The threshold values are tabulated in

Segment: 1 2 3 4 5 6 7

Threshold Value: 0.6 0.89 0.79 0.48 0.45 0.55 0.65

• Fireplace: the variable Fireplace (whether the dwelling has a fireplace or not) was constructed in an
analogous way that the Pool and Owner variables were created. The threshold values are tabulated in

Segment: 1 2 3 4 5 6 7

Threshold Value: 0.27 0.35 0.35 0.28 0.3 0.4 0.25

• Garages: the variable Garages (whether the dwelling has a garage or not) was created by random
draws from the Fireplace variable10. The proportion of the Fireplace population that was also assigned
a garage is given in the following table:

Segment: 1 2 3 4 5 6 7

Threshold Value: 0.68 0.58 0.67 0.58 0.65 0.55 0.7

10Our preliminary data analysis indicated that the dwellings that have a garage are a proportion of the dwellings that also
have a fireplace.
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• lot: the values for the variable lot (the surface of the dwelling’s lot in ft2) were obtained by random
draws from a normal distribution whose mean and variance, for each of the submarkets, are given
below.

Segment Mean Variance

1 11000 9000000
2 6800 4000000
3 8500 6250000
4 15000 25000000
5 10000 8400000
6 14000 25000000
7 6000 3240000

• Structure: the variable structure (the surface of the dwelling’s structural area in ft2) is constructed
by a linear combination of the number of bedrooms, the number of bathrooms, and the lot area plus
a constant term. The corresponding parameters are tabulated below.

Segment Constant No of Bedrooms No of Bathrooms Lot Area

1 446.3 123.8 485.8 0.0033
2 57.3 211.2 371.9 0.0089
3 486 168.8 374.1 0.00179
4 207.5 97.2 637.3 0.00605
5 400 120 450 0.004
6 200 92 610 0.0063
7 58 200 380 0.01

• Xcor: the variable Xcor (the longitude coordinate) was originally set to take values from 1 to 500
(each integer value to correspond to one unit of longitude). In order to be conformable with real-world
coordinate values, it was transformed to take values from (-119 (=0) to -117.5 (=500)).

• Ycor: the variable Ycor (the latitude coordinate) was originally set to take values from 1 to 500
(each integer value to correspond to one unit of latitude). In order to be conformable with real-world
coordinate values, it was transformed to take values from (33.3 (=0) to 34.5 (=300)).

• Xcor2: the square of the Xcor variable

• Ycor2: the square of the Ycor variable
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• Sales value: the logarithm of the sales values for each dwelling constructed according to (23) in the
main text. The parameter values for each submarket are provided in the following table.

Segment Constant lot structure Age Bed Bath/Bed Fireplace

1 10000 0.000004 0.000200 0.0008 -0.04 -0.015 0.15
2 -4300 0.000005 0.000150 -0.0023 -0.033 0.009 0.21
3 -3000 0.000005 0.000150 -0.0009 -0.013 0.11 0.25
4 17000 0.000048 0.000029 -0.0015 0.035 0.15 0.2
5 10250 0.000006 0.000150 -0.001 0.028 0.1 0.18
6 15000 0.000055 0.000035 -0.002 0.04 0.13 0.22
7 -4500 0.000005 0.000170 -0.0028 -0.038 0.01 0.18

Segment Garages Pool Owner Xcor Xcor2 Ycor Ycor2

1 0.32 0.54 0.175 240 1.009 245.5 -3.52
2 0.17 0.19 0.1 -45 -0.195 98.1 -1.4
3 0.1 0.23 0.065 -18.48 -0.08 115 -1.7
4 0.14 0.39 -0.23 360.2 1.52 253.9 -3.7
5 0.35 0.5 0.16 242 1.008 245.5 -3.51
6 0.15 0.4 -0.2 341.1 1.5 251.2 -3.6
7 0.16 0.16 0.08 -48.88 -0.21 100 -1.5
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B Tables

B.1 Simulation Results: IID case

Case I: Low Variance

No of Distributions 3 No of Points 15382

Distribution index Mean Standard Deviation Mixing Probability

1 240000 4000 0.50

2 200000 4000 0.25

3 280000 4000 0.25

Case I: Estimates

1 240015.58 3993.14 0.4582

2 199962.23 4027.90 0.2676

3 280010.49 4066.32 0.2742

Table 1

Case II: Medium Variance

No of Distributions 3 No of Points 15382

Distribution index Mean Standard Deviation Mixing Probability

1 280000 10000 0.50

2 200000 10000 0.25

3 240000 10000 0.25

Case II: Estimates

1 279532.86 10524.22 0.2816

2 200215.38 10316.60 0.2706

3 239871.75 9537.06 0.4478

Table 2

Case III: High Variance

No of Distributions 3 No of Points 15382

Distribution index Mean Standard Deviation Mixing Probability

1 240000 20000 0.50

2 280000 20000 0.25

3 200000 20000 0.25

Case III: Estimates

1 236801.03 16331.80 0.3705

2 275602.01 21342.55 0.3558

3 199105.13 19204.50 0.2737

Table 3
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B.3 Data Filtering results

Dwellings left Dwellings left

No filtering 166212 Structure 128936
Value 137561 Bedrooms 123659

Age 133570 Bathrooms 123624
Lot 129381 Geocoding 108488
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C Figures

C.1 IID case

Figure 1: Low Variance

Figure 2: Medium Variance
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Figure 3: High Variance
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C.2 Submarkets case

Figure 4: Complex Submarkets

Figure 5: High Error Variance
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Figure 6: Low Error Variance
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C.3 Real Data: Los Angeles

Figure 7: Los Angeles County Map
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Figure 8: Los Angeles 2002 Submarkets
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