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Abstract

In this paper consistency and asymptotic normality of the quasi maximum like-

lihood estimator in the level-effect ARCH model of Chan, Karolyi, Longstaff and

Sanders (1992) is established. We consider explicitly the case where the parameters of

the conditional heteroskedastic process are in the stationary region and discuss care-

fully how the results can be extended to the region where the conditional heteroskedas-

tic process is nonstationary. The results illustrate that Jensen and Rahbek’s (2004a,

2004b) approach can be extended further than to traditional ARCH and GARCH

models.
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1 Introduction

After Engle (1982) initiated the literature on autoregressive conditional heteroskedastic-

ity (ARCH) and the model proved itself to be very useful in empirical applications, an

immense amount of research has been directed towards extending Engle’s original ideas

empirically as well as theoretically. Recently, Jensen and Rahbek (2004a) have provided

a very significant and pathbreaking theoretical contribution in the context of the simple

ARCH(1) process. In short, they provide a simple proof-technique on establishing the

asymptotic normality of the quasi-maximum likelihood (QML) estimator both in the sta-

tionary and the nonstationary regions of the parameter space. In this paper, we show that

Jensen and Rahbek’s (2004a, 2004b) methodology can be applied to the important level-

effect ARCH model first suggested in the influential paper by Chan, Karolyi, Longstaff and

Sanders (1992). In their level-effect ARCH model they introduce the lagged level of the

spot interest rate in the conditional variance equation. This model has subsequently been

successfully used and extended by Brenner et al (1996), Andersen and Lund (1997), Ball

and Torous (1999) among others. However, despite of its empirical success, the asymptotic

behavior of the QML estimator associated with the level-effect ARCH model has, to the

best of our knowledge, not been formally established yet. Actually and perhaps surpris-

ingly, most papers on conditional heteroskedastic time series (see e.g. Berkes and Horváth

(2004), Ling (2004), Straumann and Mikosch (2006)) do not allow for the introduction of

the level of a series, such as the interest rate, in the conditional variance equation. In the

following sections we will present the model and provide a simple proof of asymptotic nor-

mality and consistency of the QML estimator within the traditional level-effect ARCH(1)

setting.
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2 The level-effect ARCH model

The model considered is partially specified by (see for example equations (5) and (6) in

Andersen and Lund (1997, page 350))

y∗t = σty
γ
t−1zt, (1)

σ2t = w + α

(
y∗t−1
yγt−2

)2

, (2)

for t = 1, ..., T . Let us denote θ = (γ,w, α)́ and let the true parameter values be given by

θ0 = (γ0, w0, α0)
′. Further, in many applications y∗t is chosen as a transformation of current

and lagged values of yt, i.e., y∗t = y∗t (yt, yt−1, ...). For example, y∗t may equal yt − E(yt)

or ∆yt − E(∆yt). Similarly, we could set y∗t = y∗t (yt, yt−1, yt−2, ...; δ) where δ is a vector

of parameters. One such specification could be y∗t = ∆yt − (a+ byt−1) , where δ = (a, b)′ .

In practice, δ can be pre-estimated in a first stage. This pre-estimation approach is very

common in empirical research, particularly, when modelling spot interest rates, see, for

example, Ball and Torous (1999, page 2349). However, to avoid additional complexity of

the proofs, we assume throughout this paper that δ is known, see also Remark 2 below.

Typically, y∗t has been assumed to be a strictly stationary process (as in Theorem 1) but, as

it has been shown for the regular GARCH model, we will argue that this assumption can be

relaxed such that the asymptotics can be extended to the nonstationary region. It should

be noted that (1)-(2) is a generalization of Frydman (1994), who consider a discrete-time

process, but where α0 = 0. Brooze, Scaillet and Zakoian (1995) have also analyzed the

regular level effect model (without the ARCH component) without assuming stationarity

of the data generating process. However, their setting is more limited than ours due

to more restrictions placed on the parameter space of γ0. Moreover, for the case where

γ0 is known, (1)-(2) is the standard linear model for which a complete characterization

of the estimation theory has been developed Jensen and Rahbek (2004a, 2004b) and in

Kristensen and Rahbek (2005, 2008). The quasi log likelihood function associated with

(1)-(2) is given as

lT (θ) =

T∑
t=1

lt (θ) = −1

2

T∑
t=1

ln

[
y2γt−1

(
w + α

(
y∗t−1
yγt−2

)2
)]
− 1

2

T∑
t=1

(y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2) .
(3)

We will proceed under the following set of maintained assumptions:
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Assumption A

A1 zt ∼ i.i.d. (0, 1) ,

A2 ∞ > w0 > 0, ∞ > |γ0| , ∞ > α0 > 0,

A3 E
((

1− z2t
)2)

= ζ ∈ (0,∞) ,

A4 yt only takes positive values, E
[(

yt−1

yit−2

)ϕ
|ln (yt−1)|3

]
<∞, E

[(
yt−1

yit−2

)ϕ
(ln (yt−1))

2 |ln (yt−2)|
]
<

∞, E
[(

yt−1

yit−2

)ϕ
(ln (yt−2))

2 |ln (yt−1)|
]
< ∞, for both ϕ = 0 and for some ϕ > 0 for

i = 1, 2,

A5 (yt, y
∗
t ) is ergodic and strictly stationary.

Assumption B

B1 E ln
(
α0z

2
t−1
)
< 0,

Assumptions A1-A3 and B1 are very common in the traditional ARCH literature (see

e.g. Jensen and Rahbek (2004a, 2004b, page 1205)). Note also, that γ0 is required to

be bounded. A4 is an assumption very specific for the level-effect ARCH model, where

the volatility process is well defined only for strictly and uniformly positive values of yt.

This restriction is probably one of the reasons why the level-effect ARCH specification has

been most successfully applied to interest rates (see, e.g. Andersen and Lund (1997)). By

allowing for nonstationarity, one could potentially use the level-effect ARCH specification

to represent security prices in general. Assumption A5 too, is common in the literature,

see, e.g., Kristensen and Linton (2006, page 327). As stated in Andersen and Lund (1997,

page 350), interest rates, apart from taking positive values, usually exhibit a high degree

of persistence but they are in most applications not expected to violate assumptions A4

and A5. The condition for strict stationarity of σ2t is given by the following Lemma:

Lemma 1 Let Assumption A hold. A necessary and sufficient condition for strict sta-

tionarity of σ2t as generated by (1)-(2) is given by

E ln
(
α0z

2
t−1
)
< 0.
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Proof of Lemma 1 Given in Appendix 1.

The direct implication of Lemma 1 is that Assumptions A and B jointly ensure strictly

stationarity of σ2t . Next, the main result of the paper regarding the limiting distribution

of the QML estimator in the level-effects ARCH model can be established.

Theorem 1 Define u1t (θ0) =
(

ln yt−1 − ln yt−2 + w0 (ln yt−2)
(

1
σ2
t (θ0)

))
, u2t (θ0) =

(
1

σ2
t (θ0)

)
and u3t (θ0) =

(
w0
α0

)(
1
w0
− 1

σ2
t (θ0)

)
and let Assumptions A and B hold. Consider the

quasi log likelihood function given by (3). Then, there exists a fixed open neighborhood

U = U (θ0) of θ0 such that with probability tending to one as T −→∞, lT (θ) has a unique

maximum point θ̂ in U. In addition, the QML estimator θ̂ is consistent and asymptotically

normal
√
T
[
θ̂ − θ0

]́
d−→ N

(
0, (2ζ)−2Λ

)
,

where

Λ = ζ


m11

1
2m12

1
2m13

1
2m12

1
4m22

1
4m23

1
2m13

1
4m23

1
4m33

 > 0,

and mij = E (uit (θ0)ujt (θ0)) for i = 1, 2, 3 and j = 1, 2, 3.

Proof of Theorem 1 The proof of Theorem 1 is given in Appendix 2.

Importantly, Theorem 1 applies to QMLE of the stationary level-effect ARCH(1) pro-

cess. However, if γ0 is known under Assumption A but Assumption B fails then the

asymptotics for the QML estimator of α can still be established. To see this, simply

notice that the model (1)-(2) in this case can be rewritten as

ỹt = σtzt

σ2t = ω + αỹ2t−1

for ỹt ≡ y∗t
y
γ0
t−1

. This representation of the process ỹt is exactly identical to the model given

by equation (1) in Jensen and Rahbek (2004a). Consequently, when E ln
(
α0z

2
t−1
)
≥ 0

(Assumption B fails) then ỹ2t
a.s.−→ ∞ from Lemma 1 as σ2t

a.s.−→ ∞ and the asymptotic

results follows directly from Jensen and Rahbek (2004a, Lemmas 1-5).1 Three remarks

should be added:

1We let
a.s.−→ denote convergence ”almost surely” as T→∞.
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Remark 1 It is well known, that the stationary level-effect ARCH model, can be es-

timated by non-parametric techniques, since the variance function is smooth and only

depends on yt−1. In the nonstationary case, Han and Zhang (2009) consider ARCH mod-

els by applying the results of Wang and Phillips (2009a, b), although they do not allow

for a level-effect .

Remark 2 In model (1)-(2), we are assuming that y∗t = y∗t (yt, yt−1, yt−2, ...; δ) where A5

holds. If yt is stationary and different from y∗t , A5 can be verified to hold when

y∗t = yt − E(yt),

y∗t = ∆yt − E(∆yt),

y∗t = ∆yt − (a+ byt−1) = yt − a− (1 + b) yt−1,

where δ = (a, b)′ , b < 0. Also, if we let y∗t equal δyt−1, we need the restriction that |δ| < 1

in order for A5 to hold. In practice, δ can be pre-estimated in a first stage. If δ and θ

are estimated jointly in mean and variance equation (contrary to Ball and Torous (1999)),

then our proof will need to be extended to account for the joint estimation. At this stage

we do not know if this would impose stronger assumptions than those in Assumptions A

and B.

Remark 3 The generalization of the asymptotic results when going from ARCH(1)

to GARCH(1,1) can most likely be provided in a similar fashion as the extension from

Jensen and Rahbek (2004a) to Jensen and Rahbek (2004b), with the added complexity in

the proofs.

3 Conclusion

In this paper we establish consistency and asymptotic normality of the QML estimator

in the popular level-effect ARCH model. We allow the parameters of the conditional

heteroskedastic process to be in the region where the process is stationary and discuss

how the results carry over into the region of the parameter space where the conditional

heteroskedastic process is nonstationary.
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Appendix 1

Proof of Lemma 1 Let Assumption A hold and write the process as

σ2t = w0 +
(
α0z

2
t−1
)
σ2t−1 = Bt +Atσ

2
t−1,

where At =
(
α0z

2
t−1
)

and Bt = w0. Then, applying Theorem 1.1 of Bougerol and Pi-

card (1992a, page 1715), we verify the conditions that E (log (max {|1, A0|})) < ∞,
E (log (max {|1, B0|})) < ∞ (since by Assumption A w0, α0 > 0), and also σ2t is strictly

stationary if the Lyapunov exponent τ

τ = inf

{
E

(
1

T + 1
ln |A0···AT |

)}
< 0.

In the case of one-dimensional recurrence equations

1

T + 1
E (ln |A0···AT |) =

1

T + 1

T∑
i=0

E ln |Ai| = E ln |A0| < 0.

Therefore, σ2t is strictly stationary if

E ln |A0| = E ln
(
α0z

2
t−1
)
< 0.

This provides the conditions under which σ2t is strictly stationary. Following Bougerol and

Picard (1992b, pages 120-121), we can show the “if” and “only if” part of the Lemma.

Therefore, under assumption A, the pair
(
y∗t , σ

2
t

)́
=
(
σty

γ0
t−1zt, σ

2
t

)́
is strictly stationary.

We note that this is the same sufficient and necessary condition when we have and i.i.d.

process in the innovation term in a regular ARCH(1). The proof presented here is similar

to Nelson (1990) and Bougerol and Picard (1992b).�

Appendix 2

We provide now three important propositions that we need in order to prove Theorem

1. The proof technique for the QMLE utilizes the classic Cramér type conditions for

consistency and asymptotic normality (central limit theorem for the score, convergence of

the Hessian and uniformly bounded third-order derivatives); see e.g. Lehmann (1999).
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Proposition 1 Let ujt (θ0) be defined as in Theorem 1. Under Assumptions A and

B, the joint distribution of the score functions evaluated at θ = θ0 are asymptotically

Gaussian,
1√
T

∂

∂θ
lT (θ0)

d→ N (0,Λ) ,

where

Λ = ζ


m11

1
2m12

1
2m13

1
2m12

1
4m22

1
4m23

1
2m13

1
4m23

1
4m33

 > 0,

and mij = E (uit (θ0)ujt (θ0)) for i = 1, 2, 3 and j = 1, 2, 3.

Proof of Proposition 1 Given in a technical appendix available upon request from any

of the authors.�

Proposition 2 Let ujt (θ0) be defined as in Theorem 1. Under Assumptions A and B,

the observed information evaluated at θ = θ0 converges in probability, i.e.,

− 1

T

∂2

∂θ∂θ′
lT (θ0)

p→ Ω,

where

Ω =


2m11 m12 m13

m12
1
2m22

1
2m23

m13
1
2m23

1
2m33

 > 0,

and mij = E (uit (θ0)ujt (θ0)) for i = 1, 2, 3 and j = 1, 2, 3.

Proof of Proposition 2 Given in a technical appendix available upon request from any

of the authors.�

Proposition 3 Define the lower and upper values for each parameter in θ0 as γL < γ0 <

γU , wL < w0 < wU , and αL < α0 < αU , respectively and the neighborhood N (θ0) around

θ0 as

N (θ0) = {θ\γL ≤ γ ≤ γU , wL ≤ w ≤ wU , and αL ≤ α ≤ αU} .

Under Assumptions A and B, there exists a neighborhood N (θ0) for which for i, j, k =

1, 2, 3

sup
θ∈N(θ0)

∣∣∣∣ 1

T

∂3

∂θi∂θj∂θk
lT (θ)

∣∣∣∣ ≤ 1

T

T∑
t=1

wijkt,

where wijkt is stationary. Furthermore 1
T

∑T
t=1wijkt

a.s.−→ E (wijkt) <∞ for ∀ijk.
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Proof of Proposition 3 Given in a technical appendix available upon request from any

of the authors.�

Proof of Theorem 1 Given the conditions provided by Propositions 1 - 3, Theorem

1 follows from Lumsdaine (1996, pages 593-595, Theorem 3), the ergodic theorem and

Lemma 1, page 1206 in Jensen and Rahbek (2004b).�
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Supplementary Technical Appendix for “Asymptotic normality of the

QMLE in the level-effect ARCH model”, by Christian M. Dahl and Emma

M. Iglesias.

In this Appendix, we provide proofs of Propositions 1, 2 and 3 in the paper: “Asymptotic normality of the QMLE

in the level-effect ARCH model”, by Christian M. Dahl and Emma M. Iglesias. Note that the analytical expressions

for the first and second order derivatives are provided initially, but that the third order derivatives of the quasi log

likelihood function needed in the proof of Proposition 3 are provided in the last part of the appendix.

Result 1

The first order derivatives are given by

∂

∂γ
lT (θ) =

T∑
t=1

s1t (θ) ,

= −
T∑
t=1

1− (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
(ln yt−1 − ln yt−2 + w (ln yt−2)

(
1

σ2
t

))
, (1)

∂

∂w
lT (θ) =

T∑
t=1

s2t (θ) ,

= −
T∑
t=1

1

2

1− (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 1(

w + α
(
y∗t−1

yγt−2

)2) , (2)

∂

∂α
lT (θ) =

T∑
t=1

s3t (θ) ,

= −
T∑
t=1

1

2

1− (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


(
y∗t−1

yγt−2

)2
(
w + α

(
y∗t−1

yγt−2

)2) . (3)

In particular,

s1t (θ0) = −
(
1− z2t

)(
ln yt−1 − ln yt−2 + w0 (ln yt−2)

(
1

σ2
t (θ0)

))
,

s2t (θ0) = −1

2

(
1− z2t

) 1

σ2
t (θ0)

,

s3t (θ0) = −1

2

(
1− z2t

)(w0

α0

)(
1

w0
− 1

σ2
t (θ0)

)
.

1



Result 2

The second order derivatives evaluated at evaluated at θ = θ0 are given by

∂2

∂γ2
lT (θ0) = −2

T∑
t=1

z2t

(
ln yt−1 − ln yt−2 + w0 (ln yt−2)

(
1

σ2
t (θ0)

))2

−
T∑
t=1

4
(
1− z2t

)
α0

(
ln2 yt−2

)
w2

0

(
1

w0
− 1

σ2
t (θ0)

)
, (4)

∂2

∂w2
lT (θ0) =

1

2

T∑
t=1

(
1− 2z2t

)( 1

σ2
t (θ0)

)2

, (5)

∂2

∂α2
lT (θ0) =

1

2

T∑
t=1

(
1− 2z2t

)(w0

α0

)2(
1

w0
− 1

σ2
t (θ0)

)2

, (6)

∂2

(∂γ∂w)
lT (θ0) = −

T∑
t=1

z2t

(
1

σ2
t (θ0)

)(
ln yt−1 − ln yt−2 + w0 (ln yt−2)

(
1

σ2
t (θ0)

))

−
T∑
t=1

(
1− z2t

)(
(ln yt−2)

(
w0

σ2
t (θ0)

)(
1

w0
− 1

σ2
t (θ0)

))
, (7)

∂2

(∂γ∂α)
lT (θ0) = −

T∑
t=1

z2t

(
w0

α0

)(
1

w0
− 1

σ2
t (θ0)

)((
ln yt−1 − ln yt−2 + w0 (ln yt−2)

(
1

σ2
t (θ0)

)))

+2

T∑
t=1

(
1− z2t

)
0

(ln yt−2)

(
w0

α0

)(
1

w0
− 1

σ2
t (θ0)

)
, (8)

∂2

∂w∂α
lT (θ0) =

1

2

T∑
t=1

(
1− 2z2t

)( 1

σ2
t (θ0)

)(
w0

α0

)(
1

w0
− 1

σ2
t (θ0)

)
. (9)
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Proofs of Propositions 1, 2 and 3

For the proof of Proposition 1, we need first the following 2 Lemmas.

Lemma A Let Assumptions A and B hold and define u1t (θ0) =
(

ln yt−1 − ln yt−2 + w0 (ln yt−2)
(

1
σ2
t (θ0)

))
, u2t (θ0) =(

1
σ2
t (θ0)

)
and u3t (θ0) =

(
w0

α0

)(
1
w0
− 1

σ2
t (θ0)

)
. Then uit (θ0) is a stationary and ergodic sequence. In addition

1
T

∑T
t=1 uit (θ0)

p→ E (uit (θ0)) ≡ ui and 1
T

∑T
t=1 u

2
it (θ0)

p→ E
(
u2it (θ0)

)
≡ mii for i = 1, 2, 3.

Proof of Lemma A Define It = {yt, zt,yt−1, zt−1,yt−2, zt−2,...}. Note first that

|u1t (θ0)| ≤ |ln yt−1|+ |ln yt−2|+ w0 |ln yt−2|
(

1

σ2
t (θ0)

)
≤ |ln yt−1|+ 2 |ln yt−2| ,

hence

E |u1t (θ0)| ≤ 3E ((ln yt)) <∞,

where we have used that yt (hence ln(yt)) is stationary (A5) and where the last inequality follows from A4 where the

first two moments of yt are assumed to be bounded. Hence we can write

u1t (θ0) ≡ g1
(
yt−1, yt−2, σ

2
t (θ0)

)
,

where g1 is a It-measurable function and where all arguments yt−1, yt−2 and σ2
t (θ0) are stationary and ergodic as a

consequence of A5 and Lemma 1. This implies that u1t (θ0) is stationary and ergodic by Theorem 3.35 in White (1984).

Consequently 1
T

∑T
t=1 u1t (θ0)

p→ E (u1t (θ0)) follows by the Ergodic Theorem. Similarly, it follows straightforwardly

that E |u2t (θ0)| ≤
(

1
w0

)
and E |u3t (θ0)| ≤

(
2
α0

)
. We can write u2t (θ0) ≡ g2

(
σ2
t (θ0)

)
and u3t (θ0) ≡ g3

(
σ2
t (θ0)

)
and as above conclude that (u2t (θ0) , u3t (θ0)) is stationary and ergodic, and hence 1

T

∑T
t=1 uit (θ0)

p→ E (uit (θ0)) for

i = 2, 3. Second, notice that

∣∣u21t (θ0)
∣∣ = | ln2 yt−1 − 2 ln yt−1 ln yt−2 + ln2 yt−2 − 2

w0

σ2
t (θ0)

ln2 yt−2 +
w2

0

σ4
t (θ0)

ln2 yt−2 + 2
w0

σ2
t (θ0)

ln yt−1 ln yt−2|

≤ ln2 yt−1 + 2 |ln yt−1 ln yt−2|+ ln2 yt−2 + 2
w0

σ2
t (θ0)

ln2 yt−2 +
w2

0

σ4
t (θ0)

ln2 yt−2 + 2
w0

σ2
t (θ0)

|ln yt−1 ln yt−2|

≤ ln2 yt−1 + 4 ln2 yt−2 + 4 |ln yt−1 ln yt−2| ,

such that

E
∣∣u21t (θ0)

∣∣ ≤ 5E
(
(ln yt)

2
)

+ 4E |ln yt ln yt−1| <∞.

On the right hand side of the first inequality we have used A5 (stationarity) and the second inequality follows from

A4 (existence of second order moments). In addition, E
∣∣u22t (θ0)

∣∣ ≤ ( 1
w2

0

)
and E

∣∣u23t (θ0)
∣∣ ≤ ( 4

α2
0

)
. We can therefore

conclude, by Theorem 3.35 in White (1984), that since uit (θ0) is stationary and ergodic then so is u2it (θ0) for i = 1, 2, 3.

Furthermore as E|u2it (θ0) | is bounded then 1
T

∑T
t=1 u

2
1t (θ0)

p→ E
(
u21t (θ0)

)
for i = 1, 2, 3 follows from the ergodicity

theorem. This completes the proof of Lemma A.�
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Lemma B Under Assumptions A and B, the marginal distributions of the score functions given by equations (1)-(3)

evaluated at θ = θ0 are asymptotically Gaussian,

1√
T

∂

∂γ
lT (θ0) =

−1√
T

T∑
t=1

(
1− z2t

)
u1t (θ0)

d→ N (0, ζm11) , (10)

1√
T

∂

∂w
lT (θ0) =

−1√
T

T∑
t=1

1

2

(
1− z2t

)
u2t (θ0)

d→ N (0, ζm22) , (11)

1√
T

∂

∂α
lT (θ0) =

−1√
T

T∑
t=1

1

2

(
1− z2t

)
u3t (θ0)

d→ N (0, ζm33) , (12)

where mii, i = 1, 2, 3 and ζ are defined by Lemma A and A3 respectively.

Proof of Lemma B We will prove (10) in detail. The results in (11) and (12) hold by identical arguments. Define

again It = {yt, zt,yt−1, zt−1,yt−2, zt−2,...} and recall from Result 1 that

s1t (θ0) = −
(
1− z2t

)
u1t (θ0) .

Consequently

E (s1t|It−1) = −E
((

1− z2t
)
u1t (θ0) |It−1

)
= −E

((
1− z2t

))
u1t (θ0)

= 0. (13)

Since {s1t, It} is an adapted stochastic sequence the result in (13) implies that {s1t, It} is a martingale difference

sequence according to Definition 3.75 in White (1984). Further, notice that

V 2
1T (θ0) =

T∑
t=1

E
(
s21t (θ0) |It−1

)
=

T∑
t=1

E
((

1− z2t
)2)

u21t (θ0)

= ζ

T∑
t=1

u21t (θ0) .

Hence,

E(V 2
1T (θ0)) = ζ

T∑
t=1

E
(
u21t (θ0)

)
= Tζm11.

Furthermore, according to Lemma A we have that

1

T

T∑
t=1

u21t (θ0)
p→ m11,

4



implying that
1

T
V 2
1T (θ0)

p→ ζm11.

From this we see that (
V 2
1T (θ0)

) (
E(V 2

1T (θ0))
)−1 p→ 1. (14)

Importantly, the result given by equation (14) corresponds to Condition (1), page 60 in Brown (1971).

Finally, we need to prove that the Lindeberg type condition, which is Condition (2) in Brown (1971). In particular,

we need to show that

(
E(V 2

1T (θ0))
)−1 T∑

t=1

E

(
s21t (θ0) 1

{
|s1t (θ0)| > ε

√
E(V 2

1T (θ0))

})
p→ 0,

for all ε > 0. By inserting the expression for s21t and E(V 2
1T (θ0)) we get

lim
T→∞

1

Tζm11

T∑
t=1

E
(
s21t (θ0) 1

{
|s1t (θ0)| > ε

√
Tζm11

})
= lim

T→∞

1

ζm1
E
(((

1− z2t
)2
u21t (θ0)

)
1
{∣∣∣(1− z2t )2 u21t (θ0)

∣∣∣ >√Tζm11

})
→ 0,

for all ζm11 because, from Lemma A and A3, u21t (θ0) and z2t have finite moments and are stationary and ergodic.

Consequently, the Lindeberg condition holds.

According to Theorem 2, page 60, in Brown (1971) we can therefore conclude that

1√
Tζm11

T∑
t=1

s1t (θ0)
d→ N(0, 1),

which completes the proof.

Along the same lines

1

T

T∑
t=1

E
(
s22t | It−1

)
=

1

T

T∑
t=1

ζ

4

1(
w0 + α0

(
y∗t−1

yγt−2

)2) p−→ ζ

4w2
0

> 0, (15)

1

T

T∑
t=1

E
(
s23t | It−1

)
=

1

T

T∑
t=1

ζ

4

(
y∗t−1

yγt−2

)2
(
w0 + α0

(
y∗t−1

yγt−2

)2) p−→ ζ

4α2
0

> 0. (16)

and

1

T

T∑
t=1

E
(
s22t1

{
|s2t| >

√
Tδ
})
≤ E

(((
1− z2t

)2
4w2

0

)
1

{∣∣∣∣∣
(
1− z2t

)
2w0

∣∣∣∣∣ > √Tδ
})
→ 0,

1

T

T∑
t=1

E
(
s23t1

{
|s3t| >

√
Tδ
})
≤ E

(((
1− z2t

)2
4α2

0

)
1

{∣∣∣∣∣
(
1− z2t

)
2α0

∣∣∣∣∣ > √Tδ
})
→ 0,

for some δ > 0 and as T tends to ∞.�
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Proof of Proposition 1 In order to fully characterize the asymptotic distribution we need to determine the

off-diagonal elements of the variance covariance matrix of the score vectors given by Λ. In particular, because

u1t (θ0) , u2t (θ0) and u3t (θ0) are all stationary and ergodic with finite first moments (from Lemma A) it follows

straightforwardly that

1

T

T∑
t=1

s1t (θ0) s2t (θ0) =
1

T

T∑
t=1

(
1− z2t

)2
u1t (θ0)u2t (θ0)

p→ 1

2
ζm12,

1

T

T∑
t=1

s1t (θ0) s3t (θ0) =
1

T

T∑
t=1

1

2

(
1− z2t

)2
u1t (θ0)u3t (θ0)

p→ 1

2
ζm13,

1

T

T∑
t=1

s2t (θ0) s3t (θ0) =
1

T

T∑
t=1

1

4

(
1− z2t

)2
u2t (θ0)u3t (θ0)

p→ 1

4
ζm23.

Since all the elements in the score vector are asymptotically normal (see Lemma B), the result follows directly from

application of the Cramer-Wold device, see for example Proposition 5.1 in White (1984), which completes the proof.�

Proof of Proposition 2 Recall from Result 2 that

− 1

T

∂2

∂γ2
lT (θ0) = 2

1

T

T∑
t=1

z2t u
2
1t (θ0)

+
1

T

T∑
t=1

4
(
1− z2t

)
α0

(
ln2 yt−2

)
w2

0

(
1

w0
− 1

σ2
t (θ0)

)
.

Since z2t and u21t (θ0) are independent, the first term on the right hand side converges to 2m11 by Lemma A.

Furthermore, since 4α0

(
ln2 yt−2

)
w2

0

(
1
w0
− 1

σ2
t (θ0)

)
has bounded moments, it is ergodic and stationary and since

E
(
1− z2t

)
= 0, it follows from the ergodic theorem that the last term on the right hand side converges in probability

to zero. Therefore, the result follows. Using identical arguments we find

− 1

T

∂2

∂w2
lT (θ0) = −1

2

1

T

T∑
t=1

(
1− 2z2t

)
u22t (θ0)

p→ 1

2
m22,

− 1

T

∂2

∂α2
lT (θ0) = −1

2

1

T

T∑
t=1

(
1− 2z2t

)
u23t (θ0)

p→ 1

2
m33,

− 1

T

∂2

(∂γ∂w)
lT (θ0) =

1

T

T∑
t=1

z2t u1t (θ0)u2t (θ0) +
1

T

T∑
t=1

(
1− z2t

)(
(ln yt−2)

(
w0

σ2
t (θ0)

)(
1

w0
− 1

σ2
t (θ0)

))
p→ m12,

− 1

T

∂2

(∂γ∂α)
lT (θ0) =

1

T

T∑
t=1

z2t u1t (θ0)u3t (θ0)− 1

T

T∑
t=1

(
1− z2t

)
w0 (ln yt−2)

(
w0

α0

)(
1

w0
− 1

σ2
t (θ0)

)
p→ m13,

− 1

T

∂2lt (θ0)

∂w∂α
= −1

2

1

T

T∑
t=1

(
1− 2z2t

)
u2t (θ0)u3t (θ0)

p→ 1

2
m23.

Finally notice that since Ω = 2Λζ−1, then Ω > 0. This completes the proof of Proposition 2.�
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Proof of Proposition 3 Let us start from the components of
∣∣∣ 1T ∂3

∂γ3 lT (θ)
∣∣∣ defined in Result 3 below. Part I (which

is also defined in Result 3 below) can be written as∣∣∣∣∣∣∣∣∣
1

T
4

T∑
t=1

α
(
y∗t−1

yγt−2

)2
(ln (yt−2))

2
(ln (yt−1)− ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)3

1 +
(y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)

∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣
4

T

T∑
t=1

((
w + α

(
y∗t−1

yγt−2

)2)
− w

)3

(ln (yt−2))
2

(ln (yt−1)− ln (yt−2))(
w + α

(
y∗t−1

yγt−2

)2)3

 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2) + 1


∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
4

T

T∑
t=1

 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2) + 1

 (ln (yt−2))
2 |(ln (yt−1)− ln (yt−2))|

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
4

T

T∑
t=1


y

2γ0
t−1

(
w0 + α0

(
y∗t−1

y
γ0
t−2

)2)
y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 z2t + 1

 (ln (yt−2))
2 |(ln (yt−1)− ln (yt−2))|

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣ 4

T

T∑
t=1

((
w0

w
y
2(γ0−γ)
t−1 +

α0

α

(
yt−1
yt−2

)2(γ0−γ)
)
z2t + 1

)
(ln (yt−2))

2 |(ln (yt−1)− ln (yt−2))|

∣∣∣∣∣
≤

∣∣∣∣∣ 4

T

T∑
t=1

({
wU
wL

Λt−1 +
αU
αL

Λt−2

}
z2t + 1

)
(ln (yt−2))

2 |(ln (yt−1)− ln (yt−2))|

∣∣∣∣∣
≤

∣∣∣∣∣ 4

T

T∑
t=1

({
wU
wL

Λt−1 +
αU
αL

Λt−2

}
z2t + 1

)
(ln (yt−2))

2 |(ln (yt−1)− ln (yt−2))|

∣∣∣∣∣
≤

∣∣∣∣∣ 4

T

T∑
t=1

({
wU
wL

Λt−1 +
αU
αL

Λt−2

}
z2t + 1

)
(ln (yt−2))

2 |(ln (yt−1)− ln (yt−2))|

∣∣∣∣∣ ,
where we can define the lower bound for all t, yL ≤ yt−1, yL ≤ yt−2, Λt−1 = max

{
y
2|γU−γL|
L , y

2|γU−γL|
t−1

}
, Λt−2 =

max

{
1,
(
yt−1

yt−2

)2|γU−γL|}
and the result follows by setting 2 |γU − γL| = ϕ, Assumptions A and B and the law of large

numbers (see Jensen and Rahbek (2004a), Lemma 5). Parts II and III follow the same argument. Part IV requires

also assumption A4 since ∣∣∣∣∣∣∣∣∣
1

T
6

T∑
t=1

α3
(
y∗t−1

yγt−2

)6
(ln (yt−2))

3(
w + α

(
y∗t−1

yγt−2

)2)3

1− 4 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)

∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
6

T

T∑
t=1

 4 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2) − 1

 [ln (yt−2)]
3

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣ 6

T

T∑
t=1

(
4

{
wU
wL

Λt−1 +
αU
αL

Λt−2

}
z2t + 1

)
[ln (yt−2)]

3

∣∣∣∣∣ .
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Parts V and VI follow the same argument.

Along the same lines for
∣∣∣ 1T ∂3

∂α3 lT (θ)
∣∣∣

∣∣∣∣ 1

T

∂3

∂α3
lT (θ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1

T

T∑
t=1

3
(y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2) − 1


(
y∗t−1

yγt−2

)6
(
w + α

(
y∗t−1

yγt−2

)2)3

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

T

T∑
t=1

3
(y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2) − 1


∣∣∣∣∣∣∣∣

1

α3
L

≤ 1

T

T∑
t=1

(
3

{
wU
wL

Λt−1 +
αU
αL

Λt−2

}
z2t + 1

)
1

α3
L

.

The rest of the cases follow directly using the same argument. This completes the proof of Proposition 3.�
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Result 3

The third order derivatives are given by

∂3

∂w3
lT (θ) = −

T∑
t=1

1− 3
(y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 1(

w + α
(
y∗t−1

yγt−2

)2)3 ,

∂3

∂α3
lT (θ) = −

T∑
t=1

1− 3
(y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


(
y∗t−1

yγt−2

)6
(
w + α

(
y∗t−1

yγt−2

)2)3 ,

∂3

∂γ∂w2
lT (θ) =

1

2

T∑
t=1

−2

(
w + α

(
y∗t−1

yγt−2

)2)(
−2α

(
y∗t−1

yγt−2

)2
ln (yt−2)

)
(
w + α

(
y∗t−1

yγt−2

)2)4

−
T∑
t=1

− (y∗t )
2
y2γt−13

(
w + α

(
y∗t−1

yγt−2

)2)2(
−2α

(
y∗t−1

yγt−2

)2
ln (yt−2)

)
y4γt−1

(
w + α

(
y∗t−1

yγt−2

)2)6

= 2

T∑
t=1

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 α

(
y∗t−1

yγt−2

)2
ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)3 ,

∂3

∂γ∂α2
lT (θ) = −

T∑
t=1

2
(
y∗t−1

yγt−2

)4
ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)2

1− 2 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+

T∑
t=1

2α
(
y∗t−1

yγt−2

)6
ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)3

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 ,
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∂3

∂γ2∂w
lT (θ) = −2

T∑
t=1

(
α
(
y∗t−1

yγt−2

)2
ln (yt−2) (ln (yt−1)− ln (yt−2))

)
(
w + α

(
y∗t−1

yγt−2

)2)2

1 +
2 (y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


−2

T∑
t=1

α
(
y∗t−1

yγt−2

)2
ln (yt−1) ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)2 −
2α2

(
y∗t−1

yγt−2

)4
ln (yt−2) (ln (yt−1)− ln (yt−2))(
w + α

(
y∗t−1

yγt−2

)2)3



×

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+2

T∑
t=1

α
(
y∗t−1

yγt−2

)2
ln (yt−2) ln (yt−1)w(

w + α
(
y∗t−1

yγt−2

)2)3

2− 9 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+

T∑
t=1

(y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 −4 (ln (yt−1))

2(
w + α

(
y∗t−1

yγt−2

)2) +

6

(
w + 2α

(
y∗t−1

yγt−2

)2)
(ln (yt−1))

2
w(

w + α
(
y∗t−1

yγt−2

)2)3

+
6α2

(
y∗t−1

yγt−2

)4
ln (yt−1) (ln (yt−1)− ln (yt−2))(
w + α

(
y∗t−1

yγt−2

)2)3

 ,
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∂3

∂γ3
lT (θ) = −4

T∑
t=1

α
(
y∗t−1

yγt−2

)2
(ln (yt−2))

2
(ln (yt−1)− ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)
1 +

(y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+8

T∑
t=1

α2
(
y∗t−1

yγt−2

)4
(ln (yt−2))

2
(ln (yt−1)− ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)2

1− (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+4

T∑
t=1

αw
(
y∗t−1

yγt−2

)2
(ln (yt−2))

2
ln (yt−1)(

w + α
(
y∗t−1

yγt−2

)2)2

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+6

T∑
t=1

α3
(
y∗t−1

yγt−2

)6
(ln (yt−2))

3(
w + α

(
y∗t−1

yγt−2

)2)3

1− 4 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


−6

T∑
t=1

α
2w
(
y∗t−1

yγt−2

)4
(ln (yt−2))

2
ln (yt−1)(

w + α
(
y∗t−1

yγt−2

)2)3 +
α3
(
y∗t−1

yγt−2

)6
ln (yt−1) (ln (yt−2))

2(
w + α

(
y∗t−1

yγt−2

)2)3



×

1− 6 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


−4

T∑
t=1

(y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
−w (ln (yt−1))

2

(
ln (yt−1)w + α

(
y∗t−1

yγt−2

)2
(2 ln (yt−1)− ln (yt−2))

)
(
w + α

(
y∗t−1

yγt−2

)2)

+
α2
(
y∗t−1

yγt−2

)4 (
(ln (yt−1))

2
ln (yt−2)− (ln (yt−1))

3
)

+ α
(
y∗t−1

yγt−2

)2
ln (yt−1) ln (yt−2) (ln (yt−1)− ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)2

+3

(
w2α

(
y∗t−1

yγt−2

)2
+ 2wα2

(
y∗t−1

yγt−2

)4
+ α3

(
y∗t−1

yγt−2

)6)
ln (yt−2) (ln (yt−1))

2

(
w + α

(
y∗t−1

yγt−2

)2)3


= I + II + III + IV + V + V I,
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∂3

∂γ2∂α
lT (θ) = 2

T∑
t=1

(
y∗t−1

yγt−2

)2
ln (yt−2) (ln (yt−1)− ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)
1 +

(y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


−2

T∑
t=1

α
(
y∗t−1

yγt−2

)4
ln (yt−2) (ln (yt−1)− ln (yt−2))(
w + α

(
y∗t−1

yγt−2

)2)2

1 +
2 (y∗t )

2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+4

T∑
t=1

α2
(
y∗t−1

yγt−2

)6
ln (yt−2) (ln (yt−1)− ln (yt−2))(
w + α

(
y∗t−1

yγt−2

)2)3

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+2

T∑
t=1

α
(
y∗t−1

yγt−2

)4
ln (yt−2) ln (yt−1)w(

w + α
(
y∗t−1

yγt−2

)2)3

2− 9 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


−4

T∑
t=1

α2
(
y∗t−1

yγt−2

)4
ln (yt−2) (ln (yt−1)− ln (yt−2))(
w + α

(
y∗t−1

yγt−2

)2)3 − 2

T∑
t=1

wα
(
y∗t−1

yγt−2

)2
ln (yt−1) ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)3

+

T∑
t=1

(y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
−2w

(
y∗t−1

yγt−2

)2
ln (yt−1) (2 ln (yt−1)− 3 ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)2

+
12αw

(
y∗t−1

yγt−2

)4
(ln (yt−1))

2(
w + α

(
y∗t−1

yγt−2

)2)3 −
4α
(
y∗t−1

yγt−2

)4
(ln (yt−1)− 2 ln (yt−2)) (ln (yt−1)− ln (yt−2))(

w + α
(
y∗t−1

yγt−2

)2)2

+
6α2

(
y∗t−1

yγt−2

)6
ln (yt−1) (ln (yt−1)− ln (yt−2)) + 6w2

(
y∗t−1

yγt−2

)2
(ln (yt−1))

2(
w + α

(
y∗t−1

yγt−2

)2)3

 ,

∂3

∂α∂w2
lT (θ) = −

T∑
t=1

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


(
y∗t−1

yγt−2

)2
(
w + α

(
y∗t−1

yγt−2

)2)3 ,

∂3

∂w∂α2
lT (θ) = −

T∑
t=1

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


(
y∗t−1

yγt−2

)4
(
w + α

(
y∗t−1

yγt−2

)2)3 ,
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∂3

∂w∂α∂γ
lT (θ) = −

T∑
t=1

(
y∗t−1

yγt−2

)2
ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)2

1− 2 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)


+

T∑
t=1

2α
(
y∗t−1

yγt−2

)4
ln (yt−2)(

w + α
(
y∗t−1

yγt−2

)2)3

1− 3 (y∗t )
2

y2γt−1

(
w + α

(
y∗t−1

yγt−2

)2)
 .
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