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1 Introduction

The availability of high-frequency (HF) data in finance has fueled a large body of re-

search on volatility measurement.1 Many of the recently proposed techniques possess

impressive statistical properties (e.g., close to maximum likelihood efficiency despite

of their non-parametric nature) even in the presence of a so-called market microstruc-

ture (MMS) noise incorporating features such as bid-ask bounce, price discreteness,

execution of block trades, etc. In multivariate applications, where an estimate of a

covariance matrix is needed, non-synchronicity of observation times poses an added

challenge, which has also been thoroughly addressed.2

From a more practical point of view, a growing number of recent studies assess the

gains of improved volatility estimation in terms of better volatility prediction, com-

pared to standard GARCH-type models using only daily data.3 Generally, and not

surprisingly, it is found that incorporating the information contained in HF data does

indeed facilitate better forecasting. Arguably, the second component, i.e., the time

series model, plays a key role in obtaining good forecasts and is the focus in many of

the studies cited above. In virtually all of the studies, however, the results are based

on a single estimation methodology which produces the volatility series of interest.

Given that we observe a lot of research effort being invested in the development of

more advanced estimation techniques, we believe it is of interest to assess, whether

more sophisticated and efficient methods give an edge over simpler approaches with

potentially worse statistical properties. After all, in the move from daily to HF data,

the informational gain is intuitively enormous. However, given that researchers and

businesses nowadays routinely possess HF datasets containing a given fixed amount

of information, it then becomes important to assess how we can use this information

effectively and extract gains from it.

The aim of this paper is to address the issue of whether a practitioner should neces-

sarily apply the latest and most efficient estimator, which usually comes with a fair

amount of computational complication, or computing a simple ”sum of squares” type

1see, e.g., Zhang, Mykland & Aı̈t-Sahalia (2005), Zhang (2006), Barndorff-Nielsen, Hansen, Lunde
& Shephard (2008), Barndorff-Nielsen, Hansen, Lunde & Shephard (2010), Jacod, Li, Mykland,
Podolskij & Vetter (2009), among others.

2see, e.g., Hayashi & Yoshida (2005), Zhang (2010), Griffin & Oomen (2010), Barndorff-Nielsen,
Hansen, Lunde & Shephard (2009), Christensen, Kinnebrock & Podolskij (2010), Voev & Lunde
(2007), Nolte & Voev (2008), among others.

3see, e.g., Fleming, Kirby & Ostdiek (2001, 2003), Hansen & Lunde (2006), Şerban, Brockwell,
Lehoczky & Srivastava (2007), Patton (2009), Liu (2009), Clements, Doolan, Hurn & Becker (2009),
Ghysels, Rubia & Valkanov (2009), Chiriac & Voev (2009), Voev (2009), etc.
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of statistic is sufficient to extract the information to a desirable extent. Obviously,

the advances toward more efficient and noise-robust estimators is of fundamental im-

portance and the search in this direction is only natural. Nevertheless, given the

importance of volatility in terms of its applied value in many finance-related prob-

lems, we feel that it is interesting to have an assessment of the potential practical

benefits resulting from these advances.

2 Volatility Estimation

Modelling time varying volatility can be traced back at least to Engle (1982) and his

autoregressive conditional heteroscedasticity (ARCH) model. Multivariate extensions

to the ARCH idea originated in the works of Bollerslev, Engle & Wooldridge (1988),

Bollerslev (1990), Engle & Kroner (1995), etc. Later, models for time-varying corre-

lations were proposed by Engle (2002) and Tse & Tsui (2002). With the advances

of computational technology and the advent of HF datasets, focus shifted towards

using intermittent intraday data for volatility measurement and the development of

multivariate models for ”vast” dimensions. In this paper we consider some of the most

recently proposed models for the estimation of the covariance matrix of financial assets

by means of HF data, but we restrict our attention to approaches suitable for mod-

erate dimensions. In particular, in our empirical application we consider 10 assets.

The models we estimate can be applied to higher dimensions as well, but we do not

necessarily advocate that they are still applicable in cases of hundreds or thousands of

assets. One of the reasons to consider a relatively small-scaled problem is that the lit-

erature on vast-dimensional models is still in its infancy.4 A second reason is that the

HF-based models we consider, have been designed with a view on extracting statistical

precision from HF data, rather than being able to handle very large dimensions. The

so-called multivariate kernel approach (Barndorff-Nielsen et al. (2010)) can in theory

be applied to an arbitrary number of assets, but is universe-dependent and involves

an increasing loss of information as more assets are added. Alternative approaches

based on non-synchronized data involving minimal loss of information (e.g., Hayashi &

Yoshida (2005), Christensen et al. (2010), Voev & Lunde (2007), Nolte & Voev (2008),

etc.) require the estimation of n(n+1)/2 separate elements of the covariance matrix,

where n is the number of assets. The computational aspects aside, these methods do

4Two references include Engle, Shephard & Sheppard (2008) and Bannouh, Martens, Oomen & van
Dijk (2009)
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not, per se, guarantee a positive definite estimate, in particular for very large n.

Let rt be a vector of daily log returns of dimension n × 1. The process rt can be

written as:

rt = E[rt|Ft−1] + εt, (1)

where Ft−1 is the information set consisting of all relevant information up to and

including t− 1. We assume that the innovation term can be expressed as εt = H
1/2
t zt,

where Ht is a symmetric positive definite matrix of dimension n × n, H
1/2
t is its

Cholesky decomposition and zt is an n × 1 vector assumed to be iid with E[zt] = 0

and V [zt] = In. In the GARCH framework, the latent conditional covariance matrixHt

is specified parametrically, and is typically estimated based on daily data. Recently,

GARCH models have been enhanced to include a realized volatility measure as an

exogenous variable (see the review of Hansen & Lunde (2010)).

High-frequency volatility estimation is based on continuous-time models for the log

price process, which is typically modeled as a (Brownian) semimartingale with stochas-

tic volatility. The observable process is given by pτ = p∗τ +uτ , where the efficient n×1

vector price process is defined as5

p∗τ =

τ
∫

0

asds+

τ
∫

0

σsdWs (2)

where as is a vector of predictable drifts, σs is a cadlag volatility matrix process and

W is a vector of independent Brownian motions. The term uτ represents noise due to

MMS effects. The central object of interest in these class of models is the integrated

(co)variation,
∫ t

t−1
σsσ

′
sds, which is a measure of the asset returns’ (co)variance over

a particular period (say, a day). For a detailed definition of these concepts, we refer

the reader to Barndorff-Nielsen & Shephard (2004). Denote the j-th observation time

for asset i on day t at the tick frequency as τi,j,t, j = 1, . . . , mi,t, where mi,t is the

number of observations for asset i on day t. For simplicity, we will use the triple

i, j, t to denote a process observed at time τi,j,t. At the tick frequency, we observe

pi,j,t = p∗i,j,t + ui,j,t for i = 1, . . . , n and j = 1, . . . , mi,t, where ui,j,t is the i-th element

of uτ at time τi,j,t. The intra-daily tick return series for asset i on day t is defined

as ri,j,t = pi,j,t − pi,j−1,t, j = 1, . . . , mi,t which can be decomposed as the sum of the

efficient return r∗i,j,t = p∗i,j,t − p∗i,j−1,t and the noise return ei,j,t = ui,j,t − ui,j−1,t. Since

assets trade asynchronously, it is generally not possible to define an n-vector of high

5We use t = 1, . . . , T as a discrete-time index and τ to index continuous time.
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frequency returns unless some sort of synchronization scheme is used. Furthermore, at

the highest frequencies the impact of market microstructure noise becomes dominant,

so that either sparse sampling, or some noise-robust estimation technique needs to be

employed.

Three different HF estimators of integrated (co)variation that exploit two types of

synchronization schemes are applied in this paper. The first two are the realized

covariance estimators based on using either sparse sampling, or a combination of

sparse- and subsampling. Subsampling techniques are developed and discussed in the

univariate case by Zhang et al. (2005) and Zhang (2006) and applied in a multivariate

setting by Voev & Lunde (2007). The third estimator is the multivariate realized kernel

presented in Barndorff-Nielsen et al. (2010). The former two estimators employ a

calendar time sampling scheme for synchronization while the latter estimator requires

the use of a so-called refresh time sampling scheme, detailed below.

2.1 Calendar Time Sampling

Calendar time sampling described in synchronizes tick-by-tick observations of mul-

tivariate time series by determining a sampling frequency and employing previous

tick interpolation (see Dacorogna, Gençay, Müller, Olsen & Pictet (2001)) to con-

struct a multivariate time series of prices on the sparse grids. The sampling frequency

must be determined to mitigate the tradeoff between a strong negative bias due to

non-synchronicity of the individual stocks’ trading times (the so-called Epps (1979)

effect), and explosive behavior in both the mean and the variances/covariances as the

sampling frequency increases due to MMS noise as shown by Hansen & Lunde (2006).

The empirical analysis in this paper is based on equidistant sampling at five-minute

intervals similar to the comparison of estimators in Barndorff-Nielsen et al. (2010).

The calendar time sampling setup is used to define the intra-daily return vector rjs,t ≡
pjs,t − pjs−1,t for js = 2, . . . , ms where s indicates sparse sampling at a given sampling

frequency, and ms is independent of i and t. Using sampling at five-minute intervals

with data from the NYSE that has a trading period of 6.5 hours each trading day

results in ms − 1 = 78 high-frequency returns.

This framework can be applied similarly to construct the intra-daily return vector for

the realized covariance estimator that employs both sparse- and subsampling. The

full sampling grid is partitioned into K non-overlapping subgrids, where the realized

covariance is computed over each subgrid and then averaged across grids. In this case,
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we explicitly define the sparse grids through jks , for k = 1, . . . , K and the corresponding

returns by rjks ,t ≡ pjks ,t − pjks−1,t for jks = 1, . . . , ms, k = 1, . . . , K. For the empirical

implementation of the estimator, we choose K = 300, which is the maximal degree of

subsampling with 5-minute returns and data stamped to the nearest second.

2.2 Refresh Time Sampling

Refresh time sampling contrary to calendar time sampling adjusts to some extent to

the trading frequency of the assets by sampling at times at which at least one of the

assets has traded. Thus, refresh time scale ensures that the prices at each sampling

point are not too stale (at least not more than by a tick). The first point on the

grid is obtained when all assets have traded at least once and the last known price

for each asset is recorded. When all assets have traded at least once more, the latest

price for each asset is recorded again, and so on. In this manner, the number of

observations on the refresh time grid is at most equal (and often less than) to the

number of observations of the least traded asset.

The sequence of refresh time observations is formally defined in Barndorff-Nielsen et al.

(2010). The first time on the refresh time scale is given by τ1,t = max(τ1,1,t, . . . , τn,1,t).

The subsequent times are given by τjr,t = max
(

τ
(1)

N(1)(τjr−1,t)+1
, . . . , τ

(n)

N(n)(τjr−1,t)+1

)

,

jr = 2, . . . , mr,t, whereN
(i)(τ) is a process counting the number of observations of asset

i up to (and including) time τ . mr,t is the number of synchronized observations on day

t, which is not necessarily constant across days as opposed to the number of sparse

grid observations ms. The refresh time returns are then defined as rjr,t ≡ pjr,t−pjr−1,t

for jr = 2, . . . , mr,t.

The degree of non-synchronicity and the frequency of trading for each asset determine

the refresh time sample size, mr,t. More information is lost for faster trading assets

compared to their slower trading counterparts. A measure of data loss on trading day

t can be defined as 1− qt with qt =
nmr,t∑n
i=1 mi,t

.

2.3 High-Frequency Covariance Estimation

The sparse-drid (subsampled) realized covariance estimators can be defined straight-

forwardly after having defined the n × 1 vector return series rjs,t (rjks ,t). The real-

ized covariance estimator is consistent for the underlying integrated (co)variance if

prices are semimartingales. However, the estimator will be severely biased if non-

synchronicity and MMS noise are present. Sparse sampling is used to mitigate the
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trade-off between bias and variance of the estimators.

The realized covariance estimator with sparse sampling is defined as

RCt =
ms
∑

js=1

rjs,trjs,t
′

where the precision of the estimator depends on how well sparse sampling controls

the tradeoff between non-synchronicity and MMS noise. Given that the estimator is

based on sparse sampling, subsampling and averaging is a natural extension. The

subsampled realized covariance estimator is given by

RC
(s)
t =

1

K

K
∑

k=1

ms
∑

jks=1

rjks ,tr
′
jks ,t

.

Zhang et al. (2005) show that using subsampling and averaging reduces considerably

the variance of the estimator and can eventually result in consistency (in a combina-

tion with bias correction). The multivariate realized kernel is an alternative to the

realized covariance estimators that is consistent under the assumption of a covariance

stationary noise process, and guarantees a positive semi-definite estimate of the in-

tegrated (co)variance. Having synchronized the return sequence using refresh time

sampling, we can define the class of positive semi-definite multivariate realized kernels

as6

RKt =

Ht
∑

h=−Ht

k

(

|h|
Ht + 1

)

Γh,t

where k(x) for x ∈ R is the weight function. Ht is the length of the kernel, i.e. the

bandwidth parameter, and Γh,t is the h-order realized autocovariance on day t, that

takes the following form

Γh,t =

{

∑Ht

jr=|h|+1 rjr,tr
′
jr−h,t if h ≥ 0

∑Ht

jr=|h|+1 rjr−h,tr
′
jr,t if h < 0

Two critical issues for the empirical implementation of the multivariate realized kernel

are the choice of kernel function, and the determination of the bandwidth parame-

ter. The class of kernel functions we consider is characterized by the following four

6For an extensive treatment of the multivariate realized kernel, the reader is referred to Barndorff-
Nielsen et al. (2010).
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properties

1. k(0) = 1, k′(0) = 0;

2. k is twice differentiable with continuous derivatives;

3. k0,0
• ≡

∫ 1

0
k(x)2dx, k1,1

• ≡
∫ 1

0
k′(x)2dx, k2,2

• ≡
∫ 1

0
k′′(x)2dx < ∞;

4.
∫∞

−∞
k(x) exp(txλ)dx ≥ 0, for allλ ∈ R.

The first property implies that Γ0,t has a unit weight while Γh,t gets a weight close

to unity for small values of |h|. The second and the third property ensure that it

is possible to derive the asymptotic distribution of the estimator. Furthermore, they

are used to determine the optimal length of the bandwidth parameter. The fourth

property guarantees RKt to be a positive semi-definite covariance matrix.

The preferred kernel by Barndorff-Nielsen et al. (2010) that satisfies these four prop-

erties is the Parzen kernel, which is defined as

kP (x) =











1− 6x2 + 6x3 if 0 ≤ x ≤ 1/2

2(1− x)3 if 1/2 < x ≤ 1

0 if x > 1

The Parzen kernel has the advantage that only a finite number, Ht, autocovariances

need to be computed compared to theoretically infinite number required for the more

efficient kernels such as the quadratic spectral and the Fejér kernel (where the gain in

efficiency is negligible in practice).

Essential to the empirical implementation of the multivariate realized kernel is the

bandwidth parameter, Ht. Under an iid noise assumption Barndorff-Nielsen et al.

(2010) derive the optimal (for asset i) kernel length as Hi,t = c∗ξ
4/5
i,t m

3/5
i,t , where c

∗ is a

constant7, and ξ2i,t =
Ωii,t√
IQii,t

where Ωii,t is the i-th diagonal element of the covariance

matrix of the noise process uτ , Ωt = V[uτ ] and IQii,t is the i-th diagonal element of

the integrated quarticity matrix, given in Barndorff-Nielsen & Shephard (2004). In

practice,
√

IQii,t is approximated by
∫ t

t−1
σii,uσ

′
ii,udu, the integrated variance for asset

i. Finally, the global Ht is determined by averaging over the n optimal asset-specific

Hi,t’s, i.e., Ht = n−1
∑n

i=1Hi,t.

In practice, the two quantities Ωii,t and
∫ t

t−1
σii,uσ

′
ii,udu must be estimated. Barndorff-

Nielsen et al. (2009) propose estimating the integrated variance for stock i using a

subsampled realized variance estimator with 20-minute sampling. Furthermore, to

7For the Parzen kernel, c∗ = 3.5134.
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estimate the asset-specific noise component the authors propose a realized variance

estimator based on a denser, one-minute sampling.

3 Volatility Forecasting and Evaluation

The question we have set out to answer is whether more sophisticated approaches

to volatility measurement using high-frequency data, taking account of MMS noise

explicitly deliver substantial gains compared to a more rudimentary sparse sampling

approach. In terms of gains over daily data, these have been already documented in

Fleming, Kirby & Ostdiek (2003), Liu (2009), Chiriac & Voev (2009), etc. Since we

take a volatility forecasting perspective, a crucial ingredient in our study is how to

specify the process for the volatility dynamics, from which we will eventually obtain the

forecasts. A natural starting point would be a multivariate GARCH specification. To

connect to the above cited literature, we consider an exponentially weighted GARCH

model used in Fleming et al. (2003), which can easily incorporate the information

contained in high-frequency data. The forecasts of the covariance matrix on day t+1

given some information at time t will be termed Hd,GARCH
t+1|t , and Hhf,GARCH

t+1|t , for the

model using daily and high-frequency data, respectively. Formally, these are given by

the following two equations:

Hd,GARCH
t+1|t = exp(−αd)H

d,GARCH
t + αd exp(−αd)ete

′
t (3)

Hhf,GARCH
t+1|t = exp(−αhf )H

hf,GARCH
t + αhf exp(−αhf )Yt, (4)

where et = rt − µt and Yt is a realized covariance measure (the sparse RCt, the

subsampled RC
(s)
t or the realized kernel RKt). The conditional mean return process

µt can be specified as generally as needed, but for obvious reasons we assume a constant

mean, i.e., µt = µ. In practice, this will be estimated in a first step as the sample

average of rt. The specification in Equation (4) is motivated by the fact that Yt is

a much more precise measure of the volatility in period t − 1 than ete
′
t. Recursive

substitution in Equation (4) shows that the forecast is implicitly given by a weighted

sum of (lags of) Yt with exponentially declining weights. The α parameters control

the decay of the weights and given the discussion above, we expect αhf > αd, that is

if Yt indeed contains more information than ete
′
t, it should get a higher weight in the

forecast.

More recently, explicit reduced-form models for the dynamics of the matrix process
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Yt have been proposed. Chiriac & Voev (2009) advocate a long memory ARFIMA

specification and compare its performance to the heterogeneous autoregressive (HAR)

model of Corsi (2009), the Wishart autoregressive (WAR) model of Gourieroux, Jasiak

& Sufana (2009) and the HAR extension of the WAR model by Bonato, Caporin &

Ranaldo (2009). They find that using RC
(s)
t as the realized measure, the ARFIMA

and HAR specifications provide better forecasts than the remaining alternatives, but

do not explore the issue of the sensitivity of the model performance to the choice of

realized measure. Defining an unconstrained ARFIMA (HAR) model for the condi-

tional expectation of a positive-definite valued matrix process is not unproblematic,

as it can lead to negative forecasts out-of-sample. As a way around this problem,

Chiriac & Voev (2009) propose to model the n(n + 1)/2 × 1 vector of Cholesky fac-

tors Xt = vech(Chol(Yt)) and subsequently ”square” the forecast, to obtain a positive

definite covariance prediction.8 The ARFIMA(1,d,1) model for the Cholesky factors

Xt we employ is given by:

(1− φL)D(L)[Xt − c] = (1− θL)εt, εt ∼ N(0,Σ), (5)

where c is a vector of constants, φ and θ are the AR- and MA- coefficients, and

D(L) = (1 − L)d ⊗ In(n+1)/2, where d is the (scalar) common degree of fractional

integration for all of the n(n+1)/2 elements of the vectorXt and In(n+1)/2 is the identity

matrix of the indicated dimension. The ARFIMA model exhibits long memory, but

the process is stationary as long as d < 0.5. The HAR model is a mixed-frequency

AR model which represents a simple alternative to fractionally integrated models for

modeling persistent processes. In this paper, we consider the following specification

Xt+1,d = c(d) + β(d)X
(d)
t + β(w)X

(w)
t + β(bw)X

(bw)
t + β(m)X

(m)
t + ωt+1,d, (6)

where d stands for the daily, w – for the weekly (5 days), bw – for the bi-weekly (10

days) and m – for the monthly (20 days) frequency, c(d) is an n(n+1)/2×1 parameter

vector and the β’s are scalar parameters, which can easily be estimated by OLS. The

regressors X
(·)
t are averages of past values of Xt scaled to match the frequency of

the left-hand-side (LHS) variable, e.g., in the equation above X
(bw)
t = 1

10

∑9
i=0Xt−i.

By including AR components at different frequencies, the autocorrelation function

8The vech operator stacks the upper triangular portion of a matrix into a vector. Chol(Yt)
is the Cholesky decomposition of Yt, an upper triangular matrix with the property that
(Chol(Yt))

′Chol(Yt) = Yt.
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of the process Xt mimics the hyperbolic decay of a long-memory process. For a

detailed description of the models, the estimation and forecasting procedures, we

refer the reader to Chiriac & Voev (2009). The ARFIMA and HAR models enable

forecasting of Xt, e.g., a one-step ahead prediction Xt+1|t. The associated forecast of

the conditional covariance matrixHt, denoted for the ARFIMA model byHhf,ARFIMA
t+1|t ,

can be obtained from the forecast Xt+1|t by applying the inverse of the Cholesky

decomposition, i.e, by ”squaring”. More formally, the ij-element of Hhf,ARFIMA
t+1|t can

be obtained from the elements of Xt+1|t using the following equation:

Hhf,ARFIMA
ij,t+1|t =

i(i+1)
2

∑

l=1+ i(i−1)
2

Xl,t+1|tXl+ j(j−1)
2

− i(i−1)
2

,t+1|t
, i, j = 1, . . . , n, j ≥ i, (7)

where Xl,t+1|t is the l-th element of Xt+1|t. The HAR forecast, Hhf,HAR
t+1|t , is obtained

from the HAR prediction of Xt in exactly the same manner.

The forecast evaluation is split into two parts. The first part consists of a statistical

evaluation of the precision of one-step-ahead forecasts using a multivariate version of

the RMSE criterion, which has been shown by Laurent, Rombouts & Violante (2009)

to be robust to noise in the volatility proxy. The version we adopt is based on the

Frobenius norm9 of the matrix error term defined as the difference between the forecast

and the ex-post covariance proxy:

edescrt+1 ≡ Yt+1 −Hdescr
t+1|t , (8)

where descr is the superscript describing the particular forecasting model,

e.g., hf, ARFIMA. The main emphasis is put on the second part of the empiri-

cal evaluation, which is an analysis of the potential economic benefits associated with

more sophisticated estimators of integrated covariation. The evaluation is based on a

mean-variance portfolio optimization strategy similar to Chiriac & Voev (2009) and

Voev (2009). We assume that at each period, the volatility forecast is used to deter-

mine the portfolio weights as

w∗
t+1|t = argmin

wt+1|t

w′
t+s|tH

descr
t+1|twt+1|t (9)

s.t. w′
t+1|tEt[rt+1] =

µp

250
and w′

t+1|tι = 1,

9The Frobenius norm of a real m× n matrix A is defined as ||A|| =
∑m

i=1

∑n

j=1 a
2
ij .
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where wt+1|t is the n × 1 vector of portfolio weights chosen at t, ι is an n × 1 vector

of ones, and µp is an annualized target return (scaled down to the daily frequency in

the optimization problem above). In the empirical study, we vary µp over a range of

values to derive the mean-variance frontier.

To test whether HF-data based models are significantly superior in terms forecasting

performance, and whether there is significant practical benefits of applying more so-

phisticated estimators in terms of mean-variance efficiency, the Model Confidence Set

(MCS) methodology of Hansen, Lunde & Nason (2009) is applied.

4 Empirical Study

In this section, we present estimation and forecasting results for three HF estimators of

integrated (co)variation: realized covariance with sparse sampling, realized covariance

with subsampling, and the multivariate realized kernel. The empirical evaluation is

based on one-step-ahead forecasts of ex-post covariance. We have selected three differ-

ent forecasting models to ensure consistency of our results: a exponentially weighted

GARCH model, a HAR model, and an ARFIMA model, where the latter two are

based on a Cholesky factorization of the covariance estimates. A common feature of

the three dynamic specifications is that they are all guaranteed to provide positive

semi-definite forecasts out-of-sample given that the in-sample covariance matrices on

which the models are estimated are positive semi-definite.

4.1 The Data

The data consists of tick-by-tick trades from the New York Stock Exchange Trade

and Quotation (TAQ) database for the period 01.01.2001 to 30.07.2008 during trading

hours from 9.30 a.m. to 4 p.m, for a total of T = 1904 days.10 We have selected ten

representative stocks from the Dow Jones Industrial index: American International

Group, Inc. (AIG), Boing Co. (BA), Bank of America Corporation (BAC), General

Motors Corporation (GM), International Business Machines Coporation (IBM), The

Coca-Cola Company (KO), McDonald’s Corporation (MCD), Merck and Co., Inc.

(MRK), Verizon Communications Inc. (VZ), and Wal-Mart Stores Inc. (WMT).

Summary statistics of the daily returns for the ten stocks are presented in Table A.1

of Appendix A.1. Similarly, summary statistics of the multivariate realized kernel

10We are grateful to Asger Lunde for providing us with cleaned data.
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estimates of integrated (co)variation are presented in Appendix A.1, Table A.2.11

In the table we see that the estimated variances and covariances are highly right

skewed and extremely leptokurtic. These results are similar to findings of Andersen,

Bollerslev, Diebold & Ebens (2001) and Chiriac & Voev (2009) for realized variances

and covariances.

4.2 Forecast Evaluation

It is instructive to first consider the differences in the informational content embedded

in the volatility estimators we consider. The subsampled realized covariance estimator

uses ms = 78 observations with K = 300 subsamples (implying that we exhaust all

available datapoints), while the realized kernel uses the Refresh Time Sampling scheme

where the average degree of data loss in the sample is 1− q̄t = 0.2916, and the average

number of observations used on a given trading day is m̄τ,t = 2851.12 Comparing this

to the number of observations for the sparse realized covariance (ms = 78) and the

daily returns estimators (one daily observation), respectively, we expect RC
(s)
t and

RKt to produce superior performance both statistically and economically.

For the purposes of out-of-sample evaluation, the observation period is split into two,

one for estimation of the parameters in the dynamic models (t0 = 1256) and one for

validation (T − t0 = 648). The forecasts are carried out in a recursive manner, i.e. the

parameters of the dynamic models are re-estimated at each step with all the available

data. We consider one-step-ahead forecasts since the investor is assumed to rebalance

his portfolio on each trading day. Due to the leptokurtic distribution of returns,

and the skewed and leptokurtic estimates of integrated variances and covariances, the

GARCH and HAR model parameters’ standard errors are estimated using QMLE

for robustness. The ARFIMA model is estimated using the conditional maximum

likelihood methodology developed in Beran (1995), which is also applicable for non-

stationary processes with d > 0.5. The estimated rates of decay αd and αhf in the

daily and the high-frequency GARCH model, respectively, substantiate the claim that

the more informative volatility measure Yt should get a higher weight in the forecast

compared to ete
′
t. The estimated values of α associated with the HF volatility proxies

11Similar tables of the other two HF estimators are available from the authors upon request.
12Figure A.1 in Appendix A.2 displays the time series of the number of observations and the degree
of data loss for the Refresh Time Sampling scheme. While the degree of data loss fluctuates around
its mean, the number of observations are upward trending throughout the sample, suggesting that
an increasing amount of information is used to estimate integrated (co)variation in the multivariate
realized kernel framework throughout the sample.
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are given by αhf = (0.1453, 0.1775, 0.1735)′ for RCt, RC
(s)
t , and RKt, respectively,

compared to αd = 0.0137. Interestingly, the values of αhf could indicate that RC
(s)
t

and RKt are more informative than RCt.

4.2.1 Statistical Evaluation

The statistical evaluation is carried out as described in Section 3, based on the RMSE

of the forecast error in Equation (8). We have selected RKt as an ex-post proxy forHt,

due to its consistency.13 The results for the different dynamic model/realized measure

combinations are presented in Table 1. The statistical significance of the differences

in the reported performance is evaluated across volatility estimators (column-wise

comparison), and across dynamic models (row-wise comparison). The numbers in

parenthesis are the MCS p-values of Hansen et al. (2009), where the first and second

entry relate to the comparison across volatility estimators and dynamic models, re-

spectively. We use (a) and (b) to denote the estimators or dynamic models that belong

to the corresponding 5% model confidence sets. To assist interpretation, consider the

combination of RC
(s)
t and GARCH dynamics, which has a RMSE of 12.186. The

MCS p-value of 0.7710a suggests that holding the dynamic model fixed, RC
(s)
t belongs

to the 5% MCS of volatility estimators. Similarly, the p-value of 0.0128 shows that

holding the volatility estimate (input) fixed, and varying across dynamic models, the

GARCH model does not belong to the 5% MCS.

Daily RCt RC
(s)
t RKt

GARCH 14.802 12.433 12.186 12.173
(0.0000,−) (0.0132, 0.0636b) (0.7710a, 0.0128) (1.0000a, 0.0676b)

HAR − 12.344 12.048 12.085
(0.0028, 0.1149b) (1.0000a, 0.1507b) (0.4456a, 0.1927b)

ARFIMA − 12.265 11.980 12.028
(0.0040, 1.0000b) (1.0000a, 1.0000b) (0.3492a, 1.0000b)

Table 1: RMSE’s based on Frobenius norm of the forecasting error for one-step-ahead
forecasts, where RKt is selected as an ex-post proxy for the true Ht. The MCS p-values
of Hansen et al. (2009) are given in parenthesis, with the first referring to the column-wise
(across realized measures) comparison and the second to the row-wise (across forecasting
models) comparison. We use (a) to denote the volatility measures that belong to the 5%
MCS. Similarly, (b) is used to denote the dynamic models that belong to the 5% MCS.

13The ranking of RMSE’s are qualitatively the same using RCt and RC
(s)
t as proxy variables for Ht,

adding robustness to our results.
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From the first row of Table 1 we see that for the GARCH model there are substantial

and significant gains from switching from daily to HF data in terms of statistical

precision of out-of-sample forecasts. This result can be combined with the estimated

values of the rate of decay αd and αhf to conclude that HF estimates of integrated

(co)variation contain more information than daily estimates, and consequently get a

higher weight in forecasting, which leads to better out-of-sample performance similar

to results in Fleming et al. (2003), Liu (2009), Chiriac & Voev (2009). If we consider

the comparison of HF estimators for each of the dynamic models, we see that only

RC
(s)
t and RKt belong to the 5% MCS. Hence, there are significant gains in statistical

precision from switching from a HF estimator based on a ”sum of squares” type of

computation to more sophisticated estimators that take MMS noise into account and

exploit the available information more fully. This gain in statistical precision was

similarly indicated by the estimated rate of decay for RCt, which was slightly lower

compared to the other two HF estimators. Holding the input variable fixed, there is a

tendency for the ARFIMA model to deliver superior forecasts, followed by the HAR

model, and lastly the GARCH model, which is to be excluded from the MCS at a 10%

significance level. These results are similar to the findings of Chiriac & Voev (2009),

but not as clear-cut. We can conclude that the largest forecasting gains result from

improving the quality of the estimators of integrated (co)variance, i.e. the input in the

dynamic models. Furthermore forecast precision is enhanced both by switching from

daily to HF data, and by switching from simple to more sophisticated HF estimators.

4.2.2 Economic Evaluation

We base our economic evaluation on an investor that is assumed to minimize port-

folio volatility subject to a target expected return µp as described in equation (9)

in Section 3. The target portfolio return µp is varied, and the optimization problem

is solved for each value to trace the efficiency frontier, which characterizes the best

mean-variance tradeoff. The efficient frontiers for all dynamic model/realized mea-

sure combinations are depicted in Figure 1. The global minimum variance portfolio

(GMVP) is emphasized and used to test for significance in the differences of economic

performance.

The upper panel in Figure 1 shows the efficient frontiers for the daily squared return,

RCt, RC
(s)
t , and RKt as inputs to the GARCH model.
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GARCH

HAR

ARFIMA

Figure 1: Mean-variance frontiers for the ex-post realized conditional mean (on the y-axis in %,

annualized) against conditional standard deviation (on the y-axis in %, annualized). The global

minimum variance portfolio is symbolized as follows: circle (daily open-to-close returns (OtoC)),

square (RC), triangle (RC(s)), and inverted triangle (RK). Panels 1, 2, and 3 correspond to

GARCH, HAR and AFRIMA dynamics, respectively. The plots in the second column are zoomed

into the area around the GMVP’s. All plots are averaged over 648 out-of-sample periods.
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Global Minimum Variance

Daily RCt RC
(s)
t RKt

GARCH 10.747 10.036 10.014 10.021
(0.0000,−) (0.0008, 1.0000b) (1.0000a, 1.0000b) (0.3255a, 0.1634b)

HAR − 10.065 10.029 10.023
(0.0003, 0.1065b) (0.3786a, 0.4413b) (1.0000a, 0.0039)

ARFIMA − 10.056 10.020 10.011
(0.0004, 0.1065b) (0.2328a, 0.4709b) (1.0000a, 1.0000b)

Table 2: Standard deviation in annualized % for the global minimum variance portfolios
formed on the basis of one-step-ahead forecasts. The MCS p-values of Hansen et al. (2009)
are given in parenthesis, with the first referring to the column-wise (across realized measures)
comparison and the second to the row-wise (across forecasting models) comparison. We use
(a) to denote the volatility measures that belong to the 5% MCS. Similarly, (b) is used to
denote the dynamic models that belong to the 5% MCS.

We see that there is a clear difference between the efficient frontier found on the basis

of HF estimators and the one found using daily returns. Furthermore, when we zoom

around the area of the GMVP (second column), we can more easily distinguish between

the performance of the HF estimators. RC
(s)
t and RKt are seen to provide a lower

global minimum portfolio variance compared to the RCt estimator. The significance

of these differences is tested by the MCS similar to the testing procedure for the

RMSE’s. The results are presented in Table 2, which is to be interpreted similarly

to Table 1. There are significant economic gains from utilizing HF data instead of

daily returns. Furthermore, by moving away from the simple RCt estimator to more

sophisticated and data-efficient HF estimators, the global minimum variance portfolio

exhibits significantly lower volatility. This result is substantiated by considering both

the middle and the lower panel of Figure 1, which show the efficient frontiers for the

three HF estimators for the HAR and ARFIMA dynamics, respectively. In both cases,

RC
(s)
t and RKt deliver a significantly superior economic tradeoff compared to the RCt

estimator. Hence, the rankings of the integrated covariance estimators are in line with

the RMSE criterion.

When comparing across dynamic models, the results are not as clear-cut. The GARCH

model is seen to perform surprisingly well considering its simple parameterization and

rather weak statistical performance in terms of out-of-sample forecasting. It has the

highest p-value when both RCt and RC
(s)
t are used as input. However, the statistical

significance of these results is rather vague. The HAR model, when holding RKt fixed

as input, is the only example of a dynamic model that does not belong to the 5%

MCS. Generally, there are some indications that the ranking of dynamic models does
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no longer coincide with the RMSE criterion.

Since the RMSE criterion and mean-variance portfolio optimization strategy are two

completely different approaches of model evaluation we did not expect to see exactly

the same rankings for all combinations. The GMVP solution depends on the inverse

of the covariance matrix. The inverse can become rather unstable if the original ma-

trix has an eigenvalue close to zero which can be caused by an estimation error in a

single element of the matrix. In such situations the GMVP loss can be substantially

affected, while the Frobenius norm RMSE will increase only marginally. Furthermore,

Chiriac & Voev (2009) find that the rankings of the two evaluation criteria are af-

fected oppositely if the portfolio rebalancing horizon is increased to five or ten days.

Despite the differences in evaluation criteria, there is clear evidence that HF estima-

tors outperform estimators based on daily returns both statistically and economically.

Similarly, it is evident that more sophisticated estimators of integrated (co)variation

are superior to the simple RCt estimator. Hence, the quality of the realized measure

is shown to be relatively more important than the dynamic model specification.

5 Conclusion

In this paper, we investigated whether more sophisticated estimators of integrated

covariation lead to more precise covariance forecasts, both in terms of statistical pre-

cision and in terms of economic value, represented by the global minimum variance

portfolio. Three HF estimators were selected for this purpose: the realized covariance

with sparse sampling, the realized covariance with subsampling, and the multivariate

realized kernel, where the latter two estimators are based on sampling schemes that

utilize the large number of observations to a much greater extent.

Furthermore, we have addressed the relative importance of the quality of the realized

measure as an input in a given forecasting model compared to the model’s dynamic

specification. Hence, three different dynamic models were used, an exponentially

weighted GARCH model, the HAR model, and the ARFIMA model, where the latter

two are based on a Cholesky factorization to ensure positive definite forecasts.

The forecast evaluation is split into two parts. The first part consists of a statistical

evaluation of the precision of one-step-ahead forecasts using a multivariate version of

the RMSE criterion. The economic evaluation is based on a mean-variance portfolio

optimization strategy using one-step-ahead forecasts to minimize portfolio volatility

subject to a target expected return.
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The main finding in this paper is that the largest gains result from in the switch from

daily to high-frequency data, which is similar to the findings of Fleming et al. (2003),

Liu (2009) and Chiriac & Voev (2009). In addition, we show that further gains can

be achieved if a simple sparse sampling covariance measure is replaced with a more

efficient and noise-robust estimator. We show that for a given dynamic model, only

the realized covariance with subsampling and the multivariate realized kernel belong

to the 5% model confidence set of Hansen et al. (2009). Furthermore, we show that the

choice of realized measure as an input to a dynamic model is relatively more important

than the dynamic specification itself, encouraging practitioners to keep pace with the

developments in the academic literature.
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A Appendix

A.1 Supplementary Tables

Daily Open-to-Close Returns

Mean Max Min SD Skewness Kurtosis

AIG -0,09 11,16 -12,06 1,72 -0,19 9,83

BA -0,03 9,39 -8,02 1,57 -0,20 5,44

BAC 0,04 15,87 -12,50 1,58 1,11 21,82

GM -0,21 13,64 -12,76 2,17 0,05 6,91

IBM 0,07 12,21 -6,39 1,36 0,36 8,40

KO 0,05 7,51 -4,39 1,05 0,12 5,75

MCD 0,09 6,01 -11,33 1,40 -0,21 7,09

MRK 0,02 9,75 -11,13 1,42 -0,36 9,68

VZ -0,01 7,12 -7,63 1,46 0,26 5,70

WMT -0,01 8,61 -5,74 1,26 0,41 6,23

Table A.1: Summary statistics of daily returns for the 10 stocks scaled to the power of 104

for the full sample period 01.01.2001 to 30.07.2008.
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Daily Estimates of Integrated (Co)variation

Mean Max Min SD Skewness Kurtosis

AIG 3.07 47.56 0.13 4.47 4.64 33.24

BA 3.30 38.20 0.17 3.51 3.51 21.97

BAC 2.55 61.65 0.11 4.60 6.52 62.58

GM 4.28 117.38 0.21 6.47 7.04 81.21

IBM 2.22 47.10 0.11 2.65 5.00 54.99

KO 1.70 24.23 0.06 1.99 4.64 36.94

MCD 2.74 45.34 0.23 3.43 5.40 46.97

MRK 2.59 109.26 0.15 4.09 12.12 262.25

VZ 3.05 32.62 0.19 3.58 3.42 19.79

WMT 2.36 27.63 0.15 2.69 4.02 27.19

AIG-BA 0.91 13.51 -1.06 1.36 4.08 27.94

AIG-BAC 1.22 37.60 -5.69 2.58 6.49 63.61

AIG-GM 1.07 23.37 -0.77 1.97 5.37 43.18

AIG-IBM 0.90 15.59 -1.94 1.33 4.39 32.22

AIG-KO 0.70 14.52 -0.87 1.18 5.65 50.48

AIG-MCD 0.75 18.96 -1.26 1.27 6.64 72.86

AIG-MRK 0.78 16.66 -2.18 1.38 5.16 43.31

AIG-VZ 0.99 16.97 -0.89 1.53 4.59 36.24

AIG-WMT 0.99 17.65 -1.25 1.55 5.11 43.71

BA-BAC 0.85 15.37 -1.61 1.30 4.68 37.53

BA-GM 0.90 15.24 -1.24 1.32 3.93 26.12

BA-IBM 0.88 14.84 -1.75 1.32 4.88 38.02

BA-KO 0.70 16.13 -1.80 1.22 5.86 57.04

BA-MCD 0.77 15.83 -2.29 1.22 5.72 53.07

BA-MRK 0.78 18.33 -1.50 1.40 5.69 52.03

BA-VZ 0.91 14.06 -0.81 1.32 3.78 24.91

BA-WMT 0.94 18.48 -1.03 1.51 5.55 49.75

Table A.2: Summary statistics of the variances and covariances using the multivariate realized
kernel for the sample period 01.01.2001 to 30.07.2008. (continued on the next page)
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Daily Estimates of Integrated (Co)variation continued

Mean Max Min SD Skewness Kurtosis

BAC-GM 1.04 28.29 -1.46 2.06 6.03 53.77

BAC-IBM 0.87 17.78 -0.77 1.28 4.53 36.19

BAC-KO 0.63 14.07 -2.02 1.04 5.75 56.43

BAC-MCD 0.71 10.82 -2.10 1.06 4.26 29.71

BAC-MRK 0.69 13.28 -7.62 1.15 4.40 39.07

BAC-VZ 0.89 11.85 -1.79 1.26 3.40 20.21

BAC-WMT 0.94 16.86 -1.32 1.42 4.47 33.93

GM-IBM 0.87 28.67 -0.99 1.35 7.07 107.16

GM-KO 0.62 12.37 -1.46 0.97 4.45 32.81

GM-MCD 0.74 10.31 -2.00 1.07 3.73 23.17

GM-MRK 0.69 11.19 -2.61 1.11 4.05 26.93

GM-VZ 0.90 11.37 -1.78 1.27 3.27 18.03

GM-WMT 0.92 12.08 -1.73 1.29 3.55 21.11

IBM-KO 0.66 10.98 -1.24 0.98 4.36 31.40

IBM-MCD 0.72 10.39 -1.39 1.03 4.72 35.78

IBM-MRK 0.74 11.91 -3.62 1.19 4.42 30.48

IBM-VZ 0.93 16.95 -1.34 1.28 3.79 26.94

IBM-WMT 0.93 17.70 -1.71 1.34 4.59 35.84

KO-MCD 0.59 10.99 -0.60 0.97 5.73 51.28

KO-MRK 0.65 15.21 -1.02 1.20 6.18 58.93

KO-VZ 0.74 11.46 -0.89 1.15 4.25 28.67

MCD-MRK 0.62 15.51 -1.94 1.12 6.22 61.93

MCD-VZ 0.76 11.97 -1.45 1.13 4.29 32.57

MCD-WMT 0.79 15.09 -2.14 1.20 5.91 55.60

KO-WMT 0.74 17.28 -1.26 1.24 5.91 58.34

MRK-VZ 0.83 16.22 -2.50 1.36 4.47 34.50

MRK-WMT 0.79 20.74 -1.50 1.41 6.67 73.63

VZ-WMT 0.96 13.56 -0.79 1.38 3.96 26.42

Table A.2 (cont’d): Summary statistics of the variances and covariances using the multi-
variate realized kernel for the sample period 01.01.2001 to 30.07.2008.
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A.2 Supplementary Figures
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Figure A.1: Time Series of the degree of data loss when applying Refresh Time Sampling (upper

panel), and the number of observations used in the multivariate kernel on each trading day (lower

panel) in the sample period 01.01.2001 to 30.07.2008 .
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