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Abstract

This paper proposes a nhew modelling framework for eletyriiirward markets, which is
based on ambit fields. The new model can capture many of tlisestyffacts observed in energy
markets. One of the main differences to the traditional neiéks in the fact that we do not model
the dynamics, but the forward price directly, where we foonsnodels which aretationaryin
time. We give a detailed account on the probabilistic propenf the new model and we discuss
martingale conditions and change of measure within the nedgeinclass. Also, we derive a
model for the spot price which is obtained from the forwarddeldhrough a limiting argument.
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1 INTRODUCTION

1 Introduction

This paper introduces a new model for electricity forwardes, which is based cambit fieldsand
ambit processesAmbit fields and processes constitute a general probtibifimmework which is
suitable for tempo—spatial modelling. Ambit processedafaned as stochastic integrals with respect
to a multivariate random measure, where the integrand enddy a product of a deterministic kernel
function and a stochastic volatility field and the integratis carried out over aambit setdescribing
the sphere of influence for the stochastic field.

Due to their very flexible structure, ambit processes haeeessfully been used for modelling
turbulence in physics and cell growth in biology, see Barfiedielsen & Schmiegel (2004, 2007,
2008&,b,c, 2009), Vedel Jensen et al. (2006). The aim of this papenistoaevelop a new modelling
framework for (electricity) forward markets based on theb@rmoncept.

Over the past two decades, the markets for power have beallged in many areas in the world.
The typical electricity market, like for instance the Nardilord Pool market or the German EEX
market, organises trade in spot, forward/futures corgrantl European options on these. Although
these assets are parallel to other markets, like traditioomamodities or stock markets, electricity
has its own distinctive features calling for new and morehsgijtated stochastic models for risk
management purposes, see Beélimyté Benth & Koekebakker (2008).

The electricity spot can not be stored directly except viereoirs for hydro—generated power,
or large and expensive batteries. This makes the supply wéipgery inelastic, and prices may
rise by several magnitudes when demand increases, due pefaure drops, say. Since spot prices
are determined by supply and demand, strong mean-revecaioibe observed. The spot prices
have clear deterministic patterns over the year, week ama-day. The literature has focused on
stochastic models for the spot price dynamics, which takeesof the various stylised facts into
account. Recently, a very general, yet analytically tisletalass of models has been proposed in
Barndorff-Nielsen et al. (201), based on Levy semistationary processes. This class mestsof
the popular spot models for non—tradable commodities aadpecial case of an ambit process.

One of the fundamental problems in power market modelling isnderstand the formation of
forward prices. Non-storability of the spot makes the usugl-and—hold hedging arguments break
down, and the notion of convenience yield is not relevarttegit There is thus a highly complex
relationship between spot and forwards.

A way around this would be to follow the so—called Heath-alar#Morton approach, which has
been introduced in the context of modelling interest raseg Heath et al. (1992), and model the
forward price dynamics directly (rather than modelling $ipet price and deducing the forward price
from the conditional expectation of the spot at deliveryieile are many challenging problems con-
nected to this way of modelling forward prices.

Firstly, standard models for the forward dynamics gengrddéipend on the current time and the
time to maturity. However, power market trades in contradgtgch deliver power over delivery pe-
riod, introducing a new dimension in the modelling. Hence corensive forward price models must
be functions of botlime toandlength ofdelivery, which calls for random field models in time and
space. Furthermore, since the market trades in contrattisowerlapping delivery periods, specific
no—arbitrage conditions must be satisfied which essentmlts restrictions on the space structure
of the field. So far, the literature is not very rich on modgjlipower forward prices applying the
Heath—Jarrow—Morton approach, presumably due to the laekalytical tractability and empirical
knowledge of the price evolution.

Empirical studies, see Frestad et al. (2010), have showrthibdogarithmic returns of forward
prices are non—normally distributed, with clear signs cdvyetails. Also, a principal component
analysis by Koekebakker & Ollmar (2005) indicates a highrdegof idiosyncratic risk in power
forward markets. This strongly points towards random fielodeis which, in addition, allow for
stochastic volatility. Moreover, the structure determinithe interdependencies between different
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contracts is by far not properly understood. Some empistatiies, see Andresen et al. (2010),
suggest that the correlations between contracts are d@mgewith time to maturity, whereas the
exact form of this decay is not known. But how to take ‘lengtll@livery’ into account in modelling
these interdependencies has been an open question. A firsaah on how to tackle this problem
will be presented later in this paper.

Ambit processes provide a flexible class of random field mmdehere one has a high degree of
flexibility of modelling complex dependencies. These mayphebabilistic coming from a driving
Levy basis, or functional from a specification of an ambit set

Our focus will be on ambit processes which atationaryin time. As such, our modelling frame-
work differs from the traditional models, where stationprgcesses are (if at all) reached by limiting
arguments. Modelling directly in stationarity seems intflacbe quite natural and is e.g. done in
physics in the context of modelling turbulence, see e.gn@anff-Nielsen & Schmiegel (2007, 2009).
Here we show that such an approach has strong potential imcén#oo.

Due to their general structure, ambit processes easilypocate the observed Samuelson effect in
the volatility, leptokurtic behaviour in returns and pdgistochastic volatility and leverage effects.
Note that theSamuelson effeckee Samuelson (1965), refers to the finding that, when e tb
maturity approaches zero, the volatility of the forwardreases and converges to the volatility of the
underlying spot price.

Although many stylised facts of energy markets can easiipd@porated in an ambit framework,
one may question whether ambit processes are not indaayeneral to be a good building block
for financial models. In particular, one property — the nragyéile property — is often violated by
general ambit processes. However, we can and will formwaatelitions which ensure that an ambit
process is in fact a martingale. So, if we wish to stay witti@ imartingale framework, we can do
so by using a restricted subclass of ambit processes. Ontltee loand, in modelling terms, it is
actually not so obvious whether vahould stay within the martingale framework if our aim is to
model electricity forward contracts. Given the illiquigiof electricity markets, it cannot be taken
for granted that arbitrage opportunities arising from farevprices outside the martingale framework
can be exercised. Also, we know from recent results in thnemaatical finance literature, see e.g.
Guasoni et al. (2008), Pakkanen (2010), that subclassesmsf(semi)—martingales can be used to
model financial assets without necessarily giving rise tut@ge opportunities in markets which
exhibit market frictions, such as e.g. transaction costs.

Next, we will not work with the most general class of ambitgesses since we are mainly inter-
ested in the time—stationary case.

Last but not least we will show that the ambit framework caedsbome light on the connection
between electricity spot and forward prices. Understapdiie interdependencies between these two
assets is crucial in many applications, e.g. in the hedgingxotic derivatives on the spot using
forwards. A typical example in electricity markets is sdlerhuser—time contracts, giving the holder
the right to buy spot at a given price on a predefined numbeowfsin a year, say.

The outline for the remaining part of the paper is as follo®ection 2 gives an overview of the
standard models used for forward markets. Section 3 revi@asi traits of the theory of ambit fields
and processes. In Section 4, we describe the new model émtielty) forward markets. In Section
5, we show how some of the traditional models for forward ggicelate to ambit processes. Next
we show what kind of spot model is implied by our new model far forward price and we discuss
that, under certain conditions, the implied spot price psscequals in law a Lévy semistationary
process, see Section 6. Section 7 presents the martingad@ions for our new model to ensure the
absence of arbitrage. Also, since we do the modelling urgerisk neutral measure, we discuss how
a change of measure can be carried out to get back to the phpsabability measure. Section 8
deals with extensions of our new modelling framework: Whikemainly focus on arithmetic models
for forward prices in this paper, we discuss briefly how gemimenodels can be constructed. Also,
we give an outlook on how ambit field based models can be us@ihtty model time and period of
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delivery. Finally, Section 9 concludes and Appendix A cargahe proofs of our main results and
some technical results on the correlation structure of gvealass of models.

2 Overview on approaches to modelling forward prices

Before introducing ambit fields, let us review the exisitiitgrature on direct modelling of forward
prices in commodity markets, i.e. the approach where onetistarting out with a specification of
the underlying spot dynamics.

Although commodity markets have very distinct featuressimoodels for energy forward con-
tracts have been inspired by instantaneous forward ratdglsm the theory for the term structure of
interest rates, see Koekebakker & Ollmar (2005) for an aearen the similarities between electricity
forward markets and interest rates.

Hence, in order to get an overview on modelling concepts lwihiave been developed in the
context of the term structure of interest rates, but whighalao be used in the context of electricity
markets, we will now review these examples from the interatt literature. However, later we will
argue that, in order to account for the particular stylisettd of power markets, there is a case for
leaving these models behind and focusing instead on amlus fees a natural class for describing
energy forward markets.

Throughout the paper, we denote by R the current time, by” > 0 the timeof maturity of a
given forward contract, and by = 7" — ¢ the corresponding time maturity. We use;(7") to denote
the price of a forward contract at tintevith time of maturityT". Likewise, we usef for the forward
price at timet with time to maturityz = T — ¢, when we work with the Musiela parameterisation, i.e.
we definef by

fi(x) = fi(T —t) = F(T).

2.1 Multi-factor models

Motivated by the classical Heath et al. (1992) framework,diinamics of the forward rate under the
risk neutral measure can be modelled by

dfe(x) =Y o (@)aw”,  fort>0,
=1

for n € IV and wherdV () are independent standard Brownian motions @fit{z) are independent
positive stochastic volatility process for= 1,...,n. The advantage of using these multi—factor
models is that they are to a high degree analytically trdetabxtensions to allow for jumps in such
models have also been studied in detail in the literaturewever, a principal component analysis
by Koekebakker & Ollmar (2005) has indicated that we needat many factors (large) to model
electricity forward prices. Hence it is natural to studyemdions to infinite factor models which are
also called random field models.

2.2 Random field models for the dynamics of forward rates

In order to overcome the shortcomings of the multifactor el@dkennedy (1994) has pioneered the
approach of using random field models, in some cases cabtieasttic string models, for modelling
the term structure of interest rates. Random field modele hazontinuum of state variables (in our
case forward prices for all maturities) and, hence, are edfled infinite factor models, but they are
typically very parsimonious in the sense that they do notiiregmany parameters. Note that finite—
factor models can be accommodated by random field modelsgyeseete cases.
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Kennedy (1994) proposed to model the forward rate by a cett@ontinuous Gaussian random
field plus a continuous deterministic drift. Furthermoredpecified a certain structure of the co-
variance function of the random field which ensured that @ imalependent increments in the time
direction ¢ (but not necessarily in the time to maturity directioh Such models include as spe-
cial cases the classical Heath et al. (1992) model when betldrift and the volatility functions are
deterministic and also two—parameter models, such as sibdskd on Brownian sheets. Kennedy
(1994) derived suitable drift conditions which ensure trertmgale properties of the corresponding
discounted zero coupon bonds.

In a later article, Kennedy (1997) revisited the continu@aissian random field models and he
showed that the structure of the covariance function of snotlels can be specified explicitly if one
assumes a Markov property. Adding an additional statibpaondition, the correlation structure of
such processes is already very limited and Kennedy (199¥ggdrthat, in fact, under a strong Markov
and stationarity assumption the Gaussian field is necgssgascribed by just three parameters.

The Gaussian assumption was relaxed later and Goldsteéd@)p@esented a term structure model
based on non—Gaussian random fields. Such models incarpiorgtarticular conditional volatil-
ity models, i.e. models which allow for more flexible (i.eodtastic) behaviour of the (conditional)
volatilities of the innovations to forward rates (in thediteoonal Kennedy approach such variances
were just constant functions of maturity), and, hence, aréqularly relevant for empirical applica-
tions. Also, Goldstein (2000) points out that one is intexdsn verysmoothrandom field models in
the context of modelling the term structure of interestgat8uch a smoothness (e.g. in the time to
maturity direction) can be achieved by usimgegrated random fields.g. he proposes to integrate
over an Ornstein—Uhlenbeck process. Goldstein (2000yetbwmlrift conditions for the absence of
arbitrage for such general non—-Gaussian random field models

While such models are quite general and, hence, appealimgatice, Kimmel (2004) points out
that the models defined by Goldstein (2000) are generallgifépe as solutions to a set of stochastic
differential equations, where it is difficult to prove theisggnce and unigueness of solutions. The
Goldstein (2000) models and many other conditional vatgatitandom field models are in fact com-
plex and often infinite dimensional processes, which laeklie key property of the Gaussian random
field models introduced by Kennedy (1994): that the indigidorward rates are low dimensional dif-
fusion processes. The latter property is in fact importantiodel estimation and derivative pricing.
Hence, Kimmel (2004) proposes a new approach to random fiettels which allows for conditional
volatility and which preserves the key property of the Kahngl994) class of models: the clasdaf
tent variable term structure modelsle proves that such models ensure that the forward ratethand
latent variables (which are modelled as a joint diffusiasioiiv jointly a finite dimensional diffusion.

A different approach to generalising the Kennedy (1994in&revork is proposed by Albeverio
et al. (2004). They suggest to replace the Gaussian randadrirfithe Kennedy (1994) model by a
(pure jump) Lévy field. Special cases of such models aretteegPoisson and the Gamma sheet.

Finally, another approach for modelling forward rates hesrbproposed by Santa-Clara & Sor-
nette (2001) who build their model @tochastic string shockdMe will review that class of models
later in more detail since it is related (and under some ag8ans even a special case) of the new
modelling framework we present in this paper.

2.3 Intuitive description of an ambit field based model for faward prices

After we have reviewed the traditional models for the terracitire of interest rates, which are (par-
tially) also used for modelling forward prices of commoektj we wish to give an intuitive description
of the new framework we propose in this paper before we ptedkine mathematical details.

As in the aforementioned models, we also propose to use amafidld to account for the two
temporal dimensions of current time and time to maturitywieeer, the main difference of our new
modelling framework compared to the traditional ones id #a model the forward pricdirectly.
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This direct modelling approach is in fact twofold: First, we model theafard prices directly rather
than the spot price, which is in line with the Heath et al. @d@amework. Second, we do not specify
the dynamicsof the forward price, but we specify a random field, an ambltfigvhich explicitly
describes the forward price. In particular, we propose ¢éarasdom fields given by stochastic integrals
of type

/ h(E, s, ) (€)L(dE, ds), 1)
A¢(x)

as a building block for modelling;(x). A natural choice fol. — motivated by the use of Lévy pro-
cesses in the one—dimensional framework — is the clak&wf baseswhich are infinitely divisible
random measures as described in more detail below. Heratédgrand is given by the product of a
deterministic kernel functioh and a random field describing the stochastic volatility.

We will describe in more detail below, how stochastic inédgiof type (1) have to be understood.
Note here that we integrate over a sg{x), the ambit set which can be chosen in many different
ways. We will discuss the choice of such sets later in thepape

An important motivation for the use of ambit processes i$ tawish to work with processes
which arestationaryin time, i.e. int, rather than formulating a model whiclnvergego a stationary
process. Hence, we work with stochastic integrals staftmg — oo in the temporal dimension, more
precisely, we choose ambit sets of the fafy(z) = {(&,s) : —00 < s < t,& € I(s,z)}, where
I,(s, x) is typically an interval including:, rather than integrating froy which is what the traditional
models do which are constructed as solutions of stochaatt@pdifferential equations (SPDES). (In
fact, many traditional models coming from SPDEs can be gwdluin an ambit framework when
choosing the ambit set,(z) = [0,¢] x {x}.)

In order to obtain models which are stationary in the time ponentt, but not necessarily in the
time to maturity component, we assume that the kernel function depends ands only through
the difference — s, so having that is of the formh(¢, s, x,t) = k(&,t — s, z), thato is stationary in
time and that4,(x) has a certain structure, as described below. Then

/ B(E,t — 5, 2)0, (€)L(dE, ds). @
A¢(x)

Note that Hikspoors & Jaimungal (2008) and Benth (2010) ideyempirical evidence that both
the spot and the forward price are influenced kstachastic volatilityfield 0. Here we assume that
o describes the volatility of the forward market as a whole.rélprecisely, we will assume that the
volatility of the forward depends on previous states of tbiatlity both in time and in space, where
the spatial dimension reflects the time to maturity.

The general structure of ambit fields makes it possible twafior generaldependencies be-
tween forward contractsin the electricity market, a forward contract has a closemblance with
its neighbouring contracts, meaning contracts which aseecin maturity. Empirics (by principal
component analysis) suggest that the electricity marketsl many factors, see e.g. Koekebakker &
Ollmar (2005), to explain all the noises, contrary to instmate markets where one finds 3—4 sources
of noise as relevant. Since electricity is a non—storabteroodity, forward looking information plays
a crucial role in settling forward prices. Different infoation at different maturities, such as plant
maintenance, weather forecasts, political decisionsgte rise to a high degree of idiosyncratic risk
in the forward market, see Benth & Meyer-Brandis (2009). sSehempirical and theoretical findings
justify a random field model in electricity and also indicétat there is a high degree of dependency
around contracts which are close in maturity, but much wed&pendence when maturities are far-
ther apart. The structure of the ambit field and the volgtfigld which we propose in this paper will
allow us to “bundle” contracts together in a flexible fashion
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3 Ambit fields and processes

This section reviews the concept of ambit fields and ambitgsses which form the building blocks
of our new model for the electricity forward price. For a diet account on this topic see Barndorff-
Nielsen et al. (2018) and Barndorff-Nielsen & Schmiegel (2007). Throughout pla@er, we denote

by (©2, F, P*) our probability space. Note that we use theotation since we will later refer to this
probability measure as a risk neutral probability measure.

3.1 Review of the theory of ambit fields and processes

The general framework for defining an ambit process is aevill LetY = {Y; (z)} with Yi(z) :=

Y (x,t) denote a stochastic field in space—tiliex R and letr () = (z () ,t(#)) denote a curve
in X x R. The values of the field along the curve are then givenXhy= Y, ) (= (6)). Clearly,

X = {Xy} denotes a stochastic process. In most applications, tle spas chosen to b&? for

d = 1,2 or 3. Further, the stochastic field is assumed to be generateghoyations in space—time
with valuesY; (x) which are supposed to depend only on innovations that oator fo or at time

t and in general only on a restricted set of the correspondamgqgd space—time. l.e., at each point
(z,t), the value ofY; (x) is only determined by innovations in some subdefx) of X x R, (where
R; = (—o0, t]), which we call theambit setassociated téz, t). Furthermore, we refer tv and X as
anambit fieldand anambit processrespectively.

In order to use such general ambit processes in applicatiem$iave to impose some structural
assumptions. More precisely, we will defilig(x) as a stochastic integral plus a smooth term, where
the integrand in the stochastic integral will consist of gedministic kernel times a positive random
variate which is taken to embody thelatility of the fieldY. More precisely, we think of ambit fields
as being of the form

Yiie) =+ [

A¢(z)

h(& s,x,t) 0 (f)L(dg,ds)—F/ q (& s,x,t)as (§)dEds, (3)

D¢()

whereA, (z), andD; (z) are ambit sets; andq are deterministic functions > 0 is a stochastic field
referred to awolatility, a is also a stochastic field, arddis alLévy basis
Note that the corresponding ambit procéSslong the curve is then given by

Xo=pt [ b s @)L ) + [ al€osm(O)an(e)dsds, (4)
A(0) D(0)
whereA(0) = Ayg)(z(0)) and D(0) = Dyg)(z(0)).
Of particular interest in many applications are ambit psses that are stationary in time and
nonanticipative. More specifically, they may be derivedrframbit fieldsY” of the form

Yile) =+ [

A¢(x)

h(£>t_87$) Os (g)L(d£>ds)+/ q({,t—s,aj)as (f)dfds (5)

Dy(z)

Here the ambit setd, (x) and D, (x) are taken to bbomogeneouandnonanticipativei.e. A; (x) is
of the form A, (z) = A + (z,t) where A only involves negative time coordinates, and similarly for
Dy (z). We assume further tha({, u, z) = ¢(&, u,z) = 0 foru < 0.

3.2 Background on Lévy bases

Let S denote thé—ring of subsets of an arbitrary non—empty Sesuch that there exists an increas-
ing sequencd .S, } of sets inS with U, S,, = S, see Rajput & Rosinski (1989). Recall from e.g.
Barndorff-Nielsen & Shephard (2010), Pedersen (2003)piRa§ Rosinski (1989) that a Lévy basis
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L = {L(B), B € S} defined on a probability spa¢€, 7, P) is an independently scattered random
measure with Lévy—Khinchin representation

Vi) (v) = log (E(exp(ivL(B))) ,

given by

i (o) = iva(B) = 50*(B) + [ (€ =1 = ior 1 () ar. B) (6)
whereaq is a signed measure & b is a measure o8, I(, -) is the generalised Lévy measure such
that!(dr, B) is a Lévy measure oR for fixed B € S and a measure afifor fixed dr. Without loss of
generality we can assume that the generalised Lévy mefsioeises as(dr, dn) = U (dr,n)u(dn),
wherey is a measure 08. Concretely, we take to be thecontrol measurgsee Rajput & Rosinski
(1989), defined by

w(B) = |a|(B) + b(B) + /Rmin(l,rz)l(dr, B), (7)

where| - | denotes the total variation. Furthéf(dr,n) is a Lévy measure for fixed. If U(dr,n)
does not depend on we calll and L factorisable Note thata andb are absolutely continuous with
respect tqu: a(dn) = a(n)u(dn), anddb(dn) = b(n)u(dn).

Forn € S, let L' (n) be an infinitely divisible random variable such that

V() (v) = log (E(exp(ivL'(n))) ,

with
.~ 1 27 ivr .
iy (0) = 10an) = 507Bn) + [ (€ =1 dorl_y. () Uldri, ®)
R
then we have
Vi) (V) = Yrim (0) pldn). (9)

In the following, we will refer toL’(n) as theLevy seedf L atn. If L is factorisable, withS ¢ R™
and if i is proportional to the Lebesgue measure, thaa calledhomogeneous
Furthermore, we get from Rajput & Rosinski (1989, Propogi®.6) that

vy 7ar,(v) = log (E <exp (iv /7dL>>> = /log (E(exp(ivf(n)L'(1)))) p(dn)
- / Gy (0 f (m)p(dn), (10)

for a deterministic functiorf which is integrable with respect to the Lévy basis.

In order to be able to compute moments of integrals with reisfpea Lévy basis, we invoke a
generalised Lévy—Itd decomposition, see Pedersen J2@&responding to the generalised Lévy—
Khintchine formula, (6), the Lévy basis can be written as

L(B)ZG(B)+\/6(B)W(B)+/ y(N(dy,B)—V(dij))Jr/ yN(dy, B)

{lyl<1} {ly|>1}
— a(B) + VHBW(B) + / y(N — v)(dy, B) + / yN(dy, B),
{lyl<1} {ly|>1}

for a Gaussian basi§” and a Poisson basi§ with intensitywv.

8
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Now we have all the tools at hand which we need to compute thdional characteristic func-
tion of ambit fields defined in (3) whereand L are assumed independent and where we condition on

the path ofo. The conditional cumulant function is denoted3% and has the form
7/’7At(w) h(€,s,2.0)00(€) L(de ds) (V) = 108 (E (eXp (iU/A ( )h({,s,x,t)os(f)L(dﬁ,ds)> 0>>
t(x
= A ( ) 1/}?/(&3) (’Uh(§7 S,T, t)as(§)) M(dgdS), (11)
t(x

wherey){, denotes, the characteristic exponent of the Lévy seddaafnditionally onc andy is the
control measure associated with the Lévy bdsisf. (8) and (7).

3.3 Walsh-type integration with respect to a leévy basis

Since ambit processes are defined as stochastic integrdisregpect to a Lévy basis, we briefly
review in this section in which sense this stochastic irggn should be understood. Throughout the
rest of the paper, we work with stochastic integration webpect to martingale measures as defined
by Walsh (1986). We will review this theory here briefly antereo Barndorff-Nielsen et al. (208)
for a detailed overview on integration concepts with respet.évy bases.

In the following we will present the integration theory on@bded domain and comment later
on how one can extend the theory to the case of an unboundeaimom

Let S denote a bounded setii = R? for ad € N and let(S, S, leb) denote a measurable space,
whereS denotes the Boret—algebra o andleb is the Lebesgue measure.

Let L denote a Lévy basis ofi x [0,7] € B(R¥*!) for someT > 0. For anyA € B,(S) and
0 <t <T,we define

Li(A) = L(A, ) = L(A x (0,1)),

which is a measure—valued process. Note that for a fixed sei3,(.S), L.(A) is an additive process
in law.

In the following, we want to use thk;(A) as integrators as in Walsh (1986). In order to do that,
we work under the square—integrability assumption, i.e.:

Assumption (Al): For eachA € B,(S), we have thaf.;(A) € L?(Q2, F, P*).

Note that, in particular, assumption (Al) excludesstable Lévy bases far < 2.
Next, we define the filtratiotF; by

Fi = 01 F i1 ns where  F) =c{L,(A): AecBy(S),0<s<t}VN, (12)

and where\ denotes thé’>—null sets ofF. Note thatF; is right—continuous by construction.
In the following, we will work without loss of generality uadthe zero—mean assumption bn
ie.

Assumption (A2): For eachA € B;,(S), we have thaE(L.(A)) = 0.

One can show that under the assumptions (Al) and (A2)A4) is a (square—integrablahar-
tingale with respect to the filtration{F;)o<:<7. Note that these two properties together with the
fact thatLo(A) = 0 a.s. ensure thatl(A4)),;>0 acp(re) IS @ martingale measurevith respect to
(Ft)o<t<T in the sense of Walsh (1986). Furthermore, we have the follpwrthogonality property:

If A,B € By(S) with An B = (), thenL;(A) and L;(B) are independent. Martingale measures
which satisfy such an orthogonality property are refereddorthogonal martingale measurdxs/
Walsh (1986), see also Barndorff-Nielsen et al. (20¥06r more details.
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3 AMBIT FIELDS AND PROCESSES

For such measures, Walsh (1986) introduces\ariance measurg by
QA x [0,t]) = < L(A) >y, (13)

for A ¢ B(R%). Note thatQ is a positive measure and is used by Walsh (1986) when defining
stochastic integration with respectfo

Walsh (1986) defines stochastic integration in the follgvwmay. Let{({, s) be anelementary
random field( (¢, s), i.e. it has the form

C(fa S, w) = X(W)H(a,b} (S)HA (x) ’ (14)

where0 < a < t, a < b, X is bounded andF,—measurable, and € S. For such elementary
functions, the stochastic integral with respeci.toan be defined as

/0 /B C(6,5) L(dr,ds) == X (Lina(AN B) — Lyng(AN B)) | (15)

for everyB € S. It turns out that the stochastic integral becomes a matiéngeasure itself. Clearly,
the above integral can easily be generalised to allow fegnatinds given bgimplerandom fields, i.e.
finite linear combinations of elementary random fields. Tedenote the set of simple random fields
and let thepredictables—algebraP be theo—algebra generated I¥. Then we call a random field
predictableprovided it isP—measurable. The aim is now to define stochastic integraksraspect to
L where the integrand is given by a predictable random field.

In order to do that Walsh (1986) defines a ndfm|, on the predictable random fieldy

I =E[/ C(¢.5) QUde, ds) | . (16)
[0,T]xS

which determines the Hilbert spa@y, := L?(Q x [0,7] x S, P, Q), and he shows thaf is dense
in Pr. Hence, in order to define the stochastic integrat of P, one can choose an approxi-
mating sequencé(,}, C 7 such that|( — (.|| — 0 asn — oco. Clearly, for eachA € S,
f[o,t]xA Cn(€, 8) L(d€, ds) is a Cauchy sequence Irt (2, F, P), and thus there exists a limit which is
defined as the stochastic integral(of

Then, this stochastic integral is again a martingale meaand satisfies the followingdo—type

isometry
2
E K / <<f,s)L<df,ds>> ] — JiCI? . (17)
[0,t]x A

see (Walsh 1986, Theorem 2.5) for more details.

Remark 1. In order to use Walsh—type integration in the context of aridids, we note the follow-
ing:

e General ambit setsl;(xz) are not necessarily bounded. However, the stochasticratteg
concept reviewed above can be extended to unbounded anshiisseg standard arguments, cf.
Walsh (1986, p. 289).

e For ambit fields with ambit setd;(z) C X x (—o0,t], we define Walsh-type integrals for
integrands of the form

C(fa 3) = C(§7 S, Ty t) = ]IAt(.CB) (67 S)h(§7 S, Ty t)O’s (f) (18)

10



3 AMBIT FIELDS AND PROCESSES

e The original Walsh’s integration theory covers integramdsch do not depend on the time
indext. Clearly, the integrand given in (18) generally exhibitslependence due to the choice
of the ambit setd,(x) and due to the deterministic kernel functibnin order to allow for time
dependence in the integrand, we can define the integrale W#ish sense for arfixed+.

In order to ensure that the ambit fields (as defined in (3)) aié-defined (in the Walsh—sense),
throughout the rest of the paper, we will work under the felltg assumption:

Assumption (A3): Let L denote a Lévy basis ofi x [—oco,T], whereS denotes a not necessarily
bounded sefS in X = R¢ for somed € IN. We define a covariance measugefor an
unbounded domain (extending definition (13)) and, next, efnd a Hilbert spac®;, with
norm|| - ||z as in (16) (extended to an unbounded domain) and, hence,weehdtd isometry
of type (17) extended to an unbounded domain. We assumddhéiked = andt,

€&, 8) = La, () (& $)h(E, 5,2, )05 (8)
satisfies
1. (ePy,
2. [IC11E. = E | fa C3(&: 5)Q(dS, ds)| < .

Note that in our forward price model we will discard the dtétm from the general ambit field
defined in (3) and hence we do not add an integrability caolitor the drift.

3.4 Lévy Semistationary ProcessesSS)

After having reviewed the basic traits of ambit fields, weBlyimention the null-spatial case of semi—
stationary ambit fields, i.e. the case when we only have adeshpomponent and when the kernel
function depends on and s only through the differencé — s. This determines the class of Lévy
semistationary processeS§S), see Barndorff-Nielsen et al. (208)0 Specifically, letZ = (Z;);er
denote a general Lévy processRnThen, we writeY” = {Y;},_, where

t t
Yi=p+ / g(t — s)wsdZs + / p(t — s)asds, (19)
—o —0o0
wherey is a constantg andp are nonnegative deterministic functions Rnwith g (¢) = p(¢) =0
for ¢t <0, andw anda are cadlag, stationary processes. The reason for heatinigthe volatility by
w rather tharnr will become apparent later. In abbreviation the above féansiwritten as

Y=p+gxweZ+pxaeleb, (20)

whereleb denotes Lebesgue measure. In the casefhsita Brownian motion, we call” a Brownian
semistationar{8SS) processsee Barndorff-Nielsen & Schmiegel (2009). The stochastegration
is here assumed to be in the sense of Basse-O’Connor et &D)(&hce we start the integration at
—oo rather than computing the integral over a compact interiddte that this general integration
concept specialises to Itd integration in the semimaatiedramework.

In the following, we will often, for simplicity, work withirthe set—up that both = 0 andq = 0,
hence

Y, = /t g(t — 8)wsdZs. (21)

— 00
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4 MODELLING THE FORWARD MARKET BY AMBIT FIELDS

For integrability conditions o and g, we refer to Barndorff-Nielsen et al. (2000 Note that the
stationary dynamics of” defined in (21) is a special case of a volatility modulatedy:=&riven
\olterra process, which has the form

t
Y, / ot $)ws dZs | (22)

—00

whereZ is a Lévy process and is a real-valued measurable function®f, such that the integral
with respect taZ exists.

4 Modelling the forward market by ambit fields

After having reviewed the basic definitions of ambit fieldd &ime stochastic integration concept due
to Walsh (1986), we proceed now by introducing a general infmite(deseasonalised) electricity
forward prices based on ambit fields.

We consider a probability spa¢e, F, P*). We setR; = [0,00) and define a Lévy basib =
(L(s, A))ser,aeB(r.) and a stochastic volatility field = (0s(A))ser aeB®.)- Throughout the
remaining part of the paper, we define the filtratioh }.cr by

Fi =01 Fiiijns where  FP =o{L(s,A): Ac B(Ry),s <t} VN, (23)

and where\ denotes theé”—null sets ofF. Note thatF; is right—continuous by construction. Also,
we define the enlarged filtratiofiF; } ;cr by

Fi=00Forrym: Where  F) =o{(L(s,A),05(A): A B[Ry),s <t} VN. (24)

4.1 The model

The new model for the forward prick(z) is defined for fixed € R and forz > 0 by
)= [ ket mon(e) e ), (25)
t(x

where

() the Lévy basisL is square integrable and has zero mean (this is an extens@mssomptions
(Al) and (A2) to an unbounded domain);

(i) the stochastic volatility field is assumed to be adapted{td; },cr and independent of the Lévy
basisL and in order to ensure stationarity in time, we assumedh@) is stationary ins;

(iii) the kernel functionk is assumed to be non—negative and chosen suchkthat, =) = 0 for
u < 0;

(iv) the convolutionk o is integrable w.r.tL, i.e. it satisfies (A3);

(v) the ambit set is chosen to be
At(l‘) = At = {(57 S) : g > 07 s < t}v (26)

fort € R, z > 0, see Figure 1. Note that the ambit set is of the tylpér) = Ag(x) + (0, 1)
for Ap(z) = {(£,s) : £ > 0, s < 0}. In the following, we will drop thez) in the notation of
the ambit set, i.e4,(z) = A, since the particular choice of the ambit set defined in (2&)sd
not depend on the spatial component

12



4 MODELLING THE FORWARD MARKET BY AMBIT FIELDS

Note thatf;(x) is a stochastic process in time for each fixedAlso, it is important to note that for
fixedx, fi(x) is stationary int, more preciselyf;(-) is a stationary field in time. However, as soon
as we replace: by a function oft, z(t) say, in our case by(t) = T —t, f;(z(t)) is generally not
stationary any more. The intuition behind this approacth& tve do not believe that the price of
an individual forward contract is necessarily stationaryime, but different forward contracts which
have the same time to maturity left (e.g. a certain choicey&faaly and a quarterly forward contract)
are modelled in stationarity.

In order to construct a specific model for
the forward price, we need to specify the kernel
function k, the stochastic volatility fieldrs(¢)
andL.

It is important to note that, when working
with general ambit processes as defined in (25),
in modelling terms we can play around with both
the ambit set, the weight functidn the volatil-
ity field o and the Lévy basis in order to achieve
a dependence structure we want to have. As such
there is generally not a unique choice of the am-
pit set or the weight function or the volatility Figure 1: The ambit set, (z) = A;.
field to achieve a particular type of dependence
structure and the choice will be based on stylised featuresket intuition and considerations of
mathematical/statistical tractability.

In order to make the model specification easier in practice hewe decided to work with the
encompassing ambit set defined in (26). The kernel fundtishould be chosen in such a way that
the Samuelson effect can be captured well. We will come batkis issue later again.

Also the choice of the volatility field is very important inomodelling framework. We propose
to model the volatility field itself by an ambit field of the far

¢ T=t+x

e

o2(z) = / J(Eot — 5, 0)L* (d, ds), (27)
A¢(z)

for a nonnegative Lévy basis*, a non—-negative deterministic kernel functjpsatisfyingj (&, u, x) =

0 for u < 0 and an ambit setl;(x) defined as in (26) (but it would be possible to choose an arabit s
which is different fromA,(z) for the model specification of). Clearly, the tempo—spatial volatility
field o defined by (27) is stationary with respect to the temporaledision. In order to ensure that
forward contracts close in maturity dates are strongly etated with each other (as indicated by
empirical studies), we can choose the kernslich that

Cor(o?(m),atz(f))

is high for values ofr andz which are close to O (i.e. closeness to delivery). Also, frex#ication
of the volatility fieldo can be used to incorporate the Samuelson effect in our model.

Remark 2. Note that the forward price at timeimplied by the model is given as
fO(T) = N (57 S, :L')O-s(g)L(d£> dS) (28)
0

Hence, we view th@bservedforward price as a realisation of the random variafjyél’) given in
(28), contrary to most other models whefigT') is considered as deterministic apdt equal tothe
observed price.
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

Remark 3. We have chosen to model the forward price in (25) as an artibmedel. One could of
course interpref;(z) in (25) as thdogarithmicforward price, and from time to time in the discussion
below this is the natural context. However, in the theoattonsiderations, we stick to the arithmetic
model, and leave the analysis of the geometric case to &e&tio We note that Bernhardt et al. (2008)
proposed and argued statistically for an arithmetic spoepnodel for Singapore electricity data. An
arithmetic spot model will naturally lead to an arithmetigndmics for the forward price. Benth
et al. (2007) proposed an arithmetic model for spot elattriand derived an arithmetic forward price
dynamics. In Benth, Cartea & Kiesel (2008) arithmetic spud éorward price models are used to
investigate the risk premium theoretically and empiricédir the German EEX market.

We conclude this section by studying a simple example whidhdluded in our new modelling
framework. Since Gaussian models are straightforwardnstoact, we focus on a non—Gaussian case
here.

Example 1. Let L be a homogeneous symmetric normal inverse Gaussian (N#@) hasis, more
specifically having &vy seed with density

7L ly| Ty K (v]y)),

where K denotes the modified Bessel function of the second kind aeewh > 0, see Barndorff-
Nielsen (1998). Then

Y (0) =6y — 6 (12 +6%) 7

Further, for simplicity, we set;(£) = 1 (since the NIG distribution already incorporates some sort
of stochastic volatility compared to Brownian white noiaa§l choose an exponential kernel function

k(Et —s,2) = exp(—a(§ + (t — ) + 1)) = exp(—a(§ — 5)) exp(—aT),

for o« > 0. Then
log(E(ivfi(z))) = ; Y (vk(§,t — s, x))dEds

=0y /_too /000 <1 — 1+ 2exp(—2a(€ — s))) déds,

for ¢ = vexp(—2aT)/~. This integral can be expressed in terms of standard funstisee Section
A.lin the appendix.

5 Relating traditional model classes to the ambit framework

As already mentioned, the use of ambit fields for constrgctirodels for forward prices is entirely
new to the literature and extends the use of correlated raridds to allow for both functional and
statistical dependence, as described in more detail below.

In the following, we will describe how some of the traditibmaodels can be related to the ambit
framework.

5.1 Heath-Jarrow—Morton model

In the geometricHeath et al. (1992) framework, the dynamics of the logarithiorward price under
the risk neutral measure are modelled by

dlog(fi(x)) = ou(z)dWy, fort >0,

14



5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

whereW is a standard Brownian motion aads a positive stochastic volatility process. Note that we
start at time 0 here. Hence, the explicit formula for the famdvprice is given by

i) = e | @, - L / t o2w)is).

Clearly, such a model is a special case of an ambit field defin@&), whereA;(z) = [0,t] x {z}, L
is a Gaussian Lévy basis and the kernel functisatisfiesh = 1.

5.2 Random field models

Ambit processes embed the Gaussian and Lévy field modefoped in Albeverio et al. (2004),
Kennedy (1994, 1997). To see that note that we camwset 1 and we can choosd,(x) to be an
interval.

If we allow for a non-trivial kernel functioh or stochastic volatility fieldr we can obtain some
of the conditional volatility models proposed in Goldsté®00), Kimmel (2004).

5.3 Stochastic string shock model

Also, the stochastic string shocknodel by Santa-Clara & Sornette (2001), which was desigaed t
model the term structure of interest rates, is related t@thbit framework. Their modelling frame-
work is given as follows. The dynamics of the forward rategiven by

difi(x) = ap(z)dt + oy(z)di Z(t, x),

for adapted processesand o and a stochastic string shock Note here that the notatiof is
taken from Santa-Clara & Sornette (2001) and refers to tbetfet we look at the differential op-
erator w.r.t.t. A string shock is defined as random fi€ld(t, z)): >0 which is continuous in both
t andz and is a martingale in. Furthermore the variance of theincrements has to equal the
time change, i.eVar(d,Z(t,x)) = dt for all x > 0, and the correlation of the-increments, i.e.
Cor(diZ(t,z),d; Z(t,y)), does not depend oh Santa-Clara & Sornette (2001) show that such
stochastic strings can be obtained as solutions to secalat bnear stochastic partial differential
equations (SPDEs). It is well-know that such SPDEs have guersolution (under some boundary
conditions), see Morse & Feshbach (1953) and the referen@&srndorff-Nielsen et al. (20H), and
the solution is representable in terms of an integral, ofteconvolution type, of a Green function
with respect to the random noise. The class of stochasigstgiven by solutions to SPDEs is large
and includes in particular (rescaled) Brownian sheets am$t@in—Uhlenbeck sheets. Similarly to
the procedure presented in Goldstein (2000), Santa-ClaBar&ette (2001) argue that it might also
be useful to smoothen the string shocks further, so that aineyparticularly smooth in direction of
time to deliveryz. Again, this can be achieved by integrating a stochastiogsshock with respect
to its second component. Stochastic string shock modelswaeneralisations of the Heath et al.
(1992) framework which do not lose the parsimonious stmectdi the original HIM model. Also, due
to their general structure, string models can give rise targety of different correlation functions and,
hence, are very flexible tools for modelling various stydifacts without needing many parameters.
The main element in the stochastic string model, see Sdata-& Sornette (2001, p. 159), is the
term

t t proo
/ ou(T' —v)dyZ(v, T —v) = / / os(T — s)G(T — s, z)n(s, z)dzds, (29)
0 0 Jo

whereZ is a stochastic string shockjs white noise¢ is an adapted process afids the correspond-
ing Green function. The derivation by Santa-Clara & Som€R001) is partly heuristic. However,
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

rigorous mathematical meaning can be given to the integré®9) by the Walsh (1986) concept of
martingale measures, see Section 3.3.

This may be compared to a special case of our ambit procese wieintegration is carried out
with respect to a Gaussian Lévy basis, i.e. by choosing

/Ot oo(T —v)dy Z(v, T —v) = /Ot /OOO os(T — $)G(T — s, 2)ds W, (dz).

So, for a deterministic function the product olr andG is what we can model by the functignin
the ambit framework, i.e.

h(,s,T) =o0s(T —s)G(T — s,&).

The main difference between the approach advocated in #seipr paper and the stochastic string
shock approach lies in the fact that the ambit fields focusediere are constructed as stationary
processes in time where the integration of the temporal corept starts at-oo and not at0 and,
also, we consider general Lévy bases with a wide range oiitelfy divisible distributions and do not
restrict ourselves to the continuous Gaussian case.

5.4 Audet et al. (2004) model

Consider the model by Audet et al. (2004) written in the Miasjgarameterisation. They study the
electricity market on a finite time horizdf, 7*] and model the dynamics of the forward pritéz)

by
dfi(x) = fi(z)e” " 0pp1dBeys(t),

for a deterministic, bounded volatility curve: [0,7*] — R, a constantx > 0 and whereB,
denotes a Brownian motion for the forward price with time aftarity « + ¢. Further, the correlation
structure between the Brownian motions is given by

corn(dB,(t),dB,(t)) = exp(—p(x — 2')) dt = exp(—p|T — T'|)dt, forall0 <z’ <T*—t,
(30)

wherex’ = T’ — t,x = T — t. Such a model implies that the volatility of the forward pris lower
than the volatility of the spot price, an effect which is d#sed by the parameter. Also, forward
contracts which are close in maturity can be modelled to tmngly correlated, an effect which is
reflected by the choice of the parameter

We observe that the above model for the logarithmic forwaitkds in fact another special case
of an ambit process, with deterministic volatility and antéirset A (x) = [0,¢] x {z}, and the Lévy
basis being a Gaussian random field which is Brownian in tinteleas a spatial correlation structure
in space as specified in (30).

5.5 Forward model implied by the spot model described in Bardorff-Nielsen et al.
(201)

If the deseasonalised log—spot price is given by (22), therkmow from (Barndorff-Nielsen et al.
201, Proposition 4) that in the case whén= W is a standard Brownian motion and the stochastic
volatility process is given by

t o~
ot = / G(t,5)Zs,
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6 CONSTRUCTING A SPOT MODEL FROM THE FORWARD MODEL

for a Levy process, then the corresponding forward priggx) is given by
t

In fy(x) = Si(z) + /

—0o0

1 t T -
g(t + x, s)ws dWs—|—§/ / Pt +z,t+u)G(t +u,s)dudZs,
—o0 J0

for some deterministic functioB;(x). We observe that, apart from the teEp(z) this is the super-
position of two ambit processes.

6 Constructing a spot model from the forward model

After we have presented our new model for the forward prickickvis based on time—stationary
ambit fields, we turn our attention now to the question of Wwhimodel for the electricity spot price is
implied by our new modelling framework.

In order to answer this question, we are interested in thititighbehaviour of the forward price
fi(T" — t) whent tends to time of delivery".

Let us assume the existence of functiosuch that the kernel function satisfies (pointwise)

tlin%k(f,t —s,T—t)= k(T —s).

A natural candidate for the spot price is then

ST = /A H(& T— S)Us(f)L(d& ds) = / HAT (67 3)’%(57 T— S)Us(f)L(d& ds)? (31)

Ry xR

provided the integral exists. In fact, under a mild furthendition we will have

fit(T —1) = sy, ast — T.

Equivalently, the question is whether
T =0 =S = [ e st D@Ll ds) o, (32)
R+ xR

ast — T, where

%(57 S, t7 T) = HAt (57 S)k(£7t - S, T — t) - ]IAT (57 3)’{(67 T — S)'
From Section A.3 in the appendix, we know that
Var(fi(T —t) = Sr)=C (&, 5,8, T)E(03(€))dEds,
R+ xR
for a constant” > 0 (specified by the variance df).

Hence, provided the integral defined in (31) exists, a sefficcondition for (32) is given by

(e, s, t,T) 50, ast—T. (33)

So, if the limit above exists, then it is natural to interpieg limiting processs defined in (31) as
aspot price process

Note that the spot price process implied by our ambit fieldedaorward price model is driven
by a tempo—spatial Lévy base, more precisely by a two—patemmandom field and not just by a
Brownian motion or a Lévy process.
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6 CONSTRUCTING A SPOT MODEL FROM THE FORWARD MODEL

6.1 The Gaussian case

A case of some special interest is the situation where thendriévy basisL of the ambit field is
Gaussian.

Under the assumption thatis independent of,, we obtain thaff;(x) is mixed normal, in partic-
ular

fr@lo~ N (0 ket safial©deas).
Ay
Let W be a homogeneous Gaussian Lévy basis and et of the form
k(& t—s,x) =ky(t —s,2)k1(€) (34)
with kg (T — s,0) = ko(T' — s), for some functiorky with k§(t — s, 7 —t) — ko(T' — s) fort — T

Hence

fi(x) = . k1(&)kg(x,t — s)os(§)W (dE, ds).

Suppose that

L, (€ 8kt ()5 (2.t — 5) = Tag (€, )k (ko (T — 5) £ 0,

ast — T'. Then we obtain for: — 0 that

M@£%=/k&Wﬂ¥$me%@)

A

Clearly,

Sﬂo~N<Q/iﬁ&T—$<Awﬁ@wﬂ8%>@>.

Remark 4. Note that if we define a positive kernel functigrand a positive stochastic procesb®y

(T —s) = k3T — s), w? = /OO k2(€)o2(&)de, forall s < T,
0

then

T
&@/g@ﬂmw& (35)

—00

where B is a standard Brownian motion and is a stationary process. Hence the spot price equals
in law aBSS process. The latter has been studied in Barndorff-Nielsah €01®) as a model for
electricity spot prices.

Let us consider an example:

Example 2. Motivated by the standard OU models, we choose
ki(t — s, x) = oexp(—a(t — s + x)),

for somex > 0. Thus, the spot price becomes

n:/ o exp(—aft — 5)) B,

—00
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6 CONSTRUCTING A SPOT MODEL FROM THE FORWARD MODEL

which we recognise as the stationary solution of the OU mece
dY, = —aY,dt + o dB;.

The choice ok can also be motivated from continuous time ARMA processes®ckwell (2004,b).
Foro; > 0,i=1,...,p,p > 1, introduce the matrix

0 I,
_ap _ap—l o e e — al

A= ; (36)

wherel,, denotes the: x n identity matrix. Define the—dimensional vectob’ = (bo, b1, ..., bp—1),
whereb, = 1 andb; = 0 for ¢ < j < p, and introduce

kit — s,z) = b exp(A(t — s + x)ey,

with e, being thekth canonical unit vector iRP. Then, as long as the eigenvaluesAtll have
negative real part, the stationary spot price is given as

t
Y, = / b’ exp(A(t — s))e, dB;.
This is a continuous—time ARMA process. Such spot modedddoairicity have been suggested by
Bernhardt et al. (2008), with the driving noise beinganstable vy process.

Remark 5. Recall that the Samuelson effect describes the empiricaltifiat the volatility of the
forward price converges to the volatility of the spot prickem the time to maturity approaches zero.

This finding is in fact naturally included in our modellingafnework when we model the (loga-
rithmic) forward price by an ambit field and the (logarithingpot price by anCSS process as long
as the assumptions above are satisfied. Recall that thetiomadlivariance of the forward contract at
timet is given by

/ " kv, 2)? / k()27 (€)dedo,
0 0

which converges by construction andmas- 0, and hence — T, to

| 8w [ merot (@agan,

0 0

which is the conditional variance of the spot at maturity.

Example 3. Bjerksund et al. (2000) propose a geometric Brownian motimuel for the electricity
forward price with volatility given by)(t,7) = a/(T — t + b) for a, b two positive constants. They
argue that the Samuelson effect in electricity markets awehrsteeper than in other commodity
markets, defending the choice of a hyperbolic functioneathan exponential. The volatility(¢, T")
motivates the choice

a
Kt —s )= — &
Ty
which yields
(t—s)=—2
g t—s+b

Hence, we have from above results that the forward dynanaisgerges to the spot under the addi-
tional hypothesis on the link betwegén, o;, andw. Furthermore, the Samuelson effect holds for this.
(Note thatffoo g*(t — s)ds < oo for a, b > 0, hence the integrability condition (A3) is satisfied.)
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7 Martingale conditions and change of measure

7.1 Martingale conditions

According to the traditional modelling framework, the f@amd price is modelled such that it is a
semimartingale and so that there exist®’ameasure under which the price dynamics becomes a
(local) martingale. In the standard HIM framework in ingtreate theory this is stated as a drift
condition on the dynamics. However, here we have an exgligiamics, and the semimartingale
property is connected to the regularity of the input in tleekastic integral.

First, we will formulate the martingale conditions for maeneral ambit fields as defined in (3),
where the ambit set;(x) = A, is chosen as in (26). Next, we show how such conditions sfynipli
the new modelling framework described in (25).

Note that all proofs will be given in the appendix.

Theorem 1. Letx = T — ¢ for somel” > 0 and for a fixedt € R write
Yi(z) =Y(T —t) = / h(&, s, T —t,t)os(&)L(dE,ds), whereA; ={(&,s):£>0,s <t}
Ay

for a deterministic kernel functioh, an adapted, non—negative random fiel&and a Lévy basisL
satisfying both (A1) and (A2) on an unbounded domain and.(A3)
Then(Y:(T —t))er is a martingale w.r.t{F; }.cr if and only if for all§ > 0, s <t < T we have

h(& s, T —t,t) = h(&,s,T), (37)
for some deterministic kernel functién

Remark 6. If we would like to work with Lévy based. which do not have zero mean, then the
martingale conditions have to be extended by an additionfalodndition.

Corollary 1. In the special case of the new model defined in (25), we get(fhef' — ¢)):cr is a
martingale w.r.t. { F; }+cr if and only if for all§ > 0, s < ¢ < T we have

k(& t—s,T—1t) =k s,T), (38)
for a deterministic kernel functioh.

Remark 7. Note that we have stated the martingale property for afl the real line (which does not
include—oc). We refer to Basse-O’Connor et al. (2009) for a study on imgate properties atoo.

However, in practical terms, we are mainly interested inrtfatingale property fot > 0 since
this is when the market is active. Negative timesarky a modelling device in order to have stationary
models.

Remark 8. Note that when condition (38) is satisfied, thg(x) = fA §,s T)os(§)L(ds,d§). If
we construct a spot model from such a forward model as in (Seﬁt(under suitable conditions), then
we obtain a spot of the forir = fA (&,8,T)os(€)L(ds,dE), which includes the specification
in (31) as a special case. Further, similar to Remark 5, weshaw that also within the martingale
framework, we can account for the Samuelson effect.

Clearly, the martingale condition is rather strong and iteace necessary to check whether there
are actually any relevant cases left, which are not excllmedondition (38). Hence, let us study
some examples.

First we show that the condition (38) covers the standardiHetal. (1992) models, that come
from stochastic partial differential equations.
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7 MARTINGALE CONDITIONS AND CHANGE OF MEASURE

Example 4. The traditional way to model the forward dynamics using thesidla parameterisation

withz = T — ¢, is given by
0
dola) = 2wy at -+ a1y aw,

where, for simplicity, we disregard any spatial dependendhe Gaussian fieldll” so that it is indeed
a Brownian motion. Under appropriate (weak) conditions thild solution of this stochastic partial
differential equation (SPDE) is given by

fi(z) = Sufole /stsxs W,

wheresS; is the right—shift operatorS;g(x) = g(x + t), see Carmona & Tehranchi (2006), Da Prato
& Zabczyk (1992) for more details. Hence,

ft(‘r) = f0($+t) +/O h(S, (t+$) _8) dWs = ft(T_t) = fO(T)+/() h(S,T—S)dWS.

Thus, we see that the martingale condition (38) is satisfied.

Another important example is motivated by the Audet et &04) model.
Example 5. In our modelling framework defined in (25), we choége be of the form

k&t —s,2) =kt —s,T —t) = exp(—a((§ + 2) + (£ — 5))) = exp(—a((§ + T — 5))),
for somex > 0. Then the martingale condition is clearly satisfied.

Further important examples of kernel functions which $atiee martingale condition can be
constructed as follows.

Example 6. We can focus on kernel functiohsvhich factorise like
k(évt - 87:17) = kS(t - 87$)k1(§)7
as described in (34). Clearly, the choice of the functigrdoes not have any impact on the question
whether the ambit field is a martingale. This is determinedhleychoice of the functiohy.
Motivated from the Bjerksund et al. (2000) model, we coulnbsk

a a
RE(E— s,2) = _
ot = s,2) t—s+ax+b T —s+b

fora,b > 0.
Also, motivated by the CARMA models discussed in Examgie Bltowing choice of; is also
interesting:

kit — s,z) = b exp(A(t — s + x)e,,

for the p—dimensional vectob’ = (by, b1,...,b,—1), whereb, = 1 andb; = 0 for ¢ < j < p, with
ey, being thekth canonical unit vector iR and where the matrix is defined as in (36).

So we have seen that it is possible to formulate martingalditions for ambit fields and we have
studied some relevant examples of forward price modelsiwdatisfy the martingale condition. How-
ever, the martingale condition (37) implies that we canrasieli—dependence in the kernel function.
This unfortunately rules out many interesting more genamatbit fields.

In the energy context, however, it might not be as crucid fh@ — ¢) is a martingale as it is in
the context of modelling interest rates. In fact, as alrégadicated in the Introduction, one can argue
that from a liquidity point of view, it would be possible toaison—martingales for modelling forward
prices since in many emerging electricity markets, one naybe able to find any buyer to get rid
of a forward, nor a seller when one wants to enter into one.ckletie illiquidity prevents possible
arbitrage opportunities from being exercised.
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8 EXTENSIONS

7.2 Change of measure

If our forward price model is formulated under a risk—nelupracing measure, it is of interest to
understand how to get back to the physical measure in ordev® a model for the observed prices.
We introduce an Esscher transform to accommodate this.

Throughout this section we will assume that the Lévy basmimogeneou simplify the nota-
tion.

Remark 9. Note that in order to define the change of measure we work orrketnaith finite time
horizonT™ > 0, hence we define our model @&y~ = (—oo, 7] rather than orR.

Define the process

Mf:exp( 0(s.) Lide,ds) ~ | m—w(s,s))dsds), (39)

Ay
where, is the characteristic exponent of the seed.dfand related ta);, through equation (9)).
The deterministic functioff : A; — Ry« is supposed to be integrable with respect to the Lévy basis
L in the sense of Walsh. Assume that

E (exp < Y (—i0(s, &) dg ds>> < oo, forallt € Ry-. (40)
Ay

Then we see that/ is a martingale with respect t6; with M{ = 1. We use this in order to

define an equivalent probability by
dP

dP* | F,
for t > 0. Hence, we have a change of measure from the risk neutrablpitittp P* under which
the forward price is defined to a real world probabiliy In effect, the functiord is an additional
parameter to be modelled and estimated, and it will play tie as themarket price of riskas it
models the difference between the risk—neutral and obgeptice dynamics.
We compute the characteristic exponent of an integrdl ohderP: For anyv € R, and Walsh—
integrable functionf with respect tal, it holds that

= M/, (41)

log Ep {exp(iv Atf(s,g)L(df,ds)} =logE [exp (/A ivf(s,{)+9(s,§)L(d§,ds)>]

t

< exp (— [ (=iv(s.) de ds)
= " 1/}L’ (’Uf(S, 5) - ie(sv 5)) - Q/JL/(—iH(S, 5)) df ds.

Note that the transform above is a simple generalizatiorhef&sscher transform of Lévy pro-
cesses, see Shiryaev (1999) and BeS8tifyte Benth & Koekebakker (2008) for more details on this
aspect.

8 Extensions

We consider various extensions of our model, in particalaygometric forward model and the ques-
tion of how to model forwards with delivery period.
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8.1 Geometric modelling framework

So far, we have worked with an arithmetic model for the fodvarice since this is a very natural
model choice and is in line with the traditional random fieltkéd models where the forward rate
is directly modelled by e.g. a Gaussian random field. Howestandard critical arguments include
that such models can in principal produce negative pricdshance might not be realistic in practice.
One way to overcome that problem would be to work with positievy bases (recall that the kernel
function and the stochastic volatility component in the @ribld are by definition positive). Clearly,
in such a set—up we would have to relax the zero—mean assumBiut this is straightforward to
do. An alternative and more traditional approach would bevaok with geometric models, i.e. we
model the forward price as the exponential of an ambit pseEses Most of the results we derived
before can be directly carried over to the geometric set-Eig. when we study the link between
the forward price and the spot price, this has to be intezgress the link between the logarithmic
forward price and the logarithmic spot price. Likewise, wi@oking at probabilistic properties such
as the moments and cumulants of the processes, they candrdee@s the moments/cumulants of
the logarithmic forward price.

The only result, which indeed needs some adjustment, iscintifee martingale property. The
condition on the kernel functioh stays the same as in Theorem 1 when we go to the geometric model
framework, but on top of that there will be an additional tcfndition. In order to keep the exposition
as simple as possible, we will focus bomogeneoukévy bases, see Section 3.2, in this section.

Before we formulate the martingale condition, we specifyadditional integrability assumption.

Assumption (A4) LetY be defined as in (3), where we assume thé& ahomogeneoukévy basis
with conditional characteristic exponenf, andh satisfies the condition of Theorem 1. We
assume that

E (exp < 1/)3(—2%(5, S,T)Js(g))dfds>> < oo, forallt € R.
A

Now we can formulate the martingale conditions for the geaméorward price model.

Theorem 2. Let A, = {(§,s) : s < t;x > 0} and lety, denote the characteristic exponent of the
homogeneousévy basisl. and+, the corresponding conditional characteristic exponentrtker,
we assume that the integrability condition (A4) is satisfidthen, the forward price at timewith
delivery attime < T, fi(T) = (f:(T))i<7 With

Fi(T) = exp ( /A (€, s, T)os(€)L(dE, ds) — ’ w%(—z'%(s,s,T>as<s>)dsds>,

is a martingale with respect tQF; }icr.
Consider the example of a Gaussian Lévy basis:

Example 7. In the special case that = W is a standardised, homogeneous Gaussiamylbasis
and that (A4) is satisfied, we have that

) =esn ([ e oW s~ [ R miokeasas)

A

is a martingale with respect tQF; }icr.
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9 CONCLUSION

8.2 Outlook on how to include period of delivery into the modding framework

So far, we have focused on forward prices with fixed delivengt i.e. onf,(z) = f,(T'—t). However,

in energy markets, there is not just a time of delivérybut typically adelivery periodi.e. at time of
deliveryT = T a certain amount of electricity, say, gets delivered umi&t?;, for somely, > 17, see

e.g. Benth,éaltyt'e Benth & Koekebakker (2008, Chapter 6) and Barth &tB€2010). The forward
price F; (T, T») at timet with delivery period[T}, T3] is defined by (see e.g. Bentéaltyté Benth &
Koekebakker (2008))

1 T2
Ft(Tl,Tg) = T2 — Tl - ft(u — t)du
1

Hence, given an ambit model ¢f(x), we simply average it over the delivery period in order toehav
the forward price for a contract with delivery period.

Alternatively, we could think of modellindg} (7}, 75) directly — by an ambit field. The main idea
here is to include the length of the delivery period= 1> — T as an additional spatial component.
E.g. we could think of using

A ( ) k(fa X5 t— S, T, $)Us(§, X)L(d§7 dX7 dS),

as a building block forF; (71, 7»). The main obstacle in building such models is the no—adgtra
condition between contracts with overlapping deliveryiqes. In fact, any model foFy (T, T»)
must satisfy (see BentBaltyte Benth & Koekebakker (2008))

1 E
F (T, T) = F d
t( 1 2) TZ—Tl /Tl t(TaT) U
which puts serious restrictions on the degrees of freedamoidelling.
It will be interesting to study the analytical propertiessofch models in more detail in future
research.

8.3 A short note on the relationship between spot, forward ad delivery period

We have previously discussed how a spot model can be cotestrirom our general forward model.
However, it is well-known that there is no convergence afteigty forward prices to the spot as time
to start of deliveryapproaches. That is, if the delivery period1§, 75], 71 < T3, then the forward
price Fy(11,T») at timet does not converge to the spot pricetas> 7;. One could mimic such a
behaviour with the model class we study here, by choosingdideery time’ T as the mid—point,
say, in the delivery intervall1, 5], T = (11 + T»)/2. Then we can still associate a spot price to
the forward dynamicg;(x), but we will never actually observe the convergence in theketasince

at start of delivery we have = (7, — T1)/2. On the other hand, we will get a model where there
is an explicit connection between the forward at "maturity= 77 and the spot’r,. This opens for
modelling spot and forward jointly, taking into accountitriependency structure.

9 Conclusion

This paper presents a new modelling framework for eletyrifirward prices. We propose to use
ambit fields which are special types of tempo—spatial ranfieltls as the building block for the new
modelling class. Ambit fields are constructed by stochastagration with respect to Lévy bases and
we have argued in favour of the integration concept of Wal€86) in the context of financial ap-
plications since it enables us to derive martingale comaktifor the forward prices. Furthermore, we
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have shown that forward and spot prices can be linked to ghehn within the ambit field framework.
Also, we have discussed relevant examples of model speuifisawithin the new modelling frame-
work and have related them to the traditional modelling e, In addition, we have discussed how
a change of measure between the risk—neutral and physiaalpitity measure can be carried out,
so that our model can be used both for option pricing purpasesfor statistical studies under the
physical measure.

A natural next step to take is to test our new model empigicaid to study statistical aspects
related to our ambit—field models, such as model estimatichraodel specification tests etc.. We
plan to address these issues in detail in future research.

Another interesting aspect, which we leave for future regeds to adapt our modelling frame-
work for applications to the term structure of interest sate

A Proofs and some further results

A.1 Explicit results for Example 1
Note that

1

/000 <1 — 1+ 2exp(—2a(€ — s))) d¢ = ~25 [(2\/1 + c? exp(2as) — 2)

( ( (\/1 + c? exp(2as) + 1) c? exp(2as)) ) ]
+ | 2log(2) — log )

V1+ c2exp(2as) — 1
Hence, we get

—8a/?

log(E(ivfi(z))) = —8 +8In(2) —4 In (¢?) — 2 (In(2))* + 4 In (2) In (?)
+8m+4m(_1+m) —41n(1+m)

n <ln (—1 + m))z + 4 dilog (1/2 +1/2 m)
_41n(_1+m) 1n<2>+21n(_1+m)1n(1+m)
(i (14 VI EER)) 80+ 8 In (2) o~ (In (62))°

where the dilogarithm function is defined by diley= [ %5 gz for ¢ > 1.

A.2 Proof of the martingale condition
Proof of Theorem 1From the definition of a martingale, we must show that
EY(T —t)|F] =Y«(T —t), forallt<t.

Note that fort < ¢, we have thatd; C A;. Using the independence propertycofind L and the fact
that L is a zero mean process, we find
7]

E[Y(T —t) | 7]

A

= [ e st T = 00 (OLE. ) = YT =) + (T =T,

t

=E

W5, T — £, £)o(€) L(dE, ds) + / W€, 5, T — b, 8)0s(€) L(dE, ds)

A\Ag
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where
KT —1)= /A An(E s, T = 4,0) = h(&, 5, T = 1)} 05§ L(dE, ds) .

Without loss of generality we assume thair(L) = 1. SinceL is a Lévy basis with zero mean, we

know thatE(Z;(T' — t)) = 0 and from the 1td isometry we therefore get that
Var(I{T — 1)) = / {h(€5,T = t,1) = h(¢, 5, T~ [,1)} B(o?(&))deds.
Ay

Thus, in order to obtaidi(7 — ¢) = 0, we need thatforal) < ¢, s <t <t <T
h(£>svt>T_t):h(£7saaT_%v)' (42)

When we look at condition (42) more closely, then we obsehned there is in fact only one class of
functions, which satisfy such a condition, i.e. functiofishe form

h(£> s, T — t>t) = iL(f, S,T),

forall¢ > 0,5 < t < t < T for some deterministic kernel functidn
O

Proof of Theorem 2We show thatV = (M;)ier With M; = exp(Y(T — t) — d;) is a martingale
with respect to{ F; }.cr Where

Y;(T - t) = / 771(57 S, T)O'S(f)L(dS, dg)v dy = 7/)%'(—271(57 S, T)Js (5))d£ds7
At At
wherev;, is the characteristic exponent @f conditional ono and A; = {({,s) : s < t;z >

0}. Clearly, M is measurable with respect {0 }er @nd also integrable due to the integrability

assumption (A4). Further, for all< ¢, we have that

—E <exp ( / h(&, 5, T)os(§) L(ds, d€) + / h(&,5,T)os(§)L(ds, d€) — dy + dy - dt> f;)
Ay A\ Ay

)

E(M|F;) = E (exp(Yy(T — t) — dy)| F5)
Using the formula for the characteristic functions of imtdg with respect to Lévy bases, see Rajput
& Rosinski (1989) and Section 3.2, we get

E (exp / (€, 5. T)oy(€) L(ds, d€) | | 7
A\A;
“E(E [exp / h(€, 5, T)os(€) L(dE, ds) || F>
A\A;

=E <exp ( / w%&%(é,s,T)as(s))dgds)
AN\A;

Hence the result follows.
In the special case thdtis a standardised, homogeneous Gaussian Lévy basis,ifihis diven
by

= MfE (eXp (/ %(57 3¢T)0-s(£)L(ds7d£) - (dt - df))
A\A;

.

f;) =E (exp (dt — d;) ‘ ]-';) .

1

do=y [ B T deds
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A.3 Second order structure of ambit fields and cross correlabns

We provide some results on the probabilistic propertiehefambit fields which are useful in mod-
elling.

A.3.1 Second order structure of ambit fields

Now we study the second order properties of a general amhitgieen by
Vi) = | M6 )0 €)L(ds, ), 43)
t\T

for a Lévy basisL (not necessarily with zero mean), a homogeneous ambitiget) (as defined
above) and a processwhich is independent of and wherée: denotes a damping function (ensuring
that the integral exists). In order to compute various masehthe ambit field, we work with the
Lévy—Itd decomposition:

Yt<w>=/ B, €.t 7)o, (E)VEW (dé, ds) /A / VA 2o €N )l )

/ / (5,6.t, 2)04 (€N (dy, ds, d€),
At(x) {Iy\>1}

whereb > 0 (w.l.0.g. we choosé to be a constant and not depending(éns)) and N is a Poisson
random measure with compensatorHence,N(A) ~ Poisson(v(A)) and, in particular,

E(N(4)) =v(A) = Var(N(4)), E((N(A)?) = v(A) + v(A)%
Furthermore, we know that
E(N(A) —v(A)) =0, Var(N(A) — v(A)) = E(N(A) — v(A))? = v(A).
Assumption (H) In the following, we work under the assumptions that

e The generalised Lévy measurés factorisable, i.ev(dy, dn) = U(dy)u(dn), forn = (&, s),

e the measurg is homogeneous, i.gi(dn) = cdn, for a constant € R. For ease of exposition,
we choose: = 1. Hence, we have(dy, ds, d¢) = U(dy)dsd.

Furthermore, we use the following notation. Lgt = f{‘y|>1}yU(dy) andry = [p y2U (dy) and
define a functiorp : R* — R by

p(5,5.6,8) = E (0:(8)03(8) ) — E(0:() E (03(9)) (44)

fors,5,£,€ > 0.

Theorem 3. Lett,#,2,& > 0 and letY;(x) be an ambit field as defined in (43) and assume that
assumption (H) holds. The second order structure is theangiy

E (Yi(z)|o) = k1 /A( )h(s,f,t,x)as(f)dsdf,

E (Yi(z)) = /<;1/ h(s,&,t,x)E (04(&)) dsd€.

A¢(z)
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The variance is given by

Var (Yy(z)| 0) = (b+ a) /A Pt Edsi,
Var (%i(@)) = (b + r2) / D2(s,6.1,2)E (07(€)) dsde

K2 / / 560t 2) 03, &, 1, 2)p(s, 5, €, E)dsdeddE.
Ai(z) JAs(z

The covariance is given by

Cou (Yla). ¥y(@)| o) = b+ ) [ o P 6 R, 6 T )2 €,
Cou (Vi) Yi(@) = G-+ ) | 661N 6 T 2)E (02(0) deds

it [ / 5.6, 6 0)h(E,E 1, )p(s, 5,6, €)dsddsde
A¢(x)
Corollary 2. The conditional correlation is given by
fAt(;p NA- (;p (8,5,75,@')}1(8,5,7? ) g(é)dﬁds
WA 5,61, 2)02(§)deds [y o h2(5,€,,8)02(€)dEds
For k1 = 0, the unconditional correlation is given by

fAt(;p NA;(Z) (8 5 13 33') (8,5,{,:2’)1[’3 (Jg(g)) dfds
\/fAt(x (5,6 t,2)E (03(8)) déds [, ;) h*(3 6L E)E (a§(£)> déds

Cor (Yi(x)

Cor (Yi(z),Y;(2)

A.3.2 Cross correlation

Next, we study the cross correlation, when we have a pair bitdields, i.e.
0@ = [ KO0 10 s, de),
+ x

fori = 1,2, whereh(®, ¢( and L(") are defined as above. The corresponding Lévy—Itd decampos
tion is then given by

v (z) = /A()( K (s, €, t, 7)o (EVIOWD (de, ds)

/A<>< /{| <’ 5,6, t,2)0 N (©)(NW =) (dy, ds, )
x Yy

/ / (5,&,t,2)0 () ()N (dy, ds, d€),
a@® Sy

whereb?) > 0 and N is a Poisson random measure with compensattt We assume that
(LMW, L?) is a homogeneous Lévy basis with generalised Lévy measure

v(y1, Y2, 51, 82,61, 62) = U(y1, y2)u(s1, 82,1, 62).
Since we consider only homogeneous Lévy bases, we get

v(dyr,dya, ds1,dse, dé1, dé2) = U(dyi, dya)dsidsadérdz,
where we set the proportionality constant to 1.
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Correlation betweenY () and Y (?)
We distinguish two cases:
e Y is a driven by a Gaussian Lévy basis.
e Y is a driven by a pure jumps Lévy basis.
Theorem 4. Under the assumptions above, we get the following covandiiinctions.

Gaussian Levy base Let L) be a Gaussian &évy base fof = 1,2 and letp denote the corresponding
correlation coefficient, i.epdéds = Cov (W (d¢, ds), WP (d¢, ds)). Then

Cow (K(”(:ﬂ),Y}(z) (j)‘ (,(1),0(2))

= pV b1 / WD (s, &, t,2)h P (s, €, 1, 7)oV (€)al® (€)dsde.

AP @)NAD (3)

The unconditional covariation is given by

Cow (th( ), V2 (3 ) = Vb0 / (1)(8,5,t,x)h(z)(s,ﬁ,f,f)T(S,ﬁ)dsd&

AD () A(z)
where

T(s,6) = E (o{V(©)02()) ~E (¢0©) E (+2(©))

The pure jump case LetL(%) be a pure jump vy base foi = 1,2 and letx; | = Szt im0 v9'U (dy, dy).
Then - B

Cov (K(l)(w),Y;@) (j)‘ Ju),(,(z))
—(maa =) [ W) (5.6, 2)0 D (€0 (€)dsde.
A (@)nA (&)
The unconditional variance is then given by
Cov (Y, (@), v (@) = / o W6 R (5,6 BT (s, 5.6, ) dsde
A (2)NAL(E)
oo 5,66, 2)h D (5, €1, 2)T (s, 5, €, €)dsdédsde,
A(l)( A(z)(x
where
T(s,5.6,€) = maE (00 ()0l €)) - o wPE (e0(©)) E (1(9))

A.3.3 Proofs of the second order properties

Proof of Theorem 3Recall thatx; = f| ‘>1yU(dy ) andky = [ ¥*U(dy). Then

B (Vi) o) = [ / (5., t,2)04 (€U (dy)dsd§, = ry / B(s, &, )04 (€)dsde,
A¢(z) {Iy\>1}

A¢(z)

E (Yi(z)) = #1 / h(s,&,t,2)E (04(€)) dsde.

Ai(z)
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For the second moment, we get

2
E (Yi()?] o) = (b+ ko) /A IRACERLACI ( /A ( h(s,é,t,mas(s)dsds) ,

2)
B (Yi(0)?) = 0+ k) [ (5,6 8,008 (03(6)) ddg
Ai(x)
+ K2 /At(x /At 5,6,t,2)h(3,€,t,2)E ( (§)a§(§)> dsdgd3dé.
The conditional and unconditional variance is then given by
Var (V)| o) = (b ka) [ (s, €, t,0)0%()dsd,
A¢(z)
Var (Yi(z)) = E (Var (Yi(z)|0)) + Var (E (Yi(z)]0))
— (b+r2) / h2(s,6,,2)E (o2(¢)) dsde
+ K32 /At(x /A 5,66, 2)(3, €1, 1)p(s, 5, €, €)dsde d3dE

Next, we compute the covariance. In order to do that, we usmigiiout that fory,y € R and
(376)7 (§7§) € At(x) N AE(‘%)

E (N(dy, ds, d€)N (d7, d3, dé)) — u(dy, ds, d€)v(d, d3, d€) + v(d min(y, §), d min(s, 5), dmin(¢, £)),

and

E (N = v)(dy, ds, d€)(N — v)(df, 5, d€) ) = v(dmin(y, ), dmin(s, 5), dmin(¢, ).
For the product, we get
E (Yi(a)Y;(@)|0) = (b ) | W(s, €, t, 2)h(s, £,F, 5)02(€)deds
Ar(z)NA;(Z)
i /A ) /A o L& 2o €5 €
E (Yi(2)Y}(7)) = (b+ 2) / W(s.€.t, 2)h(s, &, T, D) (02(€)) déds
A(z)NA;(Z)
e /At /A@ (s,&,t,2)h(3,&,1,7)E ( (g)a§(§)> d3dédsde.
Therefore, the covariance is given by
Cou (V). Yi(@)| ) = b+ ) | W(s.€.t,a)h(s. &, T, )0 (€)deds,
A¢(z)NA;(Z)
Cou (Yi(w). V@) = b+ ) [ W(s. &, t,2)h(s,€.F, ) (02(€)) déds
Ai(z2)NA;(Z)

t

ot | . / 5,64, 2)h(5, €1, 8)p(s, 5, €, €)dsdédsde.
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