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Abstract

This paper proposes a new modelling framework for electricity forward markets, which is
based on ambit fields. The new model can capture many of the stylised facts observed in energy
markets. One of the main differences to the traditional models lies in the fact that we do not model
the dynamics, but the forward price directly, where we focuson models which arestationaryin
time. We give a detailed account on the probabilistic properties of the new model and we discuss
martingale conditions and change of measure within the new model class. Also, we derive a
model for the spot price which is obtained from the forward model through a limiting argument.
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1 INTRODUCTION

1 Introduction

This paper introduces a new model for electricity forward prices, which is based onambit fieldsand
ambit processes. Ambit fields and processes constitute a general probabilistic framework which is
suitable for tempo–spatial modelling. Ambit processes aredefined as stochastic integrals with respect
to a multivariate random measure, where the integrand is given by a product of a deterministic kernel
function and a stochastic volatility field and the integration is carried out over anambit setdescribing
the sphere of influence for the stochastic field.

Due to their very flexible structure, ambit processes have successfully been used for modelling
turbulence in physics and cell growth in biology, see Barndorff-Nielsen & Schmiegel (2004, 2007,
2008a,b,c, 2009), Vedel Jensen et al. (2006). The aim of this paper is now to develop a new modelling
framework for (electricity) forward markets based on the ambit concept.

Over the past two decades, the markets for power have been liberalised in many areas in the world.
The typical electricity market, like for instance the Nordic Nord Pool market or the German EEX
market, organises trade in spot, forward/futures contracts and European options on these. Although
these assets are parallel to other markets, like traditional commodities or stock markets, electricity
has its own distinctive features calling for new and more sophisticated stochastic models for risk
management purposes, see Benth,Šaltytė Benth & Koekebakker (2008).

The electricity spot can not be stored directly except via reservoirs for hydro–generated power,
or large and expensive batteries. This makes the supply of power very inelastic, and prices may
rise by several magnitudes when demand increases, due to temperature drops, say. Since spot prices
are determined by supply and demand, strong mean–reversioncan be observed. The spot prices
have clear deterministic patterns over the year, week and intra–day. The literature has focused on
stochastic models for the spot price dynamics, which take some of the various stylised facts into
account. Recently, a very general, yet analytically tractable class of models has been proposed in
Barndorff-Nielsen et al. (2010b), based on Levy semistationary processes. This class nestsmost of
the popular spot models for non–tradable commodities and isa special case of an ambit process.

One of the fundamental problems in power market modelling isto understand the formation of
forward prices. Non–storability of the spot makes the usualbuy–and–hold hedging arguments break
down, and the notion of convenience yield is not relevant either. There is thus a highly complex
relationship between spot and forwards.

A way around this would be to follow the so–called Heath–Jarrow–Morton approach, which has
been introduced in the context of modelling interest rates,see Heath et al. (1992), and model the
forward price dynamics directly (rather than modelling thespot price and deducing the forward price
from the conditional expectation of the spot at delivery). There are many challenging problems con-
nected to this way of modelling forward prices.

Firstly, standard models for the forward dynamics generally depend on the current time and the
time to maturity. However, power market trades in contractswhich deliver power over adelivery pe-
riod, introducing a new dimension in the modelling. Hence comprehensive forward price models must
be functions of bothtime toand length ofdelivery, which calls for random field models in time and
space. Furthermore, since the market trades in contracts with overlapping delivery periods, specific
no–arbitrage conditions must be satisfied which essentially puts restrictions on the space structure
of the field. So far, the literature is not very rich on modelling power forward prices applying the
Heath–Jarrow–Morton approach, presumably due to the lack of analytical tractability and empirical
knowledge of the price evolution.

Empirical studies, see Frestad et al. (2010), have shown that the logarithmic returns of forward
prices are non–normally distributed, with clear signs of heavy tails. Also, a principal component
analysis by Koekebakker & Ollmar (2005) indicates a high degree of idiosyncratic risk in power
forward markets. This strongly points towards random field models which, in addition, allow for
stochastic volatility. Moreover, the structure determining the interdependencies between different
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1 INTRODUCTION

contracts is by far not properly understood. Some empiricalstudies, see Andresen et al. (2010),
suggest that the correlations between contracts are decreasing with time to maturity, whereas the
exact form of this decay is not known. But how to take ‘length of delivery’ into account in modelling
these interdependencies has been an open question. A first approach on how to tackle this problem
will be presented later in this paper.

Ambit processes provide a flexible class of random field models, where one has a high degree of
flexibility of modelling complex dependencies. These may beprobabilistic coming from a driving
Levy basis, or functional from a specification of an ambit set.

Our focus will be on ambit processes which arestationaryin time. As such, our modelling frame-
work differs from the traditional models, where stationaryprocesses are (if at all) reached by limiting
arguments. Modelling directly in stationarity seems in fact to be quite natural and is e.g. done in
physics in the context of modelling turbulence, see e.g. Barndorff-Nielsen & Schmiegel (2007, 2009).
Here we show that such an approach has strong potential in finance, too.

Due to their general structure, ambit processes easily incorporate the observed Samuelson effect in
the volatility, leptokurtic behaviour in returns and possibly stochastic volatility and leverage effects.
Note that theSamuelson effect, see Samuelson (1965), refers to the finding that, when the time to
maturity approaches zero, the volatility of the forward increases and converges to the volatility of the
underlying spot price.

Although many stylised facts of energy markets can easily beincorporated in an ambit framework,
one may question whether ambit processes are not in facttoo general to be a good building block
for financial models. In particular, one property — the martingale property — is often violated by
general ambit processes. However, we can and will formulateconditions which ensure that an ambit
process is in fact a martingale. So, if we wish to stay within the martingale framework, we can do
so by using a restricted subclass of ambit processes. On the other hand, in modelling terms, it is
actually not so obvious whether weshould stay within the martingale framework if our aim is to
model electricity forward contracts. Given the illiquidity of electricity markets, it cannot be taken
for granted that arbitrage opportunities arising from forward prices outside the martingale framework
can be exercised. Also, we know from recent results in the mathematical finance literature, see e.g.
Guasoni et al. (2008), Pakkanen (2010), that subclasses of non–(semi)–martingales can be used to
model financial assets without necessarily giving rise to arbitrage opportunities in markets which
exhibit market frictions, such as e.g. transaction costs.

Next, we will not work with the most general class of ambit processes since we are mainly inter-
ested in the time–stationary case.

Last but not least we will show that the ambit framework can shed some light on the connection
between electricity spot and forward prices. Understanding the interdependencies between these two
assets is crucial in many applications, e.g. in the hedging of exotic derivatives on the spot using
forwards. A typical example in electricity markets is so–called user–time contracts, giving the holder
the right to buy spot at a given price on a predefined number of hours in a year, say.

The outline for the remaining part of the paper is as follows.Section 2 gives an overview of the
standard models used for forward markets. Section 3 reviewsbasic traits of the theory of ambit fields
and processes. In Section 4, we describe the new model for (electricity) forward markets. In Section
5, we show how some of the traditional models for forward prices relate to ambit processes. Next
we show what kind of spot model is implied by our new model for the forward price and we discuss
that, under certain conditions, the implied spot price process equals in law a Lévy semistationary
process, see Section 6. Section 7 presents the martingale conditions for our new model to ensure the
absence of arbitrage. Also, since we do the modelling under the risk neutral measure, we discuss how
a change of measure can be carried out to get back to the physical probability measure. Section 8
deals with extensions of our new modelling framework: Whilewe mainly focus on arithmetic models
for forward prices in this paper, we discuss briefly how geometric models can be constructed. Also,
we give an outlook on how ambit field based models can be used tojointly model time and period of
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2 OVERVIEW ON APPROACHES TO MODELLING FORWARD PRICES

delivery. Finally, Section 9 concludes and Appendix A contains the proofs of our main results and
some technical results on the correlation structure of the new class of models.

2 Overview on approaches to modelling forward prices

Before introducing ambit fields, let us review the exisitingliterature on direct modelling of forward
prices in commodity markets, i.e. the approach where one is not starting out with a specification of
the underlying spot dynamics.

Although commodity markets have very distinct features, most models for energy forward con-
tracts have been inspired by instantaneous forward rates models in the theory for the term structure of
interest rates, see Koekebakker & Ollmar (2005) for an overview on the similarities between electricity
forward markets and interest rates.

Hence, in order to get an overview on modelling concepts which have been developed in the
context of the term structure of interest rates, but which can also be used in the context of electricity
markets, we will now review these examples from the interestrate literature. However, later we will
argue that, in order to account for the particular stylised facts of power markets, there is a case for
leaving these models behind and focusing instead on ambit fields as a natural class for describing
energy forward markets.

Throughout the paper, we denote byt ∈ R the current time, byT ≥ 0 the timeof maturity of a
given forward contract, and byx = T − t the corresponding timeto maturity. We useFt(T ) to denote
the price of a forward contract at timet with time of maturityT . Likewise, we usef for the forward
price at timet with time to maturityx = T − t, when we work with the Musiela parameterisation, i.e.
we definef by

ft(x) = ft(T − t) = Ft(T ).

2.1 Multi–factor models

Motivated by the classical Heath et al. (1992) framework, the dynamics of the forward rate under the
risk neutral measure can be modelled by

dft(x) =

n∑

i=1

σ
(i)
t (x)dW

(i)
t , for t ≥ 0,

for n ∈ IN and whereW (i) are independent standard Brownian motions andσ(i)(x) are independent
positive stochastic volatility process fori = 1, . . . , n. The advantage of using these multi–factor
models is that they are to a high degree analytically tractable. Extensions to allow for jumps in such
models have also been studied in detail in the literature. However, a principal component analysis
by Koekebakker & Ollmar (2005) has indicated that we need in fact many factors (largen) to model
electricity forward prices. Hence it is natural to study extensions to infinite factor models which are
also called random field models.

2.2 Random field models for the dynamics of forward rates

In order to overcome the shortcomings of the multifactor models, Kennedy (1994) has pioneered the
approach of using random field models, in some cases called stochastic string models, for modelling
the term structure of interest rates. Random field models have a continuum of state variables (in our
case forward prices for all maturities) and, hence, are alsocalled infinite factor models, but they are
typically very parsimonious in the sense that they do not require many parameters. Note that finite–
factor models can be accommodated by random field models as degenerate cases.
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2 OVERVIEW ON APPROACHES TO MODELLING FORWARD PRICES

Kennedy (1994) proposed to model the forward rate by a centered, continuous Gaussian random
field plus a continuous deterministic drift. Furthermore hespecified a certain structure of the co-
variance function of the random field which ensured that it had independent increments in the time
direction t (but not necessarily in the time to maturity directionx). Such models include as spe-
cial cases the classical Heath et al. (1992) model when both the drift and the volatility functions are
deterministic and also two–parameter models, such as models based on Brownian sheets. Kennedy
(1994) derived suitable drift conditions which ensure the martingale properties of the corresponding
discounted zero coupon bonds.

In a later article, Kennedy (1997) revisited the continuousGaussian random field models and he
showed that the structure of the covariance function of suchmodels can be specified explicitly if one
assumes a Markov property. Adding an additional stationarity condition, the correlation structure of
such processes is already very limited and Kennedy (1997) proved that, in fact, under a strong Markov
and stationarity assumption the Gaussian field is necessarily described by just three parameters.

The Gaussian assumption was relaxed later and Goldstein (2000) presented a term structure model
based on non–Gaussian random fields. Such models incorporate in particular conditional volatil-
ity models, i.e. models which allow for more flexible (i.e. stochastic) behaviour of the (conditional)
volatilities of the innovations to forward rates (in the traditional Kennedy approach such variances
were just constant functions of maturity), and, hence, are particularly relevant for empirical applica-
tions. Also, Goldstein (2000) points out that one is interested in verysmoothrandom field models in
the context of modelling the term structure of interest rates. Such a smoothness (e.g. in the time to
maturity direction) can be achieved by usingintegrated random fields, e.g. he proposes to integrate
over an Ornstein–Uhlenbeck process. Goldstein (2000) derived drift conditions for the absence of
arbitrage for such general non–Gaussian random field models.

While such models are quite general and, hence, appealing inpractice, Kimmel (2004) points out
that the models defined by Goldstein (2000) are generally specified as solutions to a set of stochastic
differential equations, where it is difficult to prove the existence and uniqueness of solutions. The
Goldstein (2000) models and many other conditional volatility random field models are in fact com-
plex and often infinite dimensional processes, which lack the the key property of the Gaussian random
field models introduced by Kennedy (1994): that the individual forward rates are low dimensional dif-
fusion processes. The latter property is in fact important for model estimation and derivative pricing.
Hence, Kimmel (2004) proposes a new approach to random field models which allows for conditional
volatility and which preserves the key property of the Kennedy (1994) class of models: the class ofla-
tent variable term structure models. He proves that such models ensure that the forward rates andthe
latent variables (which are modelled as a joint diffusion) follow jointly a finite dimensional diffusion.

A different approach to generalising the Kennedy (1994) framework is proposed by Albeverio
et al. (2004). They suggest to replace the Gaussian random field in the Kennedy (1994) model by a
(pure jump) Lévy field. Special cases of such models are e.g.the Poisson and the Gamma sheet.

Finally, another approach for modelling forward rates has been proposed by Santa-Clara & Sor-
nette (2001) who build their model onstochastic string shocks. We will review that class of models
later in more detail since it is related (and under some assumptions even a special case) of the new
modelling framework we present in this paper.

2.3 Intuitive description of an ambit field based model for forward prices

After we have reviewed the traditional models for the term structure of interest rates, which are (par-
tially) also used for modelling forward prices of commodities, we wish to give an intuitive description
of the new framework we propose in this paper before we present all the mathematical details.

As in the aforementioned models, we also propose to use a random field to account for the two
temporal dimensions of current time and time to maturity. However, the main difference of our new
modelling framework compared to the traditional ones is that we model the forward pricedirectly.
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2 OVERVIEW ON APPROACHES TO MODELLING FORWARD PRICES

This direct modelling approach is in fact twofold: First, we model the forward prices directly rather
than the spot price, which is in line with the Heath et al. (1992) framework. Second, we do not specify
the dynamicsof the forward price, but we specify a random field, an ambit field, which explicitly
describes the forward price. In particular, we propose to use random fields given by stochastic integrals
of type

∫

At(x)
h(ξ, s, x, t)σs(ξ)L(dξ, ds), (1)

as a building block for modellingft(x). A natural choice forL — motivated by the use of Lévy pro-
cesses in the one–dimensional framework — is the class ofLévy bases, which are infinitely divisible
random measures as described in more detail below. Here the integrand is given by the product of a
deterministic kernel functionh and a random fieldσ describing the stochastic volatility.

We will describe in more detail below, how stochastic integrals of type (1) have to be understood.
Note here that we integrate over a setAt(x), theambit set, which can be chosen in many different
ways. We will discuss the choice of such sets later in the paper.

An important motivation for the use of ambit processes is that we wish to work with processes
which arestationaryin time, i.e. int, rather than formulating a model whichconvergesto a stationary
process. Hence, we work with stochastic integrals startingfrom−∞ in the temporal dimension, more
precisely, we choose ambit sets of the formAt(x) = {(ξ, s) : −∞ < s ≤ t, ξ ∈ It(s, x)}, where
It(s, x) is typically an interval includingx, rather than integrating from0, which is what the traditional
models do which are constructed as solutions of stochastic partial differential equations (SPDEs). (In
fact, many traditional models coming from SPDEs can be included in an ambit framework when
choosing the ambit setAt(x) = [0, t] × {x}.)

In order to obtain models which are stationary in the time componentt, but not necessarily in the
time to maturity componentx, we assume that the kernel function depends ont ands only through
the differencet− s, so having thath is of the formh(ξ, s, x, t) = k(ξ, t− s, x), thatσ is stationary in
time and thatAt(x) has a certain structure, as described below. Then

∫

At(x)
k(ξ, t− s, x)σs(ξ)L(dξ, ds). (2)

Note that Hikspoors & Jaimungal (2008) and Benth (2010) provide empirical evidence that both
the spot and the forward price are influenced by astochastic volatilityfield σ. Here we assume that
σ describes the volatility of the forward market as a whole. More precisely, we will assume that the
volatility of the forward depends on previous states of the volatility both in time and in space, where
the spatial dimension reflects the time to maturity.

The general structure of ambit fields makes it possible to allow for generaldependencies be-
tween forward contracts. In the electricity market, a forward contract has a close resemblance with
its neighbouring contracts, meaning contracts which are close in maturity. Empirics (by principal
component analysis) suggest that the electricity markets need many factors, see e.g. Koekebakker &
Ollmar (2005), to explain all the noises, contrary to interest rate markets where one finds 3–4 sources
of noise as relevant. Since electricity is a non–storable commodity, forward looking information plays
a crucial role in settling forward prices. Different information at different maturities, such as plant
maintenance, weather forecasts, political decisions etc., give rise to a high degree of idiosyncratic risk
in the forward market, see Benth & Meyer-Brandis (2009). These empirical and theoretical findings
justify a random field model in electricity and also indicatethat there is a high degree of dependency
around contracts which are close in maturity, but much weaker dependence when maturities are far-
ther apart. The structure of the ambit field and the volatility field which we propose in this paper will
allow us to “bundle” contracts together in a flexible fashion.
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3 AMBIT FIELDS AND PROCESSES

3 Ambit fields and processes

This section reviews the concept of ambit fields and ambit processes which form the building blocks
of our new model for the electricity forward price. For a detailed account on this topic see Barndorff-
Nielsen et al. (2010a) and Barndorff-Nielsen & Schmiegel (2007). Throughout thepaper, we denote
by (Ω,F , P ∗) our probability space. Note that we use the∗ notation since we will later refer to this
probability measure as a risk neutral probability measure.

3.1 Review of the theory of ambit fields and processes

The general framework for defining an ambit process is as follows. LetY = {Yt (x)} with Yt(x) :=
Y (x, t) denote a stochastic field in space–timeX × R and letτ (θ) = (x (θ) , t (θ)) denote a curve
in X × R. The values of the field along the curve are then given byXθ = Yt(θ) (x (θ)). Clearly,
X = {Xθ} denotes a stochastic process. In most applications, the spaceX is chosen to beRd for
d = 1, 2 or 3. Further, the stochastic field is assumed to be generated by innovations in space–time
with valuesYt (x) which are supposed to depend only on innovations that occur prior to or at time
t and in general only on a restricted set of the corresponding part of space–time. I.e., at each point
(x, t), the value ofYt (x) is only determined by innovations in some subsetAt (x) of X × Rt (where
Rt = (−∞, t]), which we call theambit setassociated to(x, t). Furthermore, we refer toY andX as
anambit fieldand anambit process, respectively.

In order to use such general ambit processes in applications, we have to impose some structural
assumptions. More precisely, we will defineYt (x) as a stochastic integral plus a smooth term, where
the integrand in the stochastic integral will consist of a deterministic kernel times a positive random
variate which is taken to embody thevolatility of the fieldY . More precisely, we think of ambit fields
as being of the form

Yt (x) = µ+

∫

At(x)
h (ξ, s, x, t) σs (ξ)L (dξ,ds) +

∫

Dt(x)
q (ξ, s, x, t) as (ξ) dξds, (3)

whereAt (x), andDt (x) are ambit sets,h andq are deterministic function,σ ≥ 0 is a stochastic field
referred to asvolatility, a is also a stochastic field, andL is aLévy basis.

Note that the corresponding ambit processX along the curveτ is then given by

Xθ = µ+

∫

A(θ)
h(ξ, s, τ(θ))σs(ξ)L(dξ, ds) +

∫

D(θ)
q(ξ, s, τ(θ))as(ξ)dξds, (4)

whereA(θ) = At(θ)(x(θ)) andD(θ) = Dt(θ)(x(θ)).
Of particular interest in many applications are ambit processes that are stationary in time and

nonanticipative. More specifically, they may be derived from ambit fieldsY of the form

Yt (x) = µ+

∫

At(x)
h (ξ, t− s, x)σs (ξ)L (dξ,ds) +

∫

Dt(x)
q (ξ, t− s, x) as (ξ) dξds. (5)

Here the ambit setsAt (x) andDt (x) are taken to behomogeneousandnonanticipativei.e.At (x) is
of the formAt (x) = A + (x, t) whereA only involves negative time coordinates, and similarly for
Dt (x). We assume further thath(ξ, u, x) = q(ξ, u, x) = 0 for u ≤ 0.

3.2 Background on Ĺevy bases

Let S denote theδ–ring of subsets of an arbitrary non–empty setS, such that there exists an increas-
ing sequence{Sn} of sets inS with ∪nSn = S, see Rajput & Rosinski (1989). Recall from e.g.
Barndorff-Nielsen & Shephard (2010), Pedersen (2003), Rajput & Rosinski (1989) that a Lévy basis
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L = {L(B), B ∈ S} defined on a probability space(Ω,F , P ) is an independently scattered random
measure with Lévy–Khinchin representation

ψL(B)(v) = log (E(exp(ivL(B))) ,

given by

ψL(B)(v) = iva(B) − 1

2
v2b(B) +

∫

R

(
eivr − 1 − ivrI[−1,1](r)

)
l(dr,B), (6)

wherea is a signed measure onS, b is a measure onS, l(·, ·) is the generalised Lévy measure such
thatl(dr,B) is a Lévy measure onR for fixedB ∈ S and a measure onS for fixeddr. Without loss of
generality we can assume that the generalised Lévy measurefactorises asl(dr, dη) = U(dr, η)µ(dη),
whereµ is a measure onS. Concretely, we takeµ to be thecontrol measure, see Rajput & Rosinski
(1989), defined by

µ(B) = |a|(B) + b(B) +

∫

R

min(1, r2)l(dr,B), (7)

where| · | denotes the total variation. Further,U(dr, η) is a Lévy measure for fixedη. If U(dr, η)
does not depend onη, we calll andL factorisable. Note thata andb are absolutely continuous with
respect toµ: a(dη) = ã(η)µ(dη), andb(dη) = b̃(η)µ(dη).

Forη ∈ S, letL′(η) be an infinitely divisible random variable such that

ψL′(η)(v) = log
(
E(exp(ivL′(η))

)
,

with

ψL′(η)(v) = ivã(η) − 1

2
v2b̃(η) +

∫

R

(
eivr − 1 − ivrI[−1,1](r)

)
U(dr, η), (8)

then we have

ψL(dη)(v) = ψL′(η)(v)µ(dη). (9)

In the following, we will refer toL′(η) as theLevy seedof L at η. If L is factorisable, withS ⊂ R
n

and ifµ is proportional to the Lebesgue measure, thenL is calledhomogeneous.
Furthermore, we get from Rajput & Rosinski (1989, Proposition 2.6) that

ψ∫ fdL(v) = log

(
E

(
exp

(
iv

∫
fdL

)))
=

∫
log
(
E(exp(ivf(η)L′(η)))

)
µ(dη)

=

∫
ψL′(η)(vf(η))µ(dη), (10)

for a deterministic functionf which is integrable with respect to the Lévy basis.
In order to be able to compute moments of integrals with respect to a Lévy basis, we invoke a

generalised Lévy–Itô decomposition, see Pedersen (2003). Corresponding to the generalised Lévy–
Khintchine formula, (6), the Lévy basis can be written as

L(B) = a(B) +
√
b(B)W (B) +

∫

{|y|<1}
y(N(dy,B) − ν(dy,B)) +

∫

{|y|≥1}
yN(dy,B)

= a(B) +
√
b(B)W (B) +

∫

{|y|<1}
y(N − ν)(dy,B) +

∫

{|y|≥1}
yN(dy,B),

for a Gaussian basisW and a Poisson basisN with intensityν.
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3 AMBIT FIELDS AND PROCESSES

Now we have all the tools at hand which we need to compute the conditional characteristic func-
tion of ambit fields defined in (3) whereσ andL are assumed independent and where we condition on
the path ofσ. The conditional cumulant function is denoted byψσ and has the form

ψσ∫
At(x) h(ξ,s,x,t)σs(ξ)L(dξ,ds)(v) = log

(
E

(
exp

(
iv

∫

At(x)
h(ξ, s, x, t)σs(ξ)L(dξ, ds)

)∣∣∣∣∣ σ
))

=

∫

At(x)
ψσ

L′(ξ,s) (vh(ξ, s, x, t)σs(ξ)) µ(dξds), (11)

whereψσ
L′ denotes, the characteristic exponent of the Lévy seed ofL conditionally onσ andµ is the

control measure associated with the Lévy basisL, cf. (8) and (7).

3.3 Walsh–type integration with respect to a Ĺevy basis

Since ambit processes are defined as stochastic integrals with respect to a Lévy basis, we briefly
review in this section in which sense this stochastic integration should be understood. Throughout the
rest of the paper, we work with stochastic integration with respect to martingale measures as defined
by Walsh (1986). We will review this theory here briefly and refer to Barndorff-Nielsen et al. (2010a)
for a detailed overview on integration concepts with respect to Lévy bases.

In the following we will present the integration theory on a bounded domain and comment later
on how one can extend the theory to the case of an unbounded domain.

Let S denote a bounded set inX = R
d for ad ∈ N and let(S,S, leb) denote a measurable space,

whereS denotes the Borelσ–algebra onS andleb is the Lebesgue measure.
Let L denote a Lévy basis onS × [0, T ] ∈ B(Rd+1) for someT > 0. For anyA ∈ Bb(S) and

0 ≤ t ≤ T , we define

Lt(A) = L(A, t) = L(A× (0, t]),

which is a measure–valued process. Note that for a fixed setA ∈ Bb(S), Lt(A) is an additive process
in law.

In the following, we want to use theLt(A) as integrators as in Walsh (1986). In order to do that,
we work under the square–integrability assumption, i.e.:

Assumption (A1): For eachA ∈ Bb(S), we have thatLt(A) ∈ L2(Ω,F , P ∗).

Note that, in particular, assumption (A1) excludesα–stable Lévy bases forα < 2.
Next, we define the filtrationFt by

Ft = ∩∞
n=1F0

t+1/n, where F0
t = σ{Ls(A) : A ∈ Bb(S), 0 < s ≤ t} ∨ N , (12)

and whereN denotes theP–null sets ofF . Note thatFt is right–continuous by construction.
In the following, we will work without loss of generality under the zero–mean assumption onL,

i.e.

Assumption (A2): For eachA ∈ Bb(S), we have thatE(Lt(A)) = 0.

One can show that under the assumptions (A1) and (A2),Lt(A) is a (square–integrable)mar-
tingale with respect to the filtration(Ft)0≤t≤T . Note that these two properties together with the
fact thatL0(A) = 0 a.s. ensure that(Lt(A))t≥0,A∈B(Rd) is a martingale measurewith respect to
(Ft)0≤t≤T in the sense of Walsh (1986). Furthermore, we have the following orthogonality property:
If A,B ∈ Bb(S) with A ∩ B = ∅, thenLt(A) andLt(B) are independent. Martingale measures
which satisfy such an orthogonality property are referred to asorthogonal martingale measuresby
Walsh (1986), see also Barndorff-Nielsen et al. (2010a) for more details.
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3 AMBIT FIELDS AND PROCESSES

For such measures, Walsh (1986) introduces acovariance measureQ by

Q(A× [0, t]) = < L(A) >t, (13)

for A ∈ B(Rd). Note thatQ is a positive measure and is used by Walsh (1986) when defining
stochastic integration with respect toL.

Walsh (1986) defines stochastic integration in the following way. Letζ(ξ, s) be anelementary
random fieldζ(ξ, s), i.e. it has the form

ζ(ξ, s, ω) = X(ω)I(a,b](s)IA(x) , (14)

where0 ≤ a < t, a ≤ b, X is bounded andFa–measurable, andA ∈ S. For such elementary
functions, the stochastic integral with respect toL can be defined as

∫ t

0

∫

B
ζ(ξ, s)L(dx, ds) := X (Lt∧a(A ∩B) − Lt∧b(A ∩B)) , (15)

for everyB ∈ S. It turns out that the stochastic integral becomes a martingale measure itself. Clearly,
the above integral can easily be generalised to allow for integrands given bysimplerandom fields, i.e.
finite linear combinations of elementary random fields. LetT denote the set of simple random fields
and let thepredictableσ–algebraP be theσ–algebra generated byT . Then we call a random field
predictableprovided it isP–measurable. The aim is now to define stochastic integrals with respect to
L where the integrand is given by a predictable random field.

In order to do that Walsh (1986) defines a norm‖ · ‖L on the predictable random fieldsζ by

‖ζ‖2
L := E

[∫

[0,T ]×S
ζ2(ξ, s)Q(dξ, ds)

]
, (16)

which determines the Hilbert spacePL := L2(Ω × [0, T ] × S,P, Q), and he shows thatT is dense
in PL. Hence, in order to define the stochastic integral ofζ ∈ PL, one can choose an approxi-
mating sequence{ζn}n ⊂ T such that‖ζ − ζn‖L → 0 asn → ∞. Clearly, for eachA ∈ S,∫
[0,t]×A ζn(ξ, s)L(dξ, ds) is a Cauchy sequence inL2(Ω,F , P ), and thus there exists a limit which is

defined as the stochastic integral ofζ.
Then, this stochastic integral is again a martingale measure and satisfies the followingItô–type

isometry:

E



(∫

[0,t]×A
ζ(ξ, s)L(dξ, ds)

)2

 = ‖ζ‖2

L , (17)

see (Walsh 1986, Theorem 2.5) for more details.

Remark 1. In order to use Walsh–type integration in the context of ambit fields, we note the follow-
ing:

• General ambit setsAt(x) are not necessarily bounded. However, the stochastic integration
concept reviewed above can be extended to unbounded ambit sets using standard arguments, cf.
Walsh (1986, p. 289).

• For ambit fields with ambit setsAt(x) ⊂ X × (−∞, t], we define Walsh–type integrals for
integrands of the form

ζ(ξ, s) = ζ(ξ, s, x, t) = IAt(x)(ξ, s)h(ξ, s, x, t)σs(ξ). (18)

10



3 AMBIT FIELDS AND PROCESSES

• The original Walsh’s integration theory covers integrandswhich do not depend on the time
index t. Clearly, the integrand given in (18) generally exhibitst–dependence due to the choice
of the ambit setAt(x) and due to the deterministic kernel functionh. In order to allow for time
dependence in the integrand, we can define the integrals in the Walsh sense for anyfixedt.

In order to ensure that the ambit fields (as defined in (3)) are well–defined (in the Walsh–sense),
throughout the rest of the paper, we will work under the following assumption:

Assumption (A3): Let L denote a Lévy basis onS × [−∞, T ], whereS denotes a not necessarily
bounded setS in X = R

d for somed ∈ IN . We define a covariance measureQ for an
unbounded domain (extending definition (13)) and, next, we define a Hilbert spacePL with
norm || · ||L as in (16) (extended to an unbounded domain) and, hence, we have an Itô isometry
of type (17) extended to an unbounded domain. We assume that,for fixedx andt,

ζ(ξ, s) = IAt(x)(ξ, s)h(ξ, s, x, t)σs(ξ)

satisfies

1. ζ ∈ PL,

2. ||ζ||2L = E

[∫
R×X ζ

2(ξ, s)Q(dξ, ds)
]
<∞.

Note that in our forward price model we will discard the driftterm from the general ambit field
defined in (3) and hence we do not add an integrability condition for the drift.

3.4 Lévy Semistationary Processes (LSS)

After having reviewed the basic traits of ambit fields, we briefly mention the null–spatial case of semi–
stationary ambit fields, i.e. the case when we only have a temporal component and when the kernel
function depends ont ands only through the differencet − s. This determines the class of Lévy
semistationary processes (LSS), see Barndorff-Nielsen et al. (2010b). Specifically, letZ = (Zt)t∈R

denote a general Lévy process onR. Then, we writeY = {Yt}t∈R
, where

Yt = µ+

∫ t

−∞
g(t− s)ωsdZs +

∫ t

−∞
p(t− s)asds, (19)

whereµ is a constant,g andp are nonnegative deterministic functions onR, with g (t) = p (t) = 0
for t ≤ 0, andω anda are càdlàg, stationary processes. The reason for here denoting the volatility by
ω rather thanσ will become apparent later. In abbreviation the above formula is written as

Y = µ+ g ∗ ω • Z + p ∗ a • leb, (20)

whereleb denotes Lebesgue measure. In the case thatZ is a Brownian motion, we callY aBrownian
semistationary(BSS) process, see Barndorff-Nielsen & Schmiegel (2009). The stochasticintegration
is here assumed to be in the sense of Basse-O’Connor et al. (2010) since we start the integration at
−∞ rather than computing the integral over a compact interval.Note that this general integration
concept specialises to Itô integration in the semimartingale framework.

In the following, we will often, for simplicity, work withinthe set–up that bothµ = 0 andq ≡ 0,
hence

Yt =

∫ t

−∞
g(t− s)ωsdZs. (21)

11



4 MODELLING THE FORWARD MARKET BY AMBIT FIELDS

For integrability conditions onω andg, we refer to Barndorff-Nielsen et al. (2010b). Note that the
stationary dynamics ofY defined in (21) is a special case of a volatility modulated Lévy–driven
Volterra process, which has the form

Yt =

∫ t

−∞
g(t, s)ωs dZs , (22)

whereZ is a Lévy process andg is a real–valued measurable function onR
2, such that the integral

with respect toZ exists.

4 Modelling the forward market by ambit fields

After having reviewed the basic definitions of ambit fields and the stochastic integration concept due
to Walsh (1986), we proceed now by introducing a general model for (deseasonalised) electricity
forward prices based on ambit fields.

We consider a probability space(Ω,F , P ∗). We setR+ = [0,∞) and define a Lévy basisL =
(L(s,A))s∈R,A∈B(R+) and a stochastic volatility fieldσ = (σs(A))s∈R,A∈B(R+). Throughout the
remaining part of the paper, we define the filtration{Ft}t∈R by

Ft = ∩∞
n=1F0

t+1/n, where F0
t = σ{L(s,A) : A ∈ B(R+), s ≤ t} ∨ N , (23)

and whereN denotes theP–null sets ofF . Note thatFt is right–continuous by construction. Also,
we define the enlarged filtration{F t}t∈R by

F t = ∩∞
n=1F

0
t+1/n, where F0

t = σ{(L(s,A), σs(A)) : A ∈ B(R+), s ≤ t} ∨ N . (24)

4.1 The model

The new model for the forward priceft(x) is defined for fixedt ∈ R and forx > 0 by

ft(x) =

∫

At(x)
k(ξ, t− s, x)σs(ξ)L(dξ, ds), (25)

where

(i) the Lévy basisL is square integrable and has zero mean (this is an extension of assumptions
(A1) and (A2) to an unbounded domain);

(ii) the stochastic volatility fieldσ is assumed to be adapted to{Ft}t∈R and independent of the Lévy
basisL and in order to ensure stationarity in time, we assume thatσs(ξ) is stationary ins;

(iii) the kernel functionk is assumed to be non–negative and chosen such thatk(ξ, u, x) = 0 for
u < 0;

(iv) the convolutionk ⋆ σ is integrable w.r.t.L, i.e. it satisfies (A3);

(v) the ambit set is chosen to be

At(x) = At = {(ξ, s) : ξ > 0, s ≤ t}, (26)

for t ∈ R, x ≥ 0, see Figure 1. Note that the ambit set is of the typeAt(x) = A0(x) + (0, t)
for A0(x) = {(ξ, s) : ξ ≥ 0, s ≤ 0}. In the following, we will drop the(x) in the notation of
the ambit set, i.e.At(x) = At, since the particular choice of the ambit set defined in (26) does
not depend on the spatial componentx.
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4 MODELLING THE FORWARD MARKET BY AMBIT FIELDS

Note thatft(x) is a stochastic process in time for each fixedx. Also, it is important to note that for
fixedx, ft(x) is stationary int, more preciselyft(·) is a stationary field in time. However, as soon
as we replacex by a function oft, x(t) say, in our case byx(t) = T − t, ft(x(t)) is generally not
stationary any more. The intuition behind this approach is that we do not believe that the price of
an individual forward contract is necessarily stationary in time, but different forward contracts which
have the same time to maturity left (e.g. a certain choice of ayearly and a quarterly forward contract)
are modelled in stationarity.

b T=t+x

b t

ξ

s

b t
b

x0

Figure 1: The ambit setAt(x) = At.

In order to construct a specific model for
the forward price, we need to specify the kernel
function k, the stochastic volatility fieldσs(ξ)
andL.

It is important to note that, when working
with general ambit processes as defined in (25),
in modelling terms we can play around with both
the ambit set, the weight functionk, the volatil-
ity field σ and the Lévy basis in order to achieve
a dependence structure we want to have. As such
there is generally not a unique choice of the am-
bit set or the weight function or the volatility
field to achieve a particular type of dependence
structure and the choice will be based on stylised features,market intuition and considerations of
mathematical/statistical tractability.

In order to make the model specification easier in practice, we have decided to work with the
encompassing ambit set defined in (26). The kernel functionk should be chosen in such a way that
the Samuelson effect can be captured well. We will come back to this issue later again.

Also the choice of the volatility field is very important in our modelling framework. We propose
to model the volatility field itself by an ambit field of the form

σ2
t (x) =

∫

At(x)
j(ξ, t− s, x)L∗(dξ, ds), (27)

for a nonnegative Lévy basisL∗, a non–negative deterministic kernel functionj satisfyingj(ξ, u, x) =
0 for u < 0 and an ambit setAt(x) defined as in (26) (but it would be possible to choose an ambit set
which is different fromAt(x) for the model specification ofσ). Clearly, the tempo–spatial volatility
field σ defined by (27) is stationary with respect to the temporal dimension. In order to ensure that
forward contracts close in maturity dates are strongly correlated with each other (as indicated by
empirical studies), we can choose the kernelj such that

Cor(σ2
t (x), σ

2
t (x̄))

is high for values ofx andx̄ which are close to 0 (i.e. closeness to delivery). Also, the specification
of the volatility fieldσ can be used to incorporate the Samuelson effect in our model.

Remark 2. Note that the forward price at time0 implied by the model is given as

f0(T ) =

∫

A0

k(ξ,−s, x)σs(ξ)L(dξ, ds). (28)

Hence, we view theobservedforward price as a realisation of the random variablef0(T ) given in
(28), contrary to most other models wheref0(T ) is considered as deterministic andput equal tothe
observed price.
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

Remark 3. We have chosen to model the forward price in (25) as an arithmetic model. One could of
course interpretft(x) in (25) as thelogarithmicforward price, and from time to time in the discussion
below this is the natural context. However, in the theoretical considerations, we stick to the arithmetic
model, and leave the analysis of the geometric case to Section 8.1. We note that Bernhardt et al. (2008)
proposed and argued statistically for an arithmetic spot price model for Singapore electricity data. An
arithmetic spot model will naturally lead to an arithmetic dynamics for the forward price. Benth
et al. (2007) proposed an arithmetic model for spot electricity, and derived an arithmetic forward price
dynamics. In Benth, Cartea & Kiesel (2008) arithmetic spot and forward price models are used to
investigate the risk premium theoretically and empirically for the German EEX market.

We conclude this section by studying a simple example which is included in our new modelling
framework. Since Gaussian models are straightforward to construct, we focus on a non–Gaussian case
here.

Example 1. Let L be a homogeneous symmetric normal inverse Gaussian (NIG) Lévy basis, more
specifically having Ĺevy seed with density

π−1δ|y|−1γK1(γ|y|),

whereK denotes the modified Bessel function of the second kind and whereδ, γ > 0, see Barndorff-
Nielsen (1998). Then

ψL′(θ) = δγ − δ
(
γ2 + θ2

)1/2
.

Further, for simplicity, we setσs(ξ) ≡ 1 (since the NIG distribution already incorporates some sort
of stochastic volatility compared to Brownian white noise)and choose an exponential kernel function

k(ξ, t− s, x) = exp(−α(ξ + (t− s) + x)) = exp(−α(ξ − s)) exp(−αT ),

for α > 0. Then

log(E(ivft(x))) =

∫

At

ψL′(vk(ξ, t− s, x))dξds

= δγ

∫ t

−∞

∫ ∞

0

(
1 −

√
1 + c2 exp(−2α(ξ − s))

)
dξds,

for c = v exp(−2αT )/γ. This integral can be expressed in terms of standard functions, see Section
A.1 in the appendix.

5 Relating traditional model classes to the ambit framework

As already mentioned, the use of ambit fields for constructing models for forward prices is entirely
new to the literature and extends the use of correlated random fields to allow for both functional and
statistical dependence, as described in more detail below.

In the following, we will describe how some of the traditional models can be related to the ambit
framework.

5.1 Heath–Jarrow–Morton model

In thegeometricHeath et al. (1992) framework, the dynamics of the logarithmic forward price under
the risk neutral measure are modelled by

d log(ft(x)) = σt(x)dWt, for t ≥ 0,
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

whereW is a standard Brownian motion andσ is a positive stochastic volatility process. Note that we
start at time 0 here. Hence, the explicit formula for the forward price is given by

ft(x) = f0(x) exp

(∫ t

0
σs(x)dWs −

1

2

∫ t

0
σ2

s(x)ds

)
.

Clearly, such a model is a special case of an ambit field definedin (3), whereAt(x) = [0, t] × {x}, L
is a Gaussian Lévy basis and the kernel functionh satisfiesh ≡ 1.

5.2 Random field models

Ambit processes embed the Gaussian and Lévy field models proposed in Albeverio et al. (2004),
Kennedy (1994, 1997). To see that note that we can setσ ≡ 1 and we can chooseAt(x) to be an
interval.

If we allow for a non–trivial kernel functionh or stochastic volatility fieldσ we can obtain some
of the conditional volatility models proposed in Goldstein(2000), Kimmel (2004).

5.3 Stochastic string shock model

Also, thestochastic string shockmodel by Santa-Clara & Sornette (2001), which was designed to
model the term structure of interest rates, is related to theambit framework. Their modelling frame-
work is given as follows. The dynamics of the forward rate aregiven by

dtft(x) = αt(x)dt + σt(x)dtZ(t, x),

for adapted processesa andσ and a stochastic string shockZ. Note here that the notationdt is
taken from Santa-Clara & Sornette (2001) and refers to the fact that we look at the differential op-
erator w.r.t.t. A string shock is defined as random field(Z(t, x))t,x≥0 which is continuous in both
t and x and is a martingale int. Furthermore the variance of thet–increments has to equal the
time change, i.e.V ar(dtZ(t, x)) = dt for all x ≥ 0, and the correlation of thet–increments, i.e.
Cor(dtZ(t, x), dtZ(t, y)), does not depend ont. Santa-Clara & Sornette (2001) show that such
stochastic strings can be obtained as solutions to second order linear stochastic partial differential
equations (SPDEs). It is well–know that such SPDEs have a unique solution (under some boundary
conditions), see Morse & Feshbach (1953) and the referencesin Barndorff-Nielsen et al. (2010a), and
the solution is representable in terms of an integral, oftenof convolution type, of a Green function
with respect to the random noise. The class of stochastic strings given by solutions to SPDEs is large
and includes in particular (rescaled) Brownian sheets and Ornstein–Uhlenbeck sheets. Similarly to
the procedure presented in Goldstein (2000), Santa-Clara &Sornette (2001) argue that it might also
be useful to smoothen the string shocks further, so that theyare particularly smooth in direction of
time to deliveryx. Again, this can be achieved by integrating a stochastic string shock with respect
to its second component. Stochastic string shock models aretrue generalisations of the Heath et al.
(1992) framework which do not lose the parsimonious structure of the original HJM model. Also, due
to their general structure, string models can give rise to a variety of different correlation functions and,
hence, are very flexible tools for modelling various stylised facts without needing many parameters.

The main element in the stochastic string model, see Santa-Clara & Sornette (2001, p. 159), is the
term

∫ t

0
σv(T − v)dvZ(v, T − v) =

∫ t

0

∫ ∞

0
σs(T − s)G(T − s, z)η(s, z)dzds, (29)

whereZ is a stochastic string shock,η is white noise,σ is an adapted process andG is the correspond-
ing Green function. The derivation by Santa-Clara & Sornette (2001) is partly heuristic. However,
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

rigorous mathematical meaning can be given to the integral in (29) by the Walsh (1986) concept of
martingale measures, see Section 3.3.

This may be compared to a special case of our ambit process where the integration is carried out
with respect to a Gaussian Lévy basis, i.e. by choosing

∫ t

0
σv(T − v)dvZ(v, T − v) =

∫ t

0

∫ ∞

0
σs(T − s)G(T − s, z)dsWs(dz).

So, for a deterministic functionσ the product ofσ andG is what we can model by the functionh in
the ambit framework, i.e.

h(ξ, s, T ) = σs(T − s)G(T − s, ξ).

The main difference between the approach advocated in the present paper and the stochastic string
shock approach lies in the fact that the ambit fields focused on here are constructed as stationary
processes in time where the integration of the temporal component starts at−∞ and not at0 and,
also, we consider general Lévy bases with a wide range of infinitely divisible distributions and do not
restrict ourselves to the continuous Gaussian case.

5.4 Audet et al. (2004) model

Consider the model by Audet et al. (2004) written in the Musiela parameterisation. They study the
electricity market on a finite time horizon[0, T ∗] and model the dynamics of the forward priceft(x)
by

dft(x) = ft(x)e
−αxσx+tdBx+t(t),

for a deterministic, bounded volatility curveσ : [0, T ∗] → R+, a constantα > 0 and whereBx+t

denotes a Brownian motion for the forward price with time of maturityx+ t. Further, the correlation
structure between the Brownian motions is given by

corr(dBx′(t), dBx(t)) = exp(−ρ(x− x′)) dt = exp(−ρ|T − T ′|) dt, for all 0 ≤ x, x′ ≤ T ∗ − t,
(30)

wherex′ = T ′ − t, x = T − t. Such a model implies that the volatility of the forward price is lower
than the volatility of the spot price, an effect which is described by the parameterα. Also, forward
contracts which are close in maturity can be modelled to be strongly correlated, an effect which is
reflected by the choice of the parameterρ.

We observe that the above model for the logarithmic forward price is in fact another special case
of an ambit process, with deterministic volatility and an ambit setAt(x) = [0, t]×{x}, and the Lévy
basis being a Gaussian random field which is Brownian in time and has a spatial correlation structure
in space as specified in (30).

5.5 Forward model implied by the spot model described in Barndorff-Nielsen et al.
(2010b)

If the deseasonalised log–spot price is given by (22), then we know from (Barndorff-Nielsen et al.
2010b, Proposition 4) that in the case whenL = W is a standard Brownian motion and the stochastic
volatility process is given by

ωt =

∫ t

−∞
G(t, s)Z̃s,
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for a Lévy process̃Z, then the corresponding forward priceft(x) is given by

ln ft(x) = Ξt(x) +

∫ t

−∞
g(t+ x, s)ωs dWs +

1

2

∫ t

−∞

∫ x

0
g2(t+ x, t+ u)G(t + u, s) du dZ̃s,

for some deterministic functionΞt(x). We observe that, apart from the termΞt(x) this is the super-
position of two ambit processes.

6 Constructing a spot model from the forward model

After we have presented our new model for the forward price, which is based on time–stationary
ambit fields, we turn our attention now to the question of which model for the electricity spot price is
implied by our new modelling framework.

In order to answer this question, we are interested in the limiting behaviour of the forward price
ft(T − t) whent tends to time of deliveryT .

Let us assume the existence of functionκ such that the kernel functionk satisfies (pointwise)

lim
t→T

k(ξ, t− s, T − t) =: κ(ξ, T − s).

A natural candidate for the spot price is then

ST =

∫

AT

κ(ξ, T − s)σs(ξ)L(dξ, ds) =

∫

R+×R

IAT
(ξ, s)κ(ξ, T − s)σs(ξ)L(dξ, ds), (31)

provided the integral exists. In fact, under a mild further condition we will have

ft(T − t)
P→ ST , ast→ T.

Equivalently, the question is whether

ft(T − t) − ST =

∫

R+×R

κ(ξ, s, t, T )σs(ξ)L(dξ, ds)
P→ 0, (32)

ast → T , where

κ(ξ, s, t, T ) = IAt
(ξ, s)k(ξ, t − s, T − t) − IAT

(ξ, s)κ(ξ, T − s).

From Section A.3 in the appendix, we know that

V ar(ft(T − t) − ST ) = C

∫

R+×R

κ
2(ξ, s, t, T )E(σ2

s (ξ))dξds,

for a constantC > 0 (specified by the variance ofL).
Hence, provided the integral defined in (31) exists, a sufficient condition for (32) is given by

κ(ξ, s, t, T )
L2

→ 0, ast→ T. (33)

So, if the limit above exists, then it is natural to interpretthe limiting processS defined in (31) as
aspot price process.

Note that the spot price process implied by our ambit field–based forward price model is driven
by a tempo–spatial Lévy base, more precisely by a two–parameter random field and not just by a
Brownian motion or a Lévy process.
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6.1 The Gaussian case

A case of some special interest is the situation where the driving Lévy basisL of the ambit field is
Gaussian.

Under the assumption thatσ is independent ofL, we obtain thatft(x) is mixed normal, in partic-
ular

ft (x)| σ ∼ N

(
0,

∫

At

k(ξ, t− s, x)2σ2
s (ξ) dξds

)
.

LetW be a homogeneous Gaussian Lévy basis and letk be of the form

k(ξ, t− s, x) = k∗0(t− s, x)k1(ξ) (34)

with k∗0(T − s, 0) = k0(T − s), for some functionk0 with k∗0(t− s, T − t) → k0(T − s) for t→ T .
Hence

ft(x) =

∫

At

k1(ξ)k
∗
0(x, t− s)σs(ξ)W (dξ, ds).

Suppose that

IAt
(ξ, s)k1(ξ)k

∗
0(x, t− s) − IAT

(ξ, s)k1(ξ)k0(T − s)
L2

→ 0,

ast → T . Then we obtain forx→ 0 that

ft (x)
P→ ST =

∫

AT

k1(ξ)k0(T − s)σs(ξ)W (dξ, ds).

Clearly,

ST |σ ∼ N

(
0,

∫ T

−∞
k2
0(T − s)

(∫ ∞

0
k2
1(ξ)σ

2
s(ξ)dξ

)
ds

)
.

Remark 4. Note that if we define a positive kernel functiong and a positive stochastic processω by

g2(T − s) = k2
0(T − s), ω2

s =

∫ ∞

0
k2
1(ξ)σ

2
s(ξ)dξ, for all s ≤ T,

then

ST
law
=

∫ T

−∞
g(T − s)ωsdBs, (35)

whereB is a standard Brownian motion andω2 is a stationary process. Hence the spot price equals
in law aBSS process. The latter has been studied in Barndorff-Nielsen et al. (2010b) as a model for
electricity spot prices.

Let us consider an example:

Example 2. Motivated by the standard OU models, we choose

k∗0(t− s, x) = σ exp(−α(t− s+ x)),

for someα > 0. Thus, the spot price becomes

Yt =

∫ t

−∞
σ exp(−α(t− s)) dBs ,

18



6 CONSTRUCTING A SPOT MODEL FROM THE FORWARD MODEL

which we recognise as the stationary solution of the OU process

dYt = −αYt dt+ σ dBt .

The choice ofk∗0 can also be motivated from continuous time ARMA processes, see Brockwell (2001a,b).
For αi > 0, i = 1, . . . , p, p ≥ 1, introduce the matrix

A =

[
0 Ip−1

−αp −αp−1 · · · − α1

]
, (36)

whereIn denotes then× n identity matrix. Define thep–dimensional vectorb′ = (b0, b1, . . . , bp−1),
wherebq = 1 andbj = 0 for q < j < p, and introduce

k∗0(t− s, x) = b
′ exp(A(t− s+ x)ep ,

with ek being thekth canonical unit vector inRp. Then, as long as the eigenvalues ofA all have
negative real part, the stationary spot price is given as

Yt =

∫ t

−∞
b
′ exp(A(t− s))ep dBs .

This is a continuous–time ARMA process. Such spot models forelectricity have been suggested by
Bernhardt et al. (2008), with the driving noise being anα–stable Ĺevy process.

Remark 5. Recall that the Samuelson effect describes the empirical fact that the volatility of the
forward price converges to the volatility of the spot price when the time to maturity approaches zero.

This finding is in fact naturally included in our modelling framework when we model the (loga-
rithmic) forward price by an ambit field and the (logarithmic) spot price by anLSS process as long
as the assumptions above are satisfied. Recall that the conditional variance of the forward contract at
time t is given by

∫ ∞

0
k∗0(v, x)

2

∫ ∞

0
k1(ξ)

2σ2
t−v(ξ)dξdv,

which converges by construction and asx→ 0, and hencet→ T , to
∫ ∞

0
k2
0(v)

∫ ∞

0
k1(ξ)

2σ2
T−v(ξ)dξdv,

which is the conditional variance of the spot at maturity.

Example 3. Bjerksund et al. (2000) propose a geometric Brownian motionmodel for the electricity
forward price with volatility given byη(t, T ) = a/(T − t + b) for a, b two positive constants. They
argue that the Samuelson effect in electricity markets are much steeper than in other commodity
markets, defending the choice of a hyperbolic function rather than exponential. The volatilityη(t, T )
motivates the choice

k∗(t− s, x) =
a

t− s+ x+ b
,

which yields

g(t− s) =
a

t− s+ b
.

Hence, we have from above results that the forward dynamics converges to the spot under the addi-
tional hypothesis on the link betweenk1, σt, andω. Furthermore, the Samuelson effect holds for this.
(Note that

∫ t
−∞ g2(t− s)ds <∞ for a, b > 0, hence the integrability condition (A3) is satisfied.)
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7 MARTINGALE CONDITIONS AND CHANGE OF MEASURE

7 Martingale conditions and change of measure

7.1 Martingale conditions

According to the traditional modelling framework, the forward price is modelled such that it is a
semimartingale and so that there exists aP ∗–measure under which the price dynamics becomes a
(local) martingale. In the standard HJM framework in interest rate theory this is stated as a drift
condition on the dynamics. However, here we have an explicitdynamics, and the semimartingale
property is connected to the regularity of the input in the stochastic integral.

First, we will formulate the martingale conditions for moregeneral ambit fields as defined in (3),
where the ambit setAt(x) = At is chosen as in (26). Next, we show how such conditions simplify in
the new modelling framework described in (25).

Note that all proofs will be given in the appendix.

Theorem 1. Letx = T − t for someT > 0 and for a fixedt ∈ R write

Yt(x) = Yt(T − t) =

∫

At

h(ξ, s, T − t, t)σs(ξ)L(dξ, ds), whereAt = {(ξ, s) : ξ > 0, s ≤ t},

for a deterministic kernel functionh, an adapted, non–negative random fieldσ and a Ĺevy basisL
satisfying both (A1) and (A2) on an unbounded domain and (A3).

Then(Yt(T − t))t∈R is a martingale w.r.t.{Ft}t∈R if and only if for allξ > 0, s ≤ t ≤ T we have

h(ξ, s, T − t, t) = h̃(ξ, s, T ), (37)

for some deterministic kernel functioñh.

Remark 6. If we would like to work with Lévy basesL which do not have zero mean, then the
martingale conditions have to be extended by an additional drift condition.

Corollary 1. In the special case of the new model defined in (25), we get that(ft(T − t))t∈R is a
martingale w.r.t.{Ft}t∈R if and only if for all ξ > 0, s ≤ t ≤ T we have

k(ξ, t− s, T − t) = k̃(ξ, s, T ) , (38)

for a deterministic kernel functioñk.

Remark 7. Note that we have stated the martingale property for allt on the real line (which does not
include−∞). We refer to Basse-O’Connor et al. (2009) for a study on martingale properties at−∞.

However, in practical terms, we are mainly interested in themartingale property fort ≥ 0 since
this is when the market is active. Negative times areonlya modelling device in order to have stationary
models.

Remark 8. Note that when condition (38) is satisfied, thenft(x) =
∫
At
k̃(ξ, s, T )σs(ξ)L(ds, dξ). If

we construct a spot model from such a forward model as in Section 6 (under suitable conditions), then
we obtain a spot of the formST =

∫
AT

k̃(ξ, s, T )σs(ξ)L(ds, dξ), which includes the specification
in (31) as a special case. Further, similar to Remark 5, we canshow that also within the martingale
framework, we can account for the Samuelson effect.

Clearly, the martingale condition is rather strong and it ishence necessary to check whether there
are actually any relevant cases left, which are not excludedby condition (38). Hence, let us study
some examples.

First we show that the condition (38) covers the standard Heath et al. (1992) models, that come
from stochastic partial differential equations.
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7 MARTINGALE CONDITIONS AND CHANGE OF MEASURE

Example 4. The traditional way to model the forward dynamics using the Musiela parameterisation
with x = T − t, is given by

dft(x) =
∂ft

∂x
(x) dt + h(x, t) dWt ,

where, for simplicity, we disregard any spatial dependencyin the Gaussian fieldW so that it is indeed
a Brownian motion. Under appropriate (weak) conditions, the mild solution of this stochastic partial
differential equation (SPDE) is given by

ft(x) = Stf0(x) +

∫ t

0
St−sh(x, s) dWs ,

whereSt is the right–shift operator,Stg(x) = g(x + t), see Carmona & Tehranchi (2006), Da Prato
& Zabczyk (1992) for more details. Hence,

ft(x) = f0(x+ t) +

∫ t

0
h(s, (t+ x) − s) dWs = ft(T − t) = f0(T ) +

∫ t

0
h(s, T − s) dWs.

Thus, we see that the martingale condition (38) is satisfied.

Another important example is motivated by the Audet et al. (2004) model.

Example 5. In our modelling framework defined in (25), we choosek to be of the form

k(ξ, t− s, x) = k(ξ, t− s, T − t) = exp(−α((ξ + x) + (t− s))) = exp(−α((ξ + T − s))),

for someα > 0. Then the martingale condition is clearly satisfied.

Further important examples of kernel functions which satisfy the martingale condition can be
constructed as follows.

Example 6. We can focus on kernel functionsk which factorise like

k(ξ, t− s, x) = k∗0(t− s, x)k1(ξ),

as described in (34). Clearly, the choice of the functionk1 does not have any impact on the question
whether the ambit field is a martingale. This is determined bythe choice of the functionk∗0 .

Motivated from the Bjerksund et al. (2000) model, we could choose

k∗0(t− s, x) =
a

t− s+ x+ b
=

a

T − s+ b
,

for a, b > 0.
Also, motivated by the CARMA models discussed in Example 2, the following choice ofk∗0 is also

interesting:

k∗0(t− s, x) = b
′ exp(A(t− s+ x)ep ,

for thep–dimensional vectorb′ = (b0, b1, . . . , bp−1), wherebq = 1 andbj = 0 for q < j < p, with
ek being thekth canonical unit vector inRp and where the matrixA is defined as in (36).

So we have seen that it is possible to formulate martingale conditions for ambit fields and we have
studied some relevant examples of forward price models which satisfy the martingale condition. How-
ever, the martingale condition (37) implies that we cannot havet–dependence in the kernel function.
This unfortunately rules out many interesting more generalambit fields.

In the energy context, however, it might not be as crucial that ft(T − t) is a martingale as it is in
the context of modelling interest rates. In fact, as alreadyindicated in the Introduction, one can argue
that from a liquidity point of view, it would be possible to use non–martingales for modelling forward
prices since in many emerging electricity markets, one may not be able to find any buyer to get rid
of a forward, nor a seller when one wants to enter into one. Hence, the illiquidity prevents possible
arbitrage opportunities from being exercised.
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8 EXTENSIONS

7.2 Change of measure

If our forward price model is formulated under a risk–neutral pricing measure, it is of interest to
understand how to get back to the physical measure in order tohave a model for the observed prices.
We introduce an Esscher transform to accommodate this.

Throughout this section we will assume that the Lévy basis is homogeneousto simplify the nota-
tion.

Remark 9. Note that in order to define the change of measure we work on a market with finite time
horizonT ∗ > 0, hence we define our model onRT ∗ = (−∞, T ∗] rather than onR.

Define the process

Mθ
t = exp

(∫

At

θ(s, ξ)L(dξ, ds) −
∫

At

ψL′(−iθ(s, ξ)) dξ ds
)
, (39)

whereψL′ is the characteristic exponent of the seed ofL (and related toψL through equation (9)).
The deterministic functionθ : At 7→ RT ∗ is supposed to be integrable with respect to the Lévy basis
L in the sense of Walsh. Assume that

E

(
exp

(∫

At

ψL′(−iθ(s, ξ) dξ ds
))

<∞, for all t ∈ RT ∗ . (40)

Then we see thatMθ
t is a martingale with respect toFt with Mθ

0 = 1. We use this in order to
define an equivalent probabilityP by

dP

dP ∗

∣∣∣
Ft

= Mθ
t , (41)

for t ≥ 0. Hence, we have a change of measure from the risk neutral probability P ∗ under which
the forward price is defined to a real world probabilityP . In effect, the functionθ is an additional
parameter to be modelled and estimated, and it will play the role as themarket price of risk, as it
models the difference between the risk–neutral and objective price dynamics.

We compute the characteristic exponent of an integral ofL underP : For anyv ∈ R, and Walsh–
integrable functionf with respect toL, it holds that

log EP

[
exp(iv

∫

At

f(s, ξ)L(dξ, ds)

]
= log E

[
exp

(∫

At

ivf(s, ξ) + θ(s, ξ)L(dξ, ds)

)]

× exp

(
−
∫

At

ψL′(−iθ(s, ξ)) dξ ds
)

=

∫

At

ψL′(vf(s, ξ) − iθ(s, ξ)) − ψL′(−iθ(s, ξ)) dξ ds .

Note that the transform above is a simple generalization of the Esscher transform of Lévy pro-
cesses, see Shiryaev (1999) and Benth,Šaltytė Benth & Koekebakker (2008) for more details on this
aspect.

8 Extensions

We consider various extensions of our model, in particular,a geometric forward model and the ques-
tion of how to model forwards with delivery period.
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8.1 Geometric modelling framework

So far, we have worked with an arithmetic model for the forward price since this is a very natural
model choice and is in line with the traditional random field based models where the forward rate
is directly modelled by e.g. a Gaussian random field. However, standard critical arguments include
that such models can in principal produce negative prices and hence might not be realistic in practice.
One way to overcome that problem would be to work with positive Lévy bases (recall that the kernel
function and the stochastic volatility component in the ambit field are by definition positive). Clearly,
in such a set–up we would have to relax the zero–mean assumption. But this is straightforward to
do. An alternative and more traditional approach would be towork with geometric models, i.e. we
model the forward price as the exponential of an ambit processes. Most of the results we derived
before can be directly carried over to the geometric set–up.E.g. when we study the link between
the forward price and the spot price, this has to be interpreted as the link between the logarithmic
forward price and the logarithmic spot price. Likewise, when looking at probabilistic properties such
as the moments and cumulants of the processes, they can be regarded as the moments/cumulants of
the logarithmic forward price.

The only result, which indeed needs some adjustment, is in fact the martingale property. The
condition on the kernel functionh stays the same as in Theorem 1 when we go to the geometric model
framework, but on top of that there will be an additional drift condition. In order to keep the exposition
as simple as possible, we will focus onhomogeneousLévy bases, see Section 3.2, in this section.

Before we formulate the martingale condition, we specify anadditional integrability assumption.

Assumption (A4) Let Y be defined as in (3), where we assume thatL is ahomogeneousLévy basis
with conditional characteristic exponentψσ

L′ andh satisfies the condition of Theorem 1. We
assume that

E

(
exp

(∫

At

ψσ
L′(−ih̃(ξ, s, T )σs(ξ))dξds

))
<∞, for all t ∈ R.

Now we can formulate the martingale conditions for the geometric forward price model.

Theorem 2. LetAt = {(ξ, s) : s ≤ t;x ≥ 0} and letψL′ denote the characteristic exponent of the
homogeneous Ĺevy basisL andψσ

L′ the corresponding conditional characteristic exponent. Further,
we assume that the integrability condition (A4) is satisfied. Then, the forward price at timet with
delivery at timet ≤ T , ft(T ) = (ft(T ))t≤T with

ft(T ) = exp

(∫

At

h̃(ξ, s, T )σs(ξ)L(dξ, ds) −
∫

At

ψσ
L′(−ih̃(ξ, s, T )σs(ξ))dξds

)
,

is a martingale with respect to{Ft}t∈R.

Consider the example of a Gaussian Lévy basis:

Example 7. In the special case thatL = W is a standardised, homogeneous Gaussian Lévy basis
and that (A4) is satisfied, we have that

ft(T ) = exp

(∫

At

h̃(ξ, s, T )σs(ξ)W (dξ, ds) − 1

2

∫

At

h̃2(ξ, s, T )σ2
s(ξ)dξds

)
,

is a martingale with respect to{Ft}t∈R.
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9 CONCLUSION

8.2 Outlook on how to include period of delivery into the modelling framework

So far, we have focused on forward prices with fixed delivery time, i.e. onft(x) = ft(T−t). However,
in energy markets, there is not just a time of deliveryT , but typically adelivery period, i.e. at time of
deliveryT = T1 a certain amount of electricity, say, gets delivered until timeT2 for someT2 ≥ T1, see
e.g. Benth,̌Saltytė Benth & Koekebakker (2008, Chapter 6) and Barth & Benth (2010). The forward
priceFt(T1, T2) at timet with delivery period[T1, T2] is defined by (see e.g. Benth,Šaltytė Benth &
Koekebakker (2008))

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

ft(u− t)du.

Hence, given an ambit model offt(x), we simply average it over the delivery period in order to have
the forward price for a contract with delivery period.

Alternatively, we could think of modellingFt(T1, T2) directly – by an ambit field. The main idea
here is to include the length of the delivery periodτ := T2 − T1 as an additional spatial component.
E.g. we could think of using

∫

At(x,τ)
k(ξ, χ, t− s, τ, x)σs(ξ, χ)L(dξ, dχ, ds),

as a building block forFt(T1, T2). The main obstacle in building such models is the no–arbitrage
condition between contracts with overlapping delivery periods. In fact, any model forFt(T1, T2)
must satisfy (see Benth,Šaltytė Benth & Koekebakker (2008))

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Ft(τ, τ) dτ ,

which puts serious restrictions on the degrees of freedom inmodelling.
It will be interesting to study the analytical properties ofsuch models in more detail in future

research.

8.3 A short note on the relationship between spot, forward and delivery period

We have previously discussed how a spot model can be constructed from our general forward model.
However, it is well–known that there is no convergence of electricity forward prices to the spot as time
to start of deliveryapproaches. That is, if the delivery period is[T1, T2], T1 < T2, then the forward
priceFt(T1, T2) at timet does not converge to the spot price ast → T1. One could mimic such a
behaviour with the model class we study here, by choosing the‘delivery time’ T as the mid–point,
say, in the delivery interval[T1, T2], T = (T1 + T2)/2. Then we can still associate a spot price to
the forward dynamicsft(x), but we will never actually observe the convergence in the market since
at start of delivery we havex = (T2 − T1)/2. On the other hand, we will get a model where there
is an explicit connection between the forward at ”maturity”t = T1 and the spotYT1. This opens for
modelling spot and forward jointly, taking into account their dependency structure.

9 Conclusion

This paper presents a new modelling framework for electricity forward prices. We propose to use
ambit fields which are special types of tempo–spatial randomfields as the building block for the new
modelling class. Ambit fields are constructed by stochasticintegration with respect to Lévy bases and
we have argued in favour of the integration concept of Walsh (1986) in the context of financial ap-
plications since it enables us to derive martingale conditions for the forward prices. Furthermore, we
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A PROOFS AND SOME FURTHER RESULTS

have shown that forward and spot prices can be linked to each other within the ambit field framework.
Also, we have discussed relevant examples of model specifications within the new modelling frame-
work and have related them to the traditional modelling concepts. In addition, we have discussed how
a change of measure between the risk–neutral and physical probability measure can be carried out,
so that our model can be used both for option pricing purposesand for statistical studies under the
physical measure.

A natural next step to take is to test our new model empirically and to study statistical aspects
related to our ambit–field models, such as model estimation and model specification tests etc.. We
plan to address these issues in detail in future research.

Another interesting aspect, which we leave for future research, is to adapt our modelling frame-
work for applications to the term structure of interest rates.

A Proofs and some further results

A.1 Explicit results for Example 1

Note that
∫ ∞

0

(
1 −

√
1 + c2 exp(−2α(ξ − s))

)
dξ = − 1

2α

[(
2
√

1 + c2 exp(2αs) − 2
)

+


2 log(2) − log




(√
1 + c2 exp(2αs) + 1

)
c2 exp(2αs)

√
1 + c2 exp(2αs) − 1






 .

Hence, we get

−8α2

δγ
log(E(ivft(x))) = −8 + 8 ln (2) − 4 ln

(
c2
)
− 2 (ln (2))2 + 4 ln (2) ln

(
c2
)

+ 8
√

1 + c2e2 tα + 4 ln
(
−1 +

√
1 + c2e2 tα

)
− 4 ln

(
1 +

√
1 + c2e2 tα

)

+
(
ln
(
−1 +

√
1 + c2e2 tα

))2
+ 4 dilog

(
1/2 + 1/2

√
1 + c2e2 tα

)

− 4 ln
(
−1 +

√
1 + c2e2 tα

)
ln (2) + 2 ln

(
−1 +

√
1 + c2e2 tα

)
ln
(
1 +

√
1 + c2e2 tα

)

−
(
ln
(
1 +

√
1 + c2e2 tα

))2
− 8 tα+ 8 ln (2) tα−

(
ln
(
c2e2 tα

))2
,

where the dilogarithm function is defined by dilog(t) =
∫ t
1

log(x)
1−x dx for t > 1.

A.2 Proof of the martingale condition

Proof of Theorem 1.From the definition of a martingale, we must show that

E[Yt(T − t) | Ft̃] = Yt̃(T − t̃) , for all t̃ ≤ t .

Note that for̃t ≤ t, we have thatAt̃ ⊆ At. Using the independence property ofσ andL and the fact
thatL is a zero mean process, we find

E[Yt(T − t) | Ft̃]

= E

[∫

A
t̃

h(ξ, s, T − t, t)σs(ξ)L(dξ, ds) +

∫

At\At̃

h(ξ, s, T − t, t)σs(ξ)L(dξ, ds)

∣∣∣∣∣ Ft̃

]

=

∫

A
t̃

h(ξ, s, t, T − t)σs(ξ)L(dξ, ds) = Yt̃(T − t̃) + It̃(T − t̃),
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where

It̃(T − t̃) =

∫

A
t̃

{
h(ξ, s, T − t, t) − h(ξ, s, T − t̃, t̃)

}
σs(ξ)L(dξ, ds) .

Without loss of generality we assume thatV ar(L) = 1. SinceL is a Lévy basis with zero mean, we
know thatE(It̃(T − t̃)) = 0 and from the Itô isometry we therefore get that

V ar(It̃(T − t̃)) =

∫

A
t̃

{
h(ξ, s, T − t, t) − h(ξ, s, T − t̃, t̃)

}2
E(σ2

s(ξ))dξds.

Thus, in order to obtainIt̃(T − t̃) = 0, we need that for all0 ≤ ξ, s ≤ t̃ ≤ t ≤ T

h(ξ, s, t, T − t) = h(ξ, s, t̃, T − t̃) . (42)

When we look at condition (42) more closely, then we observe that there is in fact only one class of
functions, which satisfy such a condition, i.e. functions of the form

h(ξ, s, T − t, t) = h̃(ξ, s, T ),

for all ξ ≥ 0, s ≤ t̃ ≤ t ≤ T for some deterministic kernel functioñh.

Proof of Theorem 2.We show thatM = (Mt)t∈R with Mt = exp(Yt(T − t) − dt) is a martingale
with respect to{Ft}t∈R where

Yt(T − t) =

∫

At

h̃(ξ, s, T )σs(ξ)L(ds, dξ), dt =

∫

At

ψσ
L′(−ih̃(ξ, s, T )σs(ξ))dξds,

whereψL′ is the characteristic exponent ofL conditional onσ andAt = {(ξ, s) : s ≤ t;x ≥
0}. Clearly,M is measurable with respect to{Ft}t∈R and also integrable due to the integrability
assumption (A4). Further, for all̃t ≤ t, we have that

E(Mt|Ft̃) = E (exp(Yt(T − t) − dt)| Ft̃

)

= E

(
exp

(∫

A
t̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ) +

∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ) − dt̃ + dt̃ − dt

)∣∣∣∣∣Ft̃

)

= Mt̃ E

(
exp

(∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ) − (dt − dt̃)

)∣∣∣∣∣Ft̃

)
.

Using the formula for the characteristic functions of integrals with respect to Lévy bases, see Rajput
& Rosinski (1989) and Section 3.2, we get

E

(
exp

(∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ)

)∣∣∣∣∣Ft̃

)

= E

(
E

(
exp

(∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(dξ, ds)

)∣∣∣∣∣F t̃

)∣∣∣∣∣Ft̃

)

= E

(
exp

(∫

At\At̃

ψσ
L′(h̃(ξ, s, T )σs(ξ))dξds

)∣∣∣∣∣Ft̃

)
= E

(
exp

(
dt − dt̃

)∣∣Ft̃

)
.

Hence the result follows.
In the special case thatL is a standardised, homogeneous Gaussian Lévy basis, the drift is given

by

dt =
1

2

∫

At

h̃2(ξ, s, T )σ2
s (ξ)dξds.
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A.3 Second order structure of ambit fields and cross correlations

We provide some results on the probabilistic properties of the ambit fields which are useful in mod-
elling.

A.3.1 Second order structure of ambit fields

Now we study the second order properties of a general ambit field given by

Yt(x) =

∫

At(x)
h(s, ξ, t, x)σs(ξ)L(ds, dξ), (43)

for a Lévy basisL (not necessarily with zero mean), a homogeneous ambit setAt(x) (as defined
above) and a processσ which is independent ofL and whereh denotes a damping function (ensuring
that the integral exists). In order to compute various moments of the ambit field, we work with the
Lévy–Itô decomposition:

Yt(x) =

∫

At(x)
h(s, ξ, t, x)σs(ξ)

√
bW (dξ, ds) +

∫

At(x)

∫

{|y|≤1}
yh(s, ξ, t, x)σs(ξ)(N − ν)(dy, ds, dξ)

+

∫

At(x)

∫

{|y|≥1}
yh(s, ξ, t, x)σs(ξ)N(dy, ds, dξ),

whereb > 0 (w.l.o.g. we chooseb to be a constant and not depending on(ξ, s)) andN is a Poisson
random measure with compensatorν. Hence,N(A) ∼ Poisson(ν(A)) and, in particular,

E(N(A)) = ν(A) = V ar(N(A)), E((N(A)2) = ν(A) + ν(A)2.

Furthermore, we know that

E (N(A) − ν(A)) = 0, V ar(N(A) − ν(A)) = E(N(A) − ν(A))2 = ν(A).

Assumption (H) In the following, we work under the assumptions that

• The generalised Lévy measureν is factorisable, i.e.ν(dy, dη) = U(dy)µ(dη), for η = (ξ, s),

• the measureµ is homogeneous, i.e.µ(dη) = cdη, for a constantc ∈ R. For ease of exposition,
we choosec = 1. Hence, we haveν(dy, ds, dξ) = U(dy)dsdξ.

Furthermore, we use the following notation. Letκ1 =
∫
{|y|≥1} yU(dy) andκ2 =

∫
R
y2U(dy) and

define a functionρ : R
4 → R by

ρ(s, s̃, ξ, ξ̃) = E

(
σs(ξ)σs̃(ξ̃)

)
− E (σs(ξ)) E

(
σs̃(ξ̃)

)
, (44)

for s, s̃, ξ, ξ̃ ≥ 0.

Theorem 3. Let t, t̃, x, x̃ ≥ 0 and letYt(x) be an ambit field as defined in (43) and assume that
assumption (H) holds. The second order structure is then given by

E (Yt(x)| σ) = κ1

∫

At(x)
h(s, ξ, t, x)σs(ξ)dsdξ,

E (Yt(x)) = κ1

∫

At(x)
h(s, ξ, t, x)E (σs(ξ)) dsdξ.
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The variance is given by

V ar (Yt(x)| σ) = (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)σ2

s (ξ)dsdξ,

V ar (Yt(x)) = (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)E

(
σ2

s(ξ)
)
dsdξ

+ κ2
1

∫

At(x)

∫

At(x)
h(s, ξ, t, x)h(s̃, ξ̃, t, x)ρ(s, s̃, ξ, ξ̃)dsdξds̃dξ̃.

The covariance is given by

Cov (Yt(x), Yt̃(x̃)| σ) = (b+ κ2)

∫

At(x)∩A
t̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ2

s(ξ)dξds,

Cov (Yt(x), Yt̃(x̃)) = (b+ κ2)

∫

At(x)∩A
t̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2

s(ξ)
)
dξds

+ κ2
1

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)ρ(s, s̃, ξ, ξ̃)ds̃dξ̃dsdξ.

Corollary 2. The conditional correlation is given by

Cor (Yt(x), Yt̃(x̃)| σ) =

∫
At(x)∩A

t̃
(x̃) h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ

2
s(ξ)dξds√∫

At(x) h
2(s, ξ, t, x)σ2

s (ξ)dξds
∫
A

t̃
(x̃) h

2(s̃, ξ̃, t̃, x̃)σ2
s̃(ξ̃)dξ̃ds̃

.

For κ1 = 0, the unconditional correlation is given by

Cor (Yt(x), Yt̃(x̃)) =

∫
At(x)∩A

t̃
(x̃) h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2

s(ξ)
)
dξds

√∫
At(x) h

2(s, ξ, t, x)E (σ2
s(ξ)) dξds

∫
A

t̃
(x̃) h

2(s̃, ξ̃, t̃, x̃)E
(
σ2

s̃(ξ̃)
)
dξ̃ds̃

.

A.3.2 Cross correlation

Next, we study the cross correlation, when we have a pair of ambit fields, i.e.

Y
(i)
t (x) =

∫

A
(i)
t

(x)
h(i)(s, ξ, t, x)σ(i)

s (ξ)L(i)(ds, dξ),

for i = 1, 2, whereh(i), σ(i) andL(i) are defined as above. The corresponding Lévy–Itô decomposi-
tion is then given by

Y
(i)
t (x) =

∫

A
(i)
t

(x)
h(i)(s, ξ, t, x)σ(i)

s (ξ)
√
b(i)W (i)(dξ, ds)

+

∫

A
(i)
t

(x)

∫

{|y|≤1}
yh(i)(s, ξ, t, x)σ(i)

s (ξ)(N (i) − ν(i))(dy, ds, dξ)

+

∫

At(x)(i)

∫

{|y|≥1}
yh(i)(s, ξ, t, x)σ(i)

s (ξ)N (i)(dy, ds, dξ),

where bI) > 0 andN (i) is a Poisson random measure with compensatorν(i). We assume that
(L(1), L(2)) is a homogeneous Lévy basis with generalised Lévy measure

ν(y1, y2, s1, s2, ξ1, ξ2) = U(y1, y2)µ(s1, s2, ξ1, ξ2).

Since we consider only homogeneous Lévy bases, we get

ν(dy1, dy2, ds1, ds2, dξ1, dξ2) = U(dy1, dy2)ds1ds2dξ1dξ2,

where we set the proportionality constant to 1.
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Correlation betweenY (1) and Y (2)

We distinguish two cases:

• Y is a driven by a Gaussian Lévy basis.

• Y is a driven by a pure jumps Lévy basis.

Theorem 4. Under the assumptions above, we get the following covariation functions.

Gaussian Ĺevy baseLetL(i) be a Gaussian Ĺevy base fori = 1, 2 and letρ denote the corresponding
correlation coefficient, i.e.ρdξds = Cov

(
W (1)(dξ, ds),W (2)(dξ, ds)

)
. Then

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
∣∣∣σ(1), σ(2)

)

= ρ
√
b(1)b(2)

∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)σ(1)

s (ξ)σ(2)
s (ξ)dsdξ.

The unconditional covariation is given by

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
)

= ρ
√
b(1)b(2)

∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)Υ(s, ξ)dsdξ,

where

Υ(s, ξ) = E

(
σ(1)

s (ξ)σ(2)
s (ξ)

)
− E

(
σ(1)

s (ξ)
)

E

(
σ(2)

s (ξ)
)
.

The pure jump case LetL(i) be a pure jump Ĺevy base fori = 1, 2 and letκ1,1 =
∫
|y|≥1

∫
|y′|≥1 yy

′U(dy, dy′).
Then

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
∣∣∣σ(1), σ(2)

)

=
(
κ1,1 − κ

(1)
1 κ

(2)
1

)∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)σ(1)

s (ξ)σ(2)
s (ξ)dsdξ.

The unconditional variance is then given by

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
)

=

∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)Υ̃(s, s, ξ, ξ)dsdξ

+

∫

A
(1)
t

(x)

∫

A
(2)
t

(x)
h(1)(s, ξ, t, x)h(2)(s̃, ξ̃, t̃, x̃)Υ̃(s, s̃, ξ, ξ̃)ds̃dξ̃dsdξ,

where

Υ̃(s, s̃, ξ, ξ̃) = κ1,1E

(
σ(1)

s (ξ)σ
(2)
s̃ (ξ̃)

)
− κ

(1)
1 κ

(2)
1 E

(
σ(1)

s (ξ)
)

E

(
σ

(2)
s̃ (ξ̃)

)
.

A.3.3 Proofs of the second order properties

Proof of Theorem 3.Recall thatκ1 =
∫
|y|≥1 yU(dy) andκ2 =

∫
R
y2U(dy). Then

E (Yt(x)| σ) =

∫

At(x)

∫

{|y|≥1}
yh(s, ξ, t, x)σs(ξ)U(dy)dsdξ = κ1

∫

At(x)
h(s, ξ, t, x)σs(ξ)dsdξ,

E (Yt(x)) = κ1

∫

At(x)
h(s, ξ, t, x)E (σs(ξ)) dsdξ.
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For the second moment, we get

E
(
Yt(x)

2
∣∣σ
)

= (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)σ2

s (ξ)dsdξ + κ2
1

(∫

At(x)
h(s, ξ, t, x)σs(ξ)dsdξ

)2

,

E
(
Yt(x)

2
)

= (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)E

(
σ2

s(ξ)
)
dsdξ

+ κ2
1

∫

At(x)

∫

At(x)
h(s, ξ, t, x)h(s̃, ξ̃, t, x)E

(
σs(ξ)σs̃(ξ̃)

)
dsdξds̃dξ̃.

The conditional and unconditional variance is then given by

V ar (Yt(x)| σ) = (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)σ2

s (ξ)dsdξ,

V ar (Yt(x)) = E (V ar (Yt(x)| σ)) + V ar (E (Yt(x)| σ))

= (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)E

(
σ2

s(ξ)
)
dsdξ

+ κ2
1

∫

At(x)

∫

At(x)
h(s, ξ, t, x)h(s̃, ξ̃, t, x)ρ(s, s̃, ξ, ξ̃)dsdξds̃dξ̃.

Next, we compute the covariance. In order to do that, we use throughout that fory, ỹ ∈ R and
(s, ξ), (s̃, ξ̃) ∈ At(x) ∩At̃(x̃):

E

(
N(dy, ds, dξ)N(dỹ, ds̃, dξ̃)

)
= ν(dy, ds, dξ)ν(dỹ, ds̃, dξ̃) + ν(dmin(y, ỹ), dmin(s, s̃), dmin(ξ, ξ̃)),

and

E

(
(N − ν)(dy, ds, dξ)(N − ν)(dỹ, ds̃, dξ̃)

)
= ν(dmin(y, ỹ), dmin(s, s̃), dmin(ξ, ξ̃)).

For the product, we get

E (Yt(x)Yt̃(x̃)| σ) = (b+ κ2)

∫

At(x)∩A
t̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ2

s(ξ)dξds

+ κ2
1

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)σs(ξ)σs̃(ξ̃)ds̃dξ̃dsdξ,

E (Yt(x)Yt̃(x̃)) = (b+ κ2)

∫

At(x)∩A
t̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2

s(ξ)
)
dξds

+ κ2
1

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)E

(
σs(ξ)σs̃(ξ̃)

)
ds̃dξ̃dsdξ.

Therefore, the covariance is given by

Cov (Yt(x), Yt̃(x̃)| σ) = (b+ κ2)

∫

At(x)∩A
t̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ2

s(ξ)dξds,

Cov (Yt(x), Yt̃(x̃)) = (b+ κ2)

∫

At(x)∩A
t̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2

s(ξ)
)
dξds

+ κ2
1

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)ρ(s, s̃, ξ, ξ̃)ds̃dξ̃dsdξ.

30



REFERENCES

Acknowledgement

Financial support by the Center for Research in EconometricAnalysis of Time Series, CREATES,
funded by the Danish National Research Foundation is gratefully acknowledged by the third author.

References

Albeverio, S., Lytvynov, E. & Mahning, A. (2004), ‘A model ofthe term structure of interest rates
based on Lévy fields’,Stochastic Processes and their Applications114, 251–263.

Andresen, A., Koekebakker, S. & Westgaard, S. (2010), ‘Modeling electricity forward prices and
options on electricity forwards using the multivariate normal inverse Gaussian distribution’,Journal
of Energy Markets. Forthcoming.
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