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Abstract

We study the risk premium and leverage e¤ect in the S&P500 market using the stochastic

volatility-in-mean model of Barndor¤-Nielsen & Shephard (2001). The Merton (1973, 1980)

equilibrium asset pricing condition linking the conditional mean and conditional variance of

discrete time returns is reinterpreted in terms of the continuous time model. Tests are per-

formed on the risk-return relation, the leverage e¤ect, and the overidentifying zero intercept

restriction in the Merton condition. Results are compared across alternative volatility proxies,

in particular, realized volatility from high-frequency (5-minute) returns, implied Black-Scholes

volatility backed out from observed option prices, model-free implied volatility (VIX), and

staggered bipower variation. Our results are consistent with a positive risk-return relation and

a signi�cant leverage e¤ect, whereas an additional overidentifying zero intercept condition is

rejected. We also show that these inferences are sensitive to the exact timing of the chosen

volatility proxy. Robustness of the conclusions is veri�ed in bootstrap experiments.

JEL Classi�cations: G13, L12.

Keywords: Financial leverage e¤ect, implied volatility, realized volatility, risk-return relation,

stochastic volatility, VIX



1 Introduction

The relation between risk and return is central to �nancial economics. Asset pricing theory

predicts a positive risk-return tradeo¤. Empirically, conditional �rst and second moments of

asset returns are time-varying, and this must be accounted for when testing the risk-return

relation. Empirical research also documents a strong �nancial leverage e¤ect that potentially

makes it more di¢ cult to identify the risk-return relation. Thus, according to the Black (1976)

explanation of the leverage e¤ect, a price drop increases the debt-equity ratio and hence ex-

pected risk. The increase in risk would in turn increase expected returns in case of a positive

risk-return relation. Depending on whether the empirical researcher associates the increase

in risk with the initial price drop (negative return) or manages to link it to the higher sub-

sequent (expected) returns, the apparent empirical risk-return relation may be of either sign.

This highlights the identi�cation issue, and may suggest why the empirical literature tends to

show mixed results on the signi�cance and sign of the risk-return relation. Evidently, further

analysis should be carried out in a model that in addition to the risk-return relation explicitly

accommodates a separate leverage e¤ect.

Consider a standard representation of the risk-return relation given by

Et�1rt = �+ 
V art�1(rt): (1)

Merton (1973, 1980) derives this as an equilibrium condition. In the Merton model, the slope


 is an average relative risk aversion parameter across investors. Furthermore, the equilibrium

conditions imply a zero restriction on the intercept � in the risk-return relation. Empirical

testing requires a model for computing the conditional �rst and second moments of returns,

and, as already argued, this model should allow for leverage. In the present paper, we use the

Barndor¤-Nielsen & Shephard (2001) (henceforth BNS) model since this includes a leverage

e¤ect, along with a risk-return relation and time-varying conditional moments, and is consis-

tent with a number of additional stylized facts that characterize asset returns. These include

volatility clustering, semi-heavy-tailed non-normal return distributions with skewness and ex-

cess kurtosis, and aggregational Gaussianity, i.e., the normal approximation improves as the

observation frequency is reduced. Furthermore, the model allows explicit calculation of joint

conditional and unconditional moments, thus facilitating explicit estimating equations, closed
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form parameter estimators, highly tractable option pricing formulas, etc.. In spite of this, the

model has rarely been applied. Indeed, it has not been used in a systematic study of the risk

premium and leverage e¤ect.

The basic structure of the BNS continuous-time stochastic volatility-in-mean model is

dXt =
�
�� + 
��2t

�
dt+ error; (2)

where Xt is the log-price and �t is the stochastic volatility that is seen to enter into the drift

of this continuous-time model, and where the error term in addition to stochastic volatility

includes the leverage e¤ect. Our interest is in testing for a positive risk-return relation, 
 > 0,

and the overidentifying equilibrium condition � = 0 in (1). In this paper, we show that this is

not quite equivalent to testing both hypotheses on the corresponding BNS model parameters 
�

and ��. We derive the relevant hypotheses in terms of the stochastic volatility-in-mean model.

We then present the explicit closed-form estimators and implement the relevant hypothesis

tests in an application to Standard and Poor�s 500 index futures, associated futures options,

and the VIX index.

Recent literature documents strong persistence, to the point of possible long memory or

fractional integration, in volatility. Christensen & Nielsen (2007) use a model with long memory

in volatility and �nd a strong leverage e¤ect in monthly data, using either realized volatility

or option implied volatility, whereas the risk premium is positive and signi�cant in some of the

speci�cations. Since long memory in volatility would spill over into long memory in returns

through a risk-return relation of the Merton type, and since long memory in returns is not

empirically warranted, Christensen & Nielsen (2007) modify the risk-return relation to depend

on changes in volatility rather than volatility levels, following Ang, Hodrick, Xing & Zhang

(2006). The BNS model on the other hand is able to capture strong serial dependence in

volatility without being of the long memory type. Hence, in the present paper we use the BNS

model along with the unmodi�ed Merton risk-return relation: The risk premium depends on

volatility levels, not volatility changes.

The paper is laid out as follows. Section 2 describes the continuous-time stochastic volatility-

in-mean model. Section 3 introduces the discrete time framework and provides the link be-

tween the stochastic volatility-in-mean model and the Merton asset pricing conditions. Section
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4 presents the estimating equations. Section 5 discusses data and summary statistics. Estima-

tion results are discussed in Section 6, and Section 7 concludes.

2 The Continuous-Time Stochastic Volatility-in-Mean Model

Let Pt be the price of a �nancial asset at time t and let Xt = logPt denote the log price. We

consider the continuous-time stochastic volatility-in-mean model given by

dXt =
�
�� + 
��2t

�
dt+ �tdZ

1
t + �dZ

2
�t (3)

d�2t = �(� � �2t )dt+ dZ2�t

where �t is the stochastic volatility, and the increments dZ1 and dZ2 to the two indepen-

dent underlying stochastic processes are mean zero, stationary, and serially independent. The

presence of the increment from the volatility equation in the return equation, with coe¢ cient

�, accommodates the leverage e¤ect, the case � < 0. The BNS speci�cation is that Z1t is a

standard Wiener process generating continuous sample path movements in the log price, and

it is these Wiener increments that are scaled by the stochastic volatility �t. The speci�ca-

tion allows that the instantaneous variance �2t enters the drift, with a slope coe¢ cient 

�, and

the constant portion of the drift is denoted ��. In short, the return equation is a stochastic

volatility-in-mean speci�cation, with a leverage e¤ect.

Turning to the volatility speci�cation, the second equation in (3), this is of mean-reverting

(Ornstein-Uhlenbeck, or OU) type, with rate of mean reversion � for the instantaneous variance

�2t , and unconditional mean or target for mean reversion given by �. The BNS speci�cation is

that of a non-Gaussian OU-process. Thus, Z2 is not a standard Wiener process, but another

time-homogeneous Levy process, also known as a subordinator, i.e., a process with independent

and stationary increments. A Wiener process for Z2 would imply negative variances �2t with

positive probability. The subordinator speci�cation implies that Z2 has positive jumps, and

although the drift of �2t can be negative, it turns positive when �
2
t gets su¢ ciently small, and

volatility never becomes negative.1 By running the subordinator according to time index �t

1We work with a zero mean process, i.e., Z2t = eZ2t � �t, in terms of the standard subordinator (or background
driving Levy process) eZ2t from BNS, with positive mean �t. The drift ��dt of Z2t is o¤set by the �rst term in
the drift of �2t , and the second term in the latter, ���2tdt, becomes small with �2t . Note that the unconditional
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instead of just t (e.g., large � means running the process faster), the OU structure implies that

the unconditional or invariant distribution of �2t is independent of �, and only depends on the

choice of subordinator process Z2. In fact, it is convenient to identify the subordinator Z2 by

the invariant distribution of �2t . For example, this could be the Gamma or the inverse Gaussian

(IG) distribution. If � = 0, the inverse Gaussian distribution for �2t implies a normal-inverse

Gaussian (NIG) distribution for returns, which has proved empirically relevant in some cases.

For other parameter values and subordinators, more general return distributions are obtained,

all consistent with volatility clustering, non-normal returns, and leverage (if � < 0).

We consider the parameter vector � = (��; 
�; �; �; �; �). Here, the �nal component � is a

volatility-of-volatility parameter, � = var(�2t ), which is part of the parametrization of Z
2. If

�2t follows a Gamma process, then it has an unconditional Gamma distribution with mean �

and variance �. If �2t follows an IG-OU process, then it has an unconditional IG distribution

with mean � and variance �.

In this stochastic volatility-in-mean model we test three main hypotheses of �nancial in-

terest: (i) Is 
� positive and signi�cant? We establish below that this is indeed a test on the

conditional risk-return relation in the Merton (1973, 1980) speci�cation (1). (ii) Is � negative

and signi�cant? This is testing the �nancial leverage e¤ect. (iii) We also test the additional

overidentifying zero intercept restriction on (1). We show below that this is not equivalent to

testing a zeron condition on �� in the BNS model (3). Instead, we derive the relevant test on

�.

3 The Discrete-Time Framework

In the model from the previous section, the discrete time return over a time interval of length

� > 0 is

rt;t+� = Xt+� �Xt: (4)

In our empirical work we use daily data. In early work, Merton (1980) regressed the one period

(in his case one month) return on the realized variance from higher frequency returns over the

same period. Realized variance is essentially an estimate (in the absence of jumps) of integrated

means of eZ2t and �2t coincide, at �, in the BNS model.

4



variance

Vt;t+� =

Z t+�

t
�2sds: (5)

From (1), the risk-return relation in asset pricing theory actually does not relate expected

return to integrated variance, but to the conditional variance of return,

Etrt;t+� = ��+ 
V artrt+�: (6)

To test for positive risk-return trade-o¤, 
 > 0, and the overidentifying restriction � = 0,

within the BNS framework, we thus need the relation between the parameters (�; 
) from the

risk-return relation (6) and the parameters � of the BNS model (3). To this end, we develop

the exact discrete time version of the BNS model and in this calculate the conditional mean

and variance of the discrete time returns. We then seek conditions under which the two satisfy

the equilibrium risk-return relation.

The exact discrete time model is

rt;t+� = �
��+ 
�Vt;t+� +

Z t+�

t
�sdZ

1
s + �

�
Z2�(t+�) � Z

2
�t

�
: (7)

Since Z2 and the stochastic integral with respect to Z1 are zero-mean processes, the conditional

mean return is

Etrt;t+� = �
��+ 
�Et(Vt;t+�): (8)

Thus, the conditional mean return is an a¢ ne function of the conditional mean of integrated

volatility. Comparing (8) and (6), if conditional return variance were simply given by the

conditional mean of integrated volatility, then the parameters 
 and 
� could be identi�ed with

one another, and so could � with ��. Thus, the test for positive risk-return relation could be

on the coe¢ cient 
� on the conditional mean of integrated volatility in the conditional mean

return equation (8), and the test of the Merton zero intercept condition � = 0 could be directly

on the intercept �� in (8). Of course, the conditional variance of the discrete time return does

not in fact coincide with the conditional expectation of integrated continuous time volatility,

and the tests must account for this. The following theorem provides the necessary results. The

detailed proof is in the appendix.
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Theorem 1 The relation between the parameters (�; 
) from the risk-return relation (6) and

the parameters � = (��; 
�; �; �; �; �) of the continuous-time stochastic volatility-in-mean model

(3) is given by

� =
(
�)3�

�
3� 4e��� + e�2�� � 2��

�
�2

+ 4(
�)2
�
��+ 1� e

���

�

�
��� 2
�����2 +���


 = 
�

Proof: By (7), the conditional return variance is

V artrt;t+� = V art

�

�Vt;t+� + �

�
Z2�(t+�) � Z

2
�t

�
+

Z t+�

t
�sdZ

1
s

�
= V art

�

�Vt;t+� + �

�
Z2�(t+�) � Z

2
�t

��
+ V art

�Z t+�

t
�sdZ

1
s

�
;

where we have used that integrated variance (5) is driven by Z2, and Z1 is independent of this,

so the two terms inside the variance operators are uncorrelated. Since Z2 has independent

increments, the �rst variance is a constant, not depending on state variables. The second is

computed by conditioning:

V artrt;t+� = V art

�

�Vt;t+� + �

�
Z2�(t+�) � Z

2
�t

��
+ EtV art

�Z t+�

t
�sdZ

1
s jf�2sgt+�s=t

�
+V art

�
Et

�Z t+�

t
�sdZ

1
s jf�2sgt+�s=t

��
= V art

�

�Vt;t+� + �

�
Z2�(t+�) � Z

2
�t

��
+ Et

�Z t+�

t
�2sds

�
;

and from (5) the last term is recognized as Et(Vt;t+�), so

V artrt;t+� = V art

�

�Vt;t+� + �

�
Z2�(t+�) � Z

2
�t

��
+ Et(Vt;t+�): (9)

From this and (8), both the conditional mean and the conditional variance of return are a¢ ne

in the conditional mean of integrated volatility, and the latter with unit slope. Inserting (9)
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and (8) in the the Merton condition (6) yields


 = 
�;

� = �� � 

�

�
V art

�

�Vt;t+� + �

�
Z2�(t+�) � Z

2
�t

��
:

Using the exact expressions for the relevant moments in the BNS model yields the result.

Consequently, in the continuous-time stochastic volatility-in-mean model, the equilibrium

risk-return relation holds up to a constant intercept that may be calculated in terms of model

parameters. Merton�s overidentifying zero condition on the intercept may thus be tested as a

cross-restriction on the model parameters, using the delta-rule to calculate the relevant asymp-

totic standard error. The proportionality parameter 
 in the equilibrium risk-return relation (1)

actually coincides with the slope parameter 
� from the drift speci�cation (2) of the continuous-

time model. Thus, the search for sign and signi�cance of the risk-return relation 
 in asset

pricing becomes a test on the 
� parameter in the BNS model. Finally, the test for the leverage

e¤ect is on the parameter �, and the presence of this parameter facilitates an interpretation of

any �nding of a risk-return relation as being free of contamination by leverage.

4 The Estimating Equations

In the BNS model, it is possible to carry out explicit calculation of joint moments, thus facili-

tating explicit estimating equations and closed form estimators. We follow ?. The estimation

approach uses a martingale estimating function method based on daily returns and daily volatil-

ities. Di¤erent proxies are used for the volatilities. We want to �nd an estimator for �0 using

observations X1; : : : ; Xn; �21; : : : ; �
2
n. Here, � = 1. We are interested in asymptotics as n!1.
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For that purpose let us consider the following martingale estimating functions:

G1n(�) =
Pn
k=1

�
�2t � f1(�2t�1; �)

�
; f1(v; �) = E�[�

2
1j�20 = v]

G2n(�) =
Pn
k=1

�
�2t�

2
t�1 � f2(�2t�1; �)

�
; f2(v; �) = E�[�

2
1�
2
0j�20 = v]

G3n(�) =
Pn
k=1

�
(�2t )

2 � f3(�2t�1; �)
�
; f3(v; �) = E�[(�

2
1)
2j�20 = v]

G4n(�) =
Pn
k=1

�
Xt � f4(�2t�1; �)

�
; f4(v; �) = E�[X1j�20 = v]

G5n(�) =
Pn
k=1

�
Xt�

2
t�1 � f5(�2t�1; �)

�
; f5(v; �) = E�[X1�

2
0j�20 = v]

G6n(�) =
Pn
k=1

�
Xt�

2
t � f6(�2t�1; �)

�
; f6(v; �) = E�[X1�

2
1j�20 = v]

(10)

We have the explicit expressions

f1(v; �) = e��v + (1� e��)�
f2(v; �) = e��v2 + (1� e��)�v
f3(v; �) = e�2�v2 + 2e��(1� e��)�v + (1� e��)2�2 + (1� e�2�)�
f4(v; �) = 
(1� e��)��1(v � �) + �(� + 
�)
f5(v; �) =

�

(1� e��)��1(v � �) + �(� + 
�)

�
v

f6(v; �) = 2(1� e��)��1���+��
�
e��(v � �) + �

�
+ 


�
(1� e��)2��1� + (e��(v � �) + �)((1� e��)��1(v � �) + ��)

�
(11)

Note that f1 is the conditional mean in the OU process. f2 is f1 times the conditioning

argument. f3 is the conditional second non-central moment of the OU process. It is f1

squared plus the last term, so the conditional second moment is the conditional mean squared

plus conditional variance, i.e., f1 squared plus unconditional variance � times (1 � 
21) where
the latter is the conditioning. f4 is the conditional mean return given initial variance. f5

is f4 times the conditioning argument. f6 is the conditional cross-second moment which is

the conditional covariance plus the product of the conditional means. The estimator �̂n is

obtained by solving the estimating equation Gn(�) = 0. This equation has an explicit solution
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�̂n = (�n; �n; �n; 

�
n; �n; �

�
n) given by

�n = (�
1
n � 
1n�1n)=(1� 
1n)

�n = �
(�1 + 
21n)(�1n)2 � 
21n�2n + �3n

�1 + 
21n

�n = � log((�2n � �1n�1n)=(�2n � (�1n)2))=�


�n = (�
5
n � �1n�4n)=(�n(�2n � (�1n)2))

�n =
�
� 
n�n(�(�1n)2 + �n�n(�n + (�1n)2 � �2n) + �2n)� �1n�4n + �6n

�
=(2�n�n�n)

��n =
�
� 
n(��n + �n(��n + �1n)) + �4n

�
=�

(12)

where

�1n =
1
n

nP
i=1
�2i �2n =

1
n

nP
i=1
�2i�

2
i�1 �3n =

1
n

nP
i=1
(�2i )

2

�4n =
1
n

nP
i=1
Xi �5n =

1
n

nP
i=1
Xi�

2
i�1 �6n =

1
n

nP
i=1
Xi�

2
i

(13)

and

�1n =
1
n

nP
i=1
�2i�1 �2n =

1
n

nP
i=1
(�2i�1)

2 (14)

The �rst three equations Gjn(�) = 0, for j = 1; 2; 3 contain only the unknowns �; �; � and are

easily solved. The last three equations Gjn(�) = 0, for j = 4; 5; 6 can be seen as a linear system

for the unknowns ��; 
�; �, once the other parameters have been determined. The asymptotic

distribution can be given explicitly.

5 Data and Descriptive Statistics

Our data span the period January 2, 1990, through March 30, 2007. The daily returns are

calculated as the daily log price di¤erences on the S&P 500 futures, the most heavily traded

futures contract. Our daily realized volatilities are based on linearly interpolated �ve-minute

observations (following Müller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg (1990), Da-

corogna, Müller, Nagler, Olsen & Pictet (1993), and Barucci & Reno (2002), among others)
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on S&P 500 futures prices. There is open auction CME trading from 8:30 a.m. to 3:15 p.m.

central time in S&P 500 futures, providing us with 81 high-frequency returns per day. The data

are obtained from price-data.com, which is an a¢ liate of RC Research. In addition to realized

volatility, we also consider staggered bipower volatility, a measure discussed in more detail be-

low. We also consider implied volatilities calculated from daily closing prices of at-the-money

futures options with short term to expiration. In particular, the contracts considered are calls

with between 6 and 36 days to expiration. The options follow a monthly expiration cycle. Daily

closing prices are obtained from the Commodity Research Bureau, along with strike and under-

lying prices, and expiration date. Riskfree interest rates (one-month LIBOR) are obtained from

the Federal Reserve. From these data, implied volatility is computed by inverting the futures

option formula. Finally, we also use the VIX volatility index, which is a model-free estimate

of implied volatility with 30 days to expiration. Both implied volatility and VIX are measured

at the close of the previous trading day, as they are considered forward-looking measures of

volatility over the life of the option. This produces four daily times series on returns and the

three volatility measures (realized, implied, and VIX), with 4,182 observations in each.

In order to describe our data precisely, write M + 1 for the number of evenly spaced

intra-daily observations of the index level on day t, denoted by Xt;j . The M continuously

compounded intra-daily returns for day t are

rt;j = Xt;j �Xt;j�1; j = 1; :::;M; : (15)

Realized volatility (RV) for day t is given by the sum of squared intra-daily returns,

RVt =

MX
j=1

r2t;j ; t = 1; :::; T; (16)

where T is the number of days in the sample. In our application,M = 81 and T = 4; 182. Some

authors refer to the quantity (16) as realized variance and reserve the term realized volatility for

the square root of (16), e.g. Barndor¤-Nielsen & Shephard (2001, 2002a, 2002b), but we shall

use the more conventional term realized volatility. By de�nition, RV converges to quadratic
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variation QV (t), de�ned for any semimartingale by

QV (t) = p lim

MX
j=1

(p (sj)� p (sj�1))2 ; (17)

where 0 = s0 < s1 < ::: < sM = t and the limit is taken for maxj jsj � sj�1j ! 0 as M ! 1.
Using (17), RVt in (16) is by de�nition a consistent estimator of the monthly increment to the

quadratic variation process as M ! 1 (Andersen & Bollerslev (1998), Andersen, Bollerslev,

Diebold & Labys (2001) and Barndor¤-Nielsen & Shephard (2002a, 2002b)). An important

quantity in this model is the integrated volatility (or integrated variance)

�2� (t) =

Z t

0
�2 (s) ds: (18)

In option pricing, this is the relevant volatility measure, see Hull & White (1987). Estimation

of integrated volatility is studied e.g. in Andersen & Bollerslev (1998). Integrated volatility is

closely related to QV . They coincide if � = 0. Thus RV converges to integrated variance in this

case. The nonparametric estimation of the separate continuous sample path and jump com-

ponents of quadratic variation, following Barndor¤-Nielsen & Shephard (2004, 2006), requires

the related bipower variation measure. The (�rst lag) realized bipower variation is de�ned as

BVt =
1

�21

MX
j=2

jrt;j j jrt;j�1j ; t = 1; :::; T; (19)

where �1 =
p
2=�. BVt is consistent for month t integrated volatility, the component of the

increment to quadratic variation due to continuous sample path movements in the price process,

i.e.,

BVt !p �
2�
t =

Z t

t�1
�2 (s) ds; as M !1; (20)

as shown by Barndor¤-Nielsen & Shephard (2004). In theory, a higher value of M improves

the precision of the estimators, but in practice it also makes them more susceptible to market

microstructure e¤ects, such as bid-ask bounces, stale prices, measurement errors, etc., see e.g.

Hansen & Lunde (2006) and Barndor¤-Nielsen & Shephard (2007). These e¤ects potentially

introduce arti�cial (typically negative) serial correlation in returns. Huang & Tauchen (2005)
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show that the resulting bias in (19) is mitigated by considering the staggered (second lag, i.e.

skip-one) realized bipower variation

gBV t = 1

�21(1� 2M�1)

MX
j=3

jrt;j j jrt;j�2j ; t = 1; :::; T: (21)

The staggered version avoids the sharing of the price pt;j�1 which by (15) enters the de�nition

of both rt;j and rt;j�1 in the non-staggered version (19). The staggered quantity gBV t is
asymptotically equivalent to its non-staggered counterpart BVt, and the staggered version can

be applied for robustness against market microstructure e¤ects without sacri�cing asymptotic

results.

Summary statistics are presented in Table 1. From the �rst row of the table, the mean

return is 14.56%, annualized, with a standard deviation of 16.11% for the daily returns rt.

There is very little serial dependence in returns (�rst order autocorrelation of �:64%). The
next line of the table shows that the average of the daily realized volatility measures RVt is

16.10% annualized. From the following rows, average staggered bipower variation SBVt is

slightly less, at 15.39%, as it should be, since the jumps are removed. The implied volatility

measures are higher, with V IXt at 18.73% and the option-implied IVt at 16.47%. This indicates

a negative price of volatility risk, consistent with the value of the derivatives for incomplete

market hedging purposes. The higher implied volatility from VIX than the ATM option-based

measure is consistent with the volatility smile and the former measure including out-of-the

money options. From the second column of the table, the realized measures exhibit higher

variation than the implied measures in the time series dimension, consistent with implied

volatility being a conditional expectation of subsequent realized volatility. Finally, all the

volatility measures are strongly serially dependent, even though returns are not, and the implied

measures are more strongly dependent than the realized. Among the realized measures, SBVt

shows stronger dependence than RVt, consistent with the jumps being unpredictable. Among

the imlied measures, VIX shows stronger dependence than the ATM measure, presumably

re�ecting smoothing in the former. All in all, the descriptive statistics make sense. In particular,

there is no indication that there is anything unusual about our data.
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6 Estimation results

Table 2 shows results of estimation using realized volatility RVt as the volatility proxy. The

results in the �rst column are for the case where RVt is calculated over the course of the day

covered by the return rt. Asymptotic standard errors are reported in parentheses under each

estimate. For some parameters, imposing � = 0 (no leverage e¤ect) makes a di¤erence for the

calculation of the standard error, and in these cases, the standard error imposing the condition

is reported in a separate set of square brackets underneath.

From the reported results in the �rst column of Table 2, 
� is signi�cantly positive and �

signi�cantly negative in this case. Indeed, 
� remains signi�cantly positive if � = 0 is imposed.

These �ndings indicate a positive price of risk and simultaneously a signi�cant leverage e¤ect,

and so are consistent with theory. From the last two rows of the table, the Merton zero

intercept condition is rejected, and this is so whether � = 0 is imposed or not. Here, not only

the standard error but also the point estimate of the intercept depends on whether leverage is

allowed, and the test rejects in both cases. In particular, the estimated intercept is negative,

suggesting that mean return is below its equilibrium value. In this case, the same conclusion

would have been reached if simply (erroneously) testing directly on �� (�rst line of table), and

this is so whether allowing a leverage e¤ect or not (� = 0 being imposed in the latter case).

This shows that the results using the realized volatility proxy do not lead to a con�ict between

positive risk-return tradeo¤ and leverage, or to erroneous inference from tests directly on the

intercept instead of correct tests of the Merton condition.

Turning to the Levy parameters, the reported results include parameters corresponding to

a Gamme-OU parametrization of the volatility process. Thus, �2t has an unconditional �(�; a)

distribution. The corresponding background driving Levy process (BDLP) Z2 is a compound

Poisson process with jumps arriving at rate � and exponentially distributed jump size of mean

1=a. Thus, E(�2t ) = � = �=a and var(�2t ) = � = �=a2. The results in the �rst column of

Table 2 show a strong decay rate �, a mean jump size 1=a of about .062, and a jump arrival

rate � indicating a :42 � � = :12% chance of a jump each day. All parameters are strongly

signi�cant. In the alternative parametrization, the squareroot of the estimated mean � in the

stationary distribution of �2t translates into a standard deviation of about 16%, consistent with

the summary statistics in Table 1. The unconditional variance � of �2t is estimated at .0016,
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corresponding to a standard deviation of about 4%, somewhat lower than that of the proxy in

Table 1, at 7%. The mean ��� of the BDLP is estimated at .016, and the variance 2��� at

.0019.

Next, we investigate how fragile the results are. The second column of Table 2 shows the

results of using lagged realized volatility RVt�1 as proxy instead. In this case, � changes sign

and becomes signi�cantly positive. This shows the sensitivity to the exact timing of the data.

The third column results show that if leading rather than lagging the volatility proxy, it is


� rather than � that changes sign, and now becomes signi�cantly negative. Together, the

results show that inference on 
� and � is delicate. Shifting the volatility proxy a single day

in either direction makes either 
� or � change sign and even turn signi�cant in the opposite

direction. From the last two lines, when 
� changes sign, so does the Merton intercept, and

the test rejects in the opposite direction. Even if the test should reject (as the results in the

�rst column suggest), it is little consolation if it does so for the wrong reason, and the point

estimate indicates that returns are too high rather than too low for equilibrium. Also, from

the �rst line of the second column, the BNS intercept �� changes sign and becomes signi�cant

in the opposite direction, even when 
 and � do not, hence showing that in some cases the test

directly on the intercept is not testing the Merton condition.

The last three columns of the table show the similar results for the case where the condition


� = 0 (risk is unpriced) is imposed in the estimation. The results con�rm that � turns

signi�cantly positive when the lagged volatility proxy is used. Thus, inference on the leverage

e¤ect is highly sensitive to the timing of the volatility proxy, even if the analysis does not

involve the risk-return tradeo¤.2

Table 3 shows the results using VIX instead of realized volatility. Again, lagging the volatil-

ity proxy makes � turn signi�cantly positive. The other cases have the expected pattern, with


� signi�cantly positive and � signi�cantly negative. With 
� = 0 imposed, � turns signi�-

cantly positive even when the volatility proxy is not lagged. This is consistent with the delicate

relation between 
� and �. When 
� = 0 is imposed, � takes on part of the role of 
� as market

price of risk, and turns positive in the estimation.

Table 4 shows that the results from Table 2 based on realized volatility largely hold up when

2When the pricing of risk 
� is not considered (last three columns of the table), the Merton test is also not
reported (formally, it coincides with the test on the intercept �� in the �rst row).
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using instead the alternative staggered bipower variation measure that should avoid jumps and

market microstructure noise. On the substantive side, the evidence is still against the Merton

intercept condition. Nevertheless, the results show that the two volatility proxies (with and

without jump correction) are not equivalent for the purposes of drawing economic inferences.

Table 5 show that the results from Table 3 based on VIX largely hold up when using instead

implied volatility backed out from option prices. The main qualitative di¤erence in inference is

that the leverage e¤ect disappears (indeed, � is signi�cantly positive) for the contemporaneous

(unlagged) volatility proxy IVt, even allowing that risk is priced (
� = 0 is not imposed).

Thus, smoothed VIX and direct option-based implied volatility proxies are also not equivalent

for drawing economic inferences.

To investigate the robustness of the results, we conduct a bootstrap experiment. Following

Hall (1992), studentized bootstrap con�dence intervals generally work better than those based

on the asymptotic theory. Originally introduced for i.i.d. observations by Efron (1979), the

bootstrap also applies to Markov processes, see Horowitz (2003). Andrews (2005) shows that

for stationary strong mixing Markov processes, the error in rejection probability of a parametric

bootstrap t-test is essentially the same as that for the nonparametric i.i.d. bootstrap. Masuda

(2004) shows in the context of Levy-driven Ornstein-Uhlenbeck processes that if the marginal

distribution of the volatility process admits a �nite absolute moment of some positive order,

then the process is exponentially beta-mixing. We apply the parametric bootstrap to our

stationary Markov model.

Table 6 reports bootstrap standard errors, and for comparison also includes the empirical

point estimates and asymptotic standard errors (repeated from Tables 2 and 3). The bootstrap

standard errors appear in square brackets and are based on 10,000 bootstrap samples. The

parametric bootstrap is employed, i.e., the residuals are drawn from the assumed distribution.

The residual formulas (using Euler approximation in the parametric Markov structure) for

bootstrapping with and without � = 0 imposed are in Hubalek and Posedel (2010). Here, we

assume the variance-gamma which is �nite activity, in contrast to the IG case, even though this

was not necessary for the estimation. The bootstrap standard errors in square brackets may

be compared to the asymptotic standard errors in round parentheses in the line immediately

above. In all cases, asymptotic and bootstrap standard errors are close, suggesting that the

sample size is su¢ ciently large for the asymptotic distribution to be relevant. The biggest
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di¤erence occurs for the standard error on the Merton intercept, possibly because this is based

on the delta-rule, but the di¤erence is not relevant for the qualitative inferences.

Since the higher order re�nement of the distribution requires that a pivotal statistic be

bootstrapped, we also consider p-values based on the bootstrap distribution of t-statistics,

reported in round parentheses right next to the bootstrap standard errors, but only for those

cases where testing for a zero value of the parameter in question is relevant. This is the case for

gamma*, rho, CAPMalpha. Speci�cally, when drawing each of the 10,000 bootstrap samples,

the relevant parameter is set equal to zero, all parameters (including that imposed equal to

zero in drawing the sample) are estimated. The asymptotic standard error for the parameter

in question is computed at the estimated parameter values, thus allowing the construction of

the relevant t-statistic in each bootstrap sample. The reported p-values are calculated as the

fractions of the resulting 10,000 bootstrap t-statistics exceeding the empirical t-statistic for the

parameter in question. This procedure is repeated for each of the parameters for which a test of

zero parameter value is of interest. Note that the bootstrap standard errors in square brackets

are all obtained from the same set of 10,000 bootstrap samples, whereas each p-value in round

parenthesis requires a fresh bootstrap sample, imposing the relevant zero restriction.

Finally, for robustness against possible departures from the assumed distribution, we also

consider p-values constructed in a similar fashion, but using resampling with replacement from

the empirical distribution of residuals, rather than drawing from the assumed distribution.

These semiparametric bootstrap p-values (parametric with respect to the Markov structure,

including how the null is imposed, nonparametric with respect to the residual distribution) are

reported in curly braces, right next to the parametric bootstrap standard errors and p-values.

We �nd that the semiparametric (resampling) p-values largely con�rm the full parametric

bootstrap p-values, but instead of 0% and 100% they are a little less extreme. This suggests

that there is a certain deviation between the assumed distribution and the true data generating

process, but that the di¤erence is small enough to leave our empirical approach useful.

7 Conclusion

In this paper, we study the risk premium and leverage e¤ect in the S&P500 market using the

BNS model. The Merton (1973, 1980) asset pricing condition linking the conditional mean and
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conditional variance of discrete time returns is reinterpreted in terms of the continuous time

model. Tests are performed on the risk-return relation, the leverage e¤ect, and the overidentify-

ing zero intercept restriction in the Merton equilibrium condition. Results are compared across

alternative volatility proxies, in particular, realized volatility from high-frequency (5-minute)

returns, implied Black-Scholes volatility backed out from observed option prices, model-free

implied volatility (VIX), and staggered bipower variation. Our results are consistent with a

positive risk-return relation and a signi�cant leverage e¤ect, whereas the Merton zero intercept

condition is rejected. We also show that these inferences are sensitive to the exact timing of

the chosen volatility proxy. Robustness of the conclusions is veri�ed in bootstrap experiments.
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Table 1: Summary Statistics
Variable Mean Std. Deviation Autocorr.

Return 0.1456 0.1611 �0:0064
Realized Volatility 0.1610 0.0745 0.7430

Staggered Bipower Variation 0.1539 0.0726 0.7782

VIX 0.1873 0.0628 0.9824

Implied Volatility 0.1647 0.0603 0.9432

Note: Summary statistics are reported for the daily returns and the alternative volatility
proxies.

Table 2: Realized Volatility
Parameter RVt RVt�1 RVt+1 RVt RVt�1 RVt+1

�� �22:01
(3:907)

[0:7718]

2:411
(0:8423)

[0:5245]

109:9
(4:756)

[0:5812]

53:33
(1:224)

53:33
(1:631)

53:33
(4:826)


� 2; 906
(100:6)

[20:18]

1; 964
(20:56)

[13:86]

�2; 181
(111:7)

[15:31]

0 0 0

� �11:48
(0:0227)

2:126
(0:1462)

�14:49
(0:3237)

�4:922
(0:1122)

6:559
(0:1494)

�19:41
(0:4419)

� 221:5
(8:683)

221:5
(8:683)

221:5
(8:683)

221:5
(8:683)

221:5
(8:683)

221:5
(8:683)

a 16:23
(0:9103)

16:23
(0:9104)

16:23
(0:9103)

16:23
(0:9103)

16:23
(0:9104)

16:23
(0:9103)

� 0:4206
(0:0230)

0:4208
(0:0230)

0:4206
(0:0230)

0:4206
(0:0230)

0:4208
(0:0230)

0:4206
(0:0230)

� 0:0259 0:0259 0:0259 0:0259 0:0259 0:0259

� 0:0016 0:0016 0:0016 0:0016 0:0016 0:0016

� �395:3
(35:92)

�77:07
(6:724)

1223
(116:9)

�
(�=0)

�77:48
[6:597]

�23:89
[2:038]

33:02
[2:790]

Note: Estimation results based on the realized volatility proxy.
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Table 3: Model-free VIX
Parameter V IXt V IXt�1 V IXt+1 V IXt V IXt�1 V IXt+1

�� �36:41
(0:7522)

[0:1471]

�24:35
(1:077)

[0:1370]

�28:08
(25:53)

[0:1399]

53:33
(4:175)

53:33
(4:602)

53:33
(10:62)


� 2; 299
(15:91)

[3:743]

1; 991
(22:65)

[3:570]

2; 086
(535:3)

[3:622]

0 0 0

� �12:54
(0:3126)

11:18
(0:3061)

�434:6
(0:2302)

122:6
(8:894)

135:2
(9:806)

�311:9
(22:63)

� 8:495
(1:232)

8:489
(1:232)

8:493
(1:232)

8:495
(1:232)

8:489
(1:232)

8:493
(1:232)

a 49:78
(8:788)

49:74
(8:785)

49:72
(8:782)

49:78
(8:788)

49:74
(8:785)

49:72
(8:782)

� 1:937
(0:3419)

1:935
(0:3418)

1:933
(0:3414)

1:937
(0:3419)

1:935
(0:3418)

1:933
(0:3414)

� 0:0389 0:0389 0:0389 0:0389 0:0389 0:0389

� 0:0008 0:0008 0:0008 0:0008 0:0008 0:0008

� �7:782
(1:474)

�31:83
(5:786)

�14; 150
(4;434)

�
(�=0)

�1:188
[0:1957]

�0:7725
[0:1270]

�0:8895
[0:1463]

Note: Estimation results based on the VIX volatility proxy.
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Table 4: Staggered Bipower Variation
Parameter SBVt SBVt�1 SBVt+1 SBVt SBVt�1 SBVt+1

�� �21:40
(5:476)

[0:6012]

�9:091
(0:6269)

[0:5035]

145:7
(4:259)

[0:7415]

53:33
(2:310)

53:33
(1:869)

53:33
(5:575)


� 3; 153
(148:1)

[16:60]

2; 634
(16:59)

[13:99]

�3; 897
(112:9)

[20:36]

0 0 0

� �22:77
(0:0271)

1:678
(0:2007)

�17:79
(0:4612)

�12:58
(0:2913)

10:182
(0:2358)

�30:38
(0:7029)

� 154:9
(6:524)

154:9
(6:524)

154:8
(6:524)

154:9
(6:524)

154:9
(6:524)

154:8
(6:524)

a 19:02
(1:196)

19:02
(1:196)

19:02
(1:196)

19:02
(1:196)

19:02
(1:196)

19:02
(1:196)

� 0:4507
(0:0279)

0:4509
(0:0280)

0:4508
(0:0279)

0:4507
(0:0279)

0:4509
(0:0280)

0:4508
(0:0279)

� 0:0237 0:0237 0:0237 0:0237 0:0237 0:0237

� 0:0012 0:0012 0:0012 0:0012 0:0012 0:0012

� �1; 217
(124:9)

�72:86
(7:590)

2; 103
(201:5)

�
(�=0)

�61:13
[5:670]

�35:61
[3:321]

115:7
[10:76]

Note: Estimation results based on the staggered bipower variation volatility proxy.
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Table 5: Implied Volatility
Parameter IVt IVt�1 IVt+1 IVt IVt�1 IVt+1

�� �28:36
(0:2535)

[0:2205]

�29:92
(0:2367)

[0:2239]

�31:05
(17:28)

[0:2265]

53:33
(2:490)

53:33
(2:412)

53:33
(8:048)


� 2; 655
(6:934)

[6:166]

2; 705
(6:567)

[6:248]

2; 742
(445:0)

[6:310]

0 0 0

� 1:331
(0:2216)

�0:7600
(0:2201)

�179:0
(0:2510)

42:28
(1:626)

40:95
(1:575)

�136:7
(5:254)

� 32:41
(2:488)

32:41
(2:488)

32:41
(2:488)

32:41
(2:488)

32:41
(2:488)

32:41
(2:488)

a 50:21
(4:737)

50:21
(4:737)

50:19
(4:737)

50:21
(4:737)

50:21
(4:737)

50:19
(4:736)

� 1:545
(0:1457)

1:545
(0:1457)

1:544
(0:1456)

1:545
(0:1457)

1:545
(0:1457)

1:544
(0:1456)

� 0:0308 0:0308 0:0308 0:0308 0:0308 0:0308

� 0:0006 0:0006 0:0006 0:0006 0:0006 0:0006

� �8:079
(1:019)

�3:686
(0:5138)

�9; 172
(1;771)

�
(�=0)

�4:851
[0:5010]

�5:126
[0:5294]

�5:338
[0:5515]

Note: Estimation results based on the implied volatility proxy.
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Table 6: Bootstrap

Parameter RVt (� = 0) RVt (� 6= 0) V IXt (� = 0) V IXt (� 6= 0)
�� �22:01

(0:7718)

[0:7657]

�22:01
(3:907)

[3:920]

�36:41
(0:1471)

[0:1480]

�36:41
(0:7522)

[0:7629]


� 2; 906
(20:18)

[19:86](0:00%)f0:00%g

2; 906
(100:6)

[99:74](0:00%)f0:01%g

2; 299
(3:743)

[3:723](0:00%)f0:00%g

2; 299
(15:91)

[15:98](100:00%)f0:00%g

� � �11:48
(0:0227)

[0:0225](100:00%)f93:40%g

� �12:54
(0:3126)

[0:3055](100:00%)f98:69%g

� 221:5
(8:683)

[8:608]

221:5
(8:683)

[8:675]

8:495
(1:232)

[1:254]

8:495
(1:232)

[1:237]

a 16:23
(0:9103)

[0:9137]

16:23
(0:9103)

[0:9079]

49:78
(8:788)

[9:115]

49:78
(8:788)

[9:078]

� 0:4206
(0:0230)

[0:0236]

0:4206
(0:0230)

[0:0237]

1:937
(0:3419)

[0:3503]

1:937
(0:3419)

[0:3487]

� �77:48
(6:597)

[2:744](100:00%)f100:00%g

�395:3
(35:92)

[30:88](99:87%)f78:59%g

�1:188
(0:1957)

[0:1576](100:00%)f100:00%g

�7:782
(1:474)

[1:308](80:37%)f69:54%g

Note: The table reports the results of parametric and nonparametric bootstrap experiments.
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