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1 Introduction

In this study, we develop semi-nonparametric estimators and misspeci�cation tests of the so-
called drift and di¤usion functions in univariate di¤usion models given low-frequency obser-
vations. The proposed estimators and tests provide the researcher with tools to investigate
whether a given parametric speci�cation of the drift and di¤usion function is correct and allows
him to test drift and di¤usion speci�cations separately from each other. This is in contrast to
existing methods found in the literature which simultaneously test correct speci�cation of drift
and di¤usion terms.

Our estimation and testing procedure takes as starting point two classes of semiparametric
di¤usion models introduced in Kristensen (2010): In the �rst class, the drift term is known up
to a �nite-dimensional parameter while the di¤usion term is left unspeci�ed; in the second class,
the di¤usion term is on parametric form while the drift term is unknown. Kristensen (2010)
develop estimators of the parametric component for a given model in either of the two classes.
We demonstrate how the unspeci�ed term in any of these semiparametric di¤usion models can
be estimated nonparametrically using kernel methods. These estimators are useful as guides in
the search for a correct parametric speci�cation since they provide information about the shape
of the unspeci�ed term. In addition, the estimators help us to develop novel misspeci�cation
tests of di¤usion models.

We suggest two sets of tests: First, we propose tests for a given semiparametric di¤usion
model against a fully nonparametric alternative. Second, tests for a fully parametric model
against either of its two semiparametric alternatives are developed. Our test statistics are
chosen as weighted L2-distances of the estimators of the so-called transition density obtained
under null and alternative respectively. In addition, we also consider tests that directly compare
drift or di¤usion estimators. We explore the asymptotic properties of the tests both under null
and alternative, and obtain a number of interesting results:

First, our transition-based test of a given semiparametric model against the fully nonpara-
metric alternative is under the null �rst-order asymptotically equivalent to tests of fully para-
metric models as developed in Aït-Sahalia, Fan and Peng (2009) and Li and Tkacz (2006). This
is due to the fact that estimators of the transition density under the semiparametric and para-
metric null respectively both converge with parametric rate, and as such the asymptotic distri-
butions of our test statistics are completely driven by the fully nonparametric transition density
estimator. The parametric rate of the semiparametric transition density estimator appears be-
cause computation of transition densities for low-frequency observations involves integration
of both the drift and di¤usion term (see e.g. Kristensen, 2008). This integration functions
as an additional smoothing mechanism that speeds up convergence rate of the semiparametric
estimator of the transition density even though it involves kernel estimators.

Second, our proposed transition-based test statistics of the fully parametric model against
either of the two semiparametric alternatives converge with parametric rate under the null. This
is non-standard within the class of tests based on L2-distance measures of semi-nonparametric
density estimators which in general converge with nonparametric rate. Instead our transition-
based tests for the fully parametric null share similarities with the class semiparametric esti-
mators and tests that exhibit parametric rate (see e.g. Andrews, 1994; Corradi and Swanson,
2005; Whang and Andrews, 1993).

Third, we study the power properties of the tests by considering their performance under
contiguous alternatives. In particular, we show that, transition-based tests are not very suitable
for detection of high-frequency departures in a di¤usion framework. This is in contrast to
density-based tests in standard, discrete-time setting. This maybe surprising result is due to
the fact that local features of the drift and di¤usion terms are integrated out in the computation
of trasition densities and so local deviations get blurred out. It should be stressed that this
problem is not special to our particular tests, but is shared by all other transition-based tests of
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di¤usion models in the literature such as Aït-Sahalia et al (2009). As such our power analysis
should be of general interest.

The lack of power against local alternatives leads us to propose two alternative tests of
the parametric null against semiparametric alternatives based on direct comparison of drift and
di¤usion function estimators obtained under null and alternatives. We examine their asymptotic
properties both under null and alternative: They converge with a slower rate than the transition-
based tests, and thus are dominated by transition-based tests in terms of detecting global
alternatives. On the other hand, the tests are better at detecting local deviations of drift and
di¤usion functions from the null, and so have better power against local alternatives. As such
they complement our transition-based tests.

Finally, we conduct a higher-order analysis of the proposed tests under the null. This
analysis demonstrates that �rst-order asymptotic distributions obtained under the null may be
a poor proxy of their �nite-sample distributions. We therefore propose a Markov bootstrap
method that we hope will provide a better approximation of �nite-sample distributions of the
test statistics. This conjecture is supported by simulation results in Aït-Sahlia et al (2009) and
Li and Tkacz (2006) who propose similar Bootstrap procedures for their tests.

The proposed tests and their theoretical analysis add to a growing literature on speci�cation
testing of di¤usion models. This class of models is widely used in describing dynamics of
asset pricing variables such as interest rates, stock prices, and exchange rates; see for example
Björk (2004) for an overview. Since economic theory imposes little restrictions on asset price
dynamics, statistical techniques are usually employed in the search for a correct speci�cation.
The literature on testing di¤usion model speci�cations can roughly be divided up into two
categories depending on whether high-frequency data is assumed available or not.

If high-frequency data is observed, simple nonparametric kernel-regression estimators of
drift and di¤usion terms can be used to test for correct speci�cation (Bandi and Phillips, 2005;
Corradi and White, 1999; Li, 2007; Negri and Nishiyama, 2009). In principle, these tests do not
rely on stationarity which is an advantage over the approach taken here. On the other hand,
asymptotic properties of estimators and associated tests do rely on the time distance between
observations shrinking to zero; thus, estimators and tests will potentially be severely biased if
only low-frequency data is available (see Nicolau, 2003).

To avoid the bias issues associated with high-frequency based tests, alternative tests based
on �xed time distance between observations have been developed. Aït-Sahalia (1996b) propose
to test for correct speci�cation using a weighted L2-distance to measure discrepancies between
the marginal density under null and alternative. This class of tests was originally proposed in
Bickel and Rosenthal (1973) in a cross-sectional setting; see also Fan (1994) and Gourieroux
and Tenreiro (2001). Since the test of Aït-Sahalia (1996b) is only able to detect discrepancies
in the marginal density, it is not consistent against all alternatives. This observation lead to
the development of tests based on transition densities since these fully characterise di¤usion
models.

Our transition-based tests are most related to the ones developed in Aït-Sahalia et al (2009)
and Li and Tkacz (2006) where fully nonparametric and parametric estimators of the transition
density are compared. In a similar spirit, Hong and Li (2004) propose a test where transformed
versions of the transition densities are compared, while Chen, Gao and Tang (2009) employ
empirical likelihood techniques. These tests are all designed to examine the correct parametric
speci�cation of the drift and di¤usion function jointly. In contrast, we are able to test the
speci�cation of each of the two functions characterising the model separately. Our local power
analysis complements the one carried out in Aït-Sahalia et al (2009). They specify alternatives
in terms of the transition densities and �nd that transition-based tests have the ability to
detect local deviations form the null at a better rate than CvM type tests. However, given
that the end goal is to test for the correct speci�cation of drift and di¤usion term, we instead
specify our alternatives directly in terms of these. By doing so, we obtain some rather di¤erent
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power results for transition-based tests. In particular, we show that they are not able to detect
local alternatives at a higher rate compared to CvM type tests. These seemingly contradictory
results are due to the fact that Aït-Sahalia et al (2009) specify their alternatives in terms of
the transition density while we focus on deviations in terms of underlying drift and di¤usion
functions. Since, as already noted above, the transition density involves integration over the
drift and di¤usion function, local features in these get smoothed out in the transition density
and therefore not easily detected.

Our tests based on direct comparison of the drift and di¤usion function estimates under
null and alternative are related to the marginal density tests of Aït-Sahalia (1996b) and Huang
(1997). However, our proposed tests involve non-trivial transformations of the marginal density
and its derivatives and as such are able to detect di¤erent, more natural alternatives compared
to their tests.

Instead of comparing transition densities, Kolmogorov-Smirno¤ (KS) type tests have been
proposed by Bhardwaj, Corradi and Swanson (2008) and Corradi and Swanson (2005) where
estimators of the cumulative distribution functions (cdf�s) are compared. This on one hand
means that their tests converge with parametric rate under the null and as such are more
powerful at detecting certain global alternatives compared to transition-based tests. On the
other hand KS-type tests are known to have di¢ culties detecting local deviations from the null;
a shortcoming that density-based tests do not su¤er from (see e.g. Escanciano, 2009; Eubank
and LaRiccia, 1992).

Finally, Kristensen (2010) proposes some speci�cation tests which appear to be the only
existing tests based on low-frequency data that allow for testing correct speci�cations of the
drift and di¤usion terms separately. However, Kristensen (2010) does not supply a complete
asymptotic theory. Moreover, as with CvM and KS type tests, his proposed Hausmann-type
tests of fully parametric models will in general have low power against local alternatives since
they are based on only matching estimators of the parametric component obtained under null
and under alternatives. In particular, his tests may not be consistent against all alternatives. In
contrast, we base our tests on estimators of the nonparametric component under the alternative,
and so expect them to enjoy better power properties.

The remains of the paper is organised as follows: In Section 2, we lay out the general
framework of our analyis. The semi-nonparametric estimators of the drift and di¤usion term
are presented and their asymptotic properties derived in Section 3. In Section 4, we propose a
number of di¤erent test statistics for a parametric speci�cation against semi- and nonparametric
alternatives and investigate their asymptotic behaviour. We discuss related tests in Section 5,
while Bootstrap versions of the test statistics are developed in Section 6. The �nite-sample
performance of the estimators are examined through a simulation study in Section 7. We
conclude in Section 8. All proofs have been relegated to the Appendix.

2 Framework

Consider the continuous time process fXtg = fXt : t � 0g solving the following univariate
Markov di¤usion model,

dXt = � (Xt) dt+ � (Xt) dWt; (1)

where fWtg is a standard Brownian motion. The domain of fXtg takes the form of an open
interval I = (l; r) where �1 � l < r � 1. The functions � : I 7! R and �2 : I 7! R+ are the
so-called drift and di¤usion term respectively. The dynamics of the process are described by
the transition densities p (yjx; t), t � 0, describing conditional distributions,

P (Xs+t 2 AjXs = x) =

Z
A
p (yjx; t) dy; A � I; s; t � 0:
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For di¤usion models as given in eq. (1), the transition density can be expressed as the solution
to the following partial di¤erential equation (PDE) (see Friedman, 1976):

@p (yjx; t)
@t

= A
�
�; �2

�
p (yjx; t) ; t > 0; (x; y) 2 I � I; (2)

with boundary condition limt!0 pt (yjx) = � (y � x). Here, A
�
�; �2

�
denotes the in�nitesimal

generator,

A
�
�; �2

�
p (yjx; t) = � (x)

@p (yjx; t)
@x

+
1

2
�2 (x)

@2p (yjx; t)
@x2

;

and � (�) Dirac�s delta function. Thus, the drift and di¤usion function fully characterise the
transition density and we will write p

�
yjx; t; �; �2

�
for the solution mapping that takes any drift

and di¤usion function into the corresponding transition density as given implicitly through the
PDE in eq. (2).

We are interested in testing parametric speci�cations of the drift and di¤usion function. We
will throughout work under the maintained (nonparametric) hypothesis that fXtg is a Markov
di¤usion process,

HNP : fXtg solves eq. (1) with �2 (�) and � (�) unspeci�ed.

In the existing literature, tests have been developed for a fully parametric di¤usion speci�cation
against this nonparametric alternative. The joint fully parametric hypothesis takes the form

HP : �
2 (�) = �2 (�; �0;1) and � (�) = � (�; �0;2) for some (�0;1; �0;2) 2 �1 ��2,

where �k � Rdk , k = 1; 2. Thus, under HP, both drift and di¤usion functions are known up to
some �nite-dimensional parameter. A plethora of tests of HP vs. HNP exist; see, for example,
Aït-Sahalia et al (2009), Bhardwaj et al (2008), Chen et al (2009), Hong and Li (2004) and
Li and Tkacz (2006). Most of these studies base their tests on comparison of estimators of
(potentially transformed versions of) the transition density under the null and the alternative.

However, in case of rejection of HP, such tests are not informative regarding whether mis-
speci�cation of drift, di¤usion or both are the cause of rejection. This motivates us to introduce
the following two semiparametric hypotheses, which allow us to test for misspeci�cation of the
drift and di¤usion term separately from each other:

HSP;1 : �
2 (�) = �2 (�; �0;1) for some �0;1 2 �1; (3)

and
HSP;2 : � (�) = � (�; �0;2) for some �0;2 2 �2: (4)

If a model satisfy HSP;1 (HSP;2), the drift (di¤usion) term is unspeci�ed, and the model is
semiparametric. Also note that if a model satis�es both HSP;1 and HSP;2, then both drift and
di¤usion are speci�ed and the model is fully parametric. In particular, we have the following
nesting of the hypotheses: HP � HSP;k � HNP for k = 1; 2.

In the next section, we �rst develop tests of each of the two semiparametric hypotheses, HSP;1
and HSP;2, against the nonparametric alternative. Secondly, we propose tests ofHP against each
of the two semiparametric hypotheses. Together, the tests enable the econometrician to �rst
test for the correct speci�cation of, say, the drift term (HSP;2 vs. HNP), and then (if HSP;2 is
accepted) the correct speci�cation of the di¤usion term (HP vs. HSP;2).

In order to develop our tests, we �rst obtain estimators of the drift and di¤usion functions
under the two semiparametric hypotheses. The estimators rely on the assumption of stationarity.
Suppose that fXtg is strictly stationary and ergodic, in which case it has a stationary marginal
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density which we denote �. This density satis�es
R
A � (x) dx = P (Xt 2 A), for any t � 0 and

Borel set A � I, and can be written on the following form:

� (x) =
Mx�

�2 (x)
exp

�
2

Z x

x�

� (y)

�2 (y)
dy

�
; (5)

for some some point x� 2 intI, and normalisation factor Mx� > 0, c.f. Karlin and Taylor (1981,
Section 15.6). One can revert the expression in eq. (5) to obtain expressions of either drift or
di¤usion function:

� (x) =
1

2� (x)

@

@x

�
�2 (x)� (x)

�
; (6)

�2 (x) =
2

� (x)

Z x

l
� (y)� (y) dy: (7)

From these expressions, we can identify the drift (di¤usion) function from the di¤usion (drift)
term together with the marginal density; this point was already made in Wong (1964), and
further pursued in Aït-Sahalia (1996a), Hansen and Scheinkman (1995), and Kristensen (2010).
In particular, this allows us to identify the unspeci�ed term under each of the two semiparametric
hypotheses.

3 Semi-Nonparametric Estimators

We develop speci�c drift and di¤usion estimators based on the identi�cation scheme presented
in the previous section: Suppose that we have n + 1 observations available from eq. (1),
X0; X�; X2�; :::; Xn�, where � > 0 is the �xed time distance between observations; without
loss of generality, we normalise time distance to � � 1 in the following. Under the relevant
semiparametric hypothesis, HSP;1 or HSP;2, we assume that a preliminary estimator of the para-
metric component, �1 or �2, is available. We make no assumptions about where the preliminary
estimators have arrived from, and merely require that they are su¢ ciently regular. One par-
ticular class of estimators are the pseudo-MLEs proposed in Kristensen (2010), but we do not
restrict ourselves to these and the estimator of Aït-Sahalia (1996a) could also be used in the
case of a linear drift speci�cation.

Given estimators of the parametric components, we now just need to obtain an estimator of
the marginal density, �. We here propose to use kernel methods to estimate it,

�̂ (x) =
1

n

nX
i=1

Kh (x�Xi) ; (8)

where Kh (z) = K (z=h) =h, K is a kernel, and h > 0 is a bandwidth; see Robinson (1983) for an
introduction to kernel density estimators in a time series setting. We then combine estimators
of the parametric component and the marginal density to obtain an estimator of the unspeci�ed
term.

First, consider HSP;1: In this case, the di¤usion term is parameterised and an estimator �̂1
is available together with the kernel estimator �̂. We then estimate � by substituting �2(x; �̂1)
and �̂ into eq. (6):

�̂ (x) =
1

2�̂ (x)

@

@x

h
�2(x; �̂1)�̂ (x)

i
: (9)

Under HSP;2, we have a parametric estimator of the drift parameter, �̂2, which together with
�̂ can be used to estimate the di¤usion term. Two alternative estimators present themselves:
An obvious estimator would be to directly substitute �(y; �̂2) and �̂ into eq. (7), ~�2 (x) =
2

�̂(x)

R x
l �(y; �̂2)�̂ (y) dy: However, the integral

R x
l � (y)� (y) dy can be estimated without bias
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by a sample average, 1n
Pn
i=1 I fXi � xg�(Xi)!P

R x
l � (y)� (y) dy, where I f�g is the indicator

function. So we suggest to estimate �2 (x) by

�̂2 (x) =
2

�̂ (x)

1

n

nX
i=1

I fXi � xg�(Xi; �̂2): (10)

To establish the asymptotic properties of the two estimators, we impose regularity conditions
on the model:

A.1 (i) The drift � (�) and di¤usion �2 (�) > 0 are continuously di¤erentiable.
(ii) there exists a twice continuously di¤erentiable function V : R 7! R+ with V (x)!1
as jxj ! 1, and constants b; c > 0 such that

� (x)V 0 (x) +
1

2
�2 (x)V 00 (x) � �cV (x) + b: (11)

A.2 The marginal density � is uniformly di¤erentiable of orderm � 2 with bounded derivatives,
and satis�es

R
I � (x)

1�q dx < 1 for some q > 0. The conditional density p (yjx) �
p (yjx; 1) is uniformly di¤erentiable of order m with supx;y2I p (yjx)� (x) <1.

A.3 The parametric drift and di¤usion function satisfy:

1. �1 7! �2 (x; �1) is continuously di¤erentiable satisfying jj@ijx;�1�
2 (x; �1) jj � V (x),

i; j = 0; 1.

2. �2 7! � (x; �2) is continuously di¤erentiable, satisfying jj@i�2� (x; �2) jj � V (x), i =
0; 1.

A.4 For k = 1; 2: There exists ��k 2 �k and function  SP;k satisfying E
�
 SP;k (X1jX0)

�
= 0 and

E
�
jj SP;k (X1jX0) jj2+�

�
<1, such that

p
n(�̂k���k) =

Pn
i=1  SP;k (XijXi�1) =n+oP (1).

Assumption (A.1) is su¢ cient for a stationary and geometrically �-mixing solution to exist
as shown in Meyn and Tweedie (1993); alternative mixing conditions for di¤usion processes
can be found in Chen, Hansen and Carrasco (2010) and Hansen and Scheinkman (1995). We
will throughout assume that we have observed this solution. Some of the results stated in this
section actually go through under weaker mixing conditions, but since in the next section we
need �-mixing of geometric order to employ U-statistics results for dependent sequences (see
Gourieroux and Tenreiro, 2001), we impose this restriction throughout for clarity. Most models
found in the �nance literature satisfy (A.1) under suitable restrictions on the parameters.

The existence of m � 2 derivatives of � assumed in (A.2) combined with the use of an
mth order kernel as given in (B.1) below allow us to control the bias of the kernel density
estimator and its �rst derivative. The smoothness of � as measured by its number of derivatives,
m, determines how much the bias can be reduced with. The condition that � is m times
di¤erentiable is satis�ed if � and �2 are m� 1 and m times di¤erentiable respectively, c.f. eq.
(5).

The tail condition imposed on � in (A.2) is used to obtain uniform convergence results for
the semiparametric drift and di¤usion estimators when analysing the associated semiparametric
estimator of the transition density (see Lemma 2 in Section 4). The parameter q > 0 measures
the thickness of the tails of the marginal distribution, and is used to control the asymptotic
impact of trimming introduced in the next section. The conditions on the transition density
in (A.2) together with (A.1) allow us to bound the variance of �̂, and will also become useful
when analysing nonparametric estimators of the transition density in Section 4.
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Assumption (A.3) in conjunction with (A.1) implies that the following two moments exist:
E[jj@i�2� (X0; �2) jj] < 1 and E[jj@ijx;�1�

2 (X0; �1) jj] < 1. These are used when demonstrating
uniform convergence of the semi-nonparametric estimators.

Assumption (A.4) imposes restrictions on the estimator �̂k obtained under HSP;k, k = 1; 2.
The assumption is formulated so it holds both under HSP;1 and HSP;2 respectively, and the non-
parametric alternative. Under the relevant null, there exists a parameter value �0;k such that ei-
ther eq. (3) or (4) hold. It is then implicitly assumed that ��k = �0;k such that �2 (x; ��1) = �2 (x)
and � (x; ��2) = � (x) respectively. If the relevant semiparametric null is false, no parameter value
exists such that either eq. (3) or (4) hold. As such ��k is a pseudo-true value in the sense that
�2 (x; ��1) 6= �2 (x) and � (x; ��2) 6= � (x) respectively, and ��k is just some parameter value that
the estimator converges towards. Under the null, Assumption (A.4) is satis�ed in great gen-
erality for most well-behaved estimators: For the fully parametric MLE�s, Aït-Sahalia (2002)
gives conditions for (A.4) to hold, while Kristensen (2010) give conditions under which semi-
parametric pseudo MLE�s satisfy the conditions. Under the alternatives, we expect that (A.4)
will still hold under great generality by employing the arguments similar to those in White
(1982). For some of our results, the conditions imposed on the parametric estimators in (A.4)
can be weakened to the requirement that they merely converge at a faster rate than the kernel
estimator. However, for simplicity we maintain the stronger assumptions of (A.4) throughout.

Finally, we restrict the class of kernel functions to belong to the following family:

B.1 The kernel K is di¤erentiable, and there exists constants C; � > 0 such that���K(i) (z)
��� � C jzj�� ;

���K(i) (z)�K(i)
�
z0
���� � C

��z � z0�� ; i = 0; 1;

where K(i) (z) denotes the ith derivative. Furthemore,
R
RK (z) dz = 1,

R
R z

jK (z) dz = 0,
1 � j � m� 1, and

R
R jzj

mK (z) dz <1.

This class includes most standard kernels including the Gaussian and Uniform kernel. We
are now able to state pointwise convergence results for the estimators of the unspeci�ed term
under the two semiparametric nulls:

Theorem 1 Assume that (A.1)-(A.4) and (B.1) hold. Then for any point x in the interior of
I:

1. Under HSP;1: As nh3 !1 and nh3+2m ! 0,

p
nh3(�̂ (x)� � (x)) d! N (0; V� (x)) ;

where V� (x) =
�4(x)
4�(x)

R
RK

(1) (z)2 dz.

2. Under HSP;2: As nh!1, and nh1+2m ! 0,

p
nh(�̂2 (x)� �2 (x)) d! N (0; V�2 (x)) ;

where V�2 (x) =
�4(x)
�(x)

R
RK

2 (z) dz.

The above result allows the researcher to plot the two estimators together with pointwise
con�dence bands. The pointwise asymptotic variances for �̂ (x) and �̂2 (x) can be estimated by:

V̂� (x) =
�4(x; �̂1)

4�̂ (x)

Z
R
K(1) (z)2 dz; V̂�2 (x) =

�̂4 (x)

�̂ (x)

Z
R
K (z)2 dz: (12)
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One can easily show, as is standard for kernel-based estimators, that both semi-nonparametric
estimators are asymptotically independent across distinct points. This facilitates inference, for
example when constructing pointwise con�dence bands.

The rate of convergence of �̂ is slower than the one of �̂2. This owes to the fact that �̂
depends on both �̂ and its �rst derivative, �̂(1), while �̂2 is only a function of �̂. The density
derivative has slower weak convergence rate than �̂,

p
nh3 relative to

p
nh, which the drift

estimator inherits. Thus, the drift is more di¢ cult to estimate than the di¤usion term which
is a well-established fact in the literature: Gobet, Ho¤mann and Reiß(2004) show that the
optimal convergence rate of the nonparametric estimation of the drift is slower than for the
di¤usion given low-frequency observations, and coin the nonparametric estimation of � as an
�ill-posed problem�. Similarly, Bandi and Phillips (2003) demonstrate that with high-frequency
observations of a stationary di¤usion, it is only possible to estimate � (x) nonparametrically withp
n�h-rate, while �2 (x) can be estimated at the faster rate

p
nh as �! 0 and n�!1.

4 Goodness-of-Fit Testing

We here develop tests of correct speci�cations of the drift and/or di¤usion function. Our main
focus will be on tests based on the transition density of the Markov process fXtg, where a
given null is tested against a given alternative by comparing estimators of the transition density
obtained under the null and the alternative respectively. However, motivated by a power analysis
of the proposed transition-based tests, we will also develop tests that directly compare drift and
di¤usion estimators under null and alternative. The two following subsections develop tests of
the semiparametric and fully parametric hypotheses respectively and examine their properties.

4.1 Semiparametric Speci�cation Tests

We consider testing either HSP;1 or HSP;2 against HNP. In order to present our tests, we �rst
introduce some additional notation: Recall that we have normalised the time distance between
observations to � = 1, such that p (yjx) := p (yjx; 1) is the transition density of the observed
Markov chain, Xi, i = 1; :::; n. Let f (y; x) = p (yjx)� (x) denote the corresponding joint density
of (Xi; Xi�1). Under either of the two semiparametric hypotheseses, restrictions are imposed
on the drift and di¤usion term. Using eqs. (6)-(7), we de�ne the restricted drift and di¤usion
terms under the respective nulls as

�SP;1 (x) =
1

2� (x)

@

@x

�
�2 (x; ��1)� (x)

�
; �2SP;1 (x) = �2 (x; ��1) ; (13)

�SP;2 (x) = � (x; ��2) ; �2SP;2 (x) =
2

� (x)

Z x

l
� (x; ��2)� (y) dy: (14)

We let pSP;k(yjx; �k) := pSP;k(yjx; 1; �k) denote the transition density corresponding to the
restricted drift and di¤usion functions under HSP;k, k = 1; 2 at t = � = 1. It can for example
be represented as the solution (at t = 1) to the PDE in eq. (2) with the restricted drift and
di¤usion functions plugged in. When evaluated at the (pseudo-)true parameter value we simply
write pSP;k(yjx) = pSP;k(yjx; ��k).

Under the nonparametric hypothesis, HNP, the drift and di¤usion functions are left com-
pletely unspeci�ed, and so we propose to estimate the unrestricted transition density, p (yjx),
under the alternative using standard kernel methods. A standard kernel estimator of the tran-
sition density for the observed data is

p̂NP(yjx) =
f̂NP (y; x)

�̂NP (x)
;

9



where, for some bandwidth hNP > 0,

f̂NP (y; x) =
1

n

nX
i=1

KhNP (Xi � y)KhNP (Xi�1 � x) ; �̂NP (x) =
1

n

nX
i=1

KhNP (Xi�1 � x) :

Note that two di¤erent bandwidths are now being employed: Under the semiparametric null,
we use the bandwidth h in the estimation of the univariate marginal density, while under the
alternative hNP is used to obtain a nonparametric estimator of the bivariate transition density.

Next, we obtain an estimator of the transition density under either of the two semiparametric
hypotheseses, pSP;k (yjx). In both cases, we have drift and di¤usion estimators available as
developed in the previous section. These could in principle be used to obtain an estimator
of pSP;k (yjx) by plugging them into the PDE in eq. (2) and then solving w.r.t. p (yjx; t) (at
t = 1). However, to establish theoretical properties of the resulting semiparametric estimator
of the transition density, we have to modify the drift and di¤usion estimators proposed in the
previous section to control their tail behaviour. We �rst introduce a class of trimming functions
�a (z):

B.2 The trimming function �a : R 7! [0; 1], a > 0, satis�es �a (z) = 1 for z � a and �a (z) = 0
for z � a=2.

A simple way of constructing �a (z) is to choose a cdf F with support [0; 1], and de�ne
�a (z) = F ((2z � a) =a) which then in great generality will satisfy (B.2); see also Andrews
(1995, p. 572).

Given the trimming function, we rede�ne the estimators under the two semiparametric
hypotheses, where we now use subscripts to di¤erentiate between the two nulls,

�̂SP;1 (x) =
�̂a (x)

2� (x)

@

@x

h
�2(x; �̂1)�̂ (x)

i
; �̂2SP;1 (x) = �̂a (x)�

2(x; �̂1) + �
2 (1� �̂a (x)) ; (15)

�̂SP;2 (x) = �̂a (x)�(x; �̂2), �̂2SP;2 (x) =
2�̂a (x)

�̂ (x)

Z x

l
�(y; �̂2)�̂ (y) dy + �

2 (1� �̂a (x)) ; (16)

where �̂a (x) := �a (�̂ (x)), a = an > 0 is a trimming sequence, and �2 > 0 a constant. The
inclusion of the additional term �2 (1� �̂a (x)) in the di¤usion estimator guarantees that it
is strictly positive for all x 2 I for n su¢ ciently large. The motivation for the trimming is
two-fold: First, by combining results of Andrews (1995) and Kristensen (2009), the trimming
of the semi-nonparametric component is used to show that �̂SP;1 (x) !P �a (� (x))�SP;1 (x)

and �̂2SP;2 (x) !P �a (� (x))�
2
SP;2 (x) uniformly over x 2 I, k = 1; 2, c.f. Lemma 9. We will

then let a ! 0 at a suitable rate such that asymptotically the trimming has no �rst-order
e¤ect asymptotically, �a (� (x))�SP;1 (x) � �SP;1 (x) and �a (� (x))�

2
SP;2 (x) � �2SP;2 (x); see,

for example, Ai (1997) and Robinson (1988) for similar applications of trimming. Second, the
trimming of the parametric component is introduced to ensure that the associated transition
density exists: Due to trimming, �̂SP;k and �̂2SP;k are bounded and �̂2SP;k > 0, and we can
therefore apply standard results to ensure that the associated di¤usion process has a well-
de�ned transition density; see, for example, Friedman (1976).

Given the above re-de�ned semiparametric drift and di¤usion estimators, we de�ne our
estimator of the corresponding transition density, p̂SP;k(yjx), as the solution to the following
PDE at t = 1,

@p̂SP;k(yjx; t)
@t

= A
�
�̂SP;k; �̂

2
SP;k

�
p̂SP;k(yjx; t); t > 0; (x; y) 2 I � I: (17)

While the theoretical analysis of the estimator will rely on the above representation, its actual
computation can be done using numerical techniques as developed in, amongst others, Aït-
Sahalia (2002) and Kristensen and Shin (2008); see also Kristensen (2010, Section 5).
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Given the non- and semiparametric estimates, we propose to test HSP;k using the following
statistic,

TSP;k =

Z
I

Z
I
[p̂SP;k(yjx)� p̂NP(yjx)]2w (y; x) dydx; (18)

for some weighting function w. Similar test statistics have been considered in Aït-Sahalia et
al (2009) and Li and Tkacz (2006) but in a di¤erent context, namely that of testing fully
parametric models against a nonparametric alternative. By appropriate choice of w, the tests
can be interpreted as second-order approximations of the generalised likelihood-ratio tests, c.f.
Aït-Sahalia et al (2009, p. 1105) and Fan, Zhang and Zhang (2001).

Other transition-based distance measures could be used: For example, measures based on
the Kuhlback-Leibler divergence (Robinson, 1991), the empirical likelihood (Chen et al, 2009),
or integral transforms (Hong and Li, 2004). We focus on TSP;k, but conjecture that theoretical
results for other distance measures could be derived by following the same proof strategy as
used here for TSP;k.

As a �rst step towards establishing asymptotic properties of TSP;k, we investigate the prop-
erties of p̂SP;k(yjx). The analysis will rely on the representation of p̂SP;k(yjx) as the solution to
eq. (17) at t = 1. To ensure that the solution exists (asymptotically) and is su¢ ciently regular,
we impose the following assumption on the transition density:

A.5 The transition density under HSP;k, pSP;k (yjx; t; �) for t > 0, exists as a solution to eq. (2)
and satis�es

��@ixpSP;k (yjx; t; �)�� �  (yjx; t), (t; x; y; �) 2 (0;�]� I2 ��, i = 0; 1; 2, where

 (yjx; t) = c1
jyj�1 + jxj�1

t�1
exp

"
�c2

jyj�2 + jxj�2
t�2

#
(19)

for constants cj;�j ; �j > 0, j = 1; 2.

The above assumption is high level. It would be preferable to give more primitive conditions
in terms of the underlying drift and di¤usion functions for the above regularity conditions to
hold. However, to our knowledge, the only known su¢ cient conditions for existence of a solution
to eq. (2) are overly restrictive and, for example, require that drift and di¤usion functions are
bounded, c.f. Friedman (1976). Such boundedness restrictions are violated by most standard
models used in the literature, and rule out that the process is mixing, c.f. Chen, Hansen and
Carrasco (2010). We therefore impose the high level conditions in (A.5) instead, which is similar
to the conditions imposed in Kristensen (2010). We conjecture that the assumption could be
replaced by alternative conditions such as the ones in Aït-Sahalia (2002).

Finally, with m � 2 and q > 0 given in (A.2), we impose the following conditions on the
bandwidth and trimming parameter to ensure that �̂SP;k (x) and �̂

2
SP;k (x) converge su¢ ciently

fast:

H.1
p
nha6= log (n) ! 1,

p
nh3a4= log (n) ! 1, n1=4hma�3 ! 0,

p
nhma�1 ! 0, andp

naq=2 ! 0.

H.2
p
nha4= log (n)!1, n1=4hma�2 ! 0,

p
nhma�1 ! 0, and

p
naq=2 ! 0.

Depending on whether we work under HSP;1 or HSP;2, we will impose (H.1) or (H.2) respec-
tively. The conditions involve both h and a and impose restrictions on how fast they jointly can
go to zero. They are used to control higher-order bias and variance terms appearing in p̂SP;k(yjx);
in particular, they ensure that the kernel-based estimators of the relevant semi-nonparametric
component under the null converges with rate oP

�
n�1=4

�
uniformly over fx : � (x) � ag, and

that the trimming has no �rst-order impact on the semiparametric transition density estimator.
Utilising arguments developed in Kristensen (2008, 2010), we are now able to establish the

following asymptotic expansion of the transition density estimator:
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Lemma 2 For k 2 f1; 2g: Assume that (A.1)-(A.5), (B.1)-(B.2) and (H.k) hold. Then,

p̂SP;k(yjx) = pSP;k(yjx) +
1

n

nX
i=1

Dk;i (yjx) + oP
�
1=
p
n
�
; k = 1; 2;

uniformly over (y; x) in any compact set of I� I. Here, Dk;i (yjx) = Dk (Xi; Xi�1; y; x) is given

in eq. (35). In particular, E [Dk;i (yjx)] = 0 and E
h
D2
k;i (yjx)

i
<1 for all (x; y).

From the above lemma, we see that p̂SP;k(yjx) is
p
n-consistent. This holds despite the fact

that nonparametric kernel estimators are employed as inputs in the computation of p̂SP;k(yjx).
The reason for this maybe surprising result can be found in the representation of p̂SP;k(yjx) as
a solution to a PDE: As such, the computation of p̂SP;k(yjx) involves integrating over the drift
and di¤usion estimator which in turn speeds up the convergence rate; for more details, we refer
to Kristensen (2008, 2010). An important consequence of the above lemma is that p̂SP;k(yjx)
converges at a faster rate than p̂NP(yjx), so we can exchange p̂SP;k(yjx) for the unknown density
in the derivation of the asymptotic properties of TSP;k. Finally, we note that the theorem holds
both under HSP;k and the alternative: Under the null pSP;k(yjx) equals the true data generating
transition density while under the alternative it corresponds to the drift or di¤usion restriction
evaluated at the pseudo-true value.

To derive the asymptotic properties of the test statistics, we impose the following restriction
on the weighting function:

B.3 The weighting function w : I � I 7! R+ is continuous with compact support.

The assumption of a �xed, compact support of w is made in order to control the tail
behaviour of the estimators of transition densities. This assumption is fairly standard and is,
for example, also imposed in Aït-Sahalia et al (2009); a similar restriction is imposed in Li and
Tkacz (2006) who assume compact support of the joint density f (y; x). Under (B.2), TSP;k
can only detect departures from HSP;k that reveal themselves in the density within the support
of w. However, under suitable regularity conditions on the tail behaviour of w, the drift and
the di¤usion, one should be able to allow for weighting functions with unbounded support, see
e.g. Kristensen (2010) and Li and Tkacz (2006). This would lead to more complicated proofs
however, and we therefore maintain (B.3) for simplicity.

In the following, let (f � g) (z) =
R
R f (u) g (u+ z) du denote the convolution of any two

functions f and g. We then have the following results for the asymptotic properties of the two
tests:

Theorem 3 For k 2 f1; 2g: Assume that (A.1)-(A.5), (B.1))-(B.3), (H.k) and HSP;k hold.

(i) If �2n := nh2m+2NP ! �2 <1, the following expansion holds:

nhNP fTSP;k �mSPg = vSPUn+
p
hNP�vSP �Un+�n

�
�vVn + ��v �Vn

	
+nh2m+1NP Bk+OP

 
log (n)2

nh3NP

!
where (Un; Vn) and

�
�Un; �Vn

�
both converge towards bivariate standard normal distributions,

mSP =
1

nh2NP

�Z
R
K2 (z) dz

�2
�
Z
R2

p(yjx)
� (x)

w (y; x) dydx;

+
1

nhNP

Z
R
K2 (z) dz �

Z
R2

p(yjx)
�2(x)

w (y; x) dydx;

v2SP = 2

�Z
R
(K �K)2 (z) dz

�2
�
Z
I�I

p2(yjx)w (y; x) dydx;

and the parameters Bk, �v2SP, �
2
v and ��

2
v are given in the proof.
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(ii) In particular, if nh3NP= log (n)
2 !1 and nh2m+1NP ! 0,

nhNP
TSP;k �mSP

vSP
!d N (0; 1) :

The �rst part of the theorem states an asymptotic expansion of TSP;k, k = 1; 2, under weak
restrictions on the bandwidth. The limiting distribution is in this general case quite involved
and not easily evaluated. One could adjust the proposed test statistics by following the ideas
of Bickel and Rosenblatt (1973) and Fan (1994) in order to remove the higher-order terms
�n
�
�vVn + ��v �Vn

	
and OP

�
nh2m+1NP

�
. This however would have consequences for the resulting

tests�power properties, c.f. Fan (1994).
Under additional restrictions on the bandwidth hNP, we obtain a standard normal distrib-

ution of the tests which is similar to the results reported in Aït-Sahalia et al (2009, Theorems
1-2), and Li and Tkacz (2006, Theorem 1). In particular, as in these studies, the asymptotic
distribution is entirely determined by the nonparametric estimator, p̂NP(yjx), since the estima-
tor of the transition density under the null converges with parametric rate. This is the reason
for that the asymptotic expansions in the �rst part are the same for both tests. It should also
be noted that the asymptotic distribution in the second part is not a¤ected by the dependence
structure in data and is identical to the one found when data is i.i.d., see e.g. Fan (1994).

In order for the resulting test in the second part to become operational, consistent estimates
of mSP and v2SP have to be obtained. This can easily be done by substituting the unknown
quantities entering these for their estimates (either under the null or the alternative); see e.g.
Li and Tkacz (2006, p. 867).

Next, we investigate the power of the proposed tests. To this end, we introduce the following
two sequences of contiguous alternatives:

Hc
SP;1 : �n (x) =

1

2� (x)

@

@x

�
�2n (x)� (x)

�
; �2n (x) = �2 (x; ��1) + gn (x) ;

and

Hc
SP;2 : �n (x) = � (x; ��2) + gn (x) ; �2n (x) =

2

� (x)

Z x

l
�n (y)� (y) dy:

Here, gn : I 7! R is a sequence of functions, which we will throughout restrict to be contin-
uously di¤erentiable with compact support uniformly in n. These alternatives posit that the
di¤usion model is stationary such that the unspeci�ed term can be identi�ed by eqs. (6) and
(7) respectively, but that the parametric component is misspeci�ed with gn (x) describing the
degree of misspeci�cation. In particular, if gn (x) = 0 the null is true.

Under great generality, the estimator under the null, �̂k, will still satisfy Assumption (A.4)
under Hc

SP;k. However, the data generating process (DGP) is now drifting, and as a consequence
the pseudo-true parameter will in general also drift. At a �rst glance, the above alternatives
therefore looks a bit odd since ��k = ��n;k is non-constant, and a more natural speci�cation of, for
example, Hc

SP;1 would seem to be ~Hc
SP;1 : �

2
n (x) = �2 (x; �0;1)+ fn (x), for some �xed value �0;1.

However, we here follow the existing literature and focus on Hc
SP;1 for the following reasons

1:

First, note that under ~Hc
SP;1 �

�
n;1 ! �0;1 in great generality as fn (x) ! 0. Thus, ~Hc

SP;1 is
included in Hc

SP;1 since we can always choose gn (x) := fn (x) +
�
�2 (x; �0;1)� �2

�
x; ��n;1

�	
.

This also shows that gn (x) captures the over all impact of employing the misspeci�ed model:
It captures the explicit di¤erence, fn (x), between the DGP and the parametric restriction,
but also the impact that this di¤erence has on the parametric estimator of the di¤usion term,
�2 (x; �0;1)��2

�
x; ��n;1

�
. As a result, by working withHc

SP;1 the notation and theoretical analysis
become less burdensome since we do not explicitly have to specify how ��n;1 drifts towards �0;1.

1See also Härdle and Mammen, (1993) for a detailed discussion in a regression setting.
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It should be stressed that the above alternatives are di¤erent from the ones considered in,
for example, Fan (1994) and Aït-Sahalia et al (2009) who specify alternatives in terms of the
corresponding (transition) density. Since our focus is on testing for the correct speci�cation of
the drift and di¤usion function, our alternatives seem to be the more natural ones though.

Since the proposed tests are based on transition densities, we �rst obtain an expression of
the sequences transition densities corresponding to the above two contiguous alternatives. Let
pn (yjx) = p

�
yjx; 1; �n; �2n

�
denote the sequence of transition densities corresponding to either

of the two sequences of alternatives. Utilising that pn (yjx) and pSP;k (yjx) both solve a PDE
on the form given in eq. (2), we obtain the following relationship between the two (see Proof
of Theorem 4):

pn (yjx) = pSP;k (yjx) + (n)SP;k (yjx) +O (RSP;k) ; (20)

where


(n)
SP;1 (yjx) =

1

2

Z
I
g0n (w)

�0 (w)

� (w)
�p�;1 (y; x; w) dw +

Z
I
gn (w) �p�2;1 (y; x; w) dw; (21)


(n)
SP;2 (yjx) =

Z
I
gn (w) �p�;2 (y; x; w) dwdt+ 2

Z
I

Z w

l
gn (u)� (u) du

1

� (w)
�p�2;2 (y; x; w) dw; (22)

and RSP;1 and RSP;2 are remainder terms given by

RSP;1 = sup
x2I

jgn (x)j2 + sup
x2I

��g0n (x)��2 ; RSP;2 = sup
x2I

jgn (x)j2 :

Here, we have de�ned

�p�;k (y; x; w) :=

Z 1

0

@pSP;k (yjw; t)
@w

pSP;k (wjx; t) dt; �p�2;k (y; x; w) :=

Z 1

0

@2pSP;k (yjw; t)
@w2

pSP;k (wjx; t) dt
(23)

The above expressions of the deviations in terms of densities, (n)SP;k (yjx), involves integrating
over the deviation gn (x) appearing in the drift and di¤usion term. This is due to the fact
that any given di¤usion transition density implicitly integrates over the underlying drift and
di¤usion terms as noted earlier.

Next, using arguments similar to those of Gourieroux and Tenreiro (2001, Proof of Theorem
3), we obtain the following theorem:

Theorem 4 For k 2 f1; 2g: Assume that (A.1)-(A.5), (B.1)-(B.3), (H.k) and Hc
SP;k hold.

Then, as nh3NP= log (n)
2 !1 and nh2m+1NP ! 0�

nhNP fTSP;k �mSPg = vSPUn;1 + nhNP

Z
I

Z
I

(n)
SP;k (yjx)

2w (y; x) dydx+OP
�
R2SP;k

�
+ oP (1) :

(24)

The above expression of the test statistic under contiguous alternatives corresponds to the
ones found in Aït-Sahalia et al (2009, Theorem 3) and Fan (1994, Theorem 3.6), except that
the deviation from the null, (n)SP;k (yjx), here takes a more complicated form since it is expressed
in terms of the underlying deviations from the hypothesised drift and di¤usion function.

We now proceed to consider di¤erent speci�cations of the deviation from the null, gn(x).
First, we �rst consider so-called Pitman alternatives on the form gn (x) = ang (x) for a sequence
an ! 0 and a �xed function g (w). These are global alternatives for which the deviations in
terms of the transition density takes the form


(n)
SP;1 (yjx) =

an
2

Z
I
g0 (w)

�0 (w)

� (w)
�p�;1 (y; x; w) dw + an

Z 1

0

Z
I
g (w) �p�2;1 (y; x; w) dw;
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and


(n)
SP;2 (yjx) = an

Z
I
g (w) �p�;2 (y; x; w) dw + 2an

Z
I

Z w

l
g (u)� (u) du

1

� (w)
�p�2;2 (y; x; w) dw:

Plugging these expressions into eq. (24), we easily see that both tests can in general detect
global alternatives for which limn!1 nhNPa

2
n > 0. In particular, they can detect alternatives

that vanish with rate an = O
�
n�2=5

�
when the bandwidth is chosen to vanish with rate hNP =

O
�
n�1=5

�
. Do note however that for particular directions (choices of g (w)), (n)SP;1 (yjx) and


(n)
SP;2 (yjx) are zero and so the transition-based tests cannot detect such alternatives. This shows
that our tests are less powerful than CvM and KS type tests which can detect alternatives
at parametric rate. The above results are in accordance with the analysis of kernel-based
speci�cation tests where the alternatives are directly expressed in terms of the density of interest,
c.f. Aït-Sahalia et al (2009) and Fan (1994).

To investigate whether the above mentioned drawback of our test relative to cdf-based
tests is peculiar to Pitman alternatives, we consider "local" deviations on the form gn (x) =
ang ((x� x0) =bn) as originally proposed in Rosenblatt (1975). We here introduce an additional
sequence of bn ! 0 and some x0 2 I. For this class of drift and di¤usion alternatives, the
corresponding deviations in terms of the transition densities satisfy


(n)
SP;1 (yjx) =

an
2

Z
I

1

bn
g0
�
w � x0
bn

�
�0 (w)

� (w)
�p�;1 (y; x; w) dw + a

Z
I
g

�
w � x0
bn

�
�p�2;1 (y; x; w) dw

=
an
2

�0 (x0)

� (x0)
�p�;1 (y; x; x0)�

Z
g0 (z) dz + anbn�p�2;1 (y; x; x0)�

Z
g (z) dz

+o (an) + o (anbn) ;

and, similarly,


(n)
SP;2 (yjx) = anbn�p�;2 (y; x; x0)�

Z
g (z) dz + 2anbn� (x0)

Z r

x0

1

� (w)
�p�2;2 (y; x; w) dw �

Z
g (z) dz

+o (an) + o (anbn) :

By plugging the above expressions into eq. (24), we �nd that our tests are only able to de-
tect local alternatives for which limn!1 nhNPa

2
nb
2
n > 0. Moreover, alternatives which satisfyR

g (z) dz =
R
g0 (z) dz = 0 cannot be detected by TSP;1 for �xed an and bn, while TSP;2 cannot

detect alternatives satisfying
R
g (z) dz = 0. This shows that our transition-based test statistics

also have problems detecting high-frequency/local features in the drift and di¤usion function.
In particular, the above rates are the same as the one for KS and CvM type tests.

The above power results are not particular to our setting, and apply more generally. In
particular, the transition-based tests of fully parametric models proposed in Aït-Sahalia et al
(2009) also su¤er from poor power against local alternatives: In Section 5, we revisit one of
their tests and show that this also su¤ers from low power against alternatives in terms of the
drift and di¤usion term.

Our �ndings for local ("high-frequency") alternatives are somewhat analogous to the nega-
tive results reported for tests based on cumulative distribution functions (cdf�s) such as the KS
and CvM tests: High-frequency departures, as formulated in terms of the density, cannot be
detected by such tests since the departures are integrated out in the computation of the cdf�s,
see e.g. Escanciano (2009) and Eubank and LaRiccia (1992). However, such tests are on the
other hand more powerful at detecting global Pitman alternatives compared to tests based on
transition densities such as ours, since the former can detect alternatives at parametric rate.

In conclusion, it appears as if tests based on L2-distance measures of transition densities
may not be very appropriate for detection of alternatives in terms of the underlying drift and
di¤usion functionst. One way to detect deviating features of these functions would be to obtain
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estimates of these under null and alternative and compare those directly instead of through the
corresponding transition densities. Suppose that we have at our disposal fully nonparametric
estimators of the drift and di¤usion term, say �̂NP(x) and �̂

2
NP(x) such as the sieve estimators

developed in Chen, Hansen and Scheinkman (2010) and Gobet et al (2004). Two natural classes
of test statistics would then be

�TSP;1 =

Z
I
[�̂2NP(x)� �̂2SP;1 (x)]2 �w (x) dx; �TSP;2 =

Z
I
[�̂NP(x)� �̂SP;2 (x)]2 �w (x) dx; (25)

for some weighting function �w (x). We expect that such tests would have better power properties
against local alternatives. This conjecturre is supported by the theoretical results found in the
next section where we demonstrate that in testing of fully parametric models against semipara-
metric alternatives this class of tests indeed have better local power properties. It would be of
interest to develop similar results for the above two test statistics, but this is hampered by the
fact that existing fully nonparametric estimators are quite complicated to analyze theoretically.
We therefore leave this for future research.

4.2 Parametric Speci�cation Tests

In this section, we develop tests of the fully parametric hypothesis, HP, against either of the two
semiparametric ones, HSP;1 or HSP;2. We will consider two types of tests: The �rst is similar
in spirit to the tests considered in the previous section and based on an indirect comparison
of the null and alternative through the corresponding transition density estimates. The second
will directly compare the drift and di¤usion estimates obtained under null and alternative. As
we shall see, these two classes of tests have radically di¤erent asymptotic behaviour.

First, we introduce our transition-based tests: Under the alternative, we have the semipara-
metric estimate, p̂SP;k(yjx), while under the null we assume an estimator of the parameters,
~� = (~�1; ~�2), is available. Under the null, the model is fully speci�ed and the estimator ~� could
arrive from a range of standard parametric estimation methods such as maximum-likelihood
(Aït-Sahalia, 2002; Kristensen and Shin, 2008) and method of moments (Bibby, Jacobsen and
Sørensen, 2009; Hansen and Scheinkman, 1995). Associated with the fully parametric family
of di¤usion models under HP, there exists a family of transition densities; this can be obtained
by, for example, plugging the parametric drift and di¤usion speci�cation into eq. (2). We
denote this family pP (yjx; t; �) = pP

�
yjx; t; � (�; �) ; �2 (�; �)

�
, and we will again suppress the

dependence on t when evaluated at t = 1. The estimated transition density under the null is
then given by p̂P(yjx) := pP(yjx; ~�). As with the semiparametric transition density estimator,
p̂P(yjx) can in general not be written on closed form and numerical approximations have to be
employed (Aït-Sahalia, 2002; Kristensen and Shin, 2008).

Given p̂P(yjx) and p̂SP;k(yjx), we then propose to test HP against HSP;k by:

TP;k =

Z
I

Z
I
[p̂P(yjx)� p̂SP;k(yjx)]2w (y; x) dydx, k = 1; 2:

To analyse the asymptotic properties of these two tests, we impose the following assumptions
on the parametric model and its estimators:

A.6 The estimator ~� satis�es ~� = ���+
Pn
i=1  P (XijXi�1) =n+oP (1=

p
n) with E[ P (X1jX0)] =

0 and E[jj P (X1jX0) jj2+�] <1 for some � > 0.

A.7 The transition density under HP, pP (yjx; �), and its �rst two derivatives w.r.t. � exist,
and they are all continuous w.r.t. (y; x) for all �.

As with the estimators under the semiparametric nulls, (A.6) allows for misspeci�cation
and will only assume that ��� is equal to the true value when working under HP. We will

16



in general suppress dependence on � when evaluated at � = ���. Su¢ cient conditions for the
above assumption to hold for the MLE can be found in Aït-Sahalia (2002) and for GMM-type
estimators in Bibby et al (2009). As we shall see, to derive the asymptotic distribution of
TP;k under the null, it is critical that the estimators of the parametric components are

p
n-

asymptotically normally distributed. This is in contrast to the semiparametric tests, TSP;k,
where we only need that they converge at a su¢ ciently fast rate.

Theorem 5 For k 2 f1; 2g: Assume that (A.1)-(A.7), (B.1)-(B.3), and (H.k) hold. Then
under HP:

nTP;k !d

Z Z
Z2k (y; x)w (y; x) dydx;

for k = 1; 2, where Zk (y; x) is a Gaussian process with covariance kernel

��
�
(x; y) ;

�
x0; y0

��
= �0

�
(x; y) ;

�
x0; y0

��
+

1X
i=1

�i
�
(x; y) ;

�
x0; y0

��
;

�i
�
(x; y) ;

�
x0; y0

��
= E

��
@pP(yjx; �)

@�0
 P;0 �Dk;0 (yjx)

��
@pP(y

0jx0; �)
@�0

 P;i �Dk;i
�
y0jx0

���
;

and  P;i :=  P (XijXi�1).

The above test statistic has the interesting property that it converges with parametric rate
even though it involves nonparametric kernel estimators. This is due to the fact that the tran-
sition density under the semiparametric alternative, p̂SP;k(yjx), converges with parametric rate.
Moreover, the limiting distributions depend on the asymptotics of the underlying parametric
estimators. Both these features are in contrast to the ones of the semiparametric transition-
based tests. Instead, the asymptotic behaviour of TP;k, k = 1; 2, is similar to those of omnibus
tests such as the KS and CvM test; see, for example, Bhardwaj et al (2008, Theorem 3) and
Escanciano (2009).

These omnibus-type features of the tests in particular means that they are able to detect
"global" alternatives with parametric rate; on the other hand, due to the integration involved
when computing the transition densities, TP;k cannot detect local (or high-frequency) depar-
tures. To see this, consider the following two contiguous alternatives:

Hc
P;1 : �n (x) = � (x; ���2 ) + gn (x) ; �2n (x) = �2 (x; ���1 ) (26)

and
Hc
P;2 : �n (x) = � (x; ���2 ) ; �2n (x) = �2 (x; ���1 ) + gn (x) : (27)

Here, Hc
P;k will be used to examine the power properties of TP;k. Note that under H

c
P;1 the

di¤usion function is correctly speci�ed and as such it is a constant sequence; this is to ensure that
the maintained assumption, HSP;1 is correct. Similarly with Hc

P;2. As with the semiparametric
pseudo-true values, ���1 and ���2 will in general be drifting under Hc

P;2 and H
c
P;1 respectively, and

the discussion following the introduction of Hc
SP;1 and H

c
SP;2 also applies here.

As before, we let pn (yjx) = pn
�
yjx;�n; �2n

�
denote the data generating transition density,

where �n and �
2
n are given either by H

c
P;1 or H

c
P;2. We then obtain under H

c
P;k:

pP (yjx) = pn (yjx) + (n)P;k (yjx) +O (RP) ; (28)

where RP = supx2I jgn (x)j2,


(n)
P;1 (yjx) =

1

2

Z
I
gn (w) �p� (y; x; w) dw; 

(n)
P;2 (yjx) =

Z
I
gn (w) �p�2 (y; x; w) dw;

and �p� (y; x; w) and �p�2 (y; x; w) are de�ned as in the previous section, except that pP (yjx)
replaces pSP;k (yjx). The expression in eq. (28) can then in turn be used to derive asymptotic
expansions of the tests under contiguous alternatives:
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Theorem 6 For k 2 f1; 2g: Assume that (A.1)-(A.7) and (B.1)-(B.3), and (H.k) hold. Then
under Hc

P;k,

nTP;k =

Z Z
Z2n;k (y; x)w (y; x) dydx+ n

Z
I

Z
I

(n)
P;k (yjx)

2w (y; x) dydx

+2
p
n

Z
I

Z
I
Zn;k (x; y) 

(n)
P;k (yjx)w (y; x) dydx+OP

�
nR2P

�
+O

�
RP=

p
n
�
;

where Zn;k !d Zk on the support of w.

From the expression in Theorem 6, it is easily seen that TP;k can detect global alternatives
on the form gn (x) = ang (x) for which limn!1 na2n > 0. Thus, it can detect global alternatives
vanishing at parametric rate, an = O

�
n�1=2

�
. On the other hand, local alternatives on the form

gn (x) = ang ((x� x0) =bn) are not as easily detected. For this class of alternatives, we obtain


(n)
P;1 (yjx) = an

Z
I
g

�
x� x0
bn

�
�p� (y; x; w) dw = anbn�p� (y; x; x0)�

Z
I
g (z) dz;

and similarly for (n)P;2 (yjx). Thus, deviations can only be detected if
R
I g (z) dz 6= 0 and

limn!1 na2nb
2
n > 0. This is akin to the semiparametric tests, and the discussion of these also

applies here. In conclusion, the transition-based tests may not be suitable when the interest
lies in detecting local, "high-frequency" departures in the drift and di¤usion function from the
null.

The problem with the transition-based tests lies in the fact that they integrate out the devi-
ations appearing in the drift and/or di¤usion function. We therefore introduce two alternative
test statistics that directly compare the fully parametric and semiparametric estimators of the
drift and di¤usion function. De�ne

�TP;1 =

Z
I
[�(x; ~�1)� �̂SP;1 (x)]2 �w (x) dx; �TP;2 =

Z
I
[�2(x; ~�2)� �̂2SP;2 (x)]2 �w (x) dx; (29)

for some weighting function �w : I 7! R+. These tests are similar to the ones proposed in eq.
We will assume that �w has compact support which in particular implies that trimming of the
semi-nonparametric estimators is not required; thus, we may use the ones given in eqs. (9)-(10)
instead of eqs. (15)-(16).

Here, �TP;k tests HP against HSP;k, k = 1; 2. The intuition behind these two alternative test
statistics is similar to the one for TP;1 and TP;2, but instead of measuring deviations from the
null in terms of the transition densities we now directly measure discrepancies appearing in the
drift or di¤usion functions. To get a better understanding of what �TP;k is actually testing, it is
worth noting that under the null �TP;1 � I0 (!10) + I1 (!11) and �TP;2 � I0 (!2), where

Ik (!) =

Z
I
[�̂(k) (x)� �(k) (x)]2! (x) dx; (30)

for k = 0; 1, and !10, !11 and !2 are appropriately chosen weighting functions (see the proof of
Theorem 7 below for details). This highlights that �TP;1 and �TP;2 to a large extent are testing the
correct speci�cation of the marginal density as implied by the parametric speci�cation under
HP against its nonparametric alternative. As such the tests are similar to the ones proposed in
Aït-Sahalia (1996b) and Huang (1997).

This could also seem to indicate that one could instead use Ik (!), k = 0; 1, to testHP against
HSP;1 and HSP;2. However, observe that �TP;1 and �TP;2 involve nontrivial transformations of the
marginal density and therefore test di¤erent directions of departure from the null with special
emphasis on the correct speci�cation of the drift and di¤usion respectively. In particular, when
one speci�es deviations from the null in terms of the drift and di¤usion terms, then I0 (!) and
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I1 (!) will distort some of the local features in the drift and di¤usion term; see the discussion
following Theorem 8 below for more details.

We also note that �TP;2 shares some similarities with the speci�cation tests proposed in
Corradi and White (1999) and Li (2007). These two studies are only concerned with testing the
correct speci�cation of the di¤usion term, and propose to test a given speci�cation of �2 using
�TP;2 as given in Eq. (29) except that they employ the nonparametric estimator of �2 (�) proposed
in Florens-Zmirou (1989); see also Bandi and Phillips (2003). The advantage of the estimator
of Florens-Zmirou (1989) is that it does not require as input a preliminary estimator of the drift
function (as ours do). On the other hand, the estimator of Florens-Zmirou (1989) requires high-
frequency observations and is only consistent as time distance between observations shrinks to
zero, � ! 0, su¢ ciently fast as n ! 1 (c.f. Nicolau, 2003). So for low frequency data, the
tests of Corradi and White (1999) and Li (2007) will be biased, and will not have a well-de�ned
asymptotic distribution under the null.

The theorem is shown under the following regularity condition on the weighting function:

B.4 The weighting function �w : I 7! R+ is continuous and has compact support.

The discussion that followed Assumption B.3 also applies here. We are now able to derive
the following result concerning the asymptotic distributions of the tests under the null:

Theorem 7 Assume (A.1)-(A.6), (B.1) and (B.4) hold. Then under HP:

(i) As nhm+5 ! 0, nh4m+5=2 ! 0 and nh1=2= log (n)2 !1,

nh5=2
�TP;1 � �mP;1

�vP;1
!d N (0; 1) ;

where

�mP;1 =
1

4nh3

Z
R
K 0 (z)2 dz�

Z
I

�4 (x) �w (x)

� (x)
dx+

1

4nh

Z
R
K2 (z) dz�

Z
I

�4 (x) �w2 (x)�0 (x)2

�4 (x)
dx;

�v2P;1 =
1

8

Z
R

�
K 0 �K 0�2 (z) dz � Z �2(x)�8 (x) �w2 (x) dx:

(ii) As nh2m+1 ! 0, nh4m+1=2 ! 0, and nh3=2= log (n)2 !1,

nh1=2
�TP;2 � �mP;2

�vP;2
!d N (0; 1) ;

where

�mP;2 =
4

nh

Z
R
K2 (z) dz �

Z
I

�4 (x) �w (x)

�(x)
dx;

�v2P;2 = 32

Z
R
(K �K)2 (z) dz �

Z
I

�8 (x) �w2 (x)

�2 (x)
dx

Consistent estimates of �mP;k and �v2P;k can be obtained by substituting the unknown quanti-
ties entering these, that is, �2 (x) and � (x), for their estimates. As part of the proof of Theorem
7, we derive asymptotic expansions of the two test statistics similar to those stated for the semi-
parametric test statistics in Theorem 3. These expansions include additional higher-order terms
which vanish under the restrictions imposed on the bandwidth in Theorem 7.

In contrast to the transition-based tests, TP;1 and TP;2, the above alternative tests converge
with nonparametric rates and have standard normal distributions. This owes to the fact that
in �TP;1 and �TP;2, the semi-nonparametric estimators, �̂SP;1 (x) and �̂

2
SP;2 (x), are not integrated
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over, and as such the asymptotic properties are similar to other kernel-based test statistics, c.f.
Theorems 1 and 3.

One could consider a number of modi�ed versions of the above test statistics by following
the ideas of Kristensen (2007) and replace the parametric estimators of the drift (in �TP;1) or
di¤usion (in �TP;2) with kernel smoothed versions. As shown in that study, this removes some
of the higher-order terms in the asymptotic expansions of the resulting test statistics such that
weaker restrictions on allowable bandwidth sequences are needed. However, as demonstrated in
Fan (1994), these modi�cations alter the power properties of the tests.

We now examine the power properties of the tests to add further insight to their (asymptotic)
performance. We do this by revisiting the sequence of alternatives speci�ed in eqs. (26)-(27).

Theorem 8 Assume (A.1)-(A.6), (B.1) and (B.4) hold. Then:

(i) Under Hc
P;1, as nh

3 !1, and nh3=2+2m ! 0:

nh5=2
�
�TP;1 � �mP;1

	
= �vP;1Un;1 + nh

5=2

Z
I
g2n (x) �w (x) dx+ oP (1) ;

where Un;1 !d N (0; 1).

(ii) Under Hc
P;2, as nh!1, and nh1=2+2m ! 0,

nh1=2
�
�TP;2 � �mP;2

	
= �vP;2Un;2 + nh

1=2

Z
I
g2n (x) �w (x) dx+ oP (1) ;

where Un;2 !d N (0; 1).

The above expressions reveal that �TP;1 and �TP;2 can only detect global alternatives on the
form gn (x) = ang (x) for which limn!1 nh5=2a2n > 0 and limn!1 nh1=2a2n > 0 respectively.
Thus, they are less powerful than TP;k, k = 1; 2, in this regard. However, they are better at
detecting local deviations from the null: For alternatives on the form gn (x) = ang ((x� x0) =bn),
we obtainZ

I
g2n (x) �w (x) dydx = a2n

Z
I
g2
�
x� x0
bn

�
�w (x) dx = a2nbn �w (x0)

Z
I
g2 (z) dz:

Thus, the tests can detect alternatives for which
R
I g (z) dz = 0, and the rates at which they

can detect alternatives are limn!1 nh5=2a2nbn > 0 and limn!1 nh1=2a2nbn > 0 respectively. For
suitable choices of h, high-frequency alternatives can therefore be detected by �TP;1 and �TP;2 at
a better rate compared to TP;1 and TP;2; see Rosenblatt (1975) and Ghosh and Huang (1991)
for related results.

The results of Theorems 6 and 8 are comparable to the ones found in the literature on testing
for correct speci�cations of distributions using either nonparametric kernel density estimators
or cumulative density function estimators (see e.g. Eubank and LaRiccia, 1992). In conclusion,
depending on the type of alternatives of interest, one should either employ TP;k or �TP;k, k = 1; 2.

5 Related Tests

We here brie�y discuss the misspeci�cation tests proposed by Aït-Sahalia (1996b) and Aït-
Sahalia et al (2009) in relation to our tests.

As noted in the previous section, the two tests �TP;1 and �TP;2 are somewhat similar to the
one proposed in Aït-Sahalia (1996b) which is on the form I0 (m) as given in eq. (30). This test
was originally proposed to test HP against HNP, but as noted above it seems more suitable for
testing the parametric hypothesis against either HSP;1 or HSP;2. To see how our tests perform
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relative to this one, we analyse the power properties of a test based on I0 (m): Consider again
the contiguous alternative Hc

P;1. Using eq. (5), we obtain the following marginal density implied
by the null,

�P (x) =
Mx�

�2P (x)
exp

�
2

Z x

x�

�P (y)

�2P (y)
dy

�
;

while the sequence of contiguous densities are given by

�n (x) =
Mx�

�2P (x)
exp

�
2

Z x

x�

�P (y) + gn (x)

�2P (y)
dy

�
= �P (x) exp

�
2

Z x

x�

gn (x)

�2P (y)
dy

�
:

Thus, by using the same arguments as in the proof of Theorem 8, we obtain under Hc
P;1 that

nh1=2 fI0 (m)� c0g = v0Un + nh
1=2

Z
I

�
exp

�
2

Z x

x�

gn (x)

�2P (y)
dy

�
� 1
�
�P (x)m (x) dx+ oP (1) ;

for suitably de�ned parameters c0 and v0, and where Un !d N (0; 1). This shows that I0 (m)
is not tailored to detect the deviation, gn (x). In particular, gn (x) is integrated over twice
which has as consequence that I0 (m) will su¤er from similar issues as the transition-based
tests. In contrast, �TP;1 is designed to directly capture any deviations between �P (x) and � (y),
c.f. Theorem 8(i). A similar analysis can be carried out under Hc

P;2.
Finally, to demonstrate that the reported poor power against both global and local deviations

is a general problem for transition-based tests, we revisit one of the tests developed in Aït-Sahalia
et al (2009). They propose to test HP against HNP by

TP =

Z
I

Z
I
[p̂P(yjx)� p̂NP(yjx)]2w (y; x) dydx:

This test has the same asymptotic distribution as TSP;k, k = 1; 2, under the null of HP. To
investigate its power properties, we consider the following contiguous alternative,

Hc
P : �n (x) = � (x; ���2 ) + fn (x) ; �2n (x) = �2 (x; ���1 ) + gn (x) ;

for two sequences fn (x) and gn (x) that measure deviations in the drift and di¤usion term
respectively. By following the same arguments as employed previously, it is easily shown that

pP (yjx) = pn (yjx) + (n)P (yjx) +O (RP) ;

where RP = supx2I jfn (x)j2 + supx2I jgn (x)j2 and


(n)
P (yjx) =

Z
I
fn (w) �p� (y; x; w) dw +

Z
I
gn (w) �p�2 (y; x; w) dw:

By using the same arguments as in the proof of Theorem 3, we now obtain that

nhNP fTP �mSPg = vSPUn;1 + nhNP

Z
I

Z
I

(n)
P (yjx)2w (y; x) dydx+OP

�
R2P
�
+ oP (1) :

From this expression, we see that TP cannot detect Pitman alternatives on the form fn (x) =
anf (x) and gn (x) = ang (x) for which

R
I f (w) �p� (y; x; w) dw = 0 and

R
I g (w) �p�2 (y; x; w) dw =

0. Moreover, for local alternatives on the form gn (x) = anf ((x� x0) =bn) and gn (x) =
ang ((x� x0) =bn),


(n)
P (yjx) ' anbn

�
�p� (y; x; x0)�

Z
I
f (z) dz + �p�2 (y; x; x0)�

Z
I
g (z) dz

�
;

and so TP can only detect local alternatives for which limn!1 nhNPa
2
nb
2
n > 0. Moreover,

alternatives which satisfy
R
I f (z) dz =

R
I g (z) dz are not detectable.
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Aït-Sahalia et al (2009) also conduct a power analysis of TP and conclude that it can
detect local alternatives without any of the aformentioned problems. This seeming contradiction
between our results and the ones of Aït-Sahalia et al (2009) are due to di¤erent formulations of
alternatives: While Aït-Sahalia et al (2009) express their alternatives in terms of the transition
density, we formulate them directly in terms of the underlying drift and di¤usion functions.

In conclusion, departures from the drift and di¤usion functions imposed under the null are
in general not easily detected by transition-based tests since the deviations are smoothed out
when the drift and di¤usion functions are plugged into the transition density.

6 Markov Bootstrap Tests

The asymptotic distributions of the proposed test statistics derived in the previous section
ignore several higher-order terms that will a¤ect the �nite-sample distributions: First, all as-
ymptotic distributions, except the ones of TP;1 and TP;2, do not involve estimation errors due to
unknown parametric components and additional covariance terms due to dependence in data.
Second, they all are based on �rst-order linearisations of the test statistics and thereby ignore
second-order terms. Third, various bias terms due to the kernel smoothing are not present.
Fourth, in the implementation, we need to estimate unknown quantities entering the asymp-
totic distributions, which adds additional estimation errors to the tests.

In �nite samples, the distributions will clearly depend on these additional components, and
as such one could fear that the asymptotic distribution stated in the theorems may deliver a
poor �nite sample approximations. We therefore propose Markov bootstrap versions of the tests
which are expected to perform better than the ones relying on approximations based on the
asymptotic distribution. The simulation studies in Aït-Sahlia et al (2009) and Li and Tszask
(2006) of Bootstrap versions of their nonparametric tests support this conjecture.

In the Markov bootstrap versions of the tests, we draw a new sample from the transition
density under the relevant null, and use this sample to approximate the relevant distributions.
The proposed bootstrap is similar to the one proposed by Fan (1995) in a cross-sectional setting
and Li and Tszask (2006) in a time series setting. We also note that our proposal shares some
similarities with the Markov bootstrap procedures examined in Horowitz (2003) and Andrews
(2005) but in di¤erent settings, while Bhardwaj et al (2008) and Corradi and Swanson (2005)
propose to use a block bootstrap in conjunction with their speci�cation tests for di¤usion models.

Let in the following Tn denote any one of the test statistics developed in the previous section,
and p̂0 (yjx) and �̂0 denote the transition density and stationary density estimated under the
relevant null (HSP;1, HSP;2 or HP). The proposed bootstrap then proceeds as follows:

Step 1 Draw X�
0 � �̂0, and recursively X�

i � p̂0(�jX�
i�1), i = 1; :::; n.

Step 2 Replace the data fXigni=1 with the bootstrap sample fX�
i g
n
i=1 in the computation of

estimators and test statistics; we denote the resulting test statistic T �n .

Step 3 Repeat Step 1-2 B � 1 times, each new sample being independent of the previous ones,
yielding T �n;1; :::; T

�
n;B. Use the empirical distribution of these to estimate the distribution

of Tn.

The initialisation in Step 1 could be exchanged for X�
0 = X0 since we have a geometrically

ergodic Markov chain. Since p̂0(yjx) in general is not available on closed form, we propose to
draw from it by utilising an Euler discretization scheme (see e.g. Corradi and Swanson, 2005;
Gourieroux, Monfort and Renault, 1993). This will involve an additional error, but this can be
controlled for by choosing a su¢ ciently small time step.

By relying on arguments similar to those in Bhardwaj et al (2008), Corradi and Swanson
(2005) and Li and Tszask (2006), one should be able to show that the proposed Bootstrap
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versions of the parametric tests are consistent under suitable conditions. It should be noted
though that in order to show consistency of the Bootstrap versions of the semiparametric tests,
we �rst need to ensure that the bootstrap sample as generated by p̂SP;k(yjx) is stationary and
�-mixing. To this end, we need to further modify the semiparametric estimator of the drift
functions, to ensure mean reversion.

One could potentially also use the Markov bootstrap to construct con�dence bands for the
semiparametric estimators.

7 Finite-Sample Performance of Estimators

We here examine how the semi-nonparametric estimators perform in �nite samples. We choose
as data generating models the CKLS model of Cha, Karolyi, Longsta¤ and Sanders (1992),

dXt = f�1 + �2Xtg dt+
q
�1X

�2
t dWt; (CKLS)

and a restricted version of the model proposed in Aït-Sahalia (1996b),

dXt =
�
�1 + �2Xt + �3X

2
t + �4X

�1
t

	
dt+

q
�1X

�2
t dWt: (AS)

The data-generating parameters are chosen to match the estimates obtained when �tting the
model by MLE to the Eurodollar interest rate data considered in Aït-Sahalia (1996a,b). The
parameter estimates satisfy the �-mixing conditions found in Aït-Sahalia (1996b) such that
(A.1) holds. We measure time in years and set the time distance to � = 1=252, thereby
e¤ectively ignoring holidays and weekends, and consider two sample sizes, n = 2500, 5000.

For each sample, we estimate the two following semiparametric models when either CKLS
or AS is the data generating process respectively: CKLS 1: � (x) unknown and �2 (x) = �1x

�2 ;
CKLS 2: � (x) = �1 + �2x and �

2 (x) unknown; AS 1: � (x) unknown and �2 (x) = �1x
�2 ;

and AS 2: � (x) = �1 + �2x + �3x
2 + �4x

�1 and �2 (x) unknown. The parameters of the
semiparametric models are estimated using the method proposed in Kristensen (2010). Once
the parametric component has been estimated, we calculate �̂ (x) and �̂2 (x) for models in Class
1 and 2 respectively. We also estimate the fully parametric models (CKLS)-(AS) by MLE which
allows us to compare the semiparametric and parametric estimates. In order to evaluate the
likelihood in both the parametric and semiparametric case, we employ the simulated likelihood
method of Kristensen and Shin (2008). This is implemented by simulating N = 100 values for
each observation, using the Euler scheme with a step length of � = �=10 (see Kristensen, 2010,
for more details)

We �rst investigate the behaviour of the semi-nonparametric estimators for the CKLS
model. We consider two sets of data generating parameter values, (i) � = (1:8207; 2:6217),
� = (0:0344;�0:2921) and (ii) � = (0:1547; 1:7079), � = (0:0271;�0:4455). These are estimates
from the Eurodollar data set using (i) the full sample 1973-1995 and (ii) the subsample 1982-
1995. The �rst parameter set generates high volatility and low mean reversion while the second
one generates just the opposite behaviour. In Figure 1-2, pointwise means and con�dence bands
of the fully parametric and semi-nonparametric drift estimates are plotted for the parameters
(i) and (ii) respectively. For (i), Figure 1 shows that the semi-nonparametric drift estimator
performs well in the range x 2 [0:03; 0:12] while it is rather imprecise in tails. This is probably a
consequence of that the process rarely visits outside this interval and that the strong persistence
makes the nonparametric density estimator more biased. This is con�rmed by the performance
reported in Figure 2 where the semi-nonparametric drift estimator becomes more precise in the
tails with increased mean reversion. In Figure 3-4, the di¤usion estimators are plotted. For
both choices of parameter values, the estimator is very imprecise out in the right tail of the
support. Moreover, a decrease in the volatility seemingly leads to a further deterioration of the
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performance. Interestingly, the shape of the mean of the semi-nonparametric di¤usion estimator
in Figure 4 is very similar to the one reported in Aït-Sahalia (1996a).

Next, we examine the behaviour of the AS model. We do this with the parameters �tted to
the full sample. In Figure 5 and 6 respectively, the drift and di¤usion estimators are plotted. The
parametric drift estimator is not very precise which owes to the fact that the drift parameters
in the AS model are di¢ cult to pin down, see also Kristensen (2010, Section 6). The semi-
nonparametric drift estimator performs fairly well, and has more or less the same level of
precision as the parametric one. The performance of the semi-nonparametric di¤usion estimator
is not quite so good though.

8 Concluding Remarks

Extensions of our results to multivariate di¤usion models would be of interest. However, our
identi�cation scheme cannot readily be extended to general multivariate di¤usion models, since
the link between the invariant density, the drift and the di¤usion term utilised here does not
necessarily hold in higher dimensions. However, if one is willing to restrict attention to multi-
variate models which does satisfy this relation, the proposed estimation and testing procedures
should still work. For example, one may consider the class of d-dimensional di¤usions with drift
� : Rd 7! Rd and di¤usion �2 : Rd 7! Rd�d, where the following relationship holds between the
drift and di¤usion,

�i (x) =
1

2� (x)

dX
j=1

@

@xj

�
�2ij(x)� (x)

�
: (31)

This restriction is for example imposed by Chen, Hansen and Scheinkman (2010) in their non-
parametric study of multivariate di¤usion models. Again, � (x) can be estimated by kernel
density methods which together with a parametric speci�cation for �2 will lead to the same
type of estimators considered here.

As revealed in the power analysis in Section 3.1 and 3.2, a more suitable class of tests for
testing a fully nonparametric di¤usion alternative against either the semiparametric or fully
parametric nulls would be ones proposed in eq. (25). The analysis of these would be a useful
addition to the one conducted here.

9 Acknowledgements

This paper is a revised version of a chapter of my PhD thesis at the LSE. I wish to thank
my supervisor, Oliver Linton, for helpful advice and encouragement, and Jianqing Fan for
stimulating discussions. Parts of this paper appeared in an earlier version titled "Estimation in
Two Classes of Semiparametric Di¤usion Models". Financial Support from the Danish Social
Sciences Research Council (through CREATES) and the National Science Foundation (grant
no. SES-0961596) is gratefully acknowledged. Parts of this research was conducted while the
author visited Princeton University and University of Copenhagen whose hospitality is gratefully
acknowledged.

24



References

Aït-Sahalia, Y., 1996a, Nonparametric pricing of interest rate derivative securities. Economet-
rica 64, 527-560.

Aït-Sahalia, Y., 1996b, Testing continuous-time models of the spot interest rate. Review of
Financial Studies 9, 385-426.

Aït-Sahalia, Y., 2002, Maximum likelihood estimation of discretely sampled di¤usions: A closed-
form approximation approach. Econometrica 70, 223-262.

Aït-Sahalia, Y., J. Fan and H. Peng, 2009, Nonparametric transition-based tests for jump
di¤usions. Journal of the American Statistical Association 104, 1102-1116.

Andrews, D.W.K., 1994, Asymptotics for semiparametric econometric models via stochastic
equicontinuity. Econometrica 62, 43-72.

Andrews, D.W.K., 1995, Nonparametric kernel estimation for semiparametric models. Econo-
metric Theory 11, 560-596.

Andrews, D.W.K., 2005, Higher-order improvements of the parametric bootstrap for Markov
processes, in D.W.K. Andrews and J.H. Stock (Eds.): Identi�cation and Inference for
Econometric Models: A Festschrift in Honor of T.J. Rothenberg. Cambridge University
Press, Cambridge.

Bandi, F.M. and P.C.B. Phillips, 2003, Fully nonparametric estimation of scalar di¤usion mod-
els. Econometrica 71, 241-283.

Bandi, F.M. and P.C.B. Phillips, 2005, A simple approach to the parametric estimation of
potentially nonstationary di¤usions. Journal of Econometrics 137, 354-395.

Bhardwaj, G., V. Corradi and N.R. Swanson, 2005, A simulation-based speci�cation test for
di¤usion processes. Journal of Business & Economic Statistics 26, 176-193.

Bibby, B.M., M. Jacobsen and M. Sørensen, 2009, Estimating functions for discretely sampled
di¤usion-type models, in Aït-Sahalia, Y. and Hansen, L.P. (Eds.): Handbook of Financial
Econometrics, Vol. 1. Elsevier, Amsterdam.

Bickel, P. J. and M. Rosenblatt, 1973, On some global measures of the deviations of density
function estimates. Annals of Statistics 1, 1071-1095.

Björk, T.,2004, Arbitrage theory in continuous time, 2nd Edition. Oxford University Press,
Oxford.

Chan, K.C., , G.A. Karolyi, F.A. Longsta¤ and A.B. Sanders, 1992, An empirical comparison
of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227.

Chen, S. X., J. Gao and C. Y. Tang, 2009, A test for model speci�cation of di¤usion processes.
Annals of Statistics 36, 167-198.

Chen, X., L.P. Hansen and M. Carrasco, 2010, Nonlinearity and temporal dependence. Journal
of Econometrics 155, 155-169.

Chen, X., L.P. Hansen and J. Scheinkman, 2010, Nonlinear principal components and long run
implications. Forthcoming in Annals of Statistics.

Corradi, V. and N.R. Swanson, 2005, Bootstrap speci�cation tests for di¤usion processes. Jour-
nal of Econometrics 124, 117-148.

25



Corradi, V. and H. White, 1999, Speci�cation tests for the variance of a di¤usion. Journal of
Time Series Analysis 20, 253-270.

Doukhan, P., P. Massart and E. Rio, 1994, The central limit theorem for strongly mixing
processes. Annales de l�Institut Henri Poincaré, Section B, 30, 63-82.

Doukhan, P., P. Massart and E. Rio, 1995, Invariance principles for absolutely regular empirical
processes. Annales de l�Institut Henri Poincaré, Section B, 31, 393-427.

Escanciano, J.C., 2009, On the lack of power of omnibus speci�cation tests. Econometric Theory
25, 162-194.

Eubank, R.L. and V.N. LaRiccia, 1992, Asymptotic comparison of Cramér-Von Mises and non-
parametric function estimation techniques for testing goodness-of-�t. Annals of Statistics
20, 2071-2086.

Fan, Y., 1994, Testing the goodness-of-�t of a parametric density function by kernel method.
Econometric Theory 10, 316-356.

Fan, Y., 1995, Bootstrapping a consistent nonparametric goodness-of-�t test. Econometric Re-
views 14, 367-382.

Fan, J., C. Zhang and J. Zhang, 2001, Generalized likelihood ratio statistics and Wilks phe-
nomenon. Annals of Statistics 29, 153�193.

Florens-Zmirou, D., 1993, On estimating the di¤usion coe¢ cient from discrete observations.
Journal of Applied Probability 30, 790-804.

Friedman, A., 1976, Stochastic di¤erential equations and applications, vol. 1. Academic Press,
New York.

Ghosh, B.K. and W.-M. Huang, 1991, The power and optimal kernel of the Bickel-Rosenblatt
test for goodness of �t. Annals of Statistics 19, 999-1009.

Gobet, E., M. Ho¤mann and M. Reiß, 2004, Nonparametric estimation of scalar di¤usions based
on low frequency data. Annals of Statistics 32, 2223�2253.

Gouriéroux, C., A. Monfort, E. Renault, 1993, Indirect inference. Journal of Applied Econo-
metrics 8, S85-S118.

Gouriéroux, C. and C. Tenreiro, 2001, Local power properties of kernel based goodness of �t
tests. Journal of Multivariate Analysis 78, 161-190.

Hansen, L.P. and J.A. Scheinkman, 1995, Back to the future: Generating moment implications
for continuous time Markov processes. Econometrica 63, 767-804.

Härdle, W. and E. Mammen, 1993, Comparing nonparametric versus parametric regression �ts.
Annals of Statististics 21, 1926-1947.

Hong, Y. and H. Li, 2005, Nonparametric speci�cation testing for continuous-time models with
application to spot interest rates. Review of Financial Studies 18, 37-84.

Horowitz, J.L., 2003, Bootstrap methods for Markov processes. Econometrica 71, 1049�1082.

Huang, L.-S., 1997, Testing goodness-of-�t based on a roughness measure. Journal of the Amer-
ican Statistical Association 92, 1399-1402.

Karlin, S. and H.M. Taylor, 1981, A second course in stochastic processes. Academic Press, New
York.

26



Kristensen, D., 2007, Nonparametric estimation and misspeci�cation testing of di¤usion models.
CREATES Research Papers 2007-1, University of Aarhus.

Kristensen, D., 2008, Estimation of partial di¤erential equations with applications in �nance.
Journal of Econometrics 144, 392-408.

Kristensen, D., 2009, Uniform convergence rates of kernel estimators with heterogeneous, de-
pendent data. Econometric Theory 25, 1433-1445.

Kristensen, D., 2010, Pseudo-maximum likelihood estimation in two classes of semiparametric
di¤usion models. Journal of Econometrics 156, 239-259.

Kristensen, D. and Y. Shin, 2008, Estimation of dynamic models with nonparametric simulated
maximum likelihood. CREATES Research Papers 2008-58, University of Aarhus.

Li, F., 2007, Testing the parametric speci�cation of the di¤usion function in a di¤usion process.
Econometric Theory 23, 221-250.

Li, F., and Tkacz, G., 2006, A consistent bootstrap test for conditional density functions with
time-Series data. Journal of Econometrics 133, 863�886.

Meyn, S.P. and R.L. Tweedie, 1993, Stability of Markovian processes III: Foster-Lyapunov
criteria for continuous-time processes. Advances in Applied Probability 25, 518-548.

Negri, I. and Nishiyama, Y., 2009, Goodness of �t test for ergodic di¤usion processes. Annals
of the Institute of Statistical Mathematics 61, 919-928.

Nicolau, J., 2003, Bias reduction in nonparametric di¤usion coe¢ cient estimation. Econometric
Theory 19, 754-777.

Robinson, P.M., 1983, Nonparametric estimators for time series. Journal of Time Series Analysis
4, 185�297.

Robinson, P.M., 1988, Root-n-consistent semiparametric regression. Econometrica 56, 931-954.

Robinson, P.M., 1991, Consistent nonparametric entropy-based testing. Review of Economic
Studies 58, 437-453.

Rosenblatt, M., 1975, A quadratic measure of deviation of two-dimensional density estimates
and a test of independence. Annals of Statistics 3, 1-14.

Whang, Y.-J. and D.W.K. Andrews, 1993, Tests of speci�cation for parametric and semipara-
metric models. Journal of Econometrics 57, 277-318.

White, H., 1982, Maximum likelihood estimation of misspeci�ed models. Econometrica 50, 1-25.

Wong, E., 1964, The construction of a class of stationary Marko¤ processes, in: R. Bellman
(Ed.) Sixteenth Symposium in Applied Mathematics - Stochastic Processes in Mathematical
Physics and Engineering, pp. 264-276. American Mathematical Society, Providence.

27



A Proofs

Proof of Theorem 1. To show the �rst part of the theorem, write

�̂ (x)� � (x) =
1

2
�2 (x; �)

"
�̂(1) (x)

�̂ (x)
� �(1) (x)

� (x)

#
+
1

2

"
@�2(x; �̂)

@x
� @�2 (x; �)

@x

#

+
�̂(1) (x)

2�̂ (x)

h
�2(x; �̂)� �2 (x; �0)

i
= : A1 (x) +A2 (x) +A3 (x) :

We have Ai (x) = OP (1=
p
n), i = 2; 3, since, by (A.4),

@i�2(x; �̂)

@xi
� @i�2 (x; �0)

@xi
=
@i+1�2

�
x; ��i

�
@xi@�0

(�̂ � �) = OP
�
1=
p
n
�
;

for some ��1 2 [�1; �̂1], i = 0; 1. We expand A1 (x) in terms of �(i) (x), i = 0; 1:

p
nh3A1 (x) =

�2 (x; �)

2�0 (x)

p
nh3[�̂(1) (x)� �(1)0 (x)]� �

(1)
0 (x)�2 (x; �)

2�20 (x)

p
nh3 [�̂ (x)� �0 (x)]

+
p
nh3O

�
j�̂(1) (x)� �(1)0 (x) j2 + j�̂ (x)� �0 (x)j2

�
:

Using standard methods for kernel estimators, see Robinson (1983), we obtain, as nh1+2i !1
and nh1+2(i+m) ! 0,

p
nh1+2i(�̂(i) (x)� �(i)0 (x))

d! N (0; Vi (x)) ; i = 0; 1; (32)

where V0 (x) = � (x)
R
K2 (z) dz and V1 (x) = � (x)

R
K(1) (z)2 dz, while the two remainder

terms in A1 (x) are oP (1). The weak convergence result in the �rst part of the theorem now
follows from Slutsky�s Theorem.

To show the second part of the theorem, write

�̂2 (x)� �2 (x) = 2

Z x

l
�(y; �2)� (y) dy

�
1

�̂ (x)
� 1

� (x)

�
+

2

�̂ (x)

1

n

nX
i=1

n
�(Xi; �̂2)� �(Xi; �2)

o
I fXi � xg

+
2

�̂ (x)

1

n

nX
i=1

�
�(Xi; �2)I fXi � xg �

Z x

l
�(y; �2)� (y) dy

�
= : B1 (x) +B2 (x) +B3 (x) ;

where B3 (x) = OP (1=
p
n) by the CLT for mixing processes, c.f. Doukhan et al (1994), and

B3 (x) =
2

�̂ (x)

(
1

n

nX
i=1

@�(Xi; ��2)

@�0
I fXi � xg

)
(�̂2 � �2) = OP

�
n�1=2

�
;

for some ��2 2 [�2; �̂2]. Regarding B1 (x), �rst note that

1

�̂ (x)
� 1

� (x)
= � 1

�2 (x)
[�̂ (x)� � (x)] + [�̂ (x)� � (x)]2

4 (��̂ (x) + (1� �)� (x))3
;

for some � 2 [0; 1]. Using standard results for kernel estimators, see Robinson (1983), the second
term on the left hand side is OP (h2m)+OP (1= (nh)). The weak convergence result now follows
from eq. (32) combined with Slutsky�s Theorem.
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Proof of Lemma 2. De�ne ��SP;k (x; �k) = �a (� (x))�SP;k (x; �k) and ��2SP;k (x; �k) =

�a (� (x))�
2
SP;k (x; �k) + �2 (1� �a (� (x))), and let �pSP;k (yjx; �k) denote the transition den-

sity corresponding to these trimmed versions. In the following we suppress their dependence
on the parameter when evaluated at the true value. We employ Kristensen (2010, Lemma 5) in
conjunction with the uniform convergence results in Lemma 9 to obtain that

p̂SP;k(yjx) = �pSP;k (yjx) +r�p (yjx)
�
�̂SP;k � ��SP;k; �̂2SP;k � ��2SP;k

�
+ oP

�
1=
p
n
�
;

under the conditions imposed on the bandwidth in (H.k), k = 1; 2, where rp (yjx)
�
d�; d�2

�
is the pathwise derivative of �pSP;k (yjx) w.r.t. the drift and di¤usion function in the direction�
d�; d�2

�
. It is the solution (at t = 1) to the following PDE,

@r�p (yjx; t)
@t

= A
�
�SP;k; �

2
SP;k

�
r�p (yjx; t) +A

�
d�; d�2

�
�pSP;k (yjx; t) ; (33)

with r�p (yjx; 0)
�
d�; d�2

�
= 0. The solution at t = 1 can be represented as:

r�p (yjx)
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d�; d�2
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=

Z 1
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Z
I
d� (w)
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Z 1

0

Z
I
d�2 (w)

@2�pSP;k (yjw; t)
@w2

�pSP;k (wjx; t) dwdt:

Using Kristensen (2010, Lemma 5), it follows that @i�pSP;k (yjx) =@xi = @ipSP;k (yjx) =@xi +
O (aq), i = 0; 1; 2, where q > 0 is given in Assumption (A.3). Thus, as

p
naq ! 0, @i�pSP;k (yjx) =@xi =

@ipSP;k (yjx) =@xi + o (1=
p
n), which in turn implies that

r�p (yjx; 0)
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d�; d�2
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= rp (yjx)
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d�; d�2

�
+ o

�
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p
n
�
;

whererp (yjx)
�
d�; d�2

�
is the pathwise derivative of the untrimmed transition density, pSP;k (yjx).

This pathwise derivative has the same representation as r�p (yjx)
�
d�; d�2

�
given in eq. (34),

but with pSP;k (yjx; t) replacing �pSP;k (yjx; t) on the right hand side.
We now analyze the two integrals appearing in the representation of rp (yjx)

�
d�; d�2
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d�; d�2
�
= (�̂SP;k� ��SP;k; �̂2SP;k� ��2SP;k) for the two classes of semiparametric estimators. First

consider the estimators under HSP;1: Proceeding as in Kristensen (2010, Proof of Theorem 2),
under the conditions imposed on bandwidth and the trimming sequence,Z 1
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Next, consider the estimators under HSP;2: Again, proceeding as Kristensen (2010, Proof
of Theorem 2), we obtain under the conditions imposed on the bandwidth and the trimming
sequence thatZ 1
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The claimed result now holds with

Dk;i (yjx) = Dk;1 (Xi; y; x) +Dk;2 (Xi; Xi�1; y; x) ; k = 1; 2: (35)

Proof of Theorem 3. First note that we can replace p̂SP;k(yjx), k = 1; 2, by pSP;k(yjx) =
p (yjx) in the following since it converges with

p
n-rate, c.f. Lemma 2, and we now proceed to

analyze
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Under the requirement that �2 = limn!1 nh2m+2NP <1, it follows from Gourieroux and Tenreiro
(2001, Theorem 4.1) that

nhNP fI � ��Bg = vSPUn +
p
nhm+1NP �vVn + oP

�p
nhm+1NP

�
+ oP (1) ; (36)

nh
1=2
NP

�
�I � ��� �B

	
= �vSP �Un +

p
nh

m+1=2
NP ��v �Vn + oP

�p
nh

m+1=2
NP

�
+ oP (1) (37)
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where

� : =
1

nh2NP

�Z
R
K2 (z) dz

�2
�
Z
I�I

f(y; x)m1 (y; x) dydx;

�� : =
1

nhNP

Z
R
K2 (z) dz �

Z
I
�(x)m2 (x) dx;

B : =

Z
I�I

�Z
I�I

1

h2NP
K

�
u1 � y
hNP

�
K

�
u1 � y
hNP

�
f(u1; u2)du1du2 � f(y; x)

�2
m (y; x) dydx;

�B : =

Z
I

�Z
I

1

hNP
K

�
u� x
hNP

�
�(u)du� �(x)

�2
�m (x) dx;

v2SP = 2

�Z
R
(K �K)2 (z) dz

�2
�
Z
I�I

f2(y; x)m2 (y; x) dydx;

�v2SP = 2

Z
R
(K �K)2 (z) dz �

Z
I
�2(x) �m2 (x) dx;

and (Un; Vn) and
�
�Un; �Vn

�
both converge towards a bivariate standard Normal distribution.

Due to the smoothness conditions imposed on p (yjx) and � (x) and K being an mth order
kernel,

B =

Z
I�I

�Z
R2
K (z1)K (z2) [f(y + z1hNP; x+ z2hNP)� f(y; x)] dz1dz2

�2
m (y; x) dydx

=

Z
I�I

24 X
i;j�m

hi+jNP

@i+jf(y; x)

@xi@yj

Z
R2
K (z1)K (z2) z

i
1z
j
2dz1dz2 + o (h

m
NP)

352m (y; x) dydx
= h2mNP �

Z
I�I

�
@2mf(y; x)

@xm@ym

�2
m (y; x) dydx�

�Z
R
K (z) zmdz

�4
+ o

�
h2mNP

�
= : h2mNPb+ o

�
h2mNP

�
and similarly

�B = h2mNP �
Z
I�I

�
@m�(x)

@xm

�2
�m (x) dx�

�Z
R
K (z) zmdz

�2
+ o

�
h2mNP

�
= : h2mNP

�b+ o
�
h2mNP

�
:

Finally, applying Kristensen (2009, Theorem 1) together with standard arguments for the bias
components of the kernel density estimators,

nhNPR = OP
�
nh4m+1NP

�
+OP

 
log (n)2

nh3NP

!
:

In total,

nhNP fTSP � �� ��g
= nhNP fI � ��Bg+ nhNP

�
�I � ��� �B

	
+ nhNP

�
B + �B

�
+ nhNPR

= vSPUn +
p
hNP�vSP �Un + �n

�
�vVn + ��v �Vn

	
+ nh2m+1NP

�
b+�b

�
+OP

 
log (n)2

nh3NP

!
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where �2n is de�ned in the theorem; this proves the �rst part of the theorem. The second part
is a direct consequence of this representation.

Proof of Theorem 4. Consider the contiguous alternative Hc
SP;k (k = 1; 2): Since the

pseudo-true parameter values are drifting, note that the restricted drift and di¤usion terms
implied by the null as given in eqs. (13) and (14) respectively are also drifting. We therefore
have that �2SP;k (x) = �2SP;k;n (x) and �SP;k (x) = �SP;k:n (x) are sequences, and so in turn is the
associated transition density, pSP;k (yjx) = pSP;k;n (yjx). We suppress their dependence on n in
the following for notational ease.

De�ne the deviations from the null hypothesis, d�n (x) = �n (x)� �SP;k (x) and d�
2
n (w) =

�2n (x)��2SP;k (x), where �SP;k (x) and �2SP;k (x) are the drift and di¤usion term. By Kristensen
(2010, Lemma 5), ���pn (yjx)� pSP;k (yjx)� (n)SP;k (yjx)��� � CBn (x) ;

where (n)SP;k (yjx) = rpn (yjx) [d�n; d�n] is the pathwise derivative w.r.t. the drift and di¤usion
term, c.f. Proof of Lemma 2, and

Bn (x) =

Z
I

�
jd�n (w)j2 +

��d�2n (w)��2� � (wjx) dw:
Next, by the same arguments as in the Proof of Lemma 2,


(n)
SP;k (yjx) =

Z
I
d�n (w) �p�;k (y; x; w) dw +

Z
I
d�2n (w) �p�2;k (y; x; w) dw;

where �p�;k (y; x; w) and �p�2;k (y; x; w) are de�ned in eq. (23).
Consider �rst Hc

SP;1: In this case,

d�2n (x) =
�
�2n (x)� �2 (x; �0)

	
+
�
�2 (x; �0)� �2SP;1 (x)

	
= gn (x) + _�2 (x; �0) �1;n +O

��1;n2�
while

d�n (x) =
1

2� (x)

@

@x

��
�2n (x)� �2SP;1 (x)

�
� (x)

�
=

1

2� (x)

@

@x
[gn (x)� (x)] +

�1;n
2� (x)

@

@x

�
_�2 (x; �0)� (x)

�
+O

��1;n2� :
Plugging these two expressions into (n)SP;1 (yjx) above we obtain the expression in eq. (21).
Next, consider Hc

SP;2. Here, d�n (x) = �n (x)� �2SP;2 (x) = gn (x), and

d�2n (x) =
2

�0 (x)

Z x

l
d�n (y)� (y) dy =

2

�0 (x)

Z x

l
gn (y)� (y) dy:

Substituting those into (n)SP;2 (yjx), we obtain the expression in eq. (22).
We now proceed as in the Proof of Theorem 3:

TSP;k =

Z
I

Z
I
[pSP;k(yjx)� p̂NP(yjx)]2w (y; x) dydx = I1 + I2 +R;

where R is a higher-order remainder term,

I1 :=

Z
I

Z
I

h
fSP;k(y; x)� f̂NP(y; x)

i2
mn;1 (y; x) dydx; I2 :=

Z
I

Z
I
[� (x)� �̂NP (x)]2mn;2 (x) dx;
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with mn;1 (y; x) and mn;2 (x) given in the Proof of Theorem 3, and fSP;k(y; x) = pSP;k(yjx)� (x)
denoting the joint density under the null. Also let fn (y; x) = pn(yjx)� (x) denote the sequence
of joint densities under the alternative. Substituting the expression of pSP;k(yjx) given in eq.
(20) into I1 and ignoring the higher-order term R2SP;k,

I1 =

Z
I

Z
I

h
fSP;k(y; x)� f̂NP(y; x)

i2
mn;1 (y; x) dydx

=

Z
I

Z
I

h
fn (yjx)� f̂NP(y; x)� (n)SP;k (yjx)� (x)

i2
mn;1 (y; x) dydx

=

Z
I

Z
I

h
fn (y; x)� f̂NP(y; x)

i2
mn;1 (y; x) dydx+

Z
I

Z
I

(n)
SP;k (yjx)

2 �2 (x)mn;1 (y; x) dydx

+2

Z
I

Z
I

h
f̂NP(y; x)� fn (y; x)

i

(n)
SP;k (yjx)� (x)mn;1 (y; x) dydx

= : I11 + I12 + I13;

Due to the assumptions imposed on gn (x), we note that Assumptions (A.1)-(A.2) remains true
for the di¤usion model corresponding to

�
�n; �

2
n

�
. Thus, we can recycle the same arguments

used in Proof of Theorem 3 to obtain nhNP fI11 � �1g = vSPU1 + oP (1), while, using the
same arguments as in Gourieroux and Tenreiro (2001), I13 = OP

�
n�1=2

�
. Since we consider

alternatives where the marginal density remains correctly speci�ed, the second term, I2, still
satis�es eq. (37). In total, as nh3NP !1 and nh4m+1NP ! 0,

nhNP fTSP;k �mSPg = nhNP fI11 � �1g+ nhNPI12 + nhNPI13 + nhNP fI2 � �2g+ nhNPR
= vSPU1 + nhNPI12 + oP (1) :

Proof of Theorem 5. Under Assumption (A.6), the parametric estimator satis�es

p̂P(yjx)� p(yjx) =
@pP(yjx; �)

@�0
(~� � �) +OP

�
jj~� � �jj2

�
=

@pP(yjx; �)
@�0

1

n

nX
i=1

 P;i + oP
�
1=
p
n
�
;

where pP(yjx; �) = p(yjx) under the null, while Lemma 2 supplies us with an expansion of
p̂SP;k(yjx). Substituting these two expansions into TP;k yields:

TP;k =

Z
I

Z
I
[p̂P(yjx)� p̂SP;k(yjx)]2w (y; x) dydx

=

Z
I

Z
I
[fp̂P(yjx)� p(yjx)g � fp̂SP;k(yjx)� p(yjx)g]2w (y; x) dydx

=
1

n

Z
I

Z
I
Z2n;k (x; y)w (y; x) dydx+ oP

�
1

n

�
;

where Zn;k (x; y) is an empirical process,

Zn;k (x; y) :=
1p
n

nX
i=1

�
@p(yjx; �)

@�0
 P;i �Dk;i (yjx)

�
: (38)

Let C � I � I denote the (compact) support of w (y; x). We then wish to show that Zn;k (x; y)
weakly converges on C towards the stochastic process Zk (x; y) de�ned in the theorem. By
Lemma 2, Assumption (A.5) and the CLT for stationary and mixing sequences (Doukhan et al,
1994), Zn;k (x; y)!d Zk (x; y) for any given (x; y) 2 C. Appealing to standard arguments from
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empirical process theory, see e.g. Doukhan et al (1995), it follows by Lemma 2 and Assumption
(A.6) that Zn;k (x; y) is stochastically equicontinuous. The result now follows by the Continuous
Mapping Theorem.

Proof of Theorem 6. The representation of the sequence of transition densities given in eq.
(28) follows by the same arguments as in the Proof of Theorem 4. We then obtain

TP;k =

Z
I

Z
I
[p̂P(yjx)� p̂SP;k(yjx)]2w (y; x) dydx

=

Z
I

Z
I
[fp̂P(yjx)� pP(yjx)g � fp̂SP;k(yjx)� pn(yjx)g+ fpn(yjx)� pP(yjx)g]2w (y; x) dydx

=

Z
I

Z
I
[fp̂P(yjx)� pP(yjx)g � fp̂SP;k(yjx)� pn(yjx)g]2w (y; x) dydx

+

Z
I

Z
I
[pn(yjx)� pP(yjx)]2w (y; x) dydx

+2

Z
I

Z
I
[fp̂P(yjx)� pP(yjx)g � fp̂SP;k(yjx)� pn(yjx)g] [pn(yjx)� pP(yjx)]w (y; x) dydx

= : I1 + I2 + I3

The �rst term, I1, can be analyzed analogously to Proof of Theorem 5, while, by eq. (28),

I2 =

Z
I

Z
I

(n)
P;k (yjx)

2w (y; x) dydx+O
�
R2P
�
:

Finally, with Zn;k (x; y) de�ned in eq. (38), I3 can be written as

I3 =
2p
n

Z
I

Z
I
Zn;k (x; y) 

(n)
P;k (yjx)w (y; x) dydx+OP

�
RP=

p
n
�
:

Proof of Theorem 7. First consider �TP;1: Since the drift estimator under the null and the
di¤usion estimator under the alternative both converge with parametric rate we may replace
them with the true, unknown ones and rede�ne our estimators as:

~�(x) =
1

2

@�2 (x)

@x
+
1

2
�2 (x)

�0 (x)

� (x)
; �̂(x) =

1

2

@�2 (x)

@x
+
1

2
�2 (x)

�̂0 (x)

�̂ (x)
:

Next, by a Taylor expansion w.r.t. � (x) and �0 (x),

�TP;1 =

Z
I
[�̂0 (x)� �0 (x)]2!1 (x) dx+

Z
I
[�̂ (x)� � (x)]2!2 (x) dx+R

= : I1 + I2 +R;

where !1 (x) := �4 (x) �w (x) =
�
4�2 (x)

�
, !2 (x) := �4 (x) �w (x)�0 (x)2 =

�
4�4 (x)

�
, and

R = OP

 
sup
x;y2I

j�̂0 (x)� �0 (x) j4
!
+OP

�
sup
x2I

j�̂ (x)� � (x) j4
�
:

First, consider I1: With ��0 (x) = E
�
�̂0 (x)

�
, write

I1 =

Z
I
[��0 (x)� �0 (x)]21!1 (x) dx+ 2

Z
I
[�̂0 (x)� ��0 (x)][��0 (x)� �0 (x)]!1 (x) dx

+

Z
I
[�̂0 (x)� ��0 (x)]2!1 (x) dx

= : I11 + I12 + I13:
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Using that uniformly over x 2 I,

��0 (x) = �0 (x) + hm�(m) (x) + o (hm) ; (39)

the �rst term can be written as

I11 = h2m
Z
I
�(m) (x)2 !1 (x) dx+ o

�
h2m

�
:

The second term, again using eq. (39), satis�es

I12 = 2
hm

nh2

nX
i=1

Z
I

�
K 0
�
x�Xi
h

�
� E

�
K 0
�
x�X0
h

���n
�(m) (x) + o (1)

o
!1 (x) dx

= 2
hm

n

nX
i=1

Gn (Xi) + oP

�
hmp
n

�
;

where Gn (u) is given by

Gn (u) =
1

h2

Z
I

�
K 0
�
x� u
h

�
� E

�
K 0
�
x�X0
h

���
�(m) (x)!1 (x) dx

=
1

h

Z
I

�
K

�
x� u
h

�
� E

�
K

�
x�X0
h

���
�(m+1) (x)!01 (x) dx:

The third term can be rewritten as

I13 =

Z
I

"
1

n

nX
i=1

1

h2

�
K 0
�
x�Xi
h

�
� E

�
K 0
�
x�Xi
h

���#2
!1 (x) dx

=
1

n2h5=2

nX
i;j=1

Hn (Xi; Xj) ;

where

Hn (u; v) : =
1

h3=2

Z
I

�
K 0
�
x� u
h

�
� E

�
K 0
�
x�X0
h

���
�
�
K 0
�
x� v
h

�
� E

�
K 0
�
x�X0
h

���
!1 (x) dx:

Combining these expressions and following the arguments Gourieroux and Tenreiro (2001, p.
182-184) (see also Huang, 1997), we then obtain

I1 =
1

n2h5=2

nX
i;j=1

fHn (Xi; Xj)� E [Hn (Xi; Xj)]g+
2hm�1

n

nX
i=1

Gn (Xi)

+
1

nh5=2
E [Hn (X0; X0)] +

1

n2h5=2

nX
i6=j

E [Hn (Xi; Xj)]

+h2m
Z
I
�(m) (x)2 !1 (x) dx+ o

�
h2m

�
=

1

nh5=2
Hn +

hmp
n
Gn +

1

nh5=2
E [Hn (X0; X0)] + h

2m

Z
I
�(m) (x)2 !1 (x) dx

+oP

�
1

nh5=2

�
+ oP

�
hm�1p
n

�
+ oP

�
h2m

�
;
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where

Hn :=
2

n

X
i<j

fHn (Xi; Xj)� E [Hn (Xi; Xj)]g ; and Gn :=
2p
n

nX
i=1

Gn (Xi) :

The mean component satis�es

E [Hn (X0; X0)] =
1

h3=2

Z
I

(
E

"
K 0
�
x�X0
h

�2#
� E

�
K 0
�
x�X0
h

��2)
!1 (x) dx

=
1

h1=2

Z
I

Z
I
K 0 (u)2 !1 (x+ uh)� (x+ uh) dudx+O

�
h1=2

�
=

1

h1=2

Z
R
K 0 (z)2 dz �

Z
I
!1 (x)� (x) dx+ o

�
1

h1=2

�
+O

�
h1=2

�
;

such that E [Hn (X0; X0)] =
�
nh5=2

�
= �1 + o (1), where

�1 =
1

nh3

Z
R
K 0 (z)2 dz �

Z
I
!1 (x)� (x) dx =

1

4nh3

Z
R
K 0 (z)2 dz �

Z
I

�4 (x) �w (x)

� (x)
dx

We can now appeal to the arguments of Gourieroux and Tenreiro (2001, Proof of Theorem 3.2)
to conclude that

I1 = �1 +
1

nh5=2
Hn +

hmp
n
Gn +OP

�
h2m

�
+ oP

�
1

nh5=2

�
+ oP

�
hmp
n

�
:

Given that Hn and Gn converge towards a bivariate normal distribution with covariance zero
and marginal variances v2P and �

2
P (see Gourieroux and Tenreiro, 2001, Theorem 3.1 for their

expressions), it follows that

nh5=2 fI1 � �1g = vP;1Un +
p
nhm+5=2�P;1Vn +OP

�
nh2m+5=2

�
+ oP

�p
nhm+5=2

�
:

Here, one can verify that

v2P;1 = 2

Z
R

�
K 0 �K 0�2 (z) dz� Z �2(x)!21 (x) dx =

1

8

Z
R

�
K 0 �K 0�2 (z) dz � Z �16 (x) �w2 (x)

�2 (x)
dx:

Next, by a direct application of Gourieroux and Tenreiro (2001, Theorem 3.2).

nh1=2 fI2 � �2g = �vP;1 �Un +
p
nhm+1=2��P;1 �Vn +OP

�
nh2m+1=2

�
+ oP

�p
nhm+1=2

�
(40)

where
�
�Un; �Vn

�
converge in distribution towards a bivariate standard Normal distribution, and

�2 =
1

nh

Z
R
K2 (z) dz �

Z
I
�(x)!2 (x) dx =

1

4nh

Z
R
K2 (z) dz �

Z
I

�4 (x) �w (x)�0 (x)2

�3 (x)
dx;

and

�v2P;1 = 2

Z
R
(K �K)2 (z) dz�

Z
I
�2(x)!22 (x) dx =

1

8

Z
R
(K �K)2 (z) dz�

Z
I

�4 (x) �w (x)�0 (x)4

�14 (x)
dx

Finally, by Kristensen (2009, Theorem 1) and standard kernel bias evaluations,

nh5=2R = OP

�
nh4m+5=2

�
+OP

 
log (n)2

nh1=2

!
:
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In total,

nh5=2
�
�TP;1 � �1 � �2

	
= nh5=2 fI1 � �1g+ nh5=2 fI2 � �2g+ nh5=2R
= vP;1Un + h

2�vP;1 �Un +
p
nhm+5=2

�
�P;1Vn + ��P;1 �Vn

	
+oP

�p
nhm+5=2

�
+OP

�
nh4m+5=2

�
+OP

 
log (n)2

nh1=2

!
:

The �rst part of the theorem now follows under the conditions imposed on the bandwidth.
Next, consider �TP;2: By the same arguments as before, we may set

~�2 (x) =
2

� (x)

Z x

l
� (y)� (y) dy; �̂2 (x) =

2

�̂ (x)

Z x

l
� (y)� (y) dy

in the following. Thus, using that
R x
l � (y)� (y) dy = � (x)�2 (x) together with the mean-value

theorem,

�TP;2 =

Z
I
[~�2(x)� �̂2 (x)]2 �w (x) dx

= 4

Z
I

�
1

� (x)
� 1

�̂ (x)

�2
�2 (x)�4 (x) �w (x) dx

= 4

Z
I
[� (x)� �̂ (x)]2 �

4 (x) �w (x)

�2 (x)
dx+R;

where

R = OP

�
sup
x
j� (x)� �̂ (x)j4

�
= OP

�
h4m

�
+OP

 
log (n)2

n2h2

!
:

From Gourieroux and Tenreiro (2001, Theorem 3.2) and the usual bias expressions, we now
obtain

nh1=2
�
�TP;2 � �mP;2

	
= �vP;2Un +

p
nhm+1=2�P;2Vn +OP

�
nh2m+1=2

�
+ nh1=2Rn;

where

�mP;2 =
4

nh

Z
R
K2 (z) dz �

Z
I
�(x)

�
�4 (x) �w (x)

�2 (x)

�
dx =

4

nh

Z
R
K2 (z) dz �

Z
I

�4 (x) �w (x)

�(x)
dx;

and

�vP;2 = 2

Z
R
(K �K)2 (z) dz �

Z
I
�2(x)

�
4�4 (x) �w (x)

�2 (x)

�2
dx

= 32

Z
R
(K �K)2 (z) dz �

Z
I

�8 (x) �w2 (x)

�2 (x)
dx

Proof of Theorem 8. Consider �rst �TP;1, where the drift under the null, �P (x), say, can be
written as �P(x) = �n(x) + gn (x). Then,

�TP;1 =

Z
I
[�̂ (x)� �n(x)]2 �w (x) dx+

Z
I
g2n(x) �w (x) dx+ 2

Z
I
[�̂ (x)� �n(x)]gn(x) �w (x) dx:

The �rst term is treated as in the Proof of Theorem 7, while the third term is a higher-order
term which can be ignored. Regarding �TP;2, the di¤usion term under the null can be written as
�2P(x) = �2n(x) + gn (x) such that

�TP;2 =

Z
I
[�̂2(x)� �2n(x)]2 �w (x) dx+

Z
I
g2n(x) �w (x) dx+ 2

Z
I
[�̂2(x)� �2n(x)]gn(x) �w (x) dx;

and we proceed as with �TP;1.
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B Auxiliary Lemmas

Lemma 9 Assume that (A.1)-(A.4) and (B.1)-(B.2) hold. Then:

sup
x2I

���̂SP;1 (x)� �a (� (x))�SP;1 (x)�� = 1X
k=0

n
OP

�
n�1=2

p
log (n)a�2+kh�(1+2k)=2

�
+OP

�
a�2+khm

�o
;

sup
x2Â

���̂2SP;2 (x)� �a (� (x))�2SP;2 (x)�� = OP

�
n�1=2

p
log (n)a�2h�1=2

�
+OP

�
a�2hm

�
:

Proof. This follows along the same lines as Kristensen (2010, Proofs of Lemmas 9-10).
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Figure 1: Estimates of � (x) for the CKLS(i) model. Full line = true function, dotted line =
mean of estimate, plusses = 95% con�dence interval.
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Figure 2: Estimates of � (x) for the CKLS(ii) model. Full line = true function, dotted line =
mean of estimate, plusses = 95% con�dence interval.
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Figure 3: Estimates of �2 (x) for the CKLS(i) model. Full line = true function, dotted line =
mean of estimate, plusses = 95% con�dence interval.
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Figure 4: Estimates of �2 (x) for the CKLS(ii) model. Full line = true function, dotted line =
mean of estimate, plusses = 95% con�dence interval.
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Figure 5: Estimates of � (x) for the AS model. Full line = true function, dotted line = mean of
estimate, plusses = 95% con�dence interval.
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Figure 6: Estimates of �2 (x) for the AS model. Full line = true function, dotted line = mean
of estimate, plusses = 95% con�dence interval.
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