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1 Introduction

Volatility modeling has been one of the most heavily researched topics of financial

econometrics since the introduction of the ARCH and GARCH models by Engle (1982)

and Bollerslev (1986), respectively. Since then, a lot of progress has been made by

incorporating stylized facts about volatility such as the leverage effect, volatility clus-

tering, and strong persistence into these models. Another important improvement has

been the availability of high-frequency observations that has permitted more precise

measures of volatility as input to these models. A topic that is still relevant to ex-

amine is which variables can be used together with different dynamic specifications to

improve upon the forecast performance.

This paper considers the role of implied volatility together with two different dynamic

specifications, the HAR model of Corsi (2009) and the ARFIMA model introduced in

Hosking (1981), to investigate how these models perform when forecasting volatility

out-of-sample in the stock market. The role of implied volatility with a class of HAR

models has already been investigated in Busch, Christensen & Nielsen (2009). Hence,

the main contributions of this paper come from extending their forecasting framework

in three directions. First, the methodology applied to separate volatility and jumps is

robust to the presence of both jumps and market microstructure noise, which allows for

an investigation of the dynamic properties of both jumps and volatility. Secondly, their

forecasting framework is extended to a class of single equation ARFIMA models that

does not suffer from the limitations of a simple approximate long-memory structure.

Finally, a vectorized ARFIMA model (vecARFIMA) is introduced as an alternative

to the vecHAR model.

Recent advances in volatility forecasting such as Andersen, Bollerslev, Diebold &

Labys (2003) and Chiriac & Voev (2009) show that simple time series models outper-

form the popular class of GARCH models when forecasting in both a univariate and

a multivariate framework. Furthermore, Andersen, Bollerslev & Diebold (2007) show

that a separation of the continuous and jump parts of realized volatility, and using

both components in the information set, leads to significant gains when forecasting fu-

ture volatility. The two components play distinctly different roles in forecasting since

the two quantities posses just as different time series properties. The continuous part

is highly persistent, while the jump component is less serially correlated. Estimation

of volatility in the presence of both jumps and market microstructure noise is still an

intensely researched field. Recent advances includes a ”Swap Variance” approach by
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Jiang & Oomen (2008) and the modulated realized volatility approach by Podolskij &

Vetter (2009a, 2009b), which is the methodology applied in this paper. This method-

ology offers a consistent estimator of volatility both when jumps are present, the

modulated bipower variation estimator, and when jumps are absent, the modulated

realized volatility estimator, together with a jump testing framework. This framework

is applied to construct separate series of diffusive volatility and jump variation that

are used as input in the dynamic models together with a series of implied volatility.

Hence, the empirical analysis in this paper exploits the properties of volatility and

jumps fully since both components are guaranteed to be estimated consistently.

Following Busch et al. (2009), implied volatility is added as an exogenous regressor to

different specifications of both the HAR- and ARFIMA model to examine the effect

of adding implied volatility in both frameworks, and to determine how well these two

different dynamic specifications fare when forecasting modulated realized volatility

out-of-sample. These two models are supposed to capture the long-memory properties

of volatility, making it relevant to determine how well the simple approximate long-

memory HAR model compares to the more complicated ARFIMA dynamics.

The results from the single equation forecasting framework are clear-cut. Implied

volatility improves model performance both in- and out-of-sample for all HAR and

ARFIMA specifications. Implied volatility conveys incremental information about

future volatility relative to the continuous and jump components of volatility. This

adds to the work of Busch et al. (2009) and Christensen & Prabhala (1998) by showing

that the incremental information of implied volatility carry over to a highly non-linear

long-memory model. Another important finding in this paper is that the ARFIMA

models dominate the HAR specifications when forecasting volatility over the course

of a month both with and without implied volatility in the information set. Implied

volatility does not completely subsume the explanatory effect of the other variables

in the ARFIMA framework, showing the importance of allowing for a richer set of

dynamics.

The conclusions are supported by the results of the simultaneous equation vecARFIMA

and vecHAR models. Implied volatility plays a highly significant role in forecasting

future volatility. Furthermore, the dynamics of the continuous volatility component is

better captured by the ARFIMA structure compared to the HAR specification.These

simultaneous equation systems solve possible misspecifications due to endogeneity is-

sues in the single equation framework. Hence, the conclusions from these models add

robustness to the results of the single equation framework.
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The outline of the paper is as follows. In the next section, the methodology of Podol-

skij & Vetter (2009a, 2009b) for noise-robust separation of the continuous and jump

volatility components is described. Section 3 discusses VIX as a measure of implied

volatility. The data is described in Section 4. Section 5 presents the different dynamic

specifications used in the paper. Section 6 presents and discusses the results of the

empirical analysis, and Section 7 concludes.

2 Basic Notation and Definitions

The observable logarithmic asset price is assumed to follow an Itô diffusion process

which can be decomposed into three components. The first component is the efficient

price process

Xt = X0 +

t∫
0

asds+

t∫
0

σsdWs (1)

where W denotes the driving standard Brownian Motion, as is a locally bounded

predictable drift term, and σs > 0 is a cadlag volatility process. The efficient price

is thus a Brownian semimartingale, and it is defined on a filtered probability space

(Ω, F , (Ft), P ).

The traditional realized variance estimator is shown by Merton (1980) to perfectly

estimate integrated volatility, Ω =
∫ 1

0
σ2
sds, which is the quantity of interest, in a

setting where prices are observed continuously and without measurement error. How-

ever, when the efficient price process is no longer directly observable due to market

microstructure noise, Hansen & Lunde (2006) show that the realized variance esti-

mator is severely biased even in a simple setting with an i.i.d. noise component.

Furthermore, the price is not observed continuously, but only at the times the asset

is traded.

Hence, the price Y is defined to be observed at a grid ti = i/n, i = 0, . . . , n for each

day where the increments are assumed to be evenly spaced. Furthermore, Y contains

a noise process, which constitutes the second component of the observable logarithmic

asset price. Hence, Y can be written

Yi/n = Xi/n + Ui (2)

where X is the efficient price process in (1), and (Ui)0≤i≤n is assumed to be an i.i.d.

noise process which can be defined following the procedure of Podolskij & Vetter
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(2009b). It is assumed that X and U are independent and

E(Ui) = 0, E(U2
i ) = ω2. (3)

Motivation for the final component is given in Barndorff-Nielsen & Shephard (2006),

who show that realized variance can be separated into a continuous and a jump part.

Following the methodology of Podolskij & Vetter (2009b), the model considered when

both market microstructure noise and jumps are present is defined as

Z = Y + J (4)

where Y is the noisy diffusion process in (2) and J is assumed to be a finite activity

jump process. An example of a finite activity jump process is the compound Poisson

process.

As shown in Barndorff-Nielsen & Shephard (2006), it is critically important to test

for the presence of jumps when making the separation of the continuous and jump

components, which will be used in the dynamic analysis in later sections. Hence,

the following four subsections review estimation both with and without jumps in the

presence of market microstructure noise together with a testing framework for jumps

based on Podolskij & Vetter (2009a, 2009b).

2.1 The General Class of Estimators

The general class of estimators is based on a pre-averaged generalization of the realized

variance- and the bipower variation framework. It can be used to robustly estimate

arbitrary powers of integrated volatility in the presence of market microstructure noise

and a finite activity jump process. The class of modulated bipower variation statistics

is represented as

MBV (Y, r, l)n = n(r+l)/4−1/2

M∑
m=1

|Ȳ (K)
m |r|Ȳ (K)

m+1|l, r, l ≥ 0, (5)

Ȳ (K)
m =

1

n/M −K + 1

mn/M−K∑
i=(m−1)n/M

(Y(i+K)/n − Yi/n), (6)

where

K = c1n
1/2, M =

n1/2

c1c2

(7)
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for some constants c1 and c2 that have been chosen to minimize the variance of the

estimator

c1 =

√
18

(c2 − 1)(4− c2)
· ω

2

Ω
, c2 =

8

5
(8)

where Ω is the integrated volatility from the process in (1)1. The intuition behind

the pre-averaged quantities Ȳ
(K)
m is that the stochastic order of the noise component

in (2) is smaller than that of the diffusion process X, and hence, the variance of the

noise component is averaged out. This means that Ȳ
(K)
m behaves like an increment in

X and, as a result, it contains information about Ω. However, the class of statistics

MBV (Y, r, l)n has a bias that must be corrected.

2.2 Modulated Realized Volatility

Assuming no jumps in the underlying diffusion process with noise in (2), the modulated

realized volatility estimator given by Podolskij & Vetter (2009b) consistently estimates

volatility. It is expressed as

MRV (Y )n :=
c1c2MBV (Y, 2, 0)n − ν2ω̂

2

ν1

P−→
1∫

0

σ2
udu (9)

where the constants ν1 and ν2 are given by

ν1 =
c1max[3c2 − 4 + (2− c2)3, 0]

3(c2 − 1)2
, ν2 =

2min[c2 − 1, 1]

c1(c2 − 1)2
. (10)

The noise variance ω2 can be found consistently by an estimator proposed by Zhang,

Mykland & Aı̈t-Sahalia (2005)

ω̂2 =
1

2n

n∑
i=1

|Yi/n − Y(i−1)/n|2. (11)

When c1 and c2 are chosen optimally as in (8), the maximum and the minimum of

the two functions in (10) will be determined straightforwardly since c2 is constant.

The modulated realized volatility estimator avoids the bias of the realized variance

estimator by pre-averaging and bias correcting.

1This complicates estimation since the quantity of interest has to be used as a part of the estimator.
A solution is to estimate

√
Ω and use this estimate as input in the modulated bipower variation class

of statistics. This is discussed in Section 4.
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2.3 Modulated Bipower Variation

According to Cont & Tankov (2004), a striking feature from observing price movements

for the stock market is that almost a third of the downward movements in the stock

price can be characterized as being discontinuous. Since one of the properties of

the Brownian motion is continuity, improvements can be made by including jump

processes when modeling logarithmic asset prices.

Assuming that there is a finite activity jump process in addition to the noisy diffusion

model as in (4), Podolskij & Vetter (2009b) propose the modulated bipower variation

estimator

MBV (Z)n :=
(c1c2/µ

2
1)MBV (Z, 1, 1)n − ν2ω̂

2

ν1

P−→
1∫

0

σ2
udu (12)

where

µr = 2r/2
Γ
(

1
2
(r + 1)

)
Γ
(

1
2

) (13)

which is robust even in the presence of market microstructure noise and a finite activity

jump process. The set (c1, c2, ν1, ν2) is the same as in (8) and (10), and the estimator

of ω̂ is the same as (11) since it is robust to jumps. It is interesting to note that the

presence of jumps invalidates the consistency of the estimator MRV (Z)n.

2.4 Testing for the Presence of Jumps in a Noisy Diffusion

Setting

In order to separate the continuous and jump components of MRV (Y )n, a test for

the significance of jumps must be defined. Podolskij & Vetter (2009a) propose a

test for jumps for more generalized versions of the modulated bipower variation class

of statistics. They allow Ȳ
(K)
m in (6) to be weighted using a simple kernel function

g(x) = min[x, 1− x] for x ∈ (0, 1).

However, in order to draw inference on the quadratic jump component of theMRV (Y )n,

both MBV (Y, 2, 0)n and MBV (Z, 1, 1)n must be estimated using equal weights as in

Podolskij & Vetter (2009b). These estimators are consistent in the generalized jump

testing setting whenever l + r is an even number, and consequently, these estimators

can be used to test the null hypothesis of no jumps. The distribution of the test can
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be written as

n1/4(MBV (Y, 2, 0)n − µ−2
1 MBV (Z, 1, 1)n)

L−→MN(0, τ 2). (14)

This distribution can be used to derive a test for jumps in the underlying noisy diffusion

process Y in (2). τ 2 is estimated robustly to both jumps and market microstructure

noise as

τ̂ 2
n = ŵ11 − 2µ−2

1 ŵ12 + µ−4
1 ŵ22 (15)

where an estimator of each ŵpq is based on the pre-averaging methodology and is given

in Podolskij & Vetter (2009a), and µ1 is given in (13). A test statistic follows from

stable convergence in law.

Sn = n
1
4
MBV (Y, 2, 0)n − µ−2

1 MBV (Z, 1, 1)n
τ̂n

L−→MN(0, 1). (16)

Under the alternative hypothesis, (MBV (Y, 2, 0)n − µ−2
1 MBV (Z, 1, 1)n) converges to

a strictly positive quantity because the estimated jump component is quadratic. Since

τ̂ 2
n robustly estimates τ 2 in the presence of market microstructure noise and jumps,

Sn tends to infinity as the realizations of Z have discontinuous paths. However, Sn

may be negative in finite samples due to sample variation. This necessitates the need

for a notion of a significant jump component.

The significant jump component of MRV (Y )n can be found as

Jn = I{Sn>Φ−1
1−α}

(MRV (Y )n −MBV (Z)n) (17)

where IA is an indicator for the event A, Φ−1
1−α defines the (1 − α) quantile in the

standard normal distribution, and α is the significance level (chosen to be 0.05). The

continuous volatility component can similarly be defined as

Cn = MRV (Y )n − Jn. (18)

Since the significance level is chosen to be below 1/2, Jn is non-negative by con-

struction. This follows despite neither MRV (Y )n in (9) nor MBV (Z)n in (12) are

guaranteed to give a positive estimate of integrated volatility, and as a result Cn is not

guaranteed to be positive. This is a huge drawback of the pre-averaging methodology.

However, for the sample period of 1997-2007, Cn is estimated to be positive on every
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single trading day.2

Using the framework in Section 2, it is possible to construct a time series of period-

by-period MRVt, Jt and Ct for t = 1, . . . , T using 11 years of high-frequency data.

These time series can be used as input in the dynamic models specified in Section 5

of the paper.

3 VIX

The important role of implied volatility in forecasting realized volatility over the span

of one month is shown in Busch et al. (2009). They use implied volatility derived

from future options on $/DM spot exchange rates, the S&P 500, and T-bonds using

the traditional Black & Scholes (1973) and Merton (1973) framework. These para-

metric estimates have been shown to dominate model-free estimates by Andersen &

Bondarenko (2007), when they are used for forecasting.

This paper considers the role of implied volatility by using the VIX, which was in-

troduced by the Chicago Board Options Exchange in 1993. It is a measure of the

implied volatility on S&P 500 index options, and According to CBOE (2003) it has

quickly become a benchmark of stock market volatility. The VIX reflects the markets

expectations of volatility over the next 30 calendar days, making it a forward looking

measure, and for this reason it is well-suited for forecasting.

The VIX is a nice measure of implied volatility for this applications, since the empirical

analysis is based on data on the Standards & Poor’s Depositary Receipts (SPY), which

is an exchange-traded fund that tracks the performance of the S&P 500. Hence, it is

assumed that the SPY fund has the same implied volatility as the index it tracks.

In 2003 there were significant changes in the way the VIX is calculated. The most

noteworthy change is that the new VIX is found using prices of stock index options

with a variety of strike prices, and no longer just at-the-money strikes. Further-

more, the original VIX was calculated using the Black-Scholes option pricing formula,

whereas the new VIX is independent of any model. This makes it more robust since

it uses information from option prices over the whole volatility skew, and parametric

misspecification is avoided as well. Historical data on the VIX has been calculated for

each trading day dating back to 1986. This means that a similar time series of implied

volatility can be defined as IVt where t = 1, . . . , T , for the sample 1997-2007.

2But using data from 1995 this is not the case. This can be attributed to too few observations. There
was as little as 30 observations on some trading days.
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4 The Data

The data consists of high-frequency observations of trades on the SPY fund for the

eleven year period 1997-2007 during the trading hours from 9.30 a.m. until 16.00 p.m.3

For the period 1997-2002 the data is sampled from the American Stock Exchange

(AMEX), while the remaining five years of data are sampled from the Pacific Exchange

(PACIF). This means that there are T = 2767 days in the sample. Modulated realized

volatility and modulated bipower variation are computed using tick-by-tick data and

the pre-averaging methodology described in section 2 for each day in the sample. As

mentioned in section 2.1, there is an issue with the integrated volatility used in the

constant c1. To solve this issue, a GMM type estimator is applied with two iterations.

In the first step, the realized variance estimator with subsampling and averaging as

demonstrated by Zhang et al. (2005) is used to estimate the integrated volatility as

input. In the second step, the integrated volatility used as input is estimated using

the modulated bipower variation estimator from the first step to ensure robustness

even in the presence of jumps. A significance level of α = 0.05 is chosen to detect

jumps in volatility and to construct the separate series of C and J . Significant jumps

are observed on 62.1% of the days in the sample. Thus, jumps are non-negligible for

the SPY fund. Similarly, a daily series of closing values on the new VIX are found on

the CBOE homepage.

The time series properties of the data are examined for 2002, the median year in

the sample. Figure 1 shows the autocorrelation for modulated realized volatility, im-

plied volatility and the continuous and jump components separately. As expected,

modulated realized volatility and its continuous component have very similar auto-

correlation structures. Both are highly persistent and their autocorrelation does not

die out even after 20 lags. This illustrates the need for a long-memory dynamic spec-

ification to capture the persistence of the two variables. Implied volatility is seen to

be extremely persistent. One explanation for this is that daily observations of implied

volatility are measures of overlapping intervals. Thus, these expectations are unlikely

to change dramatically on a daily basis. Lastly, the jump component lacks persistence

as the autocorrelation dies out quickly. Summary statistics of daily estimates of the

four quantities using 2002 data are seen in Table A1 of Appendix A.1. Similar to the

results of Andersen, Bollerslev, Diebold & Ebens (2001), modulated realized volatility

and its continuous and jump components are extremely right skewed and leptokurtic.

3I would like to thank Valeri Voev for providing me with cleaned data.
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Figure 1: The autocorrelation function of the four quantities MRV , C, J , and IV using daily

data from the median year in the sample, 2002.

The main emphasis in this paper is on forecasting monthly volatility. The series of

modulated realized volatility, and its continuous and jump components are aggregated

over the course of a month, which is defined as h = 21 (trading) days.4 The observed

value of the VIX is selected for the last day of the previous month, so that the VIX

and the aggregated data represent volatility for the same month. The first month of

the sample is disregarded since the observed value of the VIX is missing on January

31st 1997. Starting from February 1997 there are n = 130 non-overlapping intervals

in the data.5 The first observation is used as initialization and the last observation

is used for forecasting, as explained in Section 6. This effectively leaves n = 128

observations for estimation of the dynamic models. Summary statistics of monthly

aggregated modulated realized volatility, its continuous and jumps components, and

implied volatility is shown in Table A1 of Appendix A.1 for the full sample. Similar

to the daily estimates, the four variables are right skewed and exhibit excess kurtosis,

but the skewness and kurtosis is less pronounced for implied volatility.

The time series properties of the monthly data are examined in Figure 2, which displays

the autocorrelation structure and the monthly series themselves. Similar to the data

4Note that h = 21 is chosen as a convention for a month since the most frequent number of trading
days in a year is 252, and 252/12 = 21.

5Non-overlapping intervals were shown by Christensen & Prabhala (1998) to mitigate problems with
serial correlation.
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on a daily frequency, both modulated realized volatility and its continuous part are

highly persistent, and implied volatility is the most persistent variable.

Figure 2: The autocorrelation function and a graphical representation of the four time series

MRV , C, J , and IV using aggregated monthly data for the full sample.

Compared to data on a daily frequency, it looks as if aggregation of the jump process

has added memory to the series. However, Chambers (1998) shows that the variable

retain the same order of integration after temporal aggregation both in a discrete and

continuous time setting. Table A.2 of Appendix A.1 shows the Gaussian semipara-

metric estimates of the order of integration based on Robinson (1995) of both the data
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from 2002 and the full sample of monthly data. When considering the evidence on

jump process, the order of integration seems to have increased. However, Chambers

(1998) explains differences by small sample variation and sensitivity to the choice of

bandwidth parameter.

As seen in the graphical depiction of the time series of the four variables, the jump

process has a different variation pattern compared to the three other variables. Mod-

ulated realized volatility and its continuous component are closely linked, and implied

volatility is similar to the two series, but its variation pattern does not exhibit the

same degree of fluctuation. The jump component accounts for a numerically small

part of the monthly volatility, and its variation pattern does not mimic that of the

other variables. Due to the different time series properties, and the different varia-

tion patterns, it is relevant to specify forecasting models for the continuous and jump

components separately.

5 Long-Memory Specifications

As seen in the data section, one of the main properties of volatility is its long mem-

ory. Two main types of long-memory models are presented in this paper. Firstly, the

methodology of Busch et al. (2009) is followed. They use different specifications of the

heterogeneous autoregressive (HAR) model of Corsi (2009), which is a simple approx-

imate long-memory model. To allow for a richer set of dynamics, the methodology is

extended to the ARFIMA model presented in Hosking (1981).

5.1 HAR Model for Modulated Realized Volatility

Persistence of volatility is not captured by standard GARCH models, and according

to Corsi (2009) there are some difficulties using fractionally integrated long-memory

models since they lack clear economic intuition, and they are non-trivial to estimate.

This necessitates a need for a simpler model that captures much of the same dynamics

and performs well when forecasting out of sample. The idea behind the HAR model

is to place more weight on recent estimates of volatility than those from the distant

past in a simple regression based setting.

Setting up the traditional model includes defining the term

MRVt−h,t =
1

h
(MRVt +MRVt−1 + . . .+MRVt−h+1) (19)
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and using it to specify HAR model as

MRVt+1 = c+ β1MRVt + β2MRVt−5,t + β3MRVt−21,t + υt+1, t = 1, . . . , T (20)

which is used to estimate one-step-ahead volatility. The termMRVt,t−21 contains infor-

mation about modulated realized volatility covering the last month, while MRVt,t−5

and MRVt are containing information about modulated realized volatility over the

span of a week and a day, respectively.

A nice feature of the HAR model is that it allows extensions in a number of different

ways. The first extension considered by Busch et al. (2009) is to replace the one-step-

ahead dependent variable with a monthly modulated realized volatility term

MRVt,t+h =
21

h
(MRVt+1 +MRVt+2 + . . .+MRVt+h) (21)

which is computed using non-overlapping time intervals in order to mitigate problems

with serial correlation in the error terms.6 The model is denoted HAR-RV following

the notation of Busch et al. (2009). A second extension is made by splitting MRVt

into Ct and Jt, and adding these as separate regressors instead of MRVt. This model is

similarly denoted HAR-RV-CJ. These two components are found using the framework

in section 2 and are aggregated similarly to (21) when used as regressors. The third

extension is to add IVt as an additional regressor and to abbreviate the model HAR-

IV-CJIV.

The HAR-RV-CJIV model is a Mincer & Zarnowitz (1969) type regression, and can

be written as

MRVt,t+21 = α+γ1xt +γ2xt−5,t +γ3xt−21,t +βIVt + εt,t+21, t = 21, 42, . . . , 21n (22)

where xt−h,t is either the variable MRVt−h,t or the vector of separated components

(Ct−h,t, Jt−h,t), and n is the number of months. The impact of the different explanatory

variables is found by imposing exclusion restrictions on the parameters.

6Note that instead of using the average, the term is scaled to fit the monthly implied volatility measure.
The lagged terms defined for the traditional model in (19) are scaled similarly. This has no effect on
statistical inference, only for the numerical size of the coefficients.
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5.2 HAR Model for the Continuous and Jump Components

The regressand of the HAR-RV-CJIV model in (22) is now split into its continuous and

jump components, Ct,t+21 and Jt,t+21 respectively. It is obvious from looking at the

data in section 4 that these two components exhibit different time series properties.

Furthermore, according Busch et al. (2009), the adjusted R2 is much smaller when

modeling jumps compared to its continuous counterpart, and the error terms exhibit

strong serial correlation indicating a misspecified model. Hence, it is interesting to

conduct the forecasting analysis of the continuous and jump components separately

and compare the results with similar ARFIMA specifications. Given the different time

series properties of the two components, their forecasts and model specifications are

expected to yield different results.

A HAR-C-CJIV model is defined for the continuous component as

Ct,t+21 = α + γ1xt + γ2xt−5,t + γ3xt−21,t + βIVt + εt,t+21, t = 21, 42, . . . , 21n (23)

and similarly for the jump component a HAR-J-CJIV model is defined as

Jt,t+21 = α + γ1xt + γ2xt−5,t + γ3xt−21,t + βIVt + εt,t+21, t = 21, 42, . . . , 21n (24)

where, for both specifications, xt−h,t now contains either Ct−h,t for the HAR-C-CJIV

models or Jt−h,t for the HAR-J-CJIV models, or the vector (Ct−h,t, Jt−h,t).

5.3 The Vector Heterogeneous Autoregressive (vecHAR) Model

The main contribution of Busch et al. (2009) is the specification of a simultaneous

equation system for a joint analysis of C, J and IV . This system is denoted as

the vecHAR model in this paper following the authors’ abbreviation. Several factors

necessitate this model. Firstly, the regression equations in (23) and (24) are not

independent. Secondly, IV may contain measurement errors from non-synchronous

option prices, and even though the new VIX is independent of model, the new measure

may still be misspecified. Furthermore, the new VIX is a measure of implied volatility

on the S&P 500. Thus, there can be measurement issues when it acts as the implied

volatility on the SPY fund. These problems can generate correlation between the

regressors and the error terms in (23) and (24) and thereby create an endogeneity

problem.
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The vecHAR model is proposed as a solution to these problems. It is defined as1 0 −β1

0 1 −β2

0 0 1


Ct,t+21

Jt,t+21

IVt

 =

α1

α2

α3

+

A11m A12m 0

A21m A22m 0

A31m A32m A33m


Ct−21,t

Jt−21,t

IVt−1

 (25)

+

A11w A12w

A21w A22w

A31w A32w

(Ct−5,t

Jt−5,t

)
+

A11d A12d

A21d A22d

A31d A32d

(Ct
Jt

)
+

ε
1
t,t+21

ε2t,t+21

ε3t,t+21

.

Equation (23) and (24) for forecasting the continuous and jump components, respec-

tively, are included together with a third equation that endogenizes IV . This system

exhibits two sources of simultaneity. First, the dependence of Ct,t+21 and Jt,t+21 on

the endogenous variable is accommodated through β1 and β2. Secondly, the error

terms may be contemporaneously correlated. The third equation reflects the fact that

the volatility over the past month may affect the IV estimate over the next month.

Furthermore, the inclusion of IVt−1 is similar to using it as an instrument for IVt.

However, defining a simultaneous equation system is more general and efficient than

simply using instrumental variable estimation.

5.4 ARFIMA Model for Modulated Realized Volatility

A problem with the HAR model is that it is only an approximate long-memory model,

and as a result it might not be able to capture the dynamics of volatility properly. As

seen in Figure 2 and Table A.2 of Appendix A.2, the diffusive volatility exhibit per-

sistence both before and after being aggregated, while the jump component has much

shorter memory. Both these series can be modeled by a class of ARFIMA models,

since these can accommodate different degrees of fractionally integrated processes.

The general class of ARFIMA(p, d, q) models are defined in Doornik & Ooms (2004)

for the univariate case as

Φ(L)(1− L)d(yt − µt) = Θ(L)εt t = 1, . . . , T (26)

where Φ(L) = (1 − φ1L − ... − φpL
p) and Θ(L) = (1 − θ1L − ... − θqL

q) are the

autoregressive and moving average lag polynomials with order p and q respectively,

the error term is assumed to be be normally distributed εt ∼ N(0, σ2
ε ), µt is a function

of a constant and other exogenous variables to be specified, and (1−L)d is the fractional

15



difference factor

(1− L)d =
∞∑
j=0

δjL
j =

∞∑
j=0

(
d

j

)
(−L)j (27)

where d is a real number. The ARMA-part is assumed to be stationary and invertible.

Furthermore, assuming Φ(z) = 0 and θ(z) = 0 do not have any common roots, then

(yt−µt) is said to be integrated of order d. The properties of the series (yt−µt) hinge

crucially on the value of d. As shown by Hosking (1981), it is covariance stationary

if −0.5 < d < 0.5 with long memory if d > 0. When 0 < d < 0.5 the series

exhibits a hyperbolic decay, and it is thus characterized by long-term persistence.

If −0.5 < d < 0 the process is said to have intermediate-memory and the inverse

autocorrelations decay hyperbolically towards zero. For the special case of d = 0,

the ARFIMA(p, d, q) model is equivalent to a ARMA(p, q) model since the fractional

difference factor is negligible.

The empirical application in this paper is based on an ARFIMA(1, d, 1) specification.

This limits the number of parameters to be estimated which is especially important

for the vecARFIMA model discussed in Section 5.6. Furthermore, as Chiriac & Voev

(2009) argue, the reason to consider this restricted specification is that highly pa-

rameterized models lead to poor out-of-sample forecasts. Hence, the ARFIMA(1, d, 1)

model remains simple and is still able to capture the persistence required of a long-

memory model. For this application it is used to capture the dynamics of (21) using

the following specification

(1− φL)(1− L)d(MRVt,t+21 − α− βIVt) = (1− θL)εt t = 21, 42, . . . , 21n (28)

where IVt is added to the model as an exogenous variable to resemble its role as a

regressor in the HAR specification in (22). The model is abbreviated ARFIMA-IV

mimicking the HAR framework. The impact of implied volatility is found by using

exclusion restrictions on β.

5.5 ARFIMA Model the Continuous and Jump Components

Utilizing the same arguments as in Section (5.2), modulated realized volatility is split

into a continuous and a jump component. Both are modeled using long-memory

specifications since the aggregation of the jump component has changed its dynamics.

Even though the series of aggregated jumps exhibit longer memory, Figure 2 still shows

that the two variables have different variation patterns and correlation structures,
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making the separation relevant. The ARFIMA(1, d, 1) model, where these components

are separated, is supposed to be an analogue of the HAR models in (23) and (24).

The model for the continuous part can be written as

(1−φL)(1−L)d(Ct,t+21−α−βIVt−γJt−21,t) = (1− θL)εt t = 21, 42, . . . , 21n (29)

and similarly for the jump component

(1−φL)(1−L)d(Jt,t+21−α−βIVt−γCt−21,t) = (1− θL)εt t = 21, 42, . . . , 21n (30)

where lagged variables of the jump or the continuous component are added as an

exogenous variable to the dynamics of the other component. These models are de-

noted as ARFIMA-C-IV and ARFIMA-J-IV respectively. The idea behind adding

these lagged exogenous variables is to create a dynamic structure similar to the HAR

framework, where the highest weight is placed on the most recent observations of the

lagged variable and then decaying with time. Exclusion restrictions are used to inves-

tigate the significance of adding exogenous variables to the ARFIMA(1, d, 1) structure,

and their impact on model specifications.

5.6 The Vector Autoregressive Fractional Integrated Moving

Average (vecARFIMA) Model

The motivation for the vecARFIMA model is the same as for the vecHAR model, since

the reasons to suspect the models in (29) and (30) of having endogeneity problems

are the same as in the HAR framework. In addition to the endogeneity issue, the

motivation of the vecARFIMA model is to fully capture the persistence in the data.

Hence, the main contribution of this paper is to formulate a similar vectorized model

that solves the endogeneity problems while not being limited by a simple approximate

long-memory structure. The vecARFIMA model allows for dependency between C and

J and possible measurement issues in IV , while capturing the long-memory properties

of volatility. The unrestricted vecARFIMA is defined as(1− φ1L) 0 0

0 (1− φ2L) 0

0 0 (1− φ3L)

×
(1− L)d1 0 0

0 (1− L)d2 0

0 0 (1− L)d3

 (31)
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×


1 0 −β1

0 1 −β2

0 0 1


Ct,t+21

Jt,t+21

IVt

−
α1

α2

α3

−
 0 A12m

A21m 0

A31m A32m

(Ct−21,t

Jt−21,t

)

=

(1− θ1L) 0 0

0 (1− θ2L) 0

0 0 (1− θ3L)


ε

1
t,t+21

ε2t,t+21

ε3t,t+21


where the interpretation of the simultaneous equation system is similar to that of the

vecHAR model. The forecasting equations (29) and (30) are included in the model,

where their dependency on the endogenous variable is accommodated through β1 and

β2, together with an equation that captures the dynamic long-memory structure of

IVt, which is seen in figure 2 to posses an extreme degree of persistence. The error

terms may still be contemporaneously correlated. The vecARFIMA model solves the

endogeneity problem by allowing the endogenous variable IVt to be dependent on

lagged values of itself, C, and J through a long-memory structure. The properties

of this system are examined by using exclusion restrictions on the elements of the A

matrix. This system shows the convenience of the ARFIMA(1, d, 1) specification. If

the lags of the autoregressive and moving average polynomials were of order p and

q, respectively, the number of parameters to be estimated would have been immense,

complicating the estimation procedure.

6 Empirical Evaluation

In this section the role of implied volatility in forecasting volatility using two different

dynamic specifications is studied to evaluate the impact of implied volatility in both

settings and to evaluate the benefits of using a long-memory structure that allows

for a richer set of dynamics. The HAR model is used as a simple approximate long

memory model, while the ARFIMA model is its more complicated counterpart.

6.1 Results for the HAR Framework

The estimation procedure for the class of HAR models is based on QML estimation

since the simple structure of the models allows for a regression based approach, similar

to that of Mincer & Zarnowitz (1969), where IVt is added as an additional regressor,
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but QML is applied for robust inference.7

Table 1 shows the results for the entire class of single equation HAR models. The

coefficient estimates are reported with their t-statistics in parentheses together with

an adjusted (adj) R2, and a Breusch-Godfrey LM test for serial correlation up to

lag 12 (AR12).8 The Breusch-Godfrey test is computed due to possible endogeneity

issues. The test statistics are χ2 distributed with 12 degrees of freedom under the

null hypothesis of no serial correlation. The dynamic models are compared based

on their performance forecasting out-of-sample. The mean absolute forecast errors

(MAFE)9 are computed for 24 rolling one-step-ahead forecasts starting from n − 24

observations.10 One or two asterisks are used to denote significance at a 5% or 1%

level, respectively.

In Panel A of table 1, the results are presented for the HAR-RV-CJIV framework

for different exclusion restrictions. From the first line of the Panel, it is evident

that without IVt as an explanatory variable the lagged monthly modulated realized

volatility term is the most significant variable when forecasting volatility. This changes

when IVt is added to the equation and subsumes its explanatory effect. By adding IVt

the adjusted R2 increases by 7 percentage points and the MAFE decreases, confirming

the results of Busch et al. (2009). Applying the vector x = (C, J) as explanatory

variables instead of modulated realized volatility in line 3 and 4 of Panel A, the

results are similar. Without IVt the weekly continuous and jump components are the

only significant variables. By including IVt the adjusted R2 increases and the MAFE

decreases, while it once again assumes the role of the most significant explanatory

7Robinson (1994) and Christensen & Nielsen (2006) show that if the variables are integrated of order
0 ≤ d < 0.5, OLS (and equivalently QML) will no longer be consistent, and a narrow-band frequency
domain least squares (FDLS) estimator is necessary for consistency. The order of integration for the
four variables are shown in Table A.2 to be around 0.5 for MRVt,t+21, Ct,t+21, below 0.5 for Jt,t+21,
and above 0.5 for IVt. Hence, QML is applied in this paper. An interesting direction for further
research would be to implement the FDLS estimator.

8All adjusted R2 coefficients are pseudo R2, where the residuals from the different models have been
compared to those of a null model with only a constant.

9According to Patton (2009), the only two evaluation criteria that is robust to noise in the volatility
proxy are the MSE and QLIKE, where the latter has better power properties. This theoretical setup
assumes that the returns are generated as a zero mean Brownian motion with constant volatility
within each trading day, and that no jumps occur in the stock price. However, he shows that the
forecast error for the MAFE criteria disappears asymptotically when the realized variance used as
volatility proxy is computed using a sampling frequency denser than every 5 minutes. The MAFE
are computed in this application for comparability with Busch et al. (2009), and since the estimators
of volatility are based on much denser sampling than every 5 minutes. Using QLIKE as a evaluation
criteria indicates a similar effect of implied volatility.

10The reported coefficients are from the last one-step-ahead forecast using the entire estimation sample
of n = 128 observations. This is the case for table 1, 2 and 3.
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variable. This clearly confirms the relevance of including the information kept in

implied volatility when forecasting volatility. The partition of MRV into C and J

improves both the in- and out-of-sample performance. When moving from line 1 to 3

and 2 to 4, respectively, the model performs better in all categories except the Breusch-

Godfrey test for serial correlation in line 3, which shows signs of misspecification.

The results of the HAR-C-CJIV framework are displayed in Panel B. When modeling

the continuous part of modulated realized volatility, the results are highly similar

to those of Panel A, as expected, because of the similar time series properties. As

seen in line 2 the model greatly improves with the inclusion of IVt both in- and out-

of-sample. Implied volatility is the most significant regressor, and it subsumes the

role of the realized measure. Furthermore, the model improves with the inclusion of

jumps, though the improvements are mostly in-sample. The weekly jump variable is

significant in both line 3 and 4. There are signs of misspecification of the model since

three of the four Breusch-Godfrey tests statistics are significant at a 5% significance

level.

The predictability of the jump component of modulated realized volatility is displayed

in Panel C. The results of this analysis differ from the those of the previous two

Panels. The models do a much poorer job forecasting in-sample as showed by the

lower adjusted R2 coefficients. It is difficult to compare the MAFE for the HAR-J-

CJIV models with the other two Panels since the quantity they are forecasting is much

smaller, as seen in Figure 2. The differences can be explained by the very different

time series properties of jumps. With the above mentioned reservations in mind, it is

still possible to gain valid insights into the forecasting of jumps. As seen from the first

two lines in Panel C, the daily jump component is significant, and the model greatly

improves with the inclusion of IVt. This improvement is also evident by comparing

the performance of the models in line 3 and 4. It is worth noting from line 2 and

4 that there are no gains from adding the continuous component in terms of out-of-

sample performance when IVt is already included in the model. Consequently, implied

volatility carries significant information about future jumps as well as volatility.

6.2 Results for the ARFIMA Framework

As mentioned in Section 5.1, one of the motivations of the Corsi (2009) HAR model

was the computational difficulties of fractionally integrated models. The ARFIMA

models are estimated using the conditional maximum likelihood (ML) methodology
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developed in Beran (1995) and Doornik & Ooms (2004), which is also applicable for

non-stationary processes with d > 0.5. The standard errors are computed robustly

against heteroskedasticity. Due to the highly non-linear structure, the test for auto-

correlation is based on a simple AR12 structure to give an impression of possible mis-

specification of the models, knowing that this is not as strict as the Breusch-Godfrey

test, and that the test may suffer from an endogenous regressor problem.11

Table 2 shows the results for the class of single equation ARFIMA models. Panel A

considers the ARFIMA-IV framework for two specifications. In the first line IVt is

excluded from the model, making it a simple ARFIMA(1, d, 1) specification with a

constant. As expected d = 0.2785 and is highly significant reflecting a long-memory

structure of the data, which confirms the autocorrelation plot in Figure 2. Further-

more, the AR coefficient is positive and highly significant as well. Both the AR and

MA coefficients are well within the stationary range, and the model seems to be well-

specified. Adding IVt as an exogenous regressor has an effect similar to that of the

HAR framework. IVt assumes the role of the most significant forecasting variable.

The variable controlling the memory structure d becomes insignificant, while the AR

term remains significant. Hence, lagged values of the endogenous variable still convey

information about future volatility. The adjusted R2 increases with almost 10 percent-

age points and the MAFE decreases. By imposing a richer dynamic specification, the

addition of IVt still improves the model greatly, but there is additional information to

be collected from the AR term. When the restriction d = 0 is imposed in line 3, the

model performs slightly better out-of-sample. The results of Panel A in Table 2 are

comparable with those of line 1 and 2 of Panel A in Table 1. The ARFIMA-IV and

HAR-RV-IV models seem to perform similarly in-sample, with the HAR framework

slightly better when IVt is not included as an exogenous variable. When comparing

the models on out-of-sample performance, the ARFIMA-IV specification dominates

the HAR-RV-IV. The improvements is most significant when IVt is excluded from the

model.These results reflect the gains of using a dynamic model that allows for a richer

long-memory structure.

11The Ljung-Box test for lag 12 serial correlation is also computed for all ARFIMA and vecARFIMA
models to give an indication of problems with serial correlation even though the models have stochas-
tic regressors. The conclusions are the same as for the AR12 test. None of the models reject the null
hypothesis of no serial correlation.
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Panel A: Modulated Realized Volatility
Const. φ θ d IVt Ct−21,t Jt−21,t Adj. R2 AR12 MAFE
17.58** 0.4388* 0.1132 0.2785** - - - 0.448 7.500 3.990

(2.85) (2.12) (0.601) (2.69)

-11.44* 0.5779** 0.2012 -0.0489 1.384** - - 0.546 10.36 3.749
(-2.05) (3.31) (1.36) (-0.243) (4.60)

-11.01* 0.5368** 0.2048 - 1.363** - - 0.546 10.27 3.681
(-2.42) (3.65) (1.40) (5.26)

Panel B: The Continuous Component
16.68** 0.4486* 0.1169 0.2752** - - - 0.451 6.876 3.814

(2.81) (2.18) (0.639) (2.65)

-11.34* 0.5824** 0.1905 -0.0629 1.339** - - 0.546 10.47 3.608
(-2.00) (3.29) (1.29) (-0.295) (4.43)

-10.78* 0.5307** 0.1958 - 1.310** - - 0.546 10.36 3.521
(-2.40) (3.53) (1.34) (5.15)

18.67* 0.4597* -0.1927 0.2750** - - -2.411 0.457 5.529 3.743
(2.56) (2.41) (-1.49) (2.66) (-1.42)

-9.708 0.5790** 0.1638 0.0190 1.405** - -3.557 0.561 7.564 3.259
(-1.66) (3.60) (1.29) (0.109) (4.23) (-1.87)

-9.852 0.5945** 0.1621 - 1.412** - -3.544 0.560 7.613 3.207
(-1.89) (4.49) (1.33) (4.519) (-1.876)

Panel C: The Jump Component
1.207** 0.2637* 0.9050** 0.8702** - - - 0.163 5.174 0.2037

(3.17) (1.25) (28.92) (5.45)

-0.1335 0.3869 0.5940 0.3263 0.0505** - - 0.261 5.690 0.1857
(-0.404) (0.758) (0.997) (0.642) (4.07)

-0.2172 0.9165** 0.8273** - 0.0529** - - 0.264 6.346 0.1940
(-1.01) (13.06) (7.32) (4.13)

0.7668* 0.1494 0.8857** 0.7683** - 0.0188** - 0.243 8.170 0.2094
(2.38) (0.550) (10.00) (2.79) (3.03)

0.0422 0.3484 0.6135 0.3401 0.0361* 0.077 - 0.262 6.875 0.1815
(0.119) (0.786) (1.20) (0.647) (2.02) (0.808)

-0.0408 0.9295** 0.8604** - 0.0387* 0.0072 - 0.264 7.448 0.1863
(-0.170) (16.90) (9.42) (2.18) (0.871)

Table 2: The coefficient estimates and robust t-statistics for the class of single equation
ARFIMA models. Adj. R2 denotes the adjusted R2. AR12 denote the LM statistic
with 12 lags. MAFE is the mean absolute forecast error for 24 rolling one-step-ahead
forecasts using n − 24 observations. (*) and (**) denotes significance at a 5% and 1%
level, respectively.

The ARFIMA-C-IV specifications are considered in Panel B of Table 2. Due to the

similarity between modulated realized volatility and its continuous component, the

results in the first two lines of Panel B are almost equivalent to those of Panel A. The

role of implied volatility is central when forecasting its realized counterpart. The two

models in Panel B seem to do slightly better in all evaluation criteria as expected since

the shorter memory jump component has been removed. The impact of IVt is equally

significant when the lagged jump component is included as an exogenous variable in
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line 4, 5, and 6. The addition of IVt significantly improves the model both in- and

out-of-sample while it subsumes the explanatory effects of the long-memory parameter

d. In fact, the model improves slightly in terms of out-of-sample performance when

d is restricted to 0 in line 3 and 6. The impact of including the jump component

is seen by comparing line 2 and 5. The are small gains both in- and out-of-sample,

and the jump component is marginally insignificant. Generally, the models seem to

be well-specified and good at capturing the dynamics of volatility. From Panel B of

Table 1 and 2, respectively, it is evident that the class of ARFIMA dominates the HAR

specifications when forecasting volatility out-of-sample, elaborating on the conclusions

from Panel A. The ARFIMA-C-IV model with jumps included (and d = 0 imposed)

is the counterpart to the HAR-C-CJIV where both C and J are included. These two

models represent the superior specifications for their respective frameworks both in-

and out-of-sample. It is noteworthy that the HAR-C-CJIV has a higher adjusted R2 of

58.2% compared to 56.0% showing better in-sample fit. However, the main emphasis

of this paper is on out-of-sample performance, and the ARFIMA-C-IV dominates the

HAR-C-CJIV specification with a MAFE of 3.207 compared to 3.525. The non-linear

dynamic models are better at forecasting volatility, but the addition of IVt makes d

superfluous.

Panel C presents the results for the jump component. Similar to the HAR framework,

the class of ARFIMA-J-IV models does a much poorer job in terms of in-sample fit.

The adjusted R2 coefficients are much smaller than for the continuous counterpart.

The predictability of the jump component is difficult to compare with the continuous

component since the two quantities are numerically very different. However, there

are still some important insights to be gained from Panel C. The first line shows

the simple ARFIMA(1, d, 1) specification with no exogenous variables. The model

seems to do a poor job of capturing the dynamics of J . A significant d of 0.8702

approaching the unit root limit suggests that the jump component is more persistent

than volatility which is seen in Figure 2 to be incorrect. Furthermore, the value of θ

is close to unity as well. These are noteworthy observations since the AR12 test shows

no sign of misspecification. When IVt is included in line two, neither the d nor θ

remain significant. IVt is the only significant variable confirming the results from the

HAR framework that implied volatility conveys information about jumps as well as

volatility. When d = 0 is imposed for the jump component in line 3 and 6, the model

performs slightly poorer in terms of out-of-sample performance, and the estimates

of the AR and MA parameters approaches the unit root limit. Another noteworthy
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observation is found by comparing the models in line 2 and 5. There are no gains from

adding the lagged continuous component to the model when IVt is already included.

Panel C of Table 1 and 2 shows that the results for the two dynamic specifications are

very similar, with the ARFIMA-J-IV performing better out-of-sample in two models

and in-sample in one model, while HAR-J-CJIV performs better in-sample in two

model. However, this comparison is facilitated by the notion of possible specification

difficulties of the ARFIMA-J-IV model.

Up to this point, the findings of this paper show that implied volatility conveys in-

cremental information about future jumps as well as volatility in both dynamic spec-

ifications. The impact of implied volatility is seen both in- and out-of-sample for

all specifications using MRV and the non-parametric separation of C and J . Fur-

thermore, modeling implied volatility together with a richer long-memory ARFIMA

specification leads to better out-of-sample performance compared to the simple ap-

proximate class of HAR models. These findings are similar to those of Chiriac & Voev

(2009) who show that the precision of the forecasts of ARFIMA models increases rela-

tive to those of HAR models when the forecasting horizon increases from 1 to 10 days.

Their paper is based on forecasts of portfolio covariances, and does not consider the

role of implied volatility in those models.

6.3 Results for the Vector Specifications

To solve the possible endogeneity issues described in sections 5.3 and 5.6 of the single

equation models, simultaneous equation systems are introduced for both the HAR and

the ARFIMA framework. The vecHAR and the vecARFIMA models are estimated by

the same conditional ML approach as the single equation ARFIMA models. The stan-

dard errors are computed robustly against heteroskedasticity. The Breusch-Godfrey

test for serial correlation is used for the vecHAR model due to its linear structure,

while a simple AR12 test is conducted for the vecARFIMA system. The results are

presented in Table 3.

The results of the vecHAR model are presented in Panel A. Implied volatility is

significant in the forecasting equations for both C and J , similar to the results of Busch

et al. (2009). The precision of the forecasts are very similar to the single equation

framework. The vecHAR system is introduced to correct for possible endogeneity

issues, and the Breusch-Godfrey test statistics improve slightly for both C and J .

This equations system reinforces the conclusions made earlier about the role of implied
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volatility. It has a significant role in forecasting future volatility, and it helps forecast

jumps as well. Hence, option prices are calibrated to encompass information about

future jumps.

The unrestricted version of the vecARFIMA model is presented in Panel B of Table 3.

The forecasting equation for the continuous component is similar to the ARFIMA-C-

IV model in terms of coefficient estimates and of out-of-sample performance. Implied

volatility and the AR coefficient are significant, while the memory parameter d is

insignificant. The AR12 statistic has decreased, indicating the vecARFIMA model is

better specified compared to its single equation counterpart. The forecasting equation

for J in line 2 confirms the significant role of implied volatility in the ARFIMA class of

models. However, it is important to emphasize both the numerical size of φ and d. The

long memory coefficient d, though only marginally insignificant, is -0.7960 indicating

a non-stationary intermediate-memory process. The AR coefficient φ is 0.9794 which

is dangerously close to a unit root. Both of these coefficients indicate that the model

is misspecified. The forecasting equation of IVt is considered in the third line of Table

3. Past volatility has a significant impact on future implied volatility. Furthermore,

implied volatility has a memory-parameter of d = 0.6172 indicating a very high degree

of persistence in the non-stationary range. As seen in Figure 2, implied volatility is

the most persistent process. Thus, the estimated coefficient is not unrealistic.

Due to questionable coefficient estimates for the jump component, the specification of

the vecARFIMA model is examined by considering a benchmark case in Panel C where

the coefficient matrix A from (31) is restricted to zero. The impact on the coefficients

of the forecasting equation for the continuous component is minimal, indicating that

this equation is very well-specified. However, the equations for J and IVt change

dramatically. The numerical value of φ and d for the jump component changes sign,

and the forecasting equation describes a stationary long-memory process, though d is

still insignificant. The coefficients on φ and d undertake an equally dramatic change

in the equation for implied volatility. The equation describes an intermediate memory

process, since d is significantly smaller than zero. Furthermore, φ is close to unity.

The combined results of the benchmark vecARFIMA model indicate that this is poorly

specified as well.

Motivated by the fact that the forecasting equation for the continuous component

and implied volatility are well-specified in Panel B, a third version of the vecARFIMA

model is proposed in Panel D of Table 3. As seen in Panel B of Table 2, when the

restriction d = 0 is imposed on the memory parameter, the model improves slightly
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in terms of out-of-sample performance and causes minimal changes to the coefficient

estimates. Imposing d1 = 0 on the vecARFIMA model leads to a well-specified fore-

casting equations for all three variables. The estimated parameters in the forecasting

equations for C and IV are similar to those of Panel B. The forecasting equation for J

does no longer contain any significant variables, i.e. implied volatility has become an

insignificant forecasting variable of jumps. Furthermore, neither φ or d is close to the

unreasonable values in Panel B. This third vecARFIMA model is very well-specified,

and it is the superior specification for forecasting out-of-sample volatility. A compar-

ison between the vecHAR model, and the vecARFIMA models shows that the time

series properties of diffusive volatility is better captured by the ARFIMA dynamics,

which delivers more precise forecasts. Furthermore, the vecHAR model is marginally

better at forecasting both the jump component and implied volatility.

The implications of different parameter restrictions on the vecARFIMA model is in-

vestigated, in particular three different cases are considered A21m = 0, d2 = 0, and

d1 = d2 = 0. The results of the nested models are presented in Table A.3 of Appendix

A1. The estimated parameters in the forecasting equations for C and IV for all three

restrictions are similar to those of Panel B and D of Table 3, adding robustness to

the results. Similarly, all the models perform better than the vecHAR model out-

of-sample. The parameter estimates in the forecasting equation for J is similar for

the three restrictions. The values of φ and θ approach the unit root limit, which is

the border for stationarity and invertibility of the ARMA polynomial.. This shows

that the vecARFIMA model, and especially the forecasting equation for J , must be

carefully specified.

The dynamics of the continuous part of modulated realized volatility are better cap-

tured by the ARFIMA specification compared to the simple dynamic structure of the

HAR model. Implied volatility is highly significant when used in both of these dy-

namic settings, elaborating on the results of Busch et al. (2009) and Christensen &

Prabhala (1998), since their results translate to a non-linear forecasting framework.

When using a vectorized model to correct errors due to possible endogeneity issues, the

vecARFIMA model dominates the vecHAR specification when forecasting volatility

out-of-sample. Thus, in addition to the incremental information in implied volatility,

there is important information in the richer long-memory structure of the ARFIMA

models. However, these models must be carefully specified, especially for the jump

component.
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7 Conclusion

This paper has examined the role of implied volatility in forecasting future volatility

for two different dynamic models, the HAR model of Corsi (2009) and the ARFIMA

model suggested by Hosking (1981), in a noisy diffusion setting with jumps. Busch

et al. (2009) have examined the incremental information of implied volatility for dif-

ferent HAR specifications. This paper extended their framework by estimating and

separating the continuous and jump components of volatility robustly to the presence

of market microstructure noise, and by examining the role of implied volatility in both

single equation and simultaneous equation dynamic models that is not limited by a

simple approximate long-memory structure.

The methodology of Podolskij & Vetter (2009a, 2009b) is applied to estimate volatility

by the means of modulated realized volatility in the stock market using observations

on the SPY fund, and to make a non-parametric separation of its continuous and

jump parts. Their methodology is the cutting edge within estimation of volatility in

the presence of jumps and noisy high-frequency data. Furthermore, the new VIX is

used as a measure of implied volatility on the SPY fund, since the SPY tracks the

performance of the S&P 500. Time series of these components are then used as input

to both the single equation dynamic models and to the simultaneous equation systems

applied in the paper.

The results from the HAR model resemble those of Busch et al. (2009) and Chris-

tensen & Prabhala (1998). Implied volatility carries significant information about

future volatility, improving model specifications both in- and out-of-sample. Further-

more, it subsumes the explanatory effects of most of the other variables. When using

implied volatility together with ARFIMA specifications, the results are similar. Im-

plied volatility improves model performance significantly. Thus, the important role

of implied volatility translates to a non-linear forecasting framework. However, the

AR coefficient conveys important information about future volatility in the ARFIMA

setting as well. The ARFIMA class of models dominates the HAR models when fore-

casting out-of-sample, showing the benefits of using the richer dynamic structure of

the these models to fully capture the dynamics of volatility.

The forecasting framework is extended to simultaneous equation systems, since there

are reasons to suspect the single equation models of suffering from endogeneity issues.

The vecARFIMA model is introduced in this paper as an alternative to the vecHAR

specification that is not limited by a simple approximate long-memory structure. The

29



vecARFIMA model outperforms the vecHAR model when forecasting volatility out-

of-sample. However, the vecARFIMA model must be carefully specified.

Implied volatility conveys important information about future volatility. This paper

shows that the role of implied volatility can be extended to a set of richer dynamic

models. These are better at capturing the dynamics of volatility, making it an in-

teresting complement to the existing literature on the role of implied volatility using

simple long-memory specifications.
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A Appendix

A.1 Supplementary Tables

Panel A: 2002 Daily Data

Mean Max Min SD Skewness Kurtosis

MRVt 1.494 9.292 0.2544 1.319 2.652 9.665

Ct 1.454 9.292 0.2544 1.289 2.658 9.917

Jt 0.0405 0.8520 0.0000 0.0894 5.415 38.03

IVt 27.28 45.08 17.40 6.896 0.5127 -0.8003

Panel B: Full Sample Monthly Data

MRVt,t+21 17.65 91.89 2.981 15.84 1.960 4.649

Ct,t+21 16.77 89.44 2.650 15.33 1.985 4.803

Jt,t+21 0.8854 4.199 0.2124 0.7408 2.366 6.004

IVt 21.02 43.48 10.44 6.984 0.7661 0.5086

Table A.1: Summary statistics for the estimates MRV , C, J , and IV for both
daily data from the median year in the sample, 2002, and for the full sample of
monthly data.
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Panel A: 2002 Daily Data

MRVt Ct Jt IVt

Ljung-Box (lags)

(L=12) 1097.4** 1094.2** 44.208** 2285.5**

GSP (bandwidth)

d̂ (m = 42) 0.5777 0.5877 0.0337 0.8122

(0.077) (0.077) (0.077) (0.077)

d̂ (m = 63) 0.6591 0.6434 0.0425 0.8218

(0.063) (0.063) (0.063) (0.063)

d̂ (m = 126) 0.6933 0.6906 0.1056 0.8469

(0.063) (0.045) (0.045) (0.045)

ADF (lags)

t(L=0) -4.142** -4.166** -13.52** -2.047

t(L=4) -2.702 -2.700 -6.936** -1.610

Panel B: Full Sample Monthly Data

MRVt,t+21 Ct,t+21 Jt,t+21 IVt

Ljung-Box (lags)

(L=12) 192.77** 191.78** 64.315** 434.76**

GSP (bandwidth)

d̂ (m = 21) 0.4141 0.4158 0.3330 0.6670

(0.109) (0.109) (0.109) (0.109)

d̂ (m = 32) 0.4959 0.4961 0.2870 0.5966

(0.088) (0.088) (0.088) (0.088)

d̂ (m = 64) 0.5150 0.5168 0.2639 0.5906

(0.063) (0.063) (0.063) (0.063)

ADF (lags)

t(L=0) -4.927** -4.905** -7.896** -3.733**

t(L=4) -3.142* -3.554** -3.141* -2.227

Table A.2: Ljung-Box test of the significance of the autocorrelation funtion.
GSP are Gaussian semiparametric estimates of the fractional integration order
described in Robinson (1995). ADF are augmented Dickey-Fuller tests of the null
hypothesis of a unit root. (*) and (**) denotes significance at a 5% and 1% level,
respectively.
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