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Abstract

Testing for structural breaks and identifying their location is essential for econometric modeling. In
this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks
are defined as the data points where the underlying Markov Chain switches from one state to another.
The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-
Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis
of the conditional distributions of economic data and allows for different functional forms across regimes.
The locations of the breaks are subsequently obtained by assigning states to data points according to
the Maximum Posterior Mode (MPM) algorithm. The Integrated Classification Likelihood -Bayesian
Information Criterion (ICL-BIC) allows for the determination of the number of regimes by taking into
account the classification of the data points to their corresponding regimes. The performance of the
overall procedure, denoted IMI by the initials of the component algorithms, is validated by two sets of
simulations; one in which only the parameters are permitted to differ across regimes, and one that also
permits differences in the functional forms. The IMI method performs well in both sets. Moreover, when
it is compared to the Bai and Perron (1998) method its performance is superior in the assessing the
number of breaks and their respective locations. Finally, the methodology is applied for the detection of
breaks in the monetary policy of United States, the different functional form being variants of the Taylor
(1993) rule.
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1 Introduction

In pursuing quantitative research, econometricians are frequently able to justify on theoretical grounds a
choice for the functional form of an economic model. Rarely, however, are they able to justify a maintained
hypothesis that the coefficients of a model should be stable over a sample interval. Thus the stability of
estimated coefficients is an empirical question that should not be ignored. Otherwise, the consequences can

be rather severe. Quoting Hansen (2001):

“Structural change is pervasive in economic time series relationships, and it can be quite perilous
to ignore. Inferences about economic relationships can go astray, forecasts can be inaccurate,

and policy recommendations can be misleading or worse.”

For example, the assumptions of the standard linear model, such as the parameter constancy, are un-
realistic in many economic applications. Models that do not account sufficiently for structural change are
misspecified and inferences may then suggest excessive persistence (Perron 1989, Andrews and Zivot 1992,
and Lumsdaine and Papell 1997). Thus it is important to subject any estimated linear model to various
specification tests before the model is used for inference or forecasting purposes. Consequently, there is a
great amount of work in the current economic literature that focuses on tests for detecting the existence of
structural breaks of unknown timing, and on tests that also allow one to estimate the timing of a structural
break.

The classical test for detecting structural change is typically attributed to Chow (1960); the problem
with this test is that it can only be used when the location of the break point is known a priori. When the
location of the break point(s) is unknown, which is what is encountered in most economic applications ,there
exist two main streams of literature. The first stream considers tests that make use of F-type test statistics
(Quandt 1960, Andrews 1993, Andrews and Ploberger 1994, and Hansen 1997), whereas the second one uses
generalized fluctuation tests, e.g. CUSUM type tests (Brown et al. 1975, Krdmer et al. 1988, and Alt,
Kréamer and Ploberger 1992).

Both streams focus mostly in determining the existence of structural breaks but not their exact locations.
An obvious candidate as an estimate for the location of the break is the date that yields the largest value of the
Chow (1960) test sequence. Nevertheless, this would be a good estimate only in the case of linear regressions
when the Chow test is constructed with the “homoskedastic” form of the covariance matrix. In regression
models, an appropriate method to estimate the parameters — including the break point — is least squares.
Operationally, the sample is split at each possible breakpoint, the other parameters estimated by ordinary
least squares and the sum of squared errors calculated and stored. The least squares break point estimate is
the date that minimizes the full-sample sum of squared errors. A theory of least squares estimation has been
developed by Jushan Bai and coauthors. Bai (1994, 1997a) derived the asymptotic distribution of the break
point estimator and showed how to construct confidence intervals for it. Additionally, Bai and Perron (1998)
developed tests for multiple structural changes and suggested procedures for the simultaneous estimation
of multiple breakdates. Their method is sequential, starting by testing for a single structural break. Ift
the test rejects the null hypothesis that there is no structural break, the sample is split in two (based on
an estimate of the break date) and the test is reapplied to each subsample. This procedure continues until
each subsample test fails to find evidence of a break. Given the computational complexity of the approach,

Bai and Perron (2003) suggested an efficient way of implementing their algorithm. Finally, Perron and Qu



(2006) extended the Bai and Perron (1998) methodology in order to account for restrictions posed on the
parameters.

A totally different approach into the problem of structural breaks is the employment of regime switching
models, also known as Hidden Markov Models (HHM) in the engineering literature (Hamilton 1989, Engel
1994, Schaller and van Norder 1997 and Engel and Hamilton 1990, Marsh 2000 for incorporating exogenous
variables and autoregressive terms within the models). This approach considers the locations of the breaks
as the points where a switch from one regime to another occurs. Compared with the approaches mentioned
above, such breaks are no longer regarded as the outcome of a perfectly foreseeable, deterministic event,
but they are instead random variable themselves. The HHM allows to estimate the probability laws that
govern switches from one regime to another. Moreover, even if the true underlying model involve a structural
break, thus there is no reason to assume that the process will reverse to its original specification, the HMM
approach, despite being a misspecified model, it still can identify the location of this break as the location
of a regime switch.

The main features in the current economic literature involving a frequentist estimation of HMM are: a)
the number of regimes is given a priori, and usually set according to some economic theory to be equal to
two, and it is not a result of a statistical procedure, b) the location of regime switches are obtained by the
expected durations of each regime, c) the models across regimes are the same and only their parameters are
allowed to differ, and d) the estimation is performed using variants of the Expectation Maximization (EM)
algorithm. Resorting to Bayesian estimation, some of the potential drawbacks of the frequentist approach
can be dealt with. There has been some work on the identification of the location of breaks and of the
determination of the number of regimes, either by comparing Bayes’ Factors or by modeling the location of
a break as a random variable (Pesaran et al. 2004).

Here, an alternative estimation method in a frequentist approach setting will be extended. This algorithm
is the Iterative Conditional Estimation (ICE) and was introduced by Pieczynski (1992). This algorithm is
no longer based on the notion of likelihood but on that of conditional expectation. Therefore, this approach
is of wider application because it encompasses probability distributions that have both a discrete and a
continuous part, when the notion of likelihood is no longer valid. The employment of the ICE algorithm
in engineering applications, and especially image segmentation, was advocated in a series of papers by
Pieczynski and coauthors (Pieczynski 1994, Fjoroft et al. 2003) for the case of conditionally i.i.d data.
The most common variation of this algorithm is the Iterative Conditional Estimation-Generalized Mixture
(ICE-GEMI) algorithm proposed by Pieczynski(1996), which allows data to have been generated according
to different distributions across different regimes.

The main feature in the implementation of the ICE algorithm is its “semi-Bayesian” nature. It is an
iterative algorithm, which at each step simulates a path of the hidden states based on the current estimates
of the transition probabilities of the hidden Markov Chain, conditional on the observable data. When the
simulated path of states is available, the observed data points are allocated to the different regimes, and
they are subsequently used to recover the parameters for the observations’ distributions for each regime. If
the path is “close” to the actual, and hidden, path, the parameter estimates will be such that a similar path
will be generated at the next iteration, and thus lead to the convergence of the algorithm. This artificial
division of the data allows for different models, i.e. different observations’ distributions, to be considered for

each regime as long as the parameters are consistently estimated.



In this paper, I modify the ICE-GEMI algorithm so as to consider cases that are encountered in economics
applications. Instead of the unconditional distribution of the observed data series, the distributions of the
dependent variable conditional on a set explanatory variables are examined. Moreover, the models across
regimes are allowed to differ; the most appropriate model is picked among members of a pre-determined set
of models. All models are estimated using the data points that belong to each regime; the one that has
the smallest value for the Bayesian Information Criterion is assigned to the particular regime. The main
assumption is that all models can be consistently estimated using the data points of each regime. There
are no other papers in the economic literature, to the author’s knowledge, that allow for such differences of
functional forms across regimes and thus this approach provides such flexibility for the first time.

Two more issues are also addressed. The first involves the determination of the location of the regime
switching points. The Bayesian segmentation approach is used for determining the optimal sequence of the
regimes by assigning data points to regimes according to probabilistic arguments for the likelihood of data
point(s) belonging to a particular regime. In this paper, the Maximum Posterior Mode (MPM) approach,
which assigns each data point to the regime that is most likely to have generate it, is used for its simplicity
as it is directly obtained through the ICE-GEMI estimation.

The second issue addresses the problem of choosing the “optimal” number of regimes that best describe
the data. Since the parameters of Hidden Markov Models are not identified, unless restrictions are put in the
parameters, formal testing for the number of regimes is cumbersome and computationally intensive, when it
involves Likelihood Ratio tests. The employment of information criteria, which is less demanding, is also used
in the literature despite the problems that also arise due to lack of identification. Among the information
criteria, the Integrated Classification Likelihood-BIC (ICL-BIC) criterion has a number of advantages as it
takes into account the classification of the data points to the different regimes in order to penalize the lack
of fit, and it can be easily computed; it adds an extra term to the Bayesian Information Criterion (BIC)
that is readily available when the model estimation is completed. Therefore, it will be used in this paper in
order to determine the number of regimes in the HMM.

Overall, this paper introduces into the economic literature a complete procedure for estimating all the
aspects of a Hidden Markov Model. Regarding model estimation, for a given number of regimes, a variant of
the ICE-GEMI algorithm is used, which allows model heterogeneity among regimes. The locations of regime
switches are obtained by the MPM algorithm that assigns points according to probability of occurrence,
and the “optimal” number of regimes is derived according to the ICL-BIC criterion. Henceforth, this
computational procedure will be denoted as IMI by the initials of its three components.

Simulations are used in order to assess the ability of the proposed procedure to pick the correct number
of regimes, to identify the location of regime changes, and to estimate the parameters of the models for
each of the regimes. There are two sets of specifications. The first involves data generating processes in the
form of a multiple linear regression model whose parameters are allowed to differ. The results are compared
with results obtained using the Bai and Perron (1998) method. The second specification involves cases
where models are allowed to differ across regimes. As mentioned previously, no other methodology exists
for comparison purposes. Regardless, the Bai&Perron (1998) method is still used for comparison purposes
to demonstrate the effects of using this method to identify structural breaks, when the change occurs in the

model and not in the parameters.



The empirical application presented in this paper involves the identification of different regimes in the
monetary policy in United States. It has been documented that the monetary policy of the United States has
changed over time (Qin and Enders 2008). Thus, it is of interest to examine whether such changes are also
related to changes in the functional form of the monetary policy rules. The candidate functional forms to be
used in the IMI methodology will be assumed to be variants of the Taylor (1993) rule, which assumes that
the short-term nominal interest rate reacts linearly to deviations of inflation and output from their target
levels in order to establish the equilibrium level of the real interest rate. The results suggest that there has
been a change in the way monetary policy has been conducted, with a single break occurring in the middle
80s.

The remaining of the paper is organized as follows. Section 2 discusses the details of the IMI procedure;
introduces the ICE-GEMI algorithm, explains the MPM approach and provides an overview of the task
of estimating the number of regimes in the Hidden Markov Models. The description of the simulation
specifications and the corresponding results are demonstrated in Section 3. The application of the IMI

methodology in the monetary policy of USA is presented in Section 4, and Section 5 concludes the paper.

2 Methodology

2.1 A Brief review of Hidden Markov Models

In what follows, only a brief description of the Hidden Markov Models is provided; for a more detailed review
refer to Bilmes (2006), or Rabiner (1989).

A Hidden Markov Model (HMM) is a discrete -time stochastic process including an underlying finite-state
Markov Chain (state sequence) and a sequence of random variables whose distributions depend on the state
sequence of random variables whose distributions depend on the state sequence only through the current
state (observation sequence). The state sequence is not observable, and hence all the conclusions about the
process must be made using only the observation sequence’.

A more formal definition, which presents the probabilistic relationships between the state sequence and
the observation sequence, is 2:

Definition: A Hidden Markov Model (HMM) is a collection or random variables consisting of a set of
T discrete scalar variables X7.r and a set of T other variables Y7.r which may be either discrete or contin-
uous (and either scalar - or vector-valued). These variables, collectively, possess the following conditional
independence properties:

{Xer,Yer}t L{X14—2, Y101} | Xica (1)

and
Y L{X, Yoi} | Xy (2)

for each t € 1 : T. No other conditional independence properties are true in general, unless they follow from
(1) and (2).
An HMM will be, given the definition, any joint probability distribution over an appropriately typed set

1Henceforth, the terms state and regime will be used interchangeably.
2The following notation will be employed:Xs.q,5 < q¢ = {Xs, Xot1,...,Xq}, X<s = {X1,X2,...,Xs_1}, and Xy 2
X \ Xe = {X1, X2, ., Xe—1, Xeg1, Xeyo, ..., X7}



of random variables (X,Y") that obeys the stated set of conditional independence rules. The two conditional
independence properties imply that, for a given T, the joint distribution over all variables may be expanded

as follows (using the Chain rule and the definition equations):

T

T
P(yl:T):P(yl)H (x| m1 H (Yt | 1) (3)

t=2
Thus, in order to parameterize an HMM, one needs the following quantities:
(i) The distribution over the initial state variable: P (x7).
(ii) The conditional transition distributions for the first-order Markov Chain: P (x¢ | 24—1).
(iii) The conditional distribution for the other variables: P (y: | z¢).

It can be seen that these quantities correspond to the classic HMM definition, where X; is the hidden
Markov Chain and Y; are the observed data. Specifically, the initial (not necessarily stationary, see Resnick
1992 for details) distribution is labeled 7 which is a vector of length equal to the number of the different states.
Then, m; = P (X = i), where 7; is the it" element of . The observation probability distributions are denoted
bj(y) = P(Yy =y | Xy = j) and the associated parameters depend on the b;(y)’s family of distributions.
Furthermore, the Markov Chain is typically assumed to be time-homogeneous, with stochastic transition
matrix A, where A;; = P (X; =j | X¢y—1 = 1), for all & HMM parameters are often symbolized collectively

as A 2 (m, A, B), where B represents the parameters corresponding to all the observation distributions.

2.2 The ICE-GEMI algorithm
2.2.1 Introduction

The HMM parameters, A = (m, A,B), are usually estimated with an algorithm advocated in a series of
papers by Baum and co-authors (e.g. Baum et al 1970), which is known as the Baum-Welsh algorithm. This
algorithm belongs to the Expectation Maximization (EM) algorithm family which was formally introduced
by Dempster et al (1977), in order to feasibly estimate model parameters using maximum likelihood. The
core of the Baum-Welsh algorithm is the recursive estimation of the forward and backward probabilities
(o and [ respectively). When these are recovered and with further assumptions regarding the form of the
observations’ distributions, the recursive estimation of the HMM parameters is straightforward.

In this paper, focus will be put on an alternative estimation algorithm: the Iterative Conditional Estima-
tion (ICE) that was introduced by Pieczynski (1992). This algorithm is based on the notion of conditional
expectation, and thus it encompasses probability distributions that have both a discrete and a continuous
part, which is a case where the notion of likelihood is no longer valid 3. The employment of the ICE algo-
rithm in engineering applications, and especially image segmentation, was advocated in a series of papers by
Pieczynski and coauthors (Pieczynski 1994, Fjoroft et al. 2003 ). The main feature in the implementation
of the ICE algorithm is the simulation of the hidden states based on the current estimates of the transition

probabilities of the hidden Markov Chain conditional on the observable data. When a simulated path of

3Delmas (1997) derived the exact conditions for the equivalence of the EM and the ICE algorithms for the case of the
exponential family of distributions.



states is available, the observed data points are allocated to the different regimes. This artificial division
of the data allows for different models, i.e. different observations’ distributions, to be considered for each
regime as long as the models’ parameters are consistently estimated.

The most common variation of this algorithm, that takes advantage of the aforementioned flexibility, is the
Iterative Conditional Estimation-Generalized Mixture (ICE-GEMI) algorithm proposed by Pieczynski(1996).
The feature of the generalized mixture estimation is that even though the exact form of the observation
distributions b; is unknown, they are assumed to belong to a particular given set of distributional forms.
Thus, it will be considered that b; € F' = {F}, F», ..., Fa}, where F; represents a family of distributions,
and b; is the distribution of the observations (Y;) given the Hidden Markov Chain (X;) is in state j (out of
n possible states). Consequently, for each {b;};=1 ., one must determine: a) the family that it belongs to,

according to some decision rule, and b) the values of the corresponding parameters.

2.2.2 Description of the ICE-GEMI algorithm for the i.i.d. case

It is of interest to provide a more detailed description of the ICE-GEMI algorithm for the case that data are
conditionally i.i.d., that is (Y}) is i.i.d. given the value of (X;). This will also facilitate the exposition of the
case of (Y;) being conditionally dependent on explanatory variables in the next section.

The following assumptions must hold for ICE-GEMI algorithm to ensure convergence:

1. An estimator of the parameter vector ¢ from Xi.7 exists: ((A = f (X1.7)). These parameters are used

for simulating the state paths.
2. We can simulate X;.7 according to its distribution conditional on Y7.p.
3. Each observation distribution b; is characterized by a parameter vector 7.

4. There are M estimators {él,é27 . ,éM} so that for a sample w = {wy,...,wr} generated by the
distribution b; (x | 6;) € Fj, 0" = 0'(w) estimates 6;.
5. A decision rule D exists, such that, for any sample w = {wy,...,wr}, and any {f1, fo,..., fm} € F1 X

Fy x -+ x Fyy, the rule D will associate the sample w with the “closer” density among {f1, f2,..., far}

according to some criterion.

If the aforementioned assumptions hold, the ICE-GEMI algorithm will be (at step q):
e current prior parameters: (?

e current observation distributions: b; = fj‘.l ji=1...,n

e iterative procedure:

(i) Simulate z? to be a realization of X.1 according to ¢, {f;’}jzlyu_,n, and conditional on yq.7.

(ii) Calculate ¢4t = E, [{ (X1.7) | 1.7 |. If this is not feasible, take ¢4*1 (zd.5).

=¢
(iii) For each i = 1,...,n, consider the set of events S} = {s € [1,2,...,T]| 2% =i} and the cor-
responding subsets of yi.7, y! = (Ys)sege, and using these subsets estimate the M parameters:

0} = 0" (y),....0M = 6M (y)).

%



(iv) For each i = 1,...,n, consider the decision rule: D (yf) € {fa} yeeny fgy }
(v) Update the observation distributions: b; = fj‘.H'1 =D (y?) , j=1,...,n

In order to increase the accuracy of the results, we can increase the number of realizations of X7.7, which
are obtained in step (i) of the iterative procedure, to W, i.e. z{,z3,..., zf,.

Then, the updated estimate for the parameter (9! will be given by:
1 <& .
(= > () (4)
w=1

In practice, a single realization will suffice®.
Prior to the implementation of the ICE-GEMI algorithm a verification of the validity of the assumptions

is required. This is straightforward when (X;,Y;) are conditionally i.i.d.

1. The parameter ¢ will be ¢ = {¢;; }Z;l " where:
cij = P (X =i, X1 = j) ()

and it does not depend on the time ¢. These quantities allow the derivation of the initial state distri-

bution and the state-transition probability matrix:

Ti=) 5 Ay = ﬁ (6)

The estimator of ¢;; can be based on the empirical frequencies, as obtained in the simulated path:

T-1

. 1

i = T-1 Z Uz, =20 1=4) (7)
t=1

2. The hidden Markov Chain Xi.r is, conditionally on y;.7, a non-stationary Markov Chain. The tran-

sition matrix at time ¢ is given by:

¢ _ &l ])
Aij = Y () (8)
where:
V(i) = P (X¢ = ily.r) (9)
and
&(i,J) = P (X =4, Xoy1 = jlyrr) (10)

The quantities y:(7),&:(4,7) can be determined using the forward («) and backward(3) probabilities

4According to Delignon et al. 1997, even a single realization is adequate in image segmentation applications. Nevertheless,
they do not provide any specific conditions for their remark. The detailed results from the simulations run in this paper,
although not reported, support their conjecture.



according to the Baum-Welch algorithm °:

oy (1) Aij f5 (Yy+1) Bt (4)

. Qi (l) Almfm (yy+1) 6t+1 (m)

gt (Zaj) -

M=
St

N
Il
—

and

e () = no‘t(i)iﬂt(i)
l; Qg (l)ﬂt (l)

Hence, an a posteriori realization of Xi.7 can be simulated:

e The state X; =i of the first element of the chain is drawn randomly according to the marginal a

posteriori distribution ~yq ().

e For each new element t =1,...,T — 1, the transition probabilities Agj are given, the state of the
previous element X; = 7 is kept fixed, and Xy is obtained by random sampling according to
this distribution.

Note that the GEMI nature of this algorithm involves the choice of the distributional form for the
observations’ distributions among a predefined set of candidates. Thus, when the sample is split according
to the simulated path, estimation of the parameters for each of the candidate distributional forms takes place
and subsequently a decision rule determines which of those forms is the most appropriate. A simpler version
will be the use of a single distributional form, e.g. Normal. In such a case, only the parameter estimation
takes place.

The second note involves an intuitive explanation of the mechanism of the algorithm. Given a simulated
path, we obtain estimates of the parameters of the observed data distribution under each regime. If we focus
on the probability of occurrence of a single data point, then it is expected that a higher probability will be
produced under the model corresponding to the correct regime, i.e. the model that served as the DGP for
the data points belonging to the particular regime, compared to the wrong regime. This higher probability
is then fed into the algorithm in order to produce a higher probability of occurrence for the particular regime
(as expressed by A'(i,j)) when the regime path is simulated. This procedure continues until convergence.
Thus, a good split of the data will result in better estimates of the distributions’ parameters for each regime,
which in turn will yield higher probabilities of regime occurrence for these points, which will finally lead to
an even better split of the data.

The above discussion argues heuristically why the algorithm converges to the true parameters. The the-
oretical conditions for the algorithm convergence are stated in Theorem 1 in Pieczynski (2007). Regardless,
the necessary hypotheses are easy to verify for relatively simple models, such as estimation of the means of
a mixture model, with known mixing probabilities and variances. Trying to verify the hypothesis for the
case of a Hidden Markov Model becomes extremely difficult due to the uncertainty generated by simulating
at each iteration the hidden path. On the other hand, Delmas (1997) can provide a shortcut: if the expo-

nential family is assumed, then the ICE algorithm and the Expectation Maximization (EM) algorithm are

5The formulae for the the calculation of the forward and backward probabilities can be found in Bilmes(2006). In this paper,
in order to address the numerical instability issues that appear in their calculations, the Devijer et al. (1988) approach, which
replaces the joint probabilities with a posteriori probabilities, was employed.



equivalent. Since results for the converge of the EM algorithm are available (Wu 1983), one could apply the
ICE algorithm using the exponential family, e.g. assuming a normal distribution for the observations, and

thus ensure, theoretically, that parameter estimates will converge to the true values.

2.2.3 Modifying the ICE-GEMI for including explanatory variables

The ICE-GEMI algorithm as presented in the previous section can only be applied to cases where the interest
lies in the unconditional distribution of the observed data Y;. This is not an issue when image segmentation
applications are considered but it poses a lot of restrictions in economic data applications. In such cases, the
availability of extra information in the form of explanatory variables requires us to consider the conditional
distribution of the observed data. Regardless, the ICE algorithm can be easily adapted to these cases as
follows.

Consider the observed data y; which, under regime j, are generated according to:
Ye = 9j (Z1;05) + & (13)

where Z is a vector of explanatory variables, and g; is a function, whose form can be allowed to differ across

regimes and:

e ~i.i.df(0,07)

The focus will now be on the residuals from the model estimation. That is, instead of applying the ICE-
GEMI method for the i.i.d case to ((X¢,Y:)), it will be applied for the pair of ((X;,€;))S. At the end of the
previous section, it was mentioned that ICE algorithm converges as higher probabilities that data points
have been assigned “correctly” to regimes lead to higher probabilities of repeating this assignment through
the simulated path. How will this work in the case of the model in (13)?

The following changes need to be made to the ICE-GEMI algorithm presented in the previous section.

1. It is assumed that the functional form g; (Z;;6;) may belong to a predetermined set of M different

models, e.g. linear regression, AR(1).

2. For each i = 1,...,n, consider the set of events S{ = {s € [1,2,...,T] | ¢ = i} and the corresponding
subsets of y1.7, ¥§ = (Ys)sege,21:17, Zf = (Zs) g0, and using these subsets estimate the M parameters

for each of the candidate models:

(61,01) = (0" (2. 206" (41 20)) oo (8 (0. 20) 6™ (v 20) ) =

= (0™ (w8, 20), 6™ (. 20)) (14)
3. For each regime ¢ = 1,...,n, consider the decision rule:

Dyl Z8) € {gors - 90p } = 971(6) (15)

6The innovations €; are now playing the role of the observed variables.
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4. Update the observation distributions b; using the generated residuals:
& = — g (2:0)) (16)
which results in: b; = f (¢7;0,6,), j=1,...,n.

The iterative procedure can be depicted in the following figure:

Update parameters
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Figure 1: ICE-GEMI algorithm

As in the case of ICE-GEMI, the mechanism is obvious: at the time points that correspond to the “correct”
regime and the correct model the residuals will be small and thus they will yield large probabilities in the
observations’ distributions. One of the advantages of this approach is the availability, under each regime,
of more types of models that may describe the data in a better fashion. This feature of the algorithm is
especially important when the number of regimes needs to be estimated: there may be cases that spurious
regimes are revealed in an attempt to capture aspects of the data that are not properly represented by the
assumed models. Thus, it is crucial either to pre-specify flexible models that may capture most of the data
characteristics or to allow a choice among different models so as to capture these characteristics. For example,
in a normal mixture model used to detect the presence of grouping in some data, spurious components may
be detected in an attempt to model a skewed distribution for one of the groups (Bilmes 2006).

What about the convergence in this case? As it was discussed before, a shortcut is provided by assuming
that the observations’ distributions belong to the exponential family. This implies that the innovations
should be conditionally i.i.d. normal. This assumption will be maintained for the implementation of the
ICE-GEMI algorithm in this paper.

One of the issues that requires some attention is the choice of the decision rule for assigning to each
regime the most “suitable” model. In the original ICE-GEMI framework, Pieczynski(1996) suggested using

a Kolmogorov-Smirnov distance measure between the theoretical values for the cumulative density function,
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obtained by the proposed distributional forms and the empirical values obtained by the available data
points. A direct analogue in the extended setting would have been the employment of nonparametric
model validation, and in particular density based specification tests (Ait-Sahalia, Fan and Peng 2009, Ait-
Sahalia, Fan and Jiang 2009). Even though this approach is appealing, it adds computational burden to the
model. Instead, I will use the Bayesian Information Criterion (BIC) as the decision rule”. When the model
parameters are estimated, the BIC is also estimated for each of the models. The decision rule will assign the

model, which has the smallest BIC value to the regime under consideration.

2.3 Identifying the hidden states

Another part of the analysis will be to uncover the hidden part of the model, i.e. to find the “correct” state
sequence. The locations of the switches between regimes can then be considered as the location of structural
changes for the parameters of the models. It should be clear that for all but the case of degenerate models,
there is no “correct” state sequence to be found. Hence, for practical situations, an optimality criterion
is usually employed to solve this problem in an acceptable way (there are several reasonable optimality
criteria that can be imposed). So far in the economic literature, Markov regime switching models identify
the location of the switch (break) by the expected durations of the regimes. However, there are better ways
to identify them if we use what is known as Bayesian Segmentation. This approach assigns data points to
regimes according to probabilistic arguments for the likelihood of data point(s) belonging to a particular
regime.

One potential way to do this is the Maximum Posterior Mode (MPM) approach. This approach recon-
structs the state sequence by allocating at each time point the state that it is more probable, given the

observations and the model, i.e.

Iy = arg max (@), 1<t<T (17)

n

Although this criterion maximizes the expected number of correct states, there could be some problems
with the resulting state sequence (the “optimal” state sequence may, in fact, not even be a valid state
sequence). This occurs because MPM determines the most likely state at every instant, without regard to
the probability of sequences of states. In order to circumvent this problem, one may attempt to maximize
the expected numbers of correct pairs of states (x4, x+1) or triples of states (zy, y1, 142). The extreme
version of this approach, which is the Maximum A Posteriori (MAP) sequence, is to find the single best
state sequence (path), i.e. to maximize P (X |y, ) that is equivalent to maximize P (X,y | A). This is
accomplished by the Viterbi algorithm.

Nevertheless, the quantity ~;(¢) is calculated at each iteration step, and thus it is readily available.

Therefore, for reasons of simplicity, the MPM criterion will be employed.

2.4 Detecting the number of regimes in mixture models

The presentation of the HMM estimation using the ICE methodology and the restoration of the hidden state

sequence in the previous sections assumes that the number of the different regimes is known a priori. This is

7 Alternative Information Criteria could be used, for example the Akaike Information Criterion and the Hannan-Quin Crite-
rion.
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not the case in the economic literature. Unless there are theoretical grounds (which is not straightforward),
the researcher is in the dark in terms of the appropriate number of regimes. In most of the work on inference
on the number of states in HMMs, Bayesian or otherwise, the main approach has been to separate the
problem of testing for the number of regimes n, from the fitting of the mixture model, and hence estimation,
for a fixed value n. There are two main estimation procedures for obtaining the number of regimes, which are
built mainly by considering the likelihood of the model estimated for a pre-determined number of regimes.

One procedure for deciding on the order of a mixture model is to carry out a hypothesis test, using the
likelihood ratio as the test statistic (LR). The LR requires the employment of bootstrapping in order to
obtain an assessment of the p-value ®. This task is computationally demanding and thus less desirable.

Another procedure is based on a penalized form of the likelihood. As the likelihood increases with
the addition of an extra regime, the likelihood (usually, the log likelihood) is penalized by the subtraction
of a term that “penalizes” the model for the number of parameters in it. This leads to a penalized log
likelihood, yielding the so called information criteria for the choice of n. There exist three main categories
of penalized likelihood criteria: a) the information criteria that are obtained as an attempt to minimize the
Kullback-Leibler information, such as the Akaike Information Criterion (AIC) proposed by Akaike (1974),
b) the information criteria that have been derived in a Bayesian framework but can be applied also in a
non-Bayesian framework, such as the Bayesian Information Criterion (BIC) proposed by Schwarz (1978),
and c¢) the information criteria that are based on the classification likelihood, i.e. the likelihood that takes
also into account the classification of the data points to each regime, such as the Integrated Classification
Likelihood (ICL) criterion proposed by Biernacki et al. (1998).

In this paper, a version of a penalized log likelihood criterion (ICL) will be preferred because of its lower
computationally burden. The proposed criterion takes into account the particular nature of the Hidden
Markov Model, and it has been demonstrated by simulations to perform well in the context of mixture

models.

2.4.1 The Integrated Classification Likelihood Criterion

In this section, a more detailed discussion of the ICL criterion will be provided. To do so, the notion of
complete-data likelihood L.(¥) needs to be introduced. This is clearer within the Expectation Maximization
(EM) framework (Dempster et al. 1977); the original data set is augmented by a set of indices z;; that
represent the classification of each data point y; to the particular regime ¢ under which the data point was
generated and which are called the component indicator variables. Given this, the complete-data likelihood
is also called the classification likelihood in the classification context. It is noted by Hathaway (1986) that
the HMM log likelihood can be written in terms of the classification likelihood as:

log L(¥) = log L.(V) — log k(P) (18)

where log k() is the conditional density of the component-indicator variables, given the observed data

n

log k(¥) = Z Z zit log 1 (1)

i=1 t=1

8Unfortunately with mixture models, and their extension the Hidden Markov Models, regularity conditions do not hold for
the test statistic of LRT to have its usual asymptotic distribution of chi-squared.
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with conditional mean equal to —EN (y)

EN(v) = Z Z’Yt(i) log ¢(i) (19)
i=1 t=1
Thus, the criterion that determines the number of regimes that minimizes the classification likelihood, is
called the Classification Likelihood Information Criterion (CLC) becomes:

“2logL (\1/) +2EN(A) (20)

where 4 are the values of v;(¢) obtained using the parameter estimates. The CLC has a number of disadvan-
tages. First, it tend to overestimate the correct number of regimes when no restrictions are placed on the
mixing proportions (Biernacki, Celeux, and Govaert 1999). Secondly, when the regimes are not well sepa-
rated, the CLC approach to model fitting leads to severely biased estimates of the parameters (McLachlan
and Peel 2000).

In an attempt to overcome the problems of CLC and of BIC, Biernacki et al. (2000) followed the Bayesian
approach to the construction of the information criterion and they attempt to minimize the integrated
classification likelihood. Assuming a Dirichlet prior over the initial probabilities vector (m), with all its
parameters set equal to v, and applying a BIC approximation, results in the Information Classification
Likelihood Criterion (ICL):

—2log L (\II) +2EN(J) +2T Y #;log#; + dilog T — 2K (T#y, ..., Tn) (21)
i=1
where .
K (T#y,...,Th,) = » logT(T#; +v) = log I(T + nv) — nlogI'(v) + log I'(nv) (22)
=1

where d; is the total number of parameters in the regimes’s models (not including the number of the regimes).
If further approximations are considered in (22) and terms of order o(1) are neglected, the ICL-BIC criterion

for selecting the number of regimes n amounts in minimizing the following quantity
2log L (q/) +2EN(5) + dlog T (23)

The ICL-BIC variant is easier to calculate and its performance differs only a little from the original, more
accurate version of ICL. Moreover, McLachlan and Peel (2000) verified its ability to correctly assess the
number of components within finite mixture specifications. Thus, the ICL-BIC Criterion is used in this

paper in order to determine the number of the regimes that best describe the observed data.
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3 Simulations

3.1 Different parameter values across regimes
3.1.1 Large sample sizes

The following Data Generating Processes (DGP) are considered for the evaluation of the performance of the

ICE algorithm in the detection of structural breaks. The following cases are examined:

1. DGP 1:Two Regimes with One Break

[ 1407wy — 0255 +2 & ~ N (0,052), 0<¢t<500
s 140721 + 0500 +2, £~ N (0,0.52), 501 <t <1000

2. DGP 2:Two Regimes with Two Breaks

14 0.7z1, — 02520 + &, & ~ N (0,0.5%), 0<¢ <330
Yo =14 140721, + 0509 +& & ~ N (0,0.5%), 331 <¢<670 (25)
140721, — 0252 + &, & ~ N (0,0.6%), 671 < ¢ < 1000

3. DGP 3:Three Regimes with Two Breaks

14 0.721, — 0252 + &, & ~ N (0,0.5%), 0<t<330
ye =14 140721, + 0529 +& & ~ N (0,0.5%), 331<¢<670 (26)
140221 4 0522 + ¢ & ~ N (0,0.6%), 671 <t <1000

4. DGP 4:Four Regimes with Three Breaks

14 0.7z — 0.2529, + &, & ~ N (0,0.5%), 0<t<330
1+0.721; +0.5z9; + & & ~ N (0,0.5%), 331 <¢ <670
140231, + 0522 + ¢ & ~ N (0,0.6%), 671 < ¢ < 1000
14 1x1; — 0.329; + &4 gr ~ N (0,0.6%), 1001 <t <1340

Yt (27)

The two regressors X1, Xo are random variables that are generated according to:
X1 NN(171)7 Xo NB(Qv]-)

The choice of a linear regression model allows for a comparison of the proposed method’s performance with
the Bai and Perron method. The DGPs considered in the simulation studies are more general than those
that exist in the literature in two respects. First, two regressors are considered instead of one, thus making
the specification more realistic *. Second, specifications with more than one break are considered.

Before proceeding to discuss the simulation results, emphasis needs to be put into the difference between

identifying regimes and detecting breaks. As it was discussed in previous sections, the ICE method is

9Existing papers that consider simulation studies of the Bai and Perron method are restricted in using only one regressor
that is generated according to a Normal distribution.
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used to estimate regime switching models, and identify the location of the changing points through Bayesian
segmentation. In this framework, structural breaks in the model parameters will occur at the regime switching
points.

In most of the simulation specifications, the point where there is a regime switch coincides with a break
point for the regression parameters. Regardless, this may not be the case in general as there can be cases
where the process switches back to the original regime, as in the second DGP under consideration. Thus,
whereas the Bai and Perron identifies break points, the IMI method needs to perform two tasks: a) it should
choose the optimal number of regimes through the ICL-BIC criterion, and b) it should identify the location
of regime switches. The regimes switching points for the ICE algorithm will correspond to the break points
for the Bai and Perron method.

In view of these, the criteria for evaluating the Bai and Perron approach will be primarily whether it
estimates the correct number of breaks or not and subsequently their locations, and then the quality of the
regression parameter estimates. For the IMI case, the criteria will be whether it estimates correctly the
number of different regimes, then the location of regime switches, and finally the quality of the parameter
estimates within each regime.

A comparison of results obtained by the two approaches is presented in Tables 1,2, and 3 whereas the
detailed results for the ICL-BIC criterion are presented in Table 4. Overall, the results can be summarized
as follows 10:

The Bai and Perron method estimates the correct number of breaks in most of the replications, even
though it tends to overestimate their number (Table 1). For DGP 1, it estimates the correct number of breaks
(1) in 65% of the replications, and chooses two breaks 28% of the time. For DGPs 2 and 3, it estimates the
correct number of breaks (2) in approximately 72 % of the replications, whereas for DGP 4 it estimates the
correct number (3) in only 58% of the replications. The estimates of the break location are reported only for
the cases when the BP methodology correctly identified the number of breaks (Table 2). It can be noticed
that the median values for the locations either coincide or are very close to the true locations. Moreover, the
estimates for the location of the breaks falls in the range of £5 time intervals from the true value at 73.6 to
85.3 % of the replications that correctly identified the number of breaks.

The IMI method estimates the correct number of regimes quite accurately; in 100% of the replications
for DGPs 1 and 2, in 93% for DGP 3, and in 74 % of the replications for DGP 4 (Table 1). The ICL-BIC
criterion presents its minimum average value when the ICE algorithm is performed for the correct number
of regimes (Table 4). It can also be noticed that as the number of regimes increases, their estimate becomes
less accurate. In fact, there is a tendency to underfit the existing regimes. This is evident in the values of
the ICL-BIC criterion; for DGP 4 there is an average difference of -14 between the criterion value for 4 and
3 regimes, whereas the difference between 4 and 5 regimes is approximately -100. This may be attributed
to the nature of the ICE algorithm. Recall that the method simulates different state (regime) paths, thus
effectively splitting the sample into the different regimes so as to increase the fit. If fewer regimes are
assumed, this may provide a better fit especially when the parameters within each regime are such that the
differences between the conditional distributions of the innovations are small.

In terms of the estimation of the regime switching points, which are comparable with the breaks points as

estimated by the Bai and Perron methodology, the results are even more supportive for the IMI methodology.

10The results of Bai and Perron method correspond to a 5% significance level.
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When the correct number of regimes is picked by the ICL-BIC criterion, the correct number of regimes
switches is always obtained and their descriptive statistics are those reported in this paper. The median
values of switch locations are found to be one time interval further than the true values,and the estimates
for the location of the switches falls in the range of 45 time intervals from the true value at 85 to 93.9 %
of the replications, when then number of regimes is correctly identified (Table 2). Moreover, even when the
ICL-BIC criterion underestimates the number of the regimes, the IMI method still estimates the correct
number of regime switches and their corresponding locations in most of the cases. For example, for DGP 4,
when 3 regimes are picked, instead of 4, the correct value of the number of regimes switches (3) is estimated
in 85% of the cases, with the corresponding switch locations falling within +10 time intervals from the true
values. In general, if the wrong number of 3 regimes were picked in all simulation replications, the 3 “correct”
switches would be obtained in 79% of the cases, and at 7% of the cases 2 of the “correct” 3 switches!!.

Finally, in terms of the parameter estimates obtained by both approaches, Table 3 report those for the
case of 3 Regimes and 2 Breaks'?. These estimates correspond to the cases in which Bai and Perron pick
the correct number of breaks, and the IMI method picks the correct number of regimes. It can be noticed
that the estimates are quite accurate. This is expected; both approaches perform the estimation conditional
on the knowledge of the locations of the breaks points (for Bai and Perron) or the number of regimes and
the locations of the corresponding switches (for IMI). If the aforementioned estimates are close to the true
values, then the parameter estimates should also be close to their true values.

Overall, the IMI method seems to perform better than the Bai and Perron method. It identifies the
correct number of regime and the corresponding locations of regime switches more frequently, and even in
the case that the ICL-BIC criterion suggests a smaller, than the true, value for the number of regimes, it

can still identify correctly the true locations of regime switches.

3.1.2 Small sample sizes

The sample sizes considered in the comparison discussed before are more appropriate if a financial market
application is in mind where daily (or weekly) data are available. Regardless, many interesting economic
models are relevant to macro data that are available in the best case at a monthly frequency; monetary
policy rules that determine interest rates on a monthly level are such an example. In order to assess the
ability of the IMI methodology of detecting break in such a scenario, a subset of simulations were considered
with more appropriate sample sizes. The Data Generating Processes from the previous section were used,

i.e. linear models with changing parameters across regimes. In particular,the following cases were examined:

1. DGP 3, 3 regimes with 2 breaks: The sample size was set equal to 600, with breaks occuring at points
200 and 400.

2. DGP 1, 2 regimes with 1 break: The sample size was set equal to 300, with the breaks occurring at
middle-point (150).

3. DGP 1, 2 regimes with 1 break: The sample size was set equal to 400, with breaks occurring at a

quarter-of-the-sample distance from the end-points, i.e. breaks occurring either at point 100 or at

11 The “correct” stands for a regime switching location estimated to be in the range of £10 time intervals from the true value.
Detailed results are available from the author upon request.
12Estimation results are similar in the other cases as well.
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point 300.

The results are tabulated in Tables 5 to 7. The main focus is on the performance of the IMI methodology
in terms of estimating the correct number of regimes, and if so, the ability to correctly identify the location
of the break points. Table 5 presents the descriptive statistics of the values of the ICL-BIC criterion for the
cases considered. The correct number of regimes presents the lower value for either the mean or the median
value of the information criterion. Examining how many times the ICL-BIC picked the correct number of
regimes (Table 6), it can be noticed that the performance deteriorates with the smaller sample size. For the
case of 3 regimes with 2 breaks, the correct number of regimes is identified for 86% of the total number of
simulation compared to 93% when the sample size was larger. The same result holds for all the cases of
2 regimes with 1 break: the corrent number of regimes (2) is identified for about 80+% of the simulations
compared to 100% for the larger sample size. Nevertheless, the results remain comparable to the results
obtained using the Bai and Perron (1998) method for the larger sample sizes. If the attention is turned to
the actual location of the identified break points, that is the location of the regime switches, (see Table 7)
it can be noticed that the median values of switch locations are found to be one time interval further than
the true values,and the estimates for the location of the switches falls in the range of £5 time intervals from
the true value at 73.3 to 91.4 % of the replications, still comparable to the results obtained for the Bai and
Perron method for the larger sample size 13. Overall, it can be infered that the IMI methodology compared

adequately even for the smaller sample sizes.

3.2 Different models across regimes

The second part of the simulation study examines the performance of the ICE algorithm in the more inter-
esting setting where different models are allowed to generate the observed data among different regimes.In

particular, the following data generating processes (DGP) are considered:

1. Case I: Models 1,2, Linear Model vs Nonlinear Model

o 1+ 0.5$1t - 0.41‘2,5 + & Et ~ N (0,022) s 0 <t< T/2
he= 1+ 0.5z + 0.229; — O.Sx%t + 0.1x%t — 052119t +6¢ €t~ N (0,0.22) , T/241<t<T
(28)
2. Case IT: Models 1,3 Linear Model vs Autoregressive of Order 1 (AR(1)) Model
) 140721 — 0520+, £~ N(0,02%), 0<t<T/2 (20)
7N 02408y 42 e~ N (0,06%), T/2+1<t<T
3. Case III: Models 1,4 Linear Model vs Semi-Logarithmic Model
o 1+ 11‘1t + 0.2$2t + &¢ Et ~ N (0, 022) ; 0 S t S T/2 (30)
exp (1 + 0.5z, — 02w +&¢) & ~ N (0,02%), T/241<t<T

13The discussion regarding the quality of the parameter estimates is omitted.As it was noted before, if the correct number
of regimes and the correct location of the regime switching point are obtained, then the parameter estimates will also be very
good.
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The regressors are generated, similarly to the previous section, according to:
X1 ~N(1,1), Xo~B(2,1).

It is apparent that the four types of models that may generate the data points within each regime are:
1) a linear regression with two regressors X1, Xo; 2) a non-linear regression model that includes the squares
and the cross-product of the two variables X7, X3; 3) an Autoregressive Model of order 1 (AR(1)); and 4) a
semi-logarithmic model. These are also the models that are considered in the IMI algorithm'*. Two sample
sizes will be considered T' = {300, 1000} with the break occurring in the middle of the sample.

The criteria for the evaluation of the method will be similar to the case of different parameter values
across regimes. It is of interest: a) whether the correct number of regimes will be picked by the ICL-BIC
criterion, b) whether the correct types of models are obtained for each of the regimes, c) the estimates for
the location of the regime switching points, and d) the quality of the estimates for the model parameters.
Even though the Bai and Perron (1998) methodology should not be used in this setting, as the simulation
design is such that there exist different models and not just different parameters across the regimes, making
any comparison by default unfair, it can still reveal interesting results. If the researcher is not suspecting
the existence of different models and still uses this standard method, how frequently she will be wrong?

The simulation results are presented in Tables 8 and 9. In summary, the following hold for the IMI
methodology in terms of the identification of the number of regimes (Table 8): a) the best performance
occurs when a switch from a linear to nonlinear model occurs, and the worst when a switch from a linear to
a semi-logarithmic model takes place, b) it tends to overfit, i.e. it identifies a larger number than the true
one, compared to the underfitting observed when the change is only at the parameters of a linear model, ¢)
the results improve as the sample size increases. Overall, the IMI methodology’s worst result is for Case II,
with a small sample size, when the correct number of regimes is identified at only 62% of the replications,
whereas the best result is for Case I, with a large sample size, when the correct number of regimes is identified
at 99 % of the replications. Even when the ICL-BIC criterion overestimates the number of the regimes, the
IMI method can still obtain the correct number of regime switches and their corresponding locations. For
example, in Case III, when 3 regimes are picked, instead of 2, which occurs at 30% of the replications,
the reconstructed, by the MPM approach, hidden state sequence identifies the correct 2 regimes and the
correct switch location at approximately 70% of the cases. Even though these cases are not considered to
satisfy the evaluation criteria as stated before, this result suggests that extra attention should be put to the
reconstructed hidden sequence.

The Bai and Perron (1998) methodology is not performing well, as expected. This is more evident by
the fact that the results are not improving much with the increase of the sample size. Overall, the method
tends to point to a larger number of breaks, compared to the true number, and it fails dramatically for Case
ITI, i.e. a switch from the linear model to an AR(1) one (when the sample size is large, only at 16.5% of the
replications the true break number is correclty picked). Thus, a research should be cautious in using this

methodology, when there may exist reasons to point to different model across the different segments.

141n economic applications, the types of models that may have generated the data according to each regime will be determined
based on theoretical grounds. For example, regime switches in monetary policies could be analyzed using models that are variants
of the Taylor rule.
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The identification of the models is quite accurate; when the correct number of regimes is suggested by
the ICL-BIC criterion, the types of models identified for the regimes are the ones that correspond to the true
DGP. In terms of the locations of the regime switches, the results reported correspond to the cases that the
true number of regimes are identified. The median estimates are only one time interval away from the true
values, and the estimates for the location of the switches always fall in the range of £5 time intervals from
the true value (100% of these cases). Finally, in terms of the parameter estimates, not reported in the paper,
they are quite accurate in the cases that the IMI methodology picks the correct number of regimes. This is
expected as when the number of regimes and the location of regime switches are accurately estimated, the
candidate models are consistently estimated.

Overall, the IMI method performs adequately in estimating the correct number of regimes and the

respective locations of breaks.

4 Empirical Application: Monetary Policy Rules in United States

4.1 Candidate models based on Taylor Rule

The appeal of Taylors (1993) work was that he proposed a simple rule for conducting monetary policy in
United States. The short-term nominal interest rate reacts linearly to deviations of inflation and output
from their target levels in order to establish the equilibrium level of the real interest rate. The original

specification of the rule took the form:

iy =r" 41+ B (m — 1) + Byye (31)

where, i} is the target short-term nominal interest rate for quarter ¢, r* is the equilibrium real interest
rate, m; is the inflation rate, 7* is the inflation target, and y; is the output gap measured by the deviation of
real output from its potential level. The original specification set * and 7* equal to 2, and the parameters
B and B, equal to one half.

Over the past years, a large amount of literature has emerged in discussing different variants of the rule,
and the type of data that need to be used for its estimation. Regarding the different variants of the Taylor
rule, we can consider two major variations. The first one considers that the Federal Reserve smooths the
interest rate to help avoid policy reversals that could be damaging in its credibility. Clarida et al., (1998)
and Clarida et al., (2000) generalized the Taylor rule by including lagged values of the federal fund rates.
The second variant, advocated by the work of Orphanides (2003) showed that a forward-looking rule, that
is the inflation and output gap are replaced in the Taylor rule by their forecasts, performs better than a
backward-looking rule. Regarding the data used in the estimation, a number of recent policy evaluation
studies suggested that information that was actually available to the policy makers when they were making
their interest-setting decisions should be used (Orphanides 2001, 2002,and 2003). These real-time data are
not subject to the subsequent revisions in the values of inflation and output present in ez post data.

More recent theoretical and empirical work has consider the policy reaction function to be nonlinear.
Orphanides and Wilcox (2002) search for a specification of the policymakers loss function that would lead to
an asymmetric response to disinflation: when inflation is moderately above or below its long run objective,
the Federal Reserve should not take any action by changing the Fed Funds rate. On the other hand, should
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inflation steps outside the inaction band, the Fed should adjust the Fed Funds rate aggressively. Qin and
Enders (2008) compare the in-sample and the out-of-sample properties of a number of linear and nonlinear
Taylor rules to select the most appropriate form.

In this paper, the nonlinearity is assumed to represent itself in 2 different ways. First, the monetary
policy rule is allowed to change over time and not over different values of the inflation. Second, the IMI
methodology allows for different, potential nonlinear forms, of the rule across the different regimes in the
time domain.

Following Qin and Enders (2008), the candidate models for the application of IMI are the following:

1. Model 1: Backward Looking Taylor Rule
g = Qo+ Q1 T—1 + QoYi—1 + € (32)
2. Model 2: Backward Looking non-linear Taylor Rule
it =0+ a1m1 4 ooyi1 + a3+ ouy; a5y + & (33)
3. Model 3: Backward Looking Taylor Rule, interest rate smoothing
iy = ag + pig—1 +a1m1 + QoY1 + & (34)
Model 4: Forward Looking Taylor Rule, within quarter-rule
it = o + pit—1 + 1 By + ao By + asyi—1 + & (35)
Model 5: Forward Looking Taylor Rule
it = o + pir—1 + a1 B + o By + azye—1 + € (36)

Model 6: AR(2) model
1g = Qg + p1ig—1 + p2it—2 + €& (37)

Model 7: ARIMA(1,1,0) model
Ay = g + p1Aiy_1 + € (38)

Some discussion is required for the aforementioned models. The first three models are variants of the
backward looking Taylor rule, i.e. the policy reacts to the previous quarters inflation and output gap. Model
1 is the classic backward-looking Taylor rule, Model 2 considers the backward-looking Taylor rule taking a
nonlinear form with respect to the output gap and the inflation, and Model 3 assumes interest rate smoothing
behavior on behalf of the Federal Reserve. In Model 4, the policy reacts to within-quarter forecasts of both
inflation and the output gap, that is to forecasts for the current values of inflation and output gap at time
t available with the quarter t. Model 5 suggests that the policy reacts to 1-quarter-ahead forecasts of the
inflation and the within-quarter forecasts of the output gap (Orphanides 2004) uses this specification as the

forward-looking rule. Finally, Models 6 and 7 are two time series models: Model 6 is a univariate AR(2)
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model, and Model 7 is an ARIMA(1,1,0), the latter being support by the fact that interest rates have been
found to act as unit-root processes.

The IMI methodology is applied to the following four cases:

1. Case I: Models 1-7
2. Case II: Models 1-5
3. Case III: Backward Looking Taylor Rule (Model 1)

4. Case IV: Forward Looking Taylor Rule (Model 5)

In Cases III and IV, the same function form is assumed across all regimes and only parameters are
allowed to change. While Case I considers all models as potential candidates for explaining the monetary
policy within each regime, in Case II the Time Series models are excluded so that to focus only on the

variants of the Taylor rule.

4.2 The data

Orphanides (2000, 2003) has pointed out that estimation of the Taylor rule should be performed by using
real-time data, as the inflation and output in ex post data are subjected to constant revisions. Real-time
data are constructed primarily based on the forecasts and information from the Federal Reserve Greenbook,
a document prepared by Federal Reserve Board staff for the Federal Open Market Committee before every
regularly scheduled meeting, and they include projections of real output growth and inflation. Such data
series are now readily available in the website of the Federal Reserve Bank of Philadelphia, with a time lag
of 5 years. Currently, the data set includes the projections from November 1965 to November 2004 for real
output and inflation, and values for the output gap from November 1987 to November 1984.

The data used in this paper span the period 1967:Q1 till 2004:Q4. The data contain the real-time lags and
the real-time forecasts of inflation rate and the output gap. The inflation rate is defined as the difference of
the logarithm of the GDP deflator, and the output gap is defined as the difference of the logarithm of actual
GDP and the logarithm of the potential GDP. The inflation forecasts are available for up to five quarters
ahead in most cases for the entire sample, while only within-quarter forecasts are available for the output
gap, and that are not available till 1987. Thus, the values of the output gap (lagged y;—1, and within-quarter
forecasts Fyy;) had to be reconstructed from the historical real output data available in the Philadelphia Fed
website. Using the Orphanides and van Norden (2002) approach, the real-time measure of output gap was
constructed by applying the Hodrick-Prescott filter in successive vintages of the data, providing the lagged
values of the output gap available at time ¢, y;—1 , as they were available at time ¢. In order to obtain the
within-quarter estimate of the output gap Fyy;, an extra step was required '°. For each quarter t, the real
output vintage series was augmented with the projection for the value of the real output at quarter ¢, as it
was available at time ¢. Using this updated series, the Orphanides and van Norden (2002) approach was used
once more, and a series of within-quarter forecasts for the output gap was constructed. Finally, following

previous literature, the federal funds rate is constructed as a quarterly average.

15For each quarter t, the vintage series contains the values of the real output up to time ¢t — 1.
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4.3

Results

The results of the estimation process are tabulated in Tables 10 to 13 ' They can be summarized as follows:

(D

(ID)

(I11)

Case I: The ICL-BIC (Table 10) suggests the existence of two different regimes in the monetary policy
rules, with a single break occurring in the second quarter of 1985. During the first period, 1967:Q1 to
1985:Q2, the BIC suggests that the best model to describe the Federal Fund Rate was Model 7, that
is the ARIMA(1,1,0) model. During the second period, 1985:Q3 to 2004:Q4, the BIC suggests that
the best model is Model 5, i.e. the forward-looking Taylor Rule. The parameter estimates for Model 5
indicate that the monetary policy put more weight in inflation compared to the combine effect of the
output gap (Table 12) 17. One further remark is the vast improvement in terms of BIC values (Table
11) for models that incorporate interest rate smoothing. For example, the BIC of Model 1 is almost
double of the BIC value for Model 3. Of course, this can also attributed to the high persistence of the

interest rate, as it is also evident by the BIC values for the simple time series models.

Case II: Once more the ICL-BIC suggests the existence of two different regimes, with a single break
occurring again in the second quarter of 1985. The BIC picked the same model for both periods,
Model 5. The forward-looking Taylor rule describes the monetary policy in both regimes. Regardless,
the parameter estimates point a change in the policy. In particular, the rule puts an almost equal
weight for the inflation (0.253) and the output gap ( an approximate overall value of 0.21) during the

first period, whereas during the second period more weight is place on inflation.

Case III: When only the backward-looking Taylor rule (Model 1) is considered, so the interest is in
the change of the coefficient values across time and not on the function forms, the ICL-BIC suggests
the existence of three different regimes. The transitions between these regimes are rather frequent,
especially before 1980, but the following remarks can be made. The first regime, which put an almost
4 times higher weight on inflation (1.195) compared to the output gap (0.332) dominates the US
monetary policy during the decade of 1980. This is not a surprising result as it coincides with most of
the Volcker period, when the Federal Reserve pursued a more aggressive policy in targeting inflation.
The second regime is more prominent during the decade of 90s. Compare to the first regime the
difference in the monetary policy weights between inflation and output gap is reduced, to less than
double (0.796 and 0.425 for inflation and output gap respectively). Finally, the third regime appears
to be more important during the 1970s and after the third quarter of 2001. The difference in the
inflation and output gap weights is similar to the one in the case of the second regime. Regardless,

the constant term of the Taylor rule is almost half to the one of the second regime.

Overall, when all candidate models are considered, the IMI procedure points to a break in the middle of

1980s, with a forward-looking Taylor rule putting more weight in inflation describing the monetary policy

in the second part.

16Case IV is not reported as it yielded the exact same results as Case II, which can be fully explained by a closer look into
Table 11 that reports the BIC for each case, each regime, and each candidate model.

17Given that the values of Eyy; and y;_1 are close, the overall coefficient for the output gap is approximately 0.2 compared
to 0.422 for inflation.
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5 Conclusion

A complete procedure is introduced for the estimation of all the aspects of a Hidden Markov Model (HMM),
in order to detect the existence of structural breaks and their corresponding locations. The structural breaks
are defined as the data points where the underlying Markov Chain switches from one state to another.

The proposed procedure consists of three components. The first component is the estimation of the
HMM with a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm
proposed by Delignon et al. (1997). The algorithm has a number of advantages over the traditional approach
of estimating HMM using the Expectation Maximization (EM) algorithm. Most importantly, it can simulate
regime paths in order to enable parameter estimation, which permits analysis of the conditional distributions
of economic data, and allows for different functional forms across regimes.

The second component is the detection of the locations of regime switching by assigning states to data
points according to the Maximum Posterior Mode (MPM) algorithm. The third, and final, component is
the employment of the Integrated Classification Likelihood-Bayesian Information Criterion (ICL-BIC) for
determining the number of regimes. This information criterion is essentially the BIC, but it also takes into
account the classification of the data points to their corresponding regimes, and thus it is more suitable for
use in the case of HMM.

The success of the overall procedure, denoted IMI by the initials of the component algorithms, to detect
structural breaks is validated by two sets of simulations. In the first set of simulations only the parameters of
a multiple linear regression model are permitted to differ across regimes. Due to the particular setting, the
results are directly comparable with those provided by the Bai and Perron (1998) method. The IMI procedure
fares better in all specifications, especially when the number of breaks is small. More importantly, even when
the ICL-BIC component fails to correctly identify the number of regimes, the other two components can
still provide correct estimates for the location of breaks points defined as regime switches. The method was
also examined in smaller sample sizes, more appropriate for macroeconomic application. The IMI procedure
performed adequately in this settin as well. The second set of simulations permits differences in the functional
forms of the conditional distribution of the dependent variable across regimes. The optimal model for each
regime is decided using the BIC. The IMI procedure performed adequately, especially when the number
of regimes is smaller. The procedure identified the correct number of regimes, the locations of the regime
switching points, and the functional forms under each regime in the great majority of the replications.

Consequently, the IMI procedure is found to provide a useful overall approach to the estimation of all
aspects related to a Hidden Markov Model, such as the number of regimes, the model parameters, and the
location of regime switches. Nevertheless, it could be of interest to generalize the procedure by a) allowing
multivariate variables for the dependent data, and b) examining nonparametric approaches in picking the
correct model for each regime.

Finally, the proposed methodology has been applied in the identification of different regimes/policies
in United States data. Considering candidate functional forms to be variants of the Taylor (1993) rule,
the results suggest that there has been a change in the way monetary policy has been conducted, with a
single break occurring in the middle 80s. In particular, when all candidate models are considered, the IMI
procedure points to a break in the middle of 1980s, with a forward-looking Taylor rule, which puts more

weight in the inflation compared to the output gap, describing the monetary policy in the second part.
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A Tables

A.1 Simulation Results: Different parameters across regimes

A.1.1 Large Sample Size Results

IMI vs B&P: No of Regimes/Breaks Frequencies

2 Regimes - 1 Break

| 2 Regimes - 2 Breaks | 3 Regimes - 2 Breaks | 4 Regimes - 3 Breaks

No % of Sim [ No % of Sim [ No % of Sim [ No % of Sim
IMI: No of Regimes Identified
1 0.0 1 0.0 1 0.0 1 0.0
2% 100.0 2% 100.0 2 3.0 2 1.0
3 0.0 3 0.0 3* 93.0 3 24.0
4 0.0 4 0.0 4 4.0 4% 74.0
5 0.0 5 0.0 5 0.0 5 1.0
6 0.0
*: true number of regimes
B&P: No of Breaks Identified
1* 65.0 1 0.0 1 0.0 1 0.0
2 28.0 2% 72.0 2% 71.5 2 0.0
3 6.5 3 25.5 3 27.0 3* 58.0
4 0.5 4 2.5 4 1.5 4 37.0
5 0.0 5 0.0 5 0.0 5 6.0
6 0.0
*: true number of breaks
Table 1: IMI vs B&P summary results, Part 1
Break Locations
[ B&P Sequential | IMI
4 Regimes -3 Breaks
True Value 330 670 1000 [ 330 670 1000
mean 329.4 672.0 1001.9 | 331.06 670.6 1000.9
median 330 670 1000 331 671 1001
b-5<%<b—+5 84.5 77.6 85.3 84.5 87.8 93.9
3 Regimes - 2 Breaks
True Value 330 670 [ 330 670
mean 329.5 672.1 330.7 671.3
median 330 671 331 671
b-5<%<b—+5 84.6 80.4 90.0 92.1
2 Regimes - 2 Breaks
True Value 330 670 [ 330 670
mean 327.0 672.6 330.6 671.1
median 329 670 331 671
b-5<%<b-+5 73.6 77.1 91.5 86.9
2 Regimes - 1 Break
True Value 500 [ 500
mean 500 501.2
median 500 501
b-5<%<b-+5 83.1 85

Table 2: IMI vs B&P summary results, Part 2
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Parameter Estimates. Case III: 3 Regimes - 2 Breaks

H IMI [ B&P: Sequential [ B&P: Repartition
Regime 1 [[ ct X1 X2 [[ ct X1 X2 [ ct X1 X2
True Values 1 0.7 -0.25 1 0.7 -0.25 1 0.7 -0.25
mean 0.999 0.700 -0.250 || 1.001 0.701 -0.256 | 1.001 0.701 -0.256
median 1.006 0.703 -0.259 || 0.996 0.702 -0.248 | 0.996 0.702 -0.248
stdev 0.083 0.038 0.114 0.088 0.028 0.120 | 0.088 0.028 0.120
min 0.797 0434 -0.694 || 0.822 0.620 -0.547 | 0.822 0.620 -0.547
max 1.284 0.774 -0.002 || 1.256 0.765 -0.009 | 1.256 0.765 -0.009
Regime 2 || ct X1 X2 [ ct X1 X2 ct X1 X2
True Values 1 0.7 0.5 1 0.7 0.5 1 0.7 0.5
mean 1.002 0.702 0.494 1.010 0.700 0.484 | 1.010 0.700 0.489
median 1.003 0.701  0.495 1.006 0.699 0.495 | 1.008 0.700 0.497
stdev 0.087 0.028 0.116 0.092 0.026 0.120 | 0.092 0.026 0.121
min 0.769 0.632 0.158 0.787 0.642 0.172 | 0.789 0.639 0.172
max 1.245 0.796 0.830 1.269 0.763 0.784 | 1.271 0.763 0.782
Regime 3 || ct X1 X2 [ ct X1 X2 ct X1 X2
True Values 1 0.2 0.5 1 0.2 0.5 1 0.2 0.5
mean 1.009 0.214 0.464 0.993 0.202 0.506 | 0.992 0.204 0.502
median 1.008 0.199 0.480 0.985 0.204 0.509 | 0.983 0.205 0.505
stdev 0.108 0.085 0.183 0.103 0.029 0.153 | 0.102 0.029 0.151
min 0.660 0.092 -0.275 || 0.764 0.131 0.070 | 0.751 0.135 0.070
max 1.278 0.707  0.889 1.335 0.268 0.875 | 1.335 0.268 0.875

Table 3: IMI vs B&P summary results, Part 3

30



ICL-BIC Criterion

4 Regimes -3 Breaks

no Regimes 1 2 3 4* 5 6
mean 2721.07 2573.42 2502.07 2486.02 2610.24 2722.83
median 2719.50  2569.27 2502.99 2476.00 2575.87 2686.52
stdev 48.92 64.28 65.48 93.51 123.84 133.56
min 2586.87  2447.76  2343.62 2310.13 2403.55 2511.68
max 2856.90 2758.26  2690.79 3247.90 3029.72 3146.49
3 Regimes -2 Breaks
no Regimes 1 2 3* 4 5 6
mean 1957.01 1828.14 1746.26 1873.33  1985.09
median 1955.26  1829.14 1742.22 1834.14 1932.18
stdev 45.97 47.71 55.91 122.05 145.03
min 1841.02 1709.34 1616.43 1692.42 1782.23
max 2060.46  1939.10 1962.76 2260.50 2475.58
2 Regimes -2 Breaks
no Regimes 1 2% 3 4 5 6
mean 1698.57 1567.61 1979.83 2158.08
median 1704.03  1572.24 1936.12 2125.52
stdev 44.10 47.11 309.03  371.99
min 1580.49 1455.24 1529.20 1601.42
max 1827.51 1698.49 2530.14 3022.35
2 Regimes -1 Break
no Regimes 1 2% 3 4 5 6
mean 1724.35 1543.21 1828.94 1952.79
median 1724.56  1545.18 1795.38  1904.65
stdev 46.28 45.92 227.04 270.18
min 1568.57 1406.84 1492.16 1566.51
max 1845.14 1652.38 2268.93 2828.84

*true value

Table 4: IMI: ICL-BIC Criterion
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A.1.2 Small Sample Size Results

ICL-BIC Criterion

3 Regimes -2 Breaks

no Regimes 1 2 3* 4 5
mean 1182.843 1132.523 1102.645 1201.914 1295.73
median 1182.719 1128.302 1098.721 1175.584 1263.166
stdev 36.72484  44.23593  44.73931  83.7347  94.99763
min 1073.419 1011.761 1009.369 1079.962  1148.85
max 1286.017 1262.458 1251.009 1525.626 1684.817

2 Regimes -1 Break: Break in 1/2 sample

no Regimes 1 2% 3 4 5
mean 529.9614 511.3238 597.78 666.6026 737.396
median 530.4737 511.5959  574.7925 641.9447 714.6363
stdev 22.3064  26.83388 64.74904 66.65845  69.4693
min 473.9721  446.4248 497.7623 560.5054 640.2616
max 581.5548  582.7748 831.0557 920.0295 1029.025

2 Regimes -1 Break: Break in 1/4 sample

no Regimes 1 2% 3 4 5
mean 680.2815 660.1716  893.0383 988.0106 1082.347
median 678.904  659.4563 914.9034  1005.61  1099.892
stdev 28.71104 28.55525 138.9608 160.1993 160.3868
min 602.2491 575.9798 657.0156 725.8269 824.1438
max 749.7623 732.4259 1154.217 1373.733 1422.178

2 Regimes -1 Break: Break in 3/4 sample

no Regimes 1 2% 3 4 5
mean 675.8609 656.6956 876.5606 974.2372 1044.22
median 678.2106 659.5003 896.2958 989.8087  1059.285
stdev 26.57679  29.17681 148.1347 166.3048  169.9986
min 604.7817 581.6823  650.806  705.0874 789.3558
max 739.0759  728.567  1266.913 1396.797  1387.94

*true value

Table 5: IMI: ICL-BIC Criterion
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No of Regimes Identified
3 Regimes - 2 Breaks | 2 Regimes - 1 Breaks: 1/2 | 2 Regimes - 1 Break: 1/4 | 2 Regimes - 1 Break: 3/4

No % of Sim | No % of Sim | No % of Sim | No % of Sim
1 0.0 1 17.2 1 14.5 1 13.8
2 13.8 2% 82.3 2% 85.5 2% 86.2
3* 86.2 3 0.0 3 0.0 3 0.0
4 0.0 4 0.0 4 0.0 4 0.0
5 0.0 5 0.0 5 0.0 5 0.0

*: true number of regimes

Table 6: IMI: No of Regimes Identified
Break Locations
3 Reg.-2 Br. 2 Reg.-1 Br.: 1/2 2 Reg.-1 Br.: 1/4 || 2 Reg.-1 Br.: 3/4

True Locations 200 400 150 100 300
Mean 200.7 401.2 151.1 100.8 300.6
Median 201 401 151 101 301
Stdev 3.9 2.9 3.9 5.8 4.3
Min 183 392 135 80 290
Max 214 417 176 118 319

b-5<%<b+5 81.5 91.4 85.1 73.3 80
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A.2 Simulation Results: Different models across regimes

No Regimes Identified (% of Sim)
Sample Size=300, Break Location=150

[ IMI [ BP
Models | 1,2 1,3 1,4 1,2 1,3 1,4
1 0 0 0 0 0 0
2% 84 62 68 49.5 7.5 53.5
3 13 265 285 | 30.5 26.5 285
4 3 11 3 17.5 415 17
5 0 0.5 0.5 2.5 24 1
6 0 0 0 0 0.5 0
Sample Size=1000, Break Location=500
[ IMI [ BP
Models | 1,2 1,3 1,4 1,2 1,3 1,4
1 0 0 0 0 0 0
2% 99  84.5 70 52.5 16.5 60
3 1 11 28.5 | 285 225 26.5
4 0 2.5 1.5 15 38.5 11
5 0 1 0 4 22 2.5
6 0 1 0 0 0.5 0
* true number of regimes

Table 8: IMI vs B&P, No Regimes Identified

Break Locations

[ Sample Size=300, Break Location=150

[ IMI [ BP
Models 1,2 1,3 1,4 1,2 1,3 1,4
mean 150.97 150.98 150.99 | 151.32 154.67 150.36
median 151 151 151 150 152 150
stdev 0.712 0.861 0.106 2.559 6.079 0.994
min 149 148 150 149 148 150
max 154 154 151 165 168 157
b-5<%<b+5 100 100 100 91.92 66.67 99.07
Sample Size=1000, Break Location=500
[ IMI [ BP
Models 1,2 1,3 1,4 1,2 1,3 1,4
mean 500.94 501.22 500.99 | 501.32 503.30 500.36
median 501 501 501 500 501 500
stdev 0.838 0.871 0.143 3.002 6.039 0.786
min 496 497 500 498 499 499
max 503 505 502 520 532 504
b-5<%<b+5 100 100 100 93.33 75.76 100

Table 9: IMI vs B&P, Break Locations
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A.3 Empirical Application

ICL-BIC
[ Potential Number of Regimes
Case 1 2 3 4 5 6
I 496.55  399.27  449.51 509.80 580.21 660.51
II 460.45 379.94 430.18 490.46 560.84 641.22
III 694.81 630.64 624.71 741.22 788.95 848.42

Table 10: Taylor Rules for United States, ICL-BIC

BIC: Determine the Model within Each Regime

[

Candidate Models

Regimes 1 2 3 4 5 6 T
Case I 1 265.65 278.52 124.12  95.80 73.63 124.12  119.75
2 373.21  382.28 279.94 279.93 279.45 279.94 275.65
Case 11 1 265.65 278.52 124.12  95.80 73.63 - -
2 373.21 382.28 279.94 279.93 279.45 - -

Table 11: Taylor Rules for United States, BIC of Candidate Models

Parameter Estimates

Case 1 [ Case 11
Regime 1 2 1 2
Model 5 7 5 5
g 0.045 g 0.032 ap 0.045 ag -0.119
(0.113) (0.187) (0.113) (0.512)
p 0.787 p1 0.108 P 0.787 P 0.861
(0.037) (0.118) (0.037) (0.060)
aq 0.422 o 1.593 ai 0.422 ai 0.253
(0.072) (0.072) (0.095)
[e%) 0.627 sz 0.627 sz -0.445
(0.101) (0.101) (0.348)
as -0.436 as -0.436 as 0.658
(0.110) (0.110) (0.354)
o 0.337 o 0.337 o 1.423
Case III
Regime 1 2 3
Model 1 1 1
ap 3.609 [e %3} 3.159 Qo 1.536
(0.438) (0.155) (0.208)
aq 1.195 aq 0.796 a1 0.638
(0.084) (0.038) (0.043)
[e %>} 0.332 [e %>} 0.425 s 0.294
(0.104) (0.044) (0.051)
o 1.462 o 0.560 o 0.718
Table 12: Taylor Rules for United States, Parameter Estimates
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Regime Changes Locations

Date Regime Before Regime After

Case 1
1985:Q3 2 1

Case I1
1985:Q3 2 1

Case II1
1969:Q2 2 1
1971:Q1 1 2
1971:Q2 2 3
1973:Q2 3 2
1973:Q4 2 1
1975:Q1 1 2
1975:Q2 2 3
1979:Q1 3 2
1980:Q1 2 1
1980:Q4 1 2
1981:Q1 2 1
1992:Q2 1 2
1993:Q2 2 3
1994:Q4 3 2
2001:Q3 2 3

Table 13: Taylor Rules for United States, Regimes Changes Locations
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