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Abstract

We study the empirical behaviour of semi-parametric log-periodogram estimation for

long memory models when the true process exhibits a change in persistence. Simulation

results confirm theoretical arguments which suggest that evidence for long memory is

likely to be found. A recently proposed test by Sibbertsen and Kruse (2009) is shown

to exhibit noticeable power to discriminate between long memory and a structural

change in autoregressive parameters.
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1 Introduction

Long memory models receive considerable attention in the empirical literature on

economics and finance. Their successful applications justify the large body of liter-

ature dealing with spurious detections of long memory. Diebold and Inoue (2001)

among others demonstrate that evidence for long memory can be falsely ascribed

to structural break models with short memory. Among these models are ones with

occasional mean shifts and other non-linear models like the sign model (see Granger

and Teräsvirta 1999).

In this article we consider a simple changing persistence model which has not been

analyzed, at least to the best of our knowledge, in the related literature so far. This

autoregressive time series model describes a switch from stationarity (I(0)) to non-

stationarity (I(1)) over time, or vice versa. In addition, we study the case of stable

shifts. They are defined as a structural change in the autoregressive parameters which

does not constitute a change in persistence as the process is I(0) throughout the entire

sample. In a related article, Leybourne and Taylor (2004) provide a comprehensive

study on the behaviour of some changing persistence tests under stable shifts. They

consider processes with an integer degree of integration instead of fractional integra-

tion.

Our simulation results show that the estimated memory parameter is located in the

region of non-stationarity, i.e. d ∈ (0.5, 1). Theoretical explanations are provided and

a bias formula is derived in the case of stable shifts. The results of this analysis are

empirically relevant and important given the wide application of estimators for long

memory to time series where changes in persistence are likely to be present. A lead-

ing example are inflation rates which are modeled by either (i) changing persistence

(Halunga et al. 2008 and Noriega and Ramos-Francia 2009) or (ii) long memory mod-

els (see Hassler and Wolters 1995, Hsu 2005 and Lee 2005). In order to discriminate

between long memory and changing persistence, or stable shifts, we suggest to use
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a CUSUM of squares-based test proposed by Sibbertsen and Kruse (2009). Further

simulation results show that it has remarkable power to detect spuriously generated

long memory due to structural changes in the autoregressive parameters.

2 Autoregressive changing persistence model

We consider a first-order autoregressive model that has a change in persistence at the

breakpoint TB = [τT ] with τ ∈ (0, 1):

yt = α1yt−1 + εt, for t = 1, ..., TB (1)

yt = α2yt−1 + εt, for t = TB + 1, ..., T . (2)

The innovation process εt is assumed to be stationary, short memory and linear. In

this model, persistence is determined through the autoregressive parameters |α1| ≤ 1

and |α2| ≤ 1. As long as α1 6= α2, a structural change occurs at time TB. The special

case where |α1| = 1 and |α2| < 1 hold, is called a decline in persistence because the AR

model is I(1) during time t = 1, . . . , TB and I(0) afterwards. Analogously, an increase

in persistence takes place if |α1| < 1 and |α2| = 1 hold, i.e. the process switches from

stationarity to a unit root process. A stable shift is defined as a structural change

where both autoregressive parameters satisfy the stationarity condition, i.e. |α1| < 1

and |α2| < 1 hold.

3 Semi-parametric GPH-estimator and its bias

The widely applied I(d) model with long memory is given by

(1− L)dyt = εt (3)

where εt has zero mean and is i.i.d. with variance σ2. A popular estimator for d is

the one proposed by Geweke and Porter-Hudak (1983). It is based on the spectral
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density of a long-memory model which is given by

f(λ) = |1− exp(−iλ)|−2df ∗(λ), −π ≤ λ ≤ π. (4)

Here, the first term determines the long-range behaviour of the process and the re-

maining spectral density f ∗(λ) determines the short-run behaviour of the process,

which can be autoregressive for instance. The GPH-estimator neglects the short-run

behaviour and focusses on the long-run part of the spectral density. This may in-

troduce a serious bias in the estimation (see Hurvich et al., 1998, or Davidson and

Sibbertsen, 2009, for a discussion).

More specifically, the GPH-estimator is based on the regression

log(Ij) = log cf − 2dXj + log ξj , j = 1, 2, . . . , m (5)

where Ij = 1
2πn

∣∣∣∑T−1
t=0 yt exp

(
i2πjt

T

)∣∣∣
2

is the j-th periodogram ordinate, Xj denotes the

j-th Fourier frequency and ξj are assumed to be i.i.d. with −E(log ξj) = 0.577216...

which is known as the Euler constant. The GPH-estimator for d equals the −1/2

times the OLS estimator of the slope parameter in the log-peridogram regression (6).

A common choice for the number of periodogram ordinates is the MSE-optimal rate

of m = T 4/5 which is applied in the Monte Carlo study below.

We analyze the bias of the GPH-estimator when the true model is the one given in

equations (1) and (2) with a stable shift and hence, short memory, i.e. d = 0. The

model can be interpreted as a time-varying autoregressive process. Moulines et al.

(2006) introduce a time-dependent local spectral density which is given by

f ∗(λ) ≡ f ∗(λ, t) = f ∗1 (λ)1(t ≤ [τT ]) + f ∗2 (λ)1(t > [τT ]), −π ≤ λ ≤ π, (6)

where f ∗1 (λ) denotes the spectral density of process (1) and f ∗2 (λ) this of (2); 1(A) is

the indicator function of the set A. We assume the following condition, see Hurvich

et al. (1998):
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Condition 1: m →∞, T →∞, with m/T → 0 and (m log m)/T → 0.

Condition 2 in Hurvich et al. (1998) is automatically fulfilled here as we deal with

local autoregressive processes. By similar arguments as in Hurvich et al. (1998), we

derive the bias expression for the GPH-estimator. Let us denote aj = Xj − X̄ and

SXX =
∑m

k=1 a2
k. The bias of d̂ is given by

E(d̂− d) = − 1

2SXX

m∑
j=1

aj log f ∗i (ωj)− 1

2SXX

m∑
j=1

ajE(εj). (7)

Now, for 1 ≤ j ≤ m there exists a ξj with 0 ≤ ξj ≤ ωj such that

log f ∗i (ωj) = log f ∗(0) +
ωj

2

f ∗
′′

i (0)

f ∗i (0)
+

ω3
j

6
g(ξj) (8)

with

g(ω) =
f ∗

′′′
i (ω)

f ∗i (ω)
− 3f ∗

′
i (ω)f ∗

′′
i (ω)

[f ∗i (ω)]2
+

2[f ∗
′

i (ω)]3

[f ∗i (ω)]3
(9)

as in Hurvich et al. (1998). We obtain

E(d̂− d) = −2π

9

f ∗
′′
(0)

f ∗(0)

m2

T 2
+ o

(
m2

T 2

)
. (10)

In our case it can furthermore be seen that

f ∗
′′

i (0)

f ∗i (0)
=

−2αi

(1− αi)2
, i = 1, 2. (11)

This gives our bias expression to be

E(d̂− d) =
2π

9

[
2α1

(1− α1)2
1(t ≤ [τT ]) +

2α2

(1− α2)2
1(t > [τT ])

]
m2

T 2
+ o

(
m2

T 2

)
. (12)

4 Monte Carlo study

Data is generated according to the AR model in equations (1) and (2). The sample

sizes T = 250, 500 and 750 are usual in economics for daily, weekly, monthly and

quarterly recorded data. The breakpoint is located in the first half of the sample

(τ = 0.3), in the middle (τ = 0.5) and the second half (τ = 0.7). The autoregres-

sive parameter α1,2 takes the value 0.5, while α2,1 ∈ Θ = {0.9, 0.905, . . . , 0.995, 1.0}.
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Figure 1: τ = 0.3, solid line: T = 250, dashed line: T = 500, dotted line: T = 750

Hence, we consider a range of stable shifts and a change in persistence in the limit.

The innovations εt are drawn from a standard normal distribution. The number of

Monte Carlo repetitions is 5000 for each single experiment. We report the Monte

Carlo mean of the GPH-estimator for d. As there the true value for d is zero in the

case of stable shifts, the simulated bias of the GPH-estimator simply equals its Monte

Carlo average. In the case of a change in persistence from I(0) to I(1) (or vice versa),

no bias statistic can be computed. Therefore, we focus on the pure estimates of d

in this case. Results for the GPH-estimator are reported in the left part of Figures

1, 2 and 3 for the breakpoints τ = {0.3, 0.5, 0.7}, respectively. We only report the

results for the case of decreasing persistence as the results for increasing persistence

are symmetric and do not convey any further insights.1

The results suggest that spurious evidence for long memory can easily be found.

Irrespective of the particular value of α2 ∈ Θ, the Monte Carlo averages of the GPH-

estimates are located in the non-stationary region (0.5, 1). Thus, stable shifts and
1Full results are available from the authors upon request.
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Figure 2: τ = 0.5, solid line: T = 250, dashed line: T = 500, dotted line: T = 750
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Figure 3: τ = 0.7, solid line: T = 250, dashed line: T = 500, dotted line: T = 750
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changes in persistence are easily confused with long memory. We observe three gen-

eral tendencies in the results which are confirmed by our bias formula (13): (i) the

later the break from α1 ∈ Θ to α2 = 0.5 occurs, the larger is the bias, (ii) a larger

value of α1 leads to a larger bias, but (iii) an increasing sample size T leads to a

smaller, but still remarkable bias. Moreover, the results for the limiting case of a

change in persistence appear to be very similar to the ones for the local-to-unity

cases although the bias formula (13) does not apply as the spectral densities do not

exist for non-stationary processes.

Given the fact that long memory may be easily confused with stable shifts and changes

in persistence, it is important to discriminate between these two types of processes.

To this end, we study the behaviour of a CUSUM of squares-based test suggested by

Sibbertsen and Kruse (2009). This testing procedure is originally designed to test the

null hypothesis of long memory against a change in the d parameter. The following

simulations shed light on the tests’ ability to distinguish long memory models (under

H0) and stable shifts or changes in persistence (under H1). The test is carried out

by computing the statistic

R =
infτ∈Λ Kf (τ)

infτ∈Λ Kr(τ)
, (13)

where Kf (τ) and Kr(τ) are CUSUM of squares-based statistics. In more detail,

Kf (τ) and Kr(τ) are given by

Kf (τ) =
1

[τT ]2

[τT ]∑
t=1

v̂2
t,τ

and

Kr(τ) =
1

(T − [τT ])2

T−[τT ]∑
t=1

ṽ2
t,τ .

Here, v̂t,τ are the residuals from the OLS regression of yt on a constant based on

the observations up to [τT ]. Similarly ṽt,τ is defined for the reversed time series.

More details on the asymptotic distribution of R and critical values can be found in

Sibbertsen and Kruse (2009). The simulation results therein show that the test is
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correctly sized for the sample sizes considered here. The right part of Figures 1, 2

and 3 show the empirical power of the CUSUM of squares-based test against stable

shifts and changes in persistence. The test has monotone power with respect to the

breakpoint: the earlier the breakpoint, the higher is the power of the test. It is also

monotonically increasing with the magnitude of the AR parameter. For T = 250 we

find the following results: For an early breakpoint (τ = 0.3), the empirical power

varies from 77.1% to 93.5% (for α1 = 0.9 to α1 = 1.0); if the breakpoint is located

in the middle of the sample the tests’ power ranges from 57.2% to 89.1%; for a late

break (τ = 0.7), the power varies from 5.9% to 60.5%. For larger sample sizes, the

power increases, as one may expect. Especially in the case of a late break, the power

increases strongly with the sample size. The simulation results suggest that the test

is powerful in distinguishing long memory and stable shifts or changes in persistence

and is therefore of empirical usefulness.
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