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Abstract

This paper introduces a Duration Hidden Markov Model to model bull and bear market regime

switches in the stock market; the duration of each state of the Markov Chain is a random variable

that depends on a set of exogenous variables. The model not only allows the endogenous determination

of the different regimes and but also estimates the effect of the explanatory variables on the regimes’

durations. The model is estimated here on NYSE returns using the short-term interest rate and the

interest rate spread as exogenous variables. The bull market regime is assigned to the identified state

with the higher mean and lower variance; bull market duration is found to be negatively dependent on

short-term interest rates and positively on the interest rate spread, while bear market duration depends

positively the short-term interest rate and negatively on the interest rate spread.
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1 Introduction

Non-linearity of returns in the stock market is well established (Scheinkman and LeBaron 1989, Tong 1990,
and McMillan 2001). The existence of different regimes in stock market returns has been proposed as
one potential explanation for nonlinear conditional returns. Although in principle such processes might be
represented as having any number of regimes, the existing theoretical and empirical literature has tended
to concentrate on two regimes, the traditional ‘bull’ and ‘bear’ markets. Blanchard and Watson (1982)
presented a model of stochastic bubbles that either survive or collapse in each period; in such a world,
returns would be drawn from one of two distributions: surviving bubbles or collapsing bubbles. Cecchetti et
al. (1990) considered a Lucas asset pricing model in which the endowment switches between high economic
growth and low economic growth, and showed that such switching in fundamentals accounts for several
features of stock market returns. Cecchetti, Lam, and Mark (2000) introduced belief distortions that vary
over expansions and contractions and lead to systematic predictability in returns. Gordon and St-Amour
(2000) examined a model in which risk-aversion changes according to an exogenous regime-switching process
lead to the generation of bull and bear markets. Finally, Schaller and van Norden (1997) presented strong
empirical evidence of regime switching in US stock market returns, evidence which was robust to different
specifications of the nature of switching.

Where this division into regimes is of interest, there are issues regarding their identification, and the
distributional characteristic of the returns, after accounting for regime switches. Moreover, information
about the duration of each regime is important. Investment decisions can of course be influenced, but (less
evidently) policy questions may also arise. The share of stock market wealth in total household wealth has
increased over recent years, and plays an important role in the household’s consumption decisions 1. The
effect of these decision, when aggregated, is a determinant of economic growth and hence is of concern for
governments and central banks.2

There are two streams of literature related to these classes of question. One stream of the econometric
literature treats parameter estimation and regime identification (and therefore, duration analysis) as two
independent exercises. Under this view, the estimation of the parameters of interest is performed, and the
calculations of the regime of the stock market and its durations are made with the appropriately parame-
terized model. The identification of the regimes is made exogenously with the help of data-based rules. A
key consequence of such a modeling strategy is that the duration of cycles is simply a by-product of the
parameter estimates and not an intrinsic feature of the model. Examples of this strain of literature include
Neftçi (1984), who tested for asymmetries over the business cycles using a two-state Markov model; the iden-
tification of the different states was made using data-driven criteria. Diebold and Rudebusch (1990) modeled
the hazard rates for the state duration using nonparametric methods, whereas Cohran and Defina (1995)
considered a parametric approach to the state hazard rates using an exponential distribution. Lunde and
Timmermann (2004) modeled the hazard rates for the durations of bull and bear markets, using covariates
that included exogenous variables such as interest rates, and the age of the state.

None of these papers presented models that treat data generating processes and regimes jointly. For an
1This accounts for 24.4 % of the total household wealth in 2006, based on the Flow of Accounts of United States reported

by the Federal Reserve System.
2Consumption accounts for 64.5% of the US Gross Domestic Product during the period 1947-2007 and for about 70 % for

the period after 2001. The impact of the stock market wealth in consumption is found to be 2-5 cents increase in consumptions
for every dollar increase in stock market wealth (Poterba 2000, Dynan and Maki 2001, Case, Quiegly and Shiller 2005).
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analyst who wishes to model the regime switches and the expected durations, the advantages of Markov
Regime Switching models are clear. Since the regimes are jointly estimated with the parameters of the data
generating process, the analyst can identify them without resorting to data-based rules. Examples, following
Hamilton’s (1989) seminal work, include Engel (1994) who modeled exchange rate regimes, Hamilton and
Susmel (1994), Gray (1996), and Dueker (1997) who discussed regime switching in GARCH models, and
Schaller and van Norden (1997) for US stock market returns.

The above models provide a very simple link between the transition probabilities and the expected du-
rations, thus do not allowing much flexibility. By assuming time-homogeneity of the transition probability
matrix, the expected durations of the different regimes are different but remain constant across time. The
expected duration of the different regimes should be allowed to vary across time, according to some ex-
planatory variables that describe the underlying economic and market conditions because this will be more
consistent with economic intuition. Since time-homogeneous transition probabilities models cannot capture
this behavior, extensions have subsequently been introduced that allow the transition probabilities to vary
across time. Diebold et al. (1994), Filardo (1994), and Schaller and van Norden (1997) allowed the regime-
transition probabilities to be functions of a set of explanatory variables. Durland and McCurdy (1994),
and Maheu and McCurdy (2000) considered the transition probabilities to be logistic functions of the num-
ber of periods that the process has been in that state, during the past introducing the duration-dependent
Markov Switching model. Even though these approaches do not explicitly model state durations, state du-
ration expectations are allowed to vary over time as they are now a function of the time-varying transition
probabilities.

A more direct approach is proposed in this paper: that is to model explicitly the duration of each regime.
Duration is now considered to be itself a random variable, with a distribution that can be modeled and
its parameters estimated. Speech recognition applications have followed this approach, since it was found
that standard Markov models are not adequate in order to model the duration and temporal structure of
words. Ferguson (1980) considered a nonparametric approach, Russell and Moore (1985) assumed a Poisson
distribution, Levinson (1986) estimated the model using a Gamma distribution, Mitchell and Jamieson(1993)
suggested the use of the exponential family of distributions. The transition probability matrix is considered
to be time-homogeneous with its diagonal elements to be equal to zero.

While attractive, these methods are restrictive in economic applications. Although the duration itself
is now explicitly modeled, it is determined solely by the properties of the series under scrutiny without
considering additional information in the analysis. A set of explanatory variables should be introduced in
the duration specification in order to provide more information about its expected values, in a similar fashion
to Lunde and Timmermann (2004) analysis of regimes’ hazard rates.

In this paper, a Duration Hidden Markov Model structure is proposed. The Hidden Markov Model
structure, which is assumed to have time-homogeneous transition probabilities, allows for the endogenous
identification of regimes, i.e. the identification of the regimes and the estimation of the parameters governing
their distributional characteristics are jointly obtained within the model. The novelty of this model is that it
assumes the duration of each regime to be a random variable that depends on a set of explanatory variables,
whose values are available at the time that the transition from one regime to another takes place, within
the Hidden Markov Model framework. The difference relative to models of survival analysis is that regime
durations are now not provided as part of the data set or as outcomes of data-based rules, but instead are
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obtained jointly with all the other parameters of the model. The functional form for the duration specification
is the same across regimes, but the parameters are allowed to differ. Thus, the effect of explanatory variables
in expected durations in now direct, in contrast to models of time-varying transition probabilities.

Moreover, the observations’s distributions are assumed to be a finite mixture of Normal distributions,
compared with the standard Markov Regime Switching literature where a single Normal distribution is used.
Finite mixtures are known to provide a very flexible distributional form (MacLachlan and Peel 2000), which
can accommodate many features of stock market returns (Rydén et al. 1998).

The model is applied to New York Stock Exchange (NYSE) monthly returns. The short-term interest
rate and the interest rate spread, defined as the difference between long-term and short-term interest rates,
are used as the explanatory variables in the duration function. The choice of these variables was made in
order to capture potential information arising from the predictive value of these quantities for economic
growth, and consequently future profits of listed companies.

The bull market regime was identified as the state with the higher mean and the lower variance for the
returns’ distribution. The bear market regime, on the other hand, had a lower mean and a higher variance.
In terms of the duration specification results, the bull market’s duration is found below to depend negatively
on short-term interest rates and positively on the interest rate spread. The duration of bear markets is
positively dependent on short-term interest rates and negatively on the interest rate spread. These results
suggest that policy makers may have the ability to influence the durations of bull and bear stock markets
by changing the levels of short-term interest rates.

The structure of the rest of the paper is as follows. Section 2 introduces the model and discusses the
estimation procedure, the derivation of the standard errors, and how the model can be used for forecasting
purposes. Section 3 discusses the data that were used for the estimation. Results from the estimation are
presented in Section 4. Section 5 provides a brief conclusion and discuss some issues for further research.

2 Duration Hidden Markov Model

2.1 Model description

Consider a Hidden Markov Model (Xt, Yt), where Xt is the hidden Markov Chain and Yt are the observed
data. HMM parameters are often symbolized collectively as λ , (π,A,B), where B represents the parameters
corresponding to all the observation distributions (bj(yt) = P (Yt = yt | Xt = j)), π is such that its ith

element is πi = P (X1 = i), and A, with Aij = P (Xt = j | Xt−1 = i) is the probability transition matrix
(see Hamilton 1989, Bilmes 2006, or Rabiner 1989). The HMM parameters, λ , (π,A,B), are usually
estimated with an algorithm advocated in a series of papers by Baum and co-authors (e.g. Baum et al 1970),
which is known as the Baum-Welsh algorithm. This algorithm belongs to the Expectation Maximization
(EM) algorithm family which was formally introduced by Dempster et al (1977), in order to feasibly estimate
model parameters using maximum likelihood.

The traditional HMM implies that the probability of remaining in regime i, for a duration τ , P (τ | X = i)
is proportional to Aτ−1

ii and so regime durations follow an exponential distribution. This approach is rather
restrictive. Explicitly modeling the regime duration as a random variable following a given distribution
function, as in Ferguson (1980), Russell and Moore (1985) and Levinson (1986) was introduced in order to
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alleviate this problem (all of these papers are related to speech recognition applications).
Another issue is that the values of the transition probabilities (Aii), are derived based only on the infor-

mation set defined by the observations sequence. Extending the information set with a second observation
sequence will improve the model fit on the data and may have favorable implications for forecasting. There
are two ways to model this effect. The first way would be to discard the time-homogeneity of the tran-
sition probability matrix and to allow its element to depend on exogenous variables as in Diebold et al.
(1994), whereas Durland and McCurdy (1994) considered the transition probability matrix to be duration
dependent.

The second way, which is followed in this paper, is to allow the regime durations to directly depend on
a set of variables, other than the one provided by the observation sequence. This increases the information
set available, and also provides intuition on how durations may change over time.

To do so, a Hidden Markov Model with time-homogeneous transition probability is used. The regime
durations are assumed to be a probabilistic function of a set of exogenous variables, whose values are available
to the researcher when the transition from one regime to another takes place. The effect of these variables
in the duration is allowed to differ across regimes. Overall, the proposed model consists of the following
elements:

(I) Hidden Markov Model Structure: λ = (π,A,B).

The elements π,A are related to the hidden Markov Chain. The only assumption that will be imposed
is that Aii = 0, that is, the chain can not return immediately to the previous regime. Regarding B, the
observation distributions space, a Mixture of univariate Normals is assumed for each to have generated
the observations under each regime. The number of the mixtures is given a priori and it is assumed
to be the same across all regimes.3 Hence, for bj ∈ B, we have:

bj(yt) =
M∑
m=1

cjmf
(
yt;µjm, σ2

jm

)
(1)

with

f
(
yt;µjm, σ2

jm

)
=

1√
2πσjm

exp

[
− (yt − µjm)2

2σ2
jm

]
(2)

The assumption of a mixture of Normals for the observation distributions increases the flexibility of
the model since it captures more of the dynamics for the observation processes. It is well known,
see McLachlan and Peel (2000), that such a mixture can replicate a large variety of distributional
characteristics which are observed in financial data, such as fat tails and asymmetries. Moreover,
Bilmes (2006) argues that an improvement of the fit of a Hidden Markov Model can be accomplished
by either an increase in the number of regimes assumed, or by considering distributions for the observed
values that are very flexible, such as finite mixtures of Normal distributions with many mixtures.

(II) Duration Equation Specification: D
3It is known that nonidentifiability can emerge in finite mixture models due to overfitting. The employment of an extra

mixture component can be dealt with in two ways: either set one of the mixing components to zero or take two component
densities to be the same. In this case, setting the number of mixtures provides an upper bound to the true number of mixture
components. Regardless, if the purpose if to use the mixture as flexible parameterization of a density function, this is not a
problem (Geweke 2007).
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The time that the Markov Chain remains at each regime, τ , is given by parametric relations, with
coefficients that are different across regimes. The parameters are collectively summarized as D ,

{κj , ζj}nj=1. The general form of the model, for regime j, is:

log τ = κ′jZ + ζjW (3)

where Z is the vector of the exogenous variables (of dimension k), including an intercept term. If
the innovations are assumed to follow a standard Normal distribution, the density function for the
duration τ is:

dj(τ ;Z) =
1
τ
φ

(
ln τ − κ′jZ

ζj

)
. (4)

Assuming that the regime duration is determined as soon as the process enters that particular state,
the values of the variables should correspond with the time the transition to this regime occurred.
To express it in an alternative way, if the Markov Chain (X) has just entered into regime i at time t
(Xt = i), then the amount of time that it will stay there, τ , will depend on the values of the exogenous
variables Z at that particular time t, i.e. Zt.

2.2 Model estimation

It was mentioned that the HMM parameters, λ , (π,A,B), are usually estimated with the Baum-Welsh
algorithm. The core of the Baum-Welsh algorithm is the recursive estimation of the forward and backward
probabilities (α and β respectively), which are subsequently used to determine the quantities of interest. The
estimation of the proposed model is based on an extension of Levinson(1986) methodology. Although that
paper modeled durations according to a gamma distribution,, the recursive equations for the π,A parameters
remain the same as in the parametric specification approach of this paper. Denote the observations random
vector by Y1:T , and by X1:T the sequence of the unobserved regimes that can take n discrete values Xt =
i, i = 1, . . . , n (the realizations of these random variables are denoted by y1:T , x1:T respectively).

2.2.1 Estimation of π,A .

The Forward and Backward Recursions required for the calculation of the alpha and beta probabilities are:

• Forward recursion:
α1(j) = πjbj(y1)dj(1; z1) (5)

αt(j) =
∑
τ≤t

n∑
i=1,i6=j

αt−τ (i)Aijdj(τ ; zt−τ )
τ∏
θ=1

bj (yt−τ+θ) (6)

• Backward recursion:
βT (j) = 1 (7)

βt(i) =
∑

τ≤T−t

n∑
j=1,j 6=i

Aijdj(τ ; zt)
τ∏
θ=1

bj (yt+θ)βt+τ (j) (8)
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It is apparent that the main difference between these recursions and those for the simpler Hidden Markov
Model is the incorporation of the time that the chain remains in the regime, which is represented by the
duration probability (dj(τ ;Z)) and the product of the values of the observation distribution for the data
within the particular regime.

The likelihood that the observed sequence is generated according to the model is then given by:

L (λ | y1:T ) =
n∑
i=1

n∑
j=1,j 6=i

∑
τ≤T−t

αt−τ (i)Aijdj(τ ; zt−τ )
τ∏
θ=1

bj (yt−τ+θ)βt(j) (9)

The following quantity, corresponding to the probability that the chain is in regime i at time t, can also
be determined:

γt(i) = P (Xt = i | y1:T , λ) =
αt(i)βt(i)
L (Y1:T | λ)

=
αi(t)βi(t)∑n
j=1 βt(j)αt(j)

(10)

Using the above relations, the estimator for the elements of the transition matrix A is:

Âij =

∑T−1
t=1

∑
τ≤t αt−τ (i)Aijdj(τ ; zt−τ )

∏τ
θ=1 bj (yt−τ+θ)βt(j)∑T−1

t=1 αt(i)βt(i)
(11)

2.2.2 Estimation of B.

The space B contains the observation distributions that are assumed to be mixtures of normals. Before
proceeding to the recursive formulae for the parameters, the following quantity must be introduced:

γt(j, k) =
[
αj(t)βj(t)
L (Y1:T | λ)

] [
cjkf (yt;µjk,Σjk)∑M

m=1 cjmf (yt;µjm,Σjm)

]
(12)

which is the probability of being at regime j at time t with the kth mixture accounting for yt. The term
γt(j, k) generalizes to the standard γt(j) in the case of a simple mixture (or a discrete density).

Moreover, the following weighting function, the ratio of the probability that the Yt−τ+θ observation is
generated by the kth element of the jth mixture distribution to the overall probability that it is generated
by the jth mixture distribution, is required for the estimating equations of the means and variances of the
mixtures:

wθ =

 cjkf
(
yt−τ+θ | µjk, σ2

jk

)
∑M
m=1 cjmf

(
yt−τ+θ | µjm, σ2

jm

)
 . (13)

(a) Mixing probabilities:

ĉjk =
∑T
t=1 γt(j, k)∑T

t=1

∑M
m=1 γt(j,m)

(14)

(b) Mean of a mixing distribution:

µ̂jk =

∑T−1
t=1

∑
τ≤t αt−τ (i)Aijdj(τ ; zt−τ )

∏τ
θ=1 bj (yt−τ+θ)βt(j)

∑τ
θ=1 wθyt−τ+θ∑T−1

t=1

∑
τ≤t αt−τ (i)Aijdj(τ ; zt−τ )

∏τ
θ=1 bj (yt−τ+θ)βt(j)τ

∑τ
θ=1 wθ

(15)
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(c) Variance of mixing distribution:

σ̂2
jk =

∑T−1
t=1

∑
τ≤t αt−τ (i)Aijdj(τ ; zt−τ )

∏τ
θ=1 bj (yt−τ+θ)βt(j)

∑τ
θ=1 wθ (Yt−τ+θ − µjk)2∑T−1

t=1

∑
τ≤t αt−τ (i)Aijdj(τ)

∏τ
θ=1 bj (yt−τ+θ)βt(j)τ

∑τ
θ=1 wθ

(16)

Compared with Hidden Markov Models without explicit duration specification, the difference in the
estimation formulae lies in considering the sum of the observations only for the period that the hidden chain
stays in the particular regime. This is required for the correct determination of the mean; if the state does
not change, more observations are generated according to its observation distribution and thus should be
incorporated in the mean and variance estimates. Given the mixture approach, the observations also need
to be weighted according to their probability of belonging to the particular element mixture (wθ). The
existence of the duration τ is included in the denominator (the number of the extra observations) in order
to average over the extra observations due to the chain remaining in the same state. The number of these
observations should also be weighted accordingly using the weighting function wθ, so as to find the effective
number of observations, within each duration τ , that have been generated by the particular element of the
mixture distribution.

2.2.3 Estimation of the parameters for the duration model dj(τ).

Imposing the bull market regime to be the regime with the higher mean, identification of the remaining
parameters is assured. The parameters to be estimated are the regression coefficients κj and the standard
deviation ζj . The estimating equations will be derived by taking the derivatives of the complete likelihood
(L (Y1:T | λ) with respect to each of the parameters and setting them equal to zero. Thus,

ϑL
ϑκj

= 0 (17)

ϑL
ϑζj

= 0 (18)

which will yield, using (9), the following relations:

T∑
t=1

∑
τ≤t

n∑
i=1,i6=j

αt−τ (i)Aij
ϑdj(τ ; zt−τ )

ϑκj

τ∏
θ=1

bj (yt−τ+θ)βt(j) = 0 (19)

T∑
t=1

∑
τ≤t

n∑
i=1,i6=j

αt−τ (i)Aij
ϑdj(τ ; zt−τ )

ϑζj

τ∏
θ=1

bj (yt−τ+θ)βt(j) = 0 (20)

Notice that the second summation over the states disappears; the duration model for each regime j

depends only on the parameters κj , ζj . The summation over time is due to fact that the derivative over
a product is taken. Thus, in order to write the estimating equations for the parameters, we need to write
down the partial derivatives of the duration distributions with respect to those, i.e. ϑdj(τ ;Z)

ϑκj
and ϑdj(τ ;Z)

ϑζj
:
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ϑdj(τ ;Z)
ϑκj

=
ln τ − κ′jZ

ζ2
j

1
τ
φ

(
ln τ − κ′jZ

ζj

)
Z (21)

ϑdj(τ ;Z)
ϑζj

=

(
ln τ − κ′jZ

)2
ζ3
j

1
τ
φ

(
ln τ − κ′jZ

ζj

)
. (22)

We notice that the parameters of interest can not be isolated from the derivative functions so as to obtain
the estimating equations as a part of the Baum-Welsh iterative procedure. Thus, a numerical estimation will
be necessary so as to retrieve the parameter values κj , ζj and use them as inputs to the iterative algorithm.
This is the reason that it is not plausible to use Yu and Kobayashi (2003) efficient algorithm for estimating
an explicit duration Hidden Markov Model. In their paper, a more efficient algorithm to estimate duration
HMM models is proposed but it requires the duration probabilities to be discrete and to be estimated as
part of the iterative procedure.

2.2.4 Numerical Instability

Although the recursive formulae given in the previous sections are correct, they suffer from the numerical
problem that αt(i), βt(i) tend to zero as t increases. The reason is that in the iterations presented, the
quantities are recursively multiplied with lower than unity variables. If the sample size is large, then this
quantity will tend to zero. Thus, it is necessary to introduce adjustments to the formulae to keep these
probabilities within the limited dynamic range of the computer.

This paper follows the Devijver and Dekesel (1988) approach to handling this issue. They proposed
to replace the joint probabilities in the definitions of the forward and backward probabilities with the a
posteriori, probabilities (α

′

t(i), β
′

t(i),) i.e

α
′

t(i) = P (Xt = i | y1:T ) (23)

β
′

t(i) =
P (yt+1:T | Xt = i)
P (yt+1:T | y1:T )

(24)

This replacement leads to the following new recursive relations:

α
′

t(i) =
αt(i)∑n
j=1 αt(j)

(25)

β
′

t(i) =
βt(i)∑n
j=1 αt(j)

(26)

These adjusted forward and backward probabilities should be used in the forward and backward recur-
sions. This weighting scheme results in the following changes in the recursions:

• Forward recursion:

αt(j) =
∑
τ≤t

n∑
i=1,i6=j

α
′

t−τ (i)Aijdj(τ ; zt−τ )

[
τ−1∏
θ=1

qt−τ+θbj (yt−τ+θ)

]
bj (yt) (27)

9



• Backward recursion:

βt(i) =
∑

τ≤T−t

n∑
j=1,j 6=i

Aijdj(τ ; zt)

[
τ−1∏
θ=1

qt+θbj (yt+θ)

]
bj (yt+τ )β

′

t+τ (j) (28)

where:

qt =

 n∑
j=1

αt(j)

−1

(29)

The adjusted forward and backward probabilities are subsequently used in the updating functions of the
model parameters. Once more, the weighting scheme needs to be considered. For example, the updating
equation for the transition probabilities becomes:

Âij =

∑T−1
t=1

∑
τ≤t α

′

t−τ (i)Aijdj(τ ; zt−τ )
[∏τ−1

θ=1 qt−τ+θbj (yt−τ+θ)
]
bj (yt)β

′

t(j)∑T−1
t=1 α

′
t(i)β

′
t(i)/qt

(30)

2.3 Computation of standard errors and Recovering the sequence of states

The standard errors of parameter estimates are obtained using the Dietz and Böhning (1996) approach 4.
This approach is based on the result that in large samples from regular models for which the log likelihood
is quadratic in the parameters, the likelihood ratio and the Wald test for the significance of an individual
parameter are equivalent, implying that the deviance change, which is twice the change in log likelihood
on omitting one variable, say λi, is equal to the square of the t-statistic. Thus the standard error can be
calculated as the absolute value of the parameter estimate divided by the square root of the deviance change,

s.e.(λi) =
| λi |√

2 (lλ − lλ¬i
)
, (31)

where lλ is the unrestricted log-likelihood, and lλ¬i
is the log-likelihood for the model with the parameter λi

being equal to zero.
It is important to emphasize that estimates of the covariance matrix of the MLE based on expected or

observed information matrices are guaranteed to be valid inferentially only asymptotically.
The final step in model estimation is to reconstruct the sequence of the unobserved regimes. It should

be clear that for all but the case of degenerate models, there is no “correct” sequence to be found. Hence,
for practical situations, an optimality criterion is usually employed to solve this problem (there are several
reasonable optimality criteria that can be imposed).In this paper, the identification of the bull and bear
markets is done by what is known as Bayesian Segmentation. This approach assigns data points to regimes
according to probabilistic arguments for the likelihood of data point(s) belonging to a particular regime.

One potential way to do this is by employing the Maximum Posterior Mode (MPM) approach. This
approach reconstructs the regime sequence by allocating at each time point the regime that it is more
probable, given the observations and the model, i.e.

4Even though there exists other potential methods, Aittokallio et al. (1999),Aittokallio and Uusipaikka (2000) and Visser
et al (2000), for estimating the standard errors, their application for the model proposed in this paper is computationally
prohibiting.
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x̂t = arg max
i=1,...,n

γt(i), 1 ≤ t ≤ T (32)

Although this criterion maximizes the expected number of correctly identified regimes, there could be
some problems with the resulting state sequence (the “optimal” state sequence may, in fact, not even be a
valid state sequence). This occurs because MPM determines the most likely regime at every instant, without
regard to the probability of sequences of regimes. Nevertheless, since the quantity γt(i) is readily available
by being calculated at each iteration step, the MPM criterion is simpler to be employed.

3 Data

Monthly returns from 1953:04 to 2007:08, from the Center for Research in Security Prices (CRSP) value-
weighted portfolio for the New York Stock/American Exchange, are considered for the application of the
model, a total of 653 observations.

The short term interest rate, defined as the three-month treasury bill secondary market rate, and the
interest rate spread, defined as the difference between the ten-year treasury constant maturity rate and
the short-term interest rate, are used as the explanatory variables in the duration function specification.5

Interest rates have been widely documented to closely track the state of the business cycle and appear to be
a key determinant of stock returns at the monthly horizon (Fama and French 1989, Whitelaw 1994, Pesaran
and Timmermann 1995).

The use of short-term interest rates is an attempt to capture short-run economic outlook information
in state durations. On the other hand, interest rate spread, which can be interpreted as the expectation of
future rates corresponding to the period of two maturities, has been proven to have a considerable predictive
ability for future economic activity, especially for longer forecasting horizons (Estrella and Hardouvelis 1991,
Estrella and Mishkin 1995). This permits us to incorporate a determinant in the state duration function
that contains information regarding longer periods in the future.

Figure 1 plots the monthly series for the stock market returns, and Figure 2 the interest rates and the
interest rate spread. Table 1 provides the descriptive statistics for all variables into consideration. 6 Focusing
on the distributional properties of the returns, we confirm stylized facts about stock index returns: a) there
exists asymmetry, and b) there is excess kurtosis, compared with the normal distribution. These results
indicate, as has often been observed, that stock market returns deviate from normality; the Jarque-Bera test
is also indicative of this observation. Therefore, the use of mixtures of normal distributions for the analysis
for the observations’ distributions is not unreasonable 7.

4 Results

The duration HMM (DHMM) is estimated for the case of two regimes for the stock market, i.e. we attempt
to identify the bull and bear market regimes. The number of mixtures for the observation distributions, M ,

5Data for the interest rates were obtained by the Board of Governors Federal Reserve System (FRED II).
6Interest rates and interest rates spread are expressed in percentages.
7Of course, the deviation of stock market returns from normality could also be attributed to the existence of nonlinear

dynamics.
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was assumed to be equal to 3. This number is considered to be sufficient for the mixture to capture the
existing asymmetry and fat tails in the data.

Three models are considered for comparison purposes. The first assumes an Autoregressive model of
order one (AR(1)) for the stock market returns with the innovations following a GARCH(1,1) process. The
second model considers that the conditional mean of the stock market returns is a linear function of the
short-term interest rates and of the interest rate spread, whereas the conditional variance is model similarly
to the AR case as a GARCH(1,1). These two time series models are not related to DHMM. For model 2,
the explanatory variables are used for determining the stock market returns and not the durations of the
regimes as in DHMM. Regardless, these two simple models can be set as a minimum benchmark for the
model to compare with.

• Model 1:

rt = c0 + c1rt−1 + εt, εt =
√
htvt (33)

ht = b0 + α1ε
2
t−1 + β1ht−1, vt ∼ i.i.d(0, 1) (34)

• Model 2:

rt = c0 + c1it + c2st + εt, εt =
√
htvt (35)

ht = b0 + α1ε
2
t−1 + β1ht−1, vt ∼ i.i.d(0, 1) (36)

where rt is the stock market return, it is the T-Bill rate (in %), and st is the interest rate spread (in %).
The third model is a standard Markov Regime Switching model (MRS), with time-homogeneous prob-

ability transition matrix. Two regimes are assumed, and the bull market is assumed to be the identified
regime with the higher mean. In this case, results are more comparable: in terms of the distributional
characteristics of the regimes, of the reconstructed regime sequence, and of the implied expected durations.

The results from the estimation of the duration HMM and of the alternative 3 models are presented in
Tables 2 to 6, and they can be summarized as follows:

• The distributional characteristics for each regime, as implied by the estimated mixtures, are reported
in Table 4. The bull market is identified as the regime with the higher mean and the lower variance for
the observations’ distribution,i.e. regime 1; the bear market is identified as having a lower mean but a
higher variance compared to the bull market, i.e. regime 2. The standard deviation of the bear market
is almost twice the standard deviation of the bull market: bear markets are generally associated with
higher variability. The results obtained by the DHMM are similar to those obtained by the MRS. The
difference in the log-likelihood values suggests that the DHMM is preferable to the MRS model.

• The results for the elements of the mixtures are reported in Table 3. Although the assumption of a
finite mixture of Normal distribution was made in order to allow capturing potential asymmetries or
fat tail behavior of the data within each state, the implied distributional characteristics for each regime
(Table 4) suggest that this was not necessary. The estimated mixtures do not exhibit asymmetries or
fat tails; the Jarque-Bera statistic fails to reject normality at any conventional significance level. That
is, the Hidden Markov structure itself seems to have captured adequately the asymmetries and fat-tails
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presented in financial data; these features follow from the estimated representation. Thus, simpler
distributions, like simple Normals, could have been assumed for the observations’ distributions. This
is also in line with the existing Regime Switching literature where the data nonlinearity is mostly
captured by the Regime Switching structure. Regardless, as it was suggested in previous sections, the
value of M sets an upper bound for the number of mixtures, and overfitting is not a problem when
the just density is of interest. However, it is true that this adds increased computational burden in
the model. Regardless, it is the author’s view that it is safer to always perform the estimation using a
mixture. Furthermore, if estimation takes place using a single Normal distribution instead of a mixture,
the results regarding the distributions of the regimes and the duration parameters are very similar.

• Estimation results for Models 1 and 2 are tabulated in Table 6. The explanatory variables entering
the conditional mean specifications are found to be insignificant, but there is strong evidence in favor
of the conditional variance specification. Regardless, the difference with the DHMM in terms of the
log-likelihood is large, pointing to DHMM being a more favorable model than Model 1 or Model 2.

• The estimates for the duration parameters suggest adverse effects for the short-term interest rates and
the interest rate spread. When the state enters a bull market regime, higher short-term interest rates
will have a negative effect in the state duration. This may be explained by changes in portfolio holdings
with shifts towards the risk-free asset when its returns are increasing. By contrast, a higher interest
rate spread, which has been advocated as a signal for future economic activity, points to a larger
duration for the bull market. The same reasoning applies to the effects of these variables in the bear
market duration. When the future economic outlook is favorable, as suggested by the higher interest
rate spread, there is a positive impact on the stock market in the long-run, leading to a reduction in
the duration of the bear market regime.

• The estimated quantitative effects of the short-term interest rate and the interest rate spread on the
duration of the different regimes are: a) for bull markets, an increase in the T-Bill rate of 1% will
lead to a 21% reduction in the state duration, whereas a 1% increase in the spread will lead to a 24%
increase in the duration, and b) for the bear markets,an increase in the T-Bill rate of 1% will lead
to an approximately 10% increase in the duration, whereas a 1% increase in the spread will lead to a
6% decrease in the duration. For example, a 25 basis point reduction in the federal funds rate that
will translate in an approximate reduction of 25 basis point in the T-Bill rate, all other things being
equal, will have prolonged an expected bull market duration by a total of approximately 8.5% 8. On
the other hand, such a decrease will lead to a decrease by only 4% of the duration of a bear market.
Thus, a decrease in the short-term interest rate has a more pronounced effect in the duration of the
bull market compared to the bull market.

The reconstructed state sequence is depicted in Figure 3. The positive bar corresponds to the bull market
regime, whereas the negative bars correspond to the bear market regime. In the same figure, two more
depictions of the bull and bear markets exists. The first is the filtered probabilities of the bull market regime
according to the Markov Regime Switching Model. A value higher than 0.5, which is the usual threshold in

8The total effect is the sum of 6%, which is the direct effect in the change in the short-term interest rates assuming the
change in the FED rate pass completely in the 3-month T-Bill rate, and of 2.5%, which is the indirect change in the interest
rate spread.
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the literature, indicates the respective data point belongs to the bull market regime. The second corresponds
to the Lunde and Timmermann (2004) data-based filtering for the identification of the bull and bear stock
market. Following Maheu, McCurdy and Song (2010), this is employed so as to compare the reconstructed
regime sequence of my model with the sequence provided by a data-based algorithm that does not allow for
endogenous regime identification. The algorithm was implemented with a common threshold value for peaks
and troughs of 0.2 (see the Appendix for a more detail description of their algorithm).

Given Figure 3, the following remarks can be made:

• The resulting bull and bear stock market regimes are in line with the general consensus. For example, it
captures the bear market after the first oil crisis, the bull market after the beginning of 80’s coinciding
with President Reagan’s administration and the subsequent economic growth. Moreover, the boom
period for the stock market during the 90’s is also well captured by the model. The bear stock market
in the middle of the 80’s contains the October 1987 stock market crash and the aftermath. However,
it is interesting to notice that the stock market entered in a bear regime in the beginning of 1987, even
before the crash. One more consideration should be noted. Even though the particular state sequence
is one of many possible sequences (see discussion in section 2.5) and it depends on the choice of the
Bayesian Segmentation method, it is still the outcome of the model’s identification of the characteristics
of the bull/bear markets. Different outcomes will have yielded different paths.

• Compared to the identified regimes obtained from the simple Markov Regime Switching model, there
seem to be small difference. Regardless, the expected durations according to the MRS are 30 months
for the bull market regime and 17 for the bear market, whereas for the case of the DHMM, it is inferred
that durations were, on average, 42 and 25 months for the bull and the bear market respectively.

• Compared to the Lunde and Timmermann (2004) identified markets, the DHMM suggests that during
the period under examination there were more switches between regimes. Furthermore,the switches
according to the data-based rule seems to occur before the switches from either the DHMM or the
MRS take place.

5 Conclusion

In this paper, I have proposed a Duration Hidden Markov Model structure for modeling processes with two
or more regimes. The model combines a time-homogeneous Hidden Markov Model structure, which allows
for the endogenous identification of the regimes, with an explicit functional specification for the duration of
each regime. Durations are considered to be random variables that depend on a set of explanatory variables,
whose values are available at the time that the transition from one regime to another takes place. The
functional form for the duration specification does not alter across regimes, but the parameters are allowed
to differ.

The advantages of the model compared with the Markov regime switching currently dominant in the
literature in economics are: a) the direct modeling of the expected duration of the different regimes by
the introduction of covariate-dependent regime durations in the Hidden Markov Model, b) the analysis of
the impact of these covariates in regime’s durations and the corresponding policy implications, and c) the
consideration of a more general distributional form for the observations’ distributions.
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The issues of the estimation of the parameters and the derivation of their standard errors were discussed.
The numerical instability issues were addressed by the adjustment of the forward and backward recursions.
The procedure for obtaining forecasts by this model, which is based on simulating a number of paths, was
developed. The model was subsequently applied in New York monthly stock market returns. The short-term
interest rate and the interest rate spread, i.e. the difference between long-term interest rates and short-term
interest were used as the explanatory variables for the regime’s duration in order to capture the short-run
and the long-run economic outlook.

In applying the model, I identified a bull market regime in which returns have a higher mean and lower
variance, versus a bear market regime with lower mean returns and higher variance. Both the results from the
reconstruction of the historical sequence of the states, and the estimated effect on duration of the explanatory
variables were in accordance with intuition. An increase in the short-term interest rate decreases the duration
of the bull market regime and increases the duration of the bear market regime. On the contrary, an increase
in the interest rate spread leads to a higher duration for the bull market and a lower one for the bear market.
Furthermore, the model appears to be a better fit for the data when compared with alternative models,
including a simple Markov Regime Switching model. The results for the regimes durations not only suggest
the ability of policy makers to influence the durations of the bull and bear market regimes by changing
the short-term interest rates, which also indirectly affects the interest rate spread, but provide quantitative
estimates of impacts. A reduction of 25 basis points in the federal funds rate, and in effect in the T-Bill
rate, is estimated to increase by 8.5% the duration of a bull market and to reduce by 4 % the duration of a
bear market. This feature of the model has significant policy implications for central bankers and investors
as well.

This duration model suggests that the bull/bear regime durations can be quantified, and adjustments
can be made by indirectly changing the short-term interest rates via the federal funds rate. Thus, if the
concern is to prevent a prolonged period of bear markets, reduction of interest rates should be eminent so
as to reduce the duration of the bear regime, and more should be done more aggressively compared to a
situation that the prolonging of a bull market is desirable. Nevertheless, it should be noted that only the
duration can be affected; if the economy is weak, as evidenced by a negative spread the duration of a bear
market may still be considerable.

On the investors’ side, the importance in determining the durations of the two regimes lies in the optimal
timings of their investments. It should be expected that long or short positions on the market would be
taken accordingly to anticipation of entering a bull or bear regimes. The timing of such actions depends
upon the durations of the regimes. In anticipation of a reduction in the interest rate by the FED so as to
reduce the duration of a bear market, investors can rebalance their positions by reducing the duration of
their short positions or by entering long in the market.
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A Lunde Timmermann (2004) data-based algorithm

This algorithm identifies bull and bear markets using a cumulative return threshold to locate peaks and
troughs moving forward. Maheu, McCurdy and Song (2010) provide a more detailed exposition of the
algorithm compared to the one provided in the original paper. According to their description, the algorithm
can be summarized as follows:

Begin by defining a binary market indicator variable It. This variable will take the value 1 if the stock
market is in a bull state at time t, and 0 if it is in a bear state. The stock price at the end of period t is
denoted by Pt. Denote by λ1 and λ2 two scalars defining the thresholds of the movements in stock prices:
the first triggers a switch from a bear to a bull market, and the second triggers a switch from a bull to a
bear market.

Now, suppose that the stock price is at a local maximum at time t0, in which case it is set that Pmaxt0 = Pt0.

1. Define the following stopping-time variables associated with a bull market as

τmax
(
Pmaxt0 , t0 | It0 = 1

)
= inf{t0 + τ : Pt0+τ ≥ Pmaxt0 } (37)

τmin
(
Pmaxt0 , t0 | It0 = 1

)
= inf{t0 + τ : Pt0+τ ≤ (1− λ2)Pmaxt0 } (38)

2. Thenmin (τmax, τmin) is the first time that the price process crosses one of the barriers {Pmaxt0 , (1− λ2)Pmaxt0 }.
Consider two cases:

• If τmax < τmin bull market continues, update the local maximum to Pmaxt0+τmax
= Pt0+τmax

, and
set It0+1 = · · · = It0+τmax

= 1. Go to step 1 directly above.

• If τmax > τmin, so that the stock price at t0 + τmin has declined by a fraction λ2 since its local
peak, a trough is found at time t0 + τmin: a bear market occurred from time t0 + 1 to t0 + τmin,
i.e. It0+1 = · · · = It0+τmin

= 0. Record the value Pmint0+τmin
= Pt0+τmin

, and mark the original
time t0 as one peak. Go to step 1 for the bear market.

Now, suppose t0 was a local minimum Pmint0 = Pt0.

1. Similarly to before, stopping-time variables associated with a bull market can be defined according to

τmin
(
Pmint0 , t0 | It0 = 0

)
= inf{t0 + τ : Pt0+τ ≤ Pmint0 } (39)

τmax
(
Pmint0 , t0 | It0 = 0

)
= inf{t0 + τ : Pt0+τ ≥ (1 + λ1)Pmint0 } (40)

2. As before, two cases can be considered:

• If τmin < τmax bear market continues, update the trough point forward, and update the local
minimum to Pmint0+τmin

= Pt0+τmin , and set It0+1 = · · · = It0+τmin = 1. Go to 1 directly above.
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• If τmin > τmax a peak is found at time t0 + τmax: a bull market occurred from time t0 + 1 to
t0 + τmax, i.e. It0+1 = · · · = It0+τmax = 1. Record the value Pmaxt0+τmax

= Pt0+τmax , and mark the
original time t0 as a trough. Go to step 1 for the bull market.

The process is repeated until the last data point. This definition of bull and bear states partitions the
data on stock prices into mutually exclusive and exhaustive bull and bear market subsets based on the
sequences of first passage. A range of values for λ1 and λ2 can be considered: smaller values will lead to
more bull and bear market regimes, but if they get too small, they will tend to capture short-term dynamics
in stock price movements (see Lunde and Timmermann 2004). A conventional value used in the financial
press is 0.2 for both thresholds.
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B Tables

B.1 Data Descriptive Statistics

Stock Returns % T-Bill Rate % Contract Rate % Spread %
(%) (3 month) (10 year)

mean 0.996 5.124 6.475 1.351
standard deviation 4.215 2.799 2.683 1.186

skewness -0.478 1.106 0.932 -0.044
kurtosis 5.066 6.817 3.610 -2.812

min -22.534 0.640 2.290 -2.650
max 16.558 16.300 15.320 4.420

J-B stat 140.956 223.114 104.668 1.169

Table 1: Descriptive Statistics
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B.2 Estimation Results

Model DHMM MRS
Regime 1 2 1 2

π 0.6475 0.3525 0.6392 0.3608
A
1 0 1 0.9671 0.0329
2 1 0 0.0583 0.9417

Table 2: Markov Chain Results: DHMM vs Markov Regime Switching

Regime 1 2 1 2 1 2
mixture

Mixing Prob. Means Standard Deviations
1 0.276126 0.149811 2.076026 5.460774 3.804402 0.843793
2 0.190312 0.777897 2.975791 -1.08153 1.439625 5.191445
3 0.533562 0.072291 0.241948 9.492694 2.718696 4.932934

Table 3: DHMM: Estimates of Finite Mixture of Normals

Regime Mean Standard Deviation Skewness Kurtosis J-B test* Log-Likelihood
Duration HMM

1 1.2687 3.1035 0.0123 0.3764 0.2856 1172.114
2 0.6630 5.8552 0.0415 0.0376 0.9609

Markov Regime Switching
1 1.3766 3.0843 1170.086
2 0.3410 5.6159

*: p-value

Table 4: DHMM vs MRS: Characteristics of Bull & Bear Markets

22



Regime 1 2
parameter Coefficient Std. Error Coefficient Std. Error

κj1 4.0182 (0.8232) 2.647 (1.4291)
κj2 -0.21 (0.1301) 0.10599 (0.2079)
κj3 0.2405 (0.4017) -0.06702 (0.6962)
ζj 0.9175 0.8266

Table 5: DHMM: Duration parameters results

Model 1 Model 2
Coefficient Std. Error Coefficient Std. Error

Mean Equation
Const 0.00991 0.00154 Const 0.00971 0.00452
AR(1) 0.05170 0.04170 it -0.06408 0.06178

st 0.26085 0.14578
Variance Equation

Const 7.32E-05 3.39E-05 Const 7.87E-05 3.57E-05
α1 0.101 0.0268 α1 0.0993 0.0265
β1 0.863 0.0312 β1 0.8606 0.03201

Log-Likel. 1162.971 Log-Likel. 1163.797

Table 6: Time Series Models Results
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C Figures

Figure 1: NYSE/AMEX Returns Plot
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Figure 2: Interest Rates and Interest Rate Spread Plot
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Figure 3: Reconstruncted States Sequences
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