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Abstract

We study in detail the log-linear return approximation introduced by
Campbell and Shiller (1988a). First, we derive an upper bound for
the mean approximation error, given stationarity of the log dividend-
price ratio. Next, we simulate various rational bubbles which have
explosive conditional expectation, and we investigate the magnitude
of the approximation error in those cases. We find that surprisingly the
Campbell-Shiller approximation is very accurate even in the presence
of large explosive bubbles. Only in very large samples do we find
evidence that bubbles generate large approximation errors. Finally,
we show that a bubble model in which expected returns are constant
can explain the predictability of stock returns from the dividend-price
ratio that many previous studies have documented.
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1 Introduction

Since the seminal paper by Campbell and Shiller (1988a), the log-linear re-
turn approximation, relating log stock returns linearly to log prices and log
dividends, has become one of the central equations in empirical financial re-
search on stock return predictability, tests of present value models, return
variance decompositions, and discrete-time dynamic asset allocation, see e.g.
the textbook treatments in Campbell et al. (1997), Campbell and Viceira
(2002), and Cochrane (2005).
The log-linear approximation looks as follows

i1 = pPey1 + (1 — p)diyr — pr + K, (1)

where 11 = log((Piy1 + Di1)/Py), pe = log(F;), and d; = log(Dy). p is
a parameter slightly less than 1, and k is a constant. P; is the stock price
measured at the end of period ¢, while D, is dividend paid during period
t. The appealing feature of (1) is that even though return is stochastic
and varies over time, it is related linearly to prices and dividends whereby
standard econometric techniques for linear models can be applied directly to
analyze (1) - and models building on (1) - empirically. Thus, financial models
with time-varying expected returns are conveniently analyzed based on (1).
Taking conditional expectations of (1), solving it recursively forward for p,
and imposing a terminal condition, lead to a log-linear present value model
with time-varying expected returns - the socalled dynamic Gordon growth
model.

The log-linear return relation (1) is only an approximation. It is derived
from a first-order Taylor expansion of the definition of the log gross stock
return. The expansion is around the dividend-price ratio. The relation holds
exactly if this ratio is constant. But if the dividend-price ratio varies over
time, there is an approximation error which depends on the persistence and
volatility of the ratio. An underlying assumption of the approximation is that
0¢ = d; — p; is mean stationary, and usually the expansion point is taken to
be the unconditional mean of §;. Prices and dividends, p; and d;, are allowed
to be non-stationary, but they need to cointegrate so that ¢§; is stationary.
In that case a convenient reparameterization of (1) is

Tep1 R 0p — pOyy1 + Adpr + K, (2)
which only contains stationary variables. Up to the 1980s the dividend-price



ratio - although highly persistent - appeared to be stationary, and the log-
linear approximation was found to be very accurate, see Campbell and Shiller
(1988a) and Cochrane (1992). However, since then the dramatic stock market
boom of the 1990s decreased ¢, and increased its persistence, and standard
unit root tests no longer reject the null hypothesis of non-stationarity at even
high significance levels. This has led researchers to question the validity of
the log-linear approximation when applied on recent data. Campbell (2008)
argues that the log-linear approximation breaks down when d; has a unit root
because in that case the unconditional mean does not exist, and he proposes
an alternative model that is valid when ¢, is a random walk, dividend is known
one period in advance, and log return and dividend growth are conditionally
normally distributed. The model delivers return forecasts in the manner of
the classic Gordon growth model.

A unit root in J; can only be rationalized if r; and/or Ad; have unit
roots. Neither theory nor empirical evidence support such non-stationarity
in returns and dividend growth. Hence, modeling d; as a unit root process
should be regarded a finite-sample approximation in the case where the root
is very close to - but strictly less than - unity. An interesting question is
how accurate the log-linear approximation is in a finite sample when the
autoregressive root in J; is very close to unity.

An even more intriguing case that in theory leads to a non-stationary
dividend-price ratio is a rational speculative bubble. Such a bubble induces
an explosive component in J§;. Some researchers rule out such bubbles d
priori, e.g. Lewellen (2004) and Cochrane (2008). But, in fact, explosive
rational bubbles cannot be ruled out completely based on economic theory
(see, e.g., Tirole, 1985, and Diba and Grossman, 1988a), and some recent
studies do find evidence of explosiveness in stock prices. Engsted (2006), En-
gsted and Nielsen (2010), and Phillips et al. (2009), find that US stock prices
contain an explosive component not found in dividends, and explosive roots
are contained in the confidence intervals for the largest autoregressive root
in the US log dividend-price ratio reported by Campbell and Yogo (2006).

The question is what happens to the log-linear approximation when ¢; is
explosive? Does it break down completely? At first sight one would say yes
because with an explosive dividend-price ratio its unconditional mean is not
stable and it wanders arbitrarily away from any point very fast. However,
Cochrane (2008, section 4.1) discusses bubbles in the context of the log-
linear approximation and, although he chooses to rule out bubbles based
on economic theory, common sense, and earlier empirical results, he does
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not consider the log-linear approximation fundamentally inconsistent with
the presence of bubbles. Recent empirical tests for rational bubbles (Wu,
1997; Balke and Wohar, 2009; Phillips et al., 2009) also use the log-linear
approximation as the underlying theoretical framework.

In the present paper we investigate in detail the approximation error of
the log-linear return approximation under both stationarity and explosiveness
of the log dividend-price ratio, d;. We also investigate whether the presence
of rational bubbles may explain the predictability of stock returns based on
0; that several studies have found since the 1980s. First, we derive an upper
bound for the mean approximation error, given stationarity of J;, and we
show that the minimum upper bound is obtained by setting the linearization
point equal to the unconditional mean of &;.

Next, we conduct a simulation study to investigate the finite-sample prop-
erties of the log-linear approximation in the presence of bubbles. In practice
researchers may erronously treat d, as a stationary process, either because
of the downward finite-sample bias of autoregressive parameter estimates,
or because of periodically collapsing rational bubbles. Evans (1991) showed
that such bubbles, which have explosive conditional expectation, appear sta-
tionary in a finite sample. We simulate various bubbles of the Evans type
and investigate the properties of the approximation error in each case. The
underlying pricing model is one in which expected returns are constant and
log dividends follow a random walk with drift. These assumptions imply
that the bubble is the only cause for the approximation error. We find that
surprisingly the approximation error is quite small, even for relatively large
bubbles. For example, in a sample with 100 observations and a bubble that
collapses with 15% probability every period when the bubble grows above
some threshold, and where the bubble on average over the sample accounts
for 50% of the stock price, actual and approximate log returns are extremely
highly correlated, as are actual and approximate log dividend-price ratios
(correlations above 0.999). Average actual and approximate log returns are
very similar, as are average actual and approximate log dividend-price ra-
tios, and the standard deviations of exact and approximate values are almost
identical. As expected, the approximation error increases with the size of the
bubble, but only slightly. Only with a very large sample (1,000 observations)
do we find evidence of non-negligible approximation errors generated by the
bubble. Overall, the simulation results indicate that the Campbell-Shiller
log-linear return approximation is surprisingly accurate, even in the presence
of large explosive bubbles.



Finally, we use the same simulated data to investigate whether stock
returns are predictable from the dividend-price ratio. We conduct regressions
similar to those in Cochrane (2008), i.e. 7441, Adii1, and 041 are regressed
onto ¢;. In many cases we find predictive coefficients very similar to those
reported by Cochrane on US data. In particular, for a number of plausible
periodically collapsing bubbles we are able to match almost exactly the return
predictability results reported by Cochrane. Cochrane interprets his results
as evidence of time-varying expected returns. Since our simulated data are
from a model with constant expected returns, the only cause for the found
predictability is the presence of the bubble. Thus, our results point to an
alternative interpretation of Cochrane’s empirical findings: expected returns
are constant, but bubbles make returns appear predictable from the dividend-
price ratio in linear predictive regressions.

The rest of the paper is organized as follows. In the next section we derive
the upper bound for the mean approximation error in the log-linear return
approximation given stationarity of the log dividend-price ratio. Next, in
section 3, we investigate the properties of the approximation error in sim-
ulated data where stock prices are subject to various explosive bubbles. In
section 4 we use the same simulated data to investigate whether such bubbles
may generate predictability of stock returns from the dividend-price ratio.
Finally, section 5 contains some concluding remarks.

2 The approximation error under stationa-
rity

In this section we investigate in detail the approximation error in the log-

linear return approximation. We derive (1) from a first-order Taylor expan-

sion of the log gross stock return, and then we derive an upper bound for the

mean approximation error, given stationarity of the log dividend-price ratio.
The one-period gross stock return from time ¢ to ¢t + 1 is defined as

Piy1 + Dy

1+ R = 2
t

(3)

Taking logs to (3) gives



Tip1 = log(P1 + D) — log(P;)
D
= log l(l + PtJrl) Pt+11 — log(F)

i1
= log[l + €] + pra — pr.

The first term on the right-hand side of this expression is non-linear in the log
dividend-price ratio. The first-order (linear) Taylor approximation of f(d;41)
= log[1+e’+1] is

~ 1 = ~

o) = £+ | 15 =) (4)
1+e

where 9 is the point around which the linearization is done. The approxima-

tion error in (4) is given as (see e.g. Sydsaeter and Hammond, 1995):

% 1 66 2
Error, 1 =¢;,, = = 5 (041 — 0)7, (5)

[1 + eﬂ
where 4 is a number between 0 and dt11. Now (1) and (2) follow by setting

p=1(1 +€g>,1 and collecting all constant terms in k (k = log (%) —(1 —p)g =
—log(p) — (1= p)log(; — 1)):

P41 = ppip1 + (1 = p)depr — pe + Kk +ef (6)

= 6t = p5t+l + Tip1 — Adt+1 —k— 6;_1. (7)

How big is the approximation error e;,;? Notice first that since e;,; > 0,
the mean error, E(e;,,), is a valid measure of the magnitude of the approx-
imation error. Notice also that since an upper limit for 4; is 0, while there

ﬁ < 1 for all 5. Thus, from (5) we
can derive that 0 < e}, ; < £(641— ). Assuming that &, is stationary, such
that the first and second moments exist, we can set the point of linearization,
9, equal to the unconditional mean of §;. Thereby we obtain the following
upper bound for the mean approximation error in log returns:

is no lower limit, it follows that 0 <



E(€Z+1) < V(5t+1)- (8)

From (8) it is seen that the higher the variance of the dividend-price ratio,
the higher the upper bound for the mean approximation error.

The mean approximation error upper bound is minimized by setting the
point of linearization equal to the unconditional mean of the log dividend-

-~

price ratio, E(8). This follows by writing E(d;1; — 0)? as:

0| =

E(6111—0)* = E[6y21 — E(0)]* + E(E(5) —0)* 4 2E[(0111 — E(9))(E(6) — 9)].

Since the final term in this expression equals 0, we have that E(d;,1 — 3)2 =
V(1) + (E(0) —3\)2. Thus, from (5) it follows that E(e},;) < [V (0s41) +
(E(0) — 5\)2] which is minimized for § = E(5). This gives support to the
standard practice in much of the literature of setting p equal to (1+ €)1,
Many applications of the Campbell-Shiller log-linear model use the version
of the model where the linearization point is £(d). However, Campbell and
Shiller (1988a) themselves derived the log-linear return relation by linearizing
around the mean dividend growth and mean log return, i.e. p = e(44=7) In
the static Gordon growth model with constant dividend growth and constant
returns, it holds that e#(A4=") = (1 + F®))~1, However, if dividend growth
and returns vary over time the two approaches do not necessarily lead to the
same p value. Some studies just pick more or less arbitrarily a value of p close
to one. Naturally, the Taylor expansion can be done around any value; our
analysis above shows that by defining p in terms of E(9), the approximation
error is minimized in the sense that the upper bound for its mean value is
minimized.

;.1 is the approximation error in one-period approximative log return
computed from the log-linear relation, r;,; = ppii1 + (1 — p)dpy1 —pr + k =
0y — pdyr1 + Adyy1 + k. Alternatively, we may consider the approximate log
dividend-price ratio, d;, as a function of d;, ; and actual log returns, r;,;, and
dividend growth, Ady,1: §; = pdy, | +7¢41 — Adyyr — k. Solving this equation
recursively forward for §;, we obtain the approximative log dividend-price
ratio:

k(1= oty TS .
5: = _?p + ]ZO pj<rt+1+j - Adt—!—l—‘rj) +p _té;‘ (9)



The actual log dividend-price ratio is then given as §; = d; — Z;F;Ot i € i1ae

Since €f,,,; > 0, Vj, it follows that J; < 6;, and the approximation error in
the log dividend-price ratio is the summation of one-period log return approx-
imation errors, discounted by p. Thus, by construction the log dividend-price
ratio approximation error is larger in absolute value than the log return ap-
proximation error, and highly persistent since p is close to unity. However,
since p < 1 and F(e;, ) has a finite upper bound, £(d; — ¢;) also has a finite
upper bound. The upper bound for F(§; — ;) is directly related to the upper
bound for E(e;, ;).

Campbell and Shiller (1988a) find - on data samples that end in 1986,
i.e. a period where §; appears to be stationary - that the approximation
error in log returns is on average less than 10 percent of r; and not highly
variable (standard deviation less than 3 percent of the standard deviation
of r;). The approximation error in the log dividend-price ratio is on average
less than 4 percent of d;, and its standard deviation is less than 10 percent
of the standard deviation of §;. Actual and approximate log returns have a
correlation higher than 0.999, and actual and approximate log dividend-price
ratios have a correlation higher than 0.98. Campbell and Shiller conclude
that the approximation error "appears to be small in practice" (Campbell
and Shiller, 1988a, p.198).

It is noteworthy, however, that in the particular datasets used by Camp-
bell and Shiller, the mean approximation errors are in fact very close to their
upper bounds given by (8): Campbell and Shiller report, in their Tables A1l
and A2 for Cowles/S&P data from 1871 to 1986, and NYSE data from 1926
to 1986, sample variances of ¢; equal to 0.059 and 0.069, respectively, for the
two datasets. Thus, the upper bounds for the mean approximation errors are
£-0.059 = 0.007 and 3 - 0.069 = 0.009. The sample average of e}, is 0.005
and 0.008 in the two datasets, respectively, so the average approximation
errors are very close to their upper bounds, given stationarity of d;.

After the 1980s, the dividend-price ratio fell dramatically and, as men-
tioned in the introduction, some recent research indicates that stock prices
became explosive by including data from the 1990s, possibly as a result of
a speculative bubble. We now turn to analyzing the approximation error in
the presence of an explosive bubble.



3 The approximation error under an explo-
sive bubble

Intuitively we expect that the approximation error increases when prices
are explosive and subject to bubbles. This is because the error depends on
the distance of 9; from the point of linearization, and under bubbles this
distance can be large. This is also seen in the formulas in section 2 where
the expected error depends on E(¢6;) and V(d;). When 6, is non-stationary
these unconditional moments depend on ¢, and their sample estimates are
inconsistent. Thus, F(e;, ) in (8) has no finite upper bound.

If 9, follows an explosive linear autoregressive process, the largest root
of the autoregressive polynomial will be larger than one. For example, for
the AR(1) model in section 4 below, equation (17), ¢ > 1. When estimating
this AR(1) model in a finite sample one will not necessarily estimate ¢ to be
larger than one, even if the true ¢ is larger than one. It is well-known that
in a finite sample the least squares estimate of the autoregressive parameter
of a persistent variable is downward biased. Hence, even with a bubble
in prices, ¢ may well be estimated to be below one such that §; appears
stationary. In addition, some rational bubbles that have explosive conditional
expectation, do not follow linear autoregressive processes and such bubbles
may make prices look stationary. This is, for example, the case with the
periodically collapsing bubble process suggested by Evans (1991). Thus, the
econometrician working with a finite data sample of bubble-inflated prices
may not discover the bubble, and the approximation error in (2) may be
small despite the bubble.

We would, however, expect the approximation error to be large when the
sample size is large, when the bubble becomes large relative to fundamentals,
and when the bubble does not often burst. In order to study this, we sim-
ulate various bubble processes and then compute and compare actual and
approximate log returns and log dividend-price ratios in a way similar to
what Campbell and Shiller (1988a) did in their appendix. Diba and Gross-
man (1988b) simulated non-bursting bubbles from a simple linear explosive
AR(1) process. In our simulation study we use instead the Evans (1991)
model with a partially bursting rational bubble. Using a model setup that
allows the bubble to burst appears to be intuitively and empirically more
reasonable. However, when the burst probability approaches 0 the Evans
bubble will be very similar to the Diba-Grossman type of bubble.



3.1 The Evans bubble and the simulation setup

Rational bubbles were much analyzed in the 1980s based on a standard
present value model with a constant discount factor, i.e. constant expected
returns, e.g. West (1987), Diba and Grossman (1988a,b), and Evans (1991).

According to this model, stock prices are determined as

P, = F,+ B;, where (10)
F = E P D 19
=Y <1+R) "
1
B, = H—}%EtBt—&-l-

R is the constant expected arithmetic return, and B; is the rational bubble
term which evolves explosively over time if R > 0: E;B;11 = (1 + R)B;. If
B; = 0, there is no bubble and prices are determined only by expected future
discounted dividends. However, if B, > 0 there is a bubble and this will
induce explosiveness into F;.

Using the reparamerization in Campbell and Shiller (1987), (10) can be
rewritten as

R R 1+R

Pt_lDt:ﬂEtZ< 1 ) AD,,; + B,. (11)
i=1
This reparameterization is useful if dividends have a unit root, D; ~ I(1),
and there is no bubble, i.e. B; = 0. In this case (11) shows that P, will
also have a unit root and be cointegrated with D; such that P, — %Dt is
stationary (P, and D; have a common stochastic trend). What happens if
D; ~ I(1) and there is a bubble, B; > 0?7 Since the 1980s several empirical
researchers have claimed that in this case P, and D, should not cointegrate
because P; — %Dt will be explosive. However, this is only partially correct.
According to (11), the linear combination P, — %Dt will contain the explosive
root from By, but it will not contain a unit root. P; still shares the unit root
(i.e. stochastic trend) with Dy, so in this sense they are still cointegrated,
even though the linear combination is not stationary.!

Interestingly, standard single-equation residual based cointegration techniques cannot
be used to capture the common stochastic trend in P; and D; when P; contains a bubble...
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We follow Evans (1991, appendix) and simulate periodically collapsing
bubbles in a model where the expected return is constant, as in (10), and
where log dividends, d;, follow a random walk with drift.? An appealing
feature of this setup in the present context is that with no bubble, because
the dividend-price ratio is constant, there is no approximation error. The
log-linear return relation holds exactly. Thus, by adding a bubble we know
that the induced approximation error is due only to the bubble component.

Prices are generated according to (10) where R is set equal to 0.05 (i.e.
a yearly expected return of 5%), and log dividends follow the random walk
with drift:

dt =u+ dt—l +&r , & N(0,0’g) (12)

In accordance with Evans (1991, appendix), we set p equal to 0.013 and o
equal to 0.016. The fundamentals component of prices (i.e. the present value
of expected future dividends) is

1+ p+ 507
- R—p+ 302
Thus, with no bubbles the price-dividend ratio is constant over time. The
bubble component is modeled as follows:

(13)

t

B . (]_ + R)Btut+1 lf Bt S « (14)
1= [w + %(1 + R)0;1(B; — FlRWﬂ wyr  if By > «

w and « are positive parameters with 0 < w < (1 + R)a, and uzyq is an
exogenous iid positive random variable with Fyu;.; = 1, and 6,1 is an
exogenous iid Bernoulli process which is independent of u,,q; it takes the
values 1 and 0 with probabilities 7 and 1 — 7, respectively.

The bubble in (14) is rational since it satisfies the restriction F;B;.; =
(1 + R)By, i.e. it has explosive conditional expectation. However, it peri-
odically collapses in the sense that when B; > «, it bursts with probability

(cont.) By contrast, the VAR-based Johansen (1991) technique will capture both the
explosive root and the common stochastic trend. See Engsted (2006) and Engsted and
Nielsen (2010) for a detailed discussion of these things.

2Evans (1991) also simulates bubbles from a model where the level of dividends, Dy,
instead of log dividends, d;, follow a random walk with drift. However, that model has the
counterintuitive implication that the growth rate of dividends decreases over time. Hence,
we only consider the case with d; being a random walk with drift.
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1 — 7 every period, but when it bursts it does so only partially: it falls to a
mean value of w > 0 from which it starts growing again.

By varying the parameters w, «, and 7, one can alter the frequency with
which the bubble erupts, the average length of time before collapse, and the
scale of the bubble. We follow Evans and set « = 1, w = 0.5, and initial
B; = w. Also in accordance with Evans, we model u;,; as a log-normal iid
variable, i.e. u; = exp(y; — 372), where y; ~ N(0,72) and where we set 7
equal to 0.05. We examine first the case where 7 = 0.85 which means that
the bubble collapses with 15% probability every period when it gets above «.
In order to obtain a bubble with a reasonable magnitude relative to the total
valuation, we initially multiply the bubble component by a factor A = 100.
With this value of A\, and a sample size of 7' = 100, the bubble on average
over the T observations represents roughly 50% of the total valuation, i.e.
AB/P = 50%. Subsequently we let \ vary in the range between 1 and 250,
see below.> We also vary 7 in the interval between 0.65 to 0.99.

For the simulation experiment we simulate from Evans’ model 10,000
time series of length T = 100 or 1,000 for dividends and prices, from which
we calculate exact and approximate log returns and dividend-price ratios.
We then compute the approximation error as the difference between exact
and approximate values. Approximate log returns are computed as 7}, =
ppei1 + (1 — p)dis1 — py + k, and approximate log dividend-price ratios are
computed as 0} in equation (9). We follow Campbell and Shiller (1988a) and
set 07 equal to the exact end-sample value, d7. In all cases we set p equal to
(14 €)', where 9 is the sample mean in the particular simulated sample.
In the tables below all numbers are averages over the 10,000 simulations.

3.2 Results from the simulation study

In Table 1 we report the simulated distributions of exact and approximate
log returns and log dividend-price ratios, and the implied approximation
errors, from a bubble model where 7" = 100, 7 = 0.85, and A\ = 100. This
bubble accounts for on average 51.7% of the stock price. We measure the
magnitude of the approximation error in two different ways, either as the
percentage average error (which we denote E1) or as the average percentage

3In his simulations Evans (1991, appendix) used a factor of A\ = 250, which implies
that Var(AB;) is approximately three times the sample mean of Var(AF;). We have
experimented with this alternative measure of the magnitude of the bubble, but we found
it to be quite erratic and therefore decided to use the measure AB/P instead.
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error (denoted E2). The former is computed simply as the "Approx. error" in
Table 1 divided by "Exact". It measures the average over the 7" observations
of the approximation error relative to the exact value. E2 measures instead
the percentage error at each observation ¢, ¢t = 1,...,T, i.e. Error,/Exacty,
averaged over the T" observations. The two measures do not necessarily give
the same results.

As seen from Panel A in Table 1, exact and approximate log returns have
very similar means and medians and they are extremely highly correlated.
The mean approximation error amounts to either 4.58% or 7.21% of the exact
log return, depending on whether E1 or E2 is used. The average standard
deviations of exact and approximate log returns are also almost identical
(~25.9%), so that the percentage error is basically 0%.* Panel B in Table 1
shows that exact and approximate log dividend-price ratios are also extremely
highly correlated, and the average approximation error is around 1% in both
the mean, median, and standard deviation, and as measured by both E1 and
E2.

Compared to Campbell and Shiller’s (1988a) Table A1 and A2, which re-
port approximation errors in US data, the approximation errors in the bubble
model do not appear large. Thus, a periodically collapsing bubble which has
explosive conditional expectation, and which on average accounts for around
50% of the stock price, does not on average generate large approximation
errors in the Campbell-Shiller log-linear approximation. Figure 1 shows the
fundamentals price, F}, and the bubble-inflated price, P, for one particular
simulation out of the 10,000, and Figure 2 shows the associated exact and
approximate log dividend-price ratios.

In Table 2 we let the average size of the bubble vary by varying A\ in
the interval from 0 (i.e no bubble) to 250. With 7" = 100, the size of the
bubble then varies from 0% to 69%. As in Table 1, the no-burst probability
is m = 0.85. We see that for all bubbles exact and approximate log returns
are almost perfectly correlated, and the difference between their standard
deviations is completely negligible. The percentage approximation error in
average log returns increases with increasing A, to around 6.0% if measured
by E1 and to around 7.8% if measured by E2. It is noticeable that the
mean approximation error for a bubble that accounts for 69% of the price

4In the simulated model the average arithmetic return is R = 0.05. If returns are
log-normally distributed it holds that R = 7 + %03. From Table 1 we get 7 + %O’E =
0.0262 + 1(0.2587)% = 0.06. Thus, the simulated returns are far from being log-normally
distributed.
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(A = 250) is only marginally larger than the error for a bubble that accounts
for 52% of the price (A = 100). The same pattern is observed when looking
at the approximation error in the log dividend-price ratio (Panel B in Table
2). The percentage error never gets much above 1%. Again, compared to the
approximation errors on actual US data reported by Campbell and Shiller
(1988a) in their Tables Al and A2, the approximation errors in the simulated
bubble data with 7" = 100 observations are by no means large, not even for
relatively large bubbles.

In Table 3 we set the sample size equal to 7" = 1,000 in the simulations.
This means that for a fixed 7 (=0.85), we will see more bubble bursts than
when 7" = 100. Thus, over the 1,000 observations the average size of the
bubble relative to the price will be lower than in Table 2. For log returns the
results are basically the same as for 7" = 100. The approximation error in av-
erage log returns increases slightly with increasing A above 50, but never gets
above 9%. The percentage error in the standard deviation of log returns is
always completely negligible (=~ 0.2%). Looking instead at the log dividend-
price ratio, we now begin to see larger approximation errors. The percentage
error is around 3.5% for A = 250, which is somewhat higher than the 1% with
T =100 in Table 2, although it is still not seriously large, and exact and ap-
proximate log dividend-price ratios remain extremely highly correlated also
for very large A values. However, when looking at the standard deviations of
the ratios the approximation error is now around 12% which indicates some
difference in the volatilities of exact and approximate log dividend yields.

In Tables 4 and 5 we vary the bubble burst probability, 1—m, while keeping
A fixed at 100. In the simulations with 7" = 100 (Table 4), the approximation
error remains low in both log returns and log dividend-price ratios when we
increase 7 from 0.65 to 0.99. Interestingly, the errors in the average log return
and the average log dividend yield reach their maximum not for 7 = 0.99
but for 7 = 0.95. When the sample size is increased to 7" = 1,000 (Table
5), the approximation error now becomes relatively large for 7 > 0.95. For
very high values of m the bubble rarely collapses and in a large sample this
apparently generates larger errors. The approximation error is maximized for
7 = 0.99 where the percentage error is above 30% for both log returns and log
dividend yields. As also seen, the correlation between exact and approximate
log dividend yields drops to 0.95 for 7 = 0.99. With respect to the variability
of the series, the standard deviations of exact and approximate log returns
remain extremely similar, but for exact and approximate log dividend yields
the standard deviations are noticeably different (by more than 13% in some
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cases).

The main conclusion from this analysis is that only in very large samples
do we find evidence that rational bubbles, that have explosive conditional
expectation, generate large approximation errors in the Campbell-Shiller log-
linear return approximation.

4 Return predictability under bubbles

An interesting question is whether bubbles may explain the predictability of
stock returns by the dividend-price ratio that several studies have reported
over the years, e.g. Fama and French (1988), Campbell and Shiller (1988a,b),
Lewellen (2004), Campbell and Yogo (2006), Cochrane (2008), Chen (2009),
and Engsted and Pedersen (2010). Shiller (2000) argues that bubbles are
the main reason for predictability of stock returns based on valuation ratios.
However, most studies in this area consider return predictability a result of
time-varying expected returns due to e.g. time-varying risk-premia, and rule
out bubbles from the outset, see e.g. Lewellen (2004) and Cochrane (2008).

To investigate this issue, we will use the simulated bubble data from the
previous section to analyze whether returns in these data are predictable
from the dividend-price ratio. The predictability regressions are identical
to those used by Cochrane (2008), which form a restricted first-order VAR
system for log returns, log dividend growth, and the log dividend-price ratio.
We now briefly describe Cochrane’s setup before reporting our results using
the simulated bubble data.

4.1 Cochrane’s VAR setup with a bubble

Cochrane (2008) derives a number of implications that the Campbell-Shiller
log-linear return approximation implies for a VAR model that looks as fol-
lows:

Tt+1 = Qp + br(gt + 5;_’_1, (15)
Adt+1 = aqg + bdét + €?+1, (16)
Or1 = as + 0, + €y, (17)
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Projecting on d;, the approximate identity (2) implies that the coefficients in
(15) - (17) obey the linear relationship (ignoring the constant term, k)

b, =~ 1— ¢p—+ by. (18)
On annual US data from 1926 to 2004, Cochrane finds the following pa-
rameter estimates, with standard errors in parentheses: b, = 0.097 (0.050),
by = 0.008 (0.044), and ¢ = 0.941 (0.047). The estimated value of p is 0.9638.
Based on these estimates it is seen that (18) holds almost exactly, indicating
that the approximation error in (2) is negligible. The estimates also imply
that the log dividend-price ratio is stationary (implying no bubbles), and
that dividend growth is completely unpredictable from the dividend-price
ratio while returns are predictable, which means that all variation in divi-
dend yields comes from time-varying expected returns; nothing comes from
time-varying expected dividend growth or bubbles. This is the interpretation
offered by Cochrane.’

In section 4.1 in his paper, Cochrane discusses what a bubble would imply
for the VAR system (15) - (17). From the ex ante version of the approximate
identity (2), we can solve recursively forward for ¢; to get (again abstracting
from the constant term k, and the fact that (2) only holds approximately)

oy = B, Zp’(rHHi — Adyy144) + hll_)fgo P"Eby . (19)
=0

If the last term in (19) goes to 0 when h goes to oo, there is no bubble.
However, if the last term does not go to 0, then there is a bubble in prices
in which case the log dividend-price ratio explodes to —oo. d; will evolve as
an explosive process with autoregressive parameter 1/p > 1. Cochrane agues
that this is so because under an explosive bubble b. = b; = 0, but being
an identity (18) still has to hold whereby ¢ = 1/p. With these parameter
restrictions, (19) becomes

oy = hhm PhEt5t+h

1\
I Y S P Y _
— hlggop @" 0y —hh_r)glop (p) 0y = 0.

°The b, estimate of 0.097 is only marginally significant (and not significant based on
a simulated p-value) if equation (15) is treated in isolation. However, Cochrane (2008)
shows that given by = 0 and ¢ < 1, the b, estimate is highly statistically significant.
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Thus, according to Cochrane, in principle a rational bubble could be con-
sistent with the approximate identity (2), namely for ¢ = 1/p > 1. However,
Cochrane chooses to rule out bubbles based on both theoretical, empiri-
cal, and 'common sense’ arguments: "This view [bubbles| is hard to hold
as a matter of economic theory, so I rule it out on that basis" (p.1554).
And: "do we really believe that dividend yields will wander arbitrarily far
in either the positive or negative direction? Are we likely to see a market
price-dividend ratio of one, or one thousand, in the next century or two?"
(p.1555). Cochrane says "no" and, therefore, either expected dividends or
expected returns (or both) must be the cause of price movements. In his
empirical analysis Cochrane finds that dividend yields predict returns but do
not predict dividend growth, and based on these findings he concludes that
all price variation is due to changing expected returns; nothing comes from
dividends or bubbles. In the next subsection we challenge this conclusion.

4.2 Return predictability in the simulated bubble data

We interpret the theoretical bubble literature differently than Cochrane, and
we offer an alternative interpretation of the empirical results reported by
Cochrane. First, rational bubbles are not completely ruled out in theoreti-
cal models. The restrictions that economic theory put on such bubbles are
very tight (see e.g. Diba and Grossmann, 1988a), but in dynamically inef-
ficient overlapping generations economies bubbles are not inconsistent with
optimizing behavior, see e.g. Tirole (1985) and Abel et al. (1989). See also
Santos and Woodford (1997) and Abreu and Brunnermeir (2003) for models
in which bubbles may arise as an equilibrium phenomenon. Leroy (2004)
provides a rational bubble interpretation of the behavior of US stock prices
in the 1990s. Brunnermeier (2008) gives a brief survey of the literature on
bubbles.

Second, bubbles do not necessarily imply price-dividend ratios as extreme
as conjectured by Cochrane. For example, the Evans’ (1991) type periodi-
cally collapsing stochastic rational bubble that we investigated in section 3,
does not - despite having explosive conditional expectation - imply highly
implausible price-dividend ratios. As Evans points out, in order to be em-
pirically plausible a bubble needs to have a high chance of collapsing when
reaching high levels. The characterizing feature of Evans’ bubble is that it
successively grows and bursts, but when it bursts it does so only partially so
that it can continue to grow. Some of the rational bubbles that Evans and

17



we simulate give price-dividend ratios that stay within 'reasonable’ limits.

In addition, recent empirical research does find explosiveness in US stock
prices (Engsted, 2006; Engsted and Nielsen, 2010; Phillips et al., 2009),
and explosive roots are contained in the confidence intervals for the largest
autoregressive root in the US log price-dividend ratio reported by Campbell
and Yogo (2006).

In order to examine whether Cochrane’s finding of return (but no divi-
dend) predictability by a stationary dividend-price ratio may in fact be the
result of a rational bubble in a model with a constant expected return, we
will estimate the three equations (15) - (17) on the bubble data that we sim-
ulated in section 3. Since the underlying bubble model implies unpredictable
dividend growth, c.f. equation (12), and a constant expected return, R, any
time-variation in d; and predictability of ;1 from §; must come from the
bubble. In Tables 6 and 7 we report the results of this exercise. Table 6
gives results for a sample size of T" = 100, two different values of the bub-
ble multiplication factor (A = 100 or 250), and three different values of the
no-burst probability (7 = 0.85, 0.65, or 0.99). Table 7 reports results for
the same values of \ and 7, but for a sample size of T'= 1,000. The tables
also report AB/P as a measure of the average size of the bubble relative to
the total valuation of the stock. The "implied" column computes each of the
regression coefficients b, by, and ¢ from the other two and the identity (18).
By comparing the estimated and implied values we get a sense of the impor-
tance of the approximation error for the predictability results. The tables
are directly comparable to Cochrane’s Table 2 which reports estimates of the
system (15) - (17) on annual US data from 1926 to 2004.

Panel (a) in Table 6 shows that in a sample with 100 observations and a
bubble that collapses with probability 15% every period when it gets above
some threshold value, and that on average accounts for 52% of the stock
price, regressing log return, r;,1, onto the log-dividend-price ratio, J;, gives
an average coefficient of b, = 0.117 with standard error ¢ = 0.065 over
the 10,000 simulation runs. These estimates match very closely Cochrane’s
estimates on US data (b, = 0.097, o = 0.050). The estimates of the dividend
growth coefficients in the simulated data are b; = —0.026 and o = 0.039, to
be compared to Cochrane’s, b; = 0.008 and ¢ = 0.044. In both cases the
by estimates are close to 0 and statistically insignificant. Our estimate of
d¢’s autoregressive coefficient (¢ = 0.866 with o = 0.062) is, however, lower
than Cochrane’s estimate (¢ = 0.941 with o = 0.047), although a value of
0.866 still implies a high degree of persistence. The estimate of ¢ below 1
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illustrates Evans’ (1991) point that in a finite sample it will be difficult to
detect a rational periodically collapsing bubble that has explosive conditional
expectation.

Panels (b) and (c) in Table 6, and Panels (a) to (c) in Table 7, show that
the above results also hold for larger bubbles, for bubbles that collapse more
often, and when the sample size increases. In all cases the b, estimates are
positive and statistically significant at the 5% level (or marginally signifi-
cant), the b, estimates are close to 0 and insignificant, and the ¢ estimates
are slightly below 1. Only if the bubble burst probability 1 — 7 approaches 0
does return predictability disappear, as seen in Panels (d) in the tables where
m = 0.99. These results imply that plausible periodically collapsing rational
bubbles in a world where expected returns are constant, may generate return
predictability in linear regressions of log returns onto log dividend-price ra-
tios, thus offering an alternative interpretation of the findings of Cochrane
and many others in which the predictability is interpreted as reflecting time-
varying expected returns.

By comparing the estimated coefficients with the "implied" coefficents in
Tables 6 and 7, we see that in all cases the differences are very small. The
implied coefficients are computed using the relation b, = 1 — ¢p + by which
only holds approximately, c.f. equation (18). In the results with 7" = 100,
the implied coefficients deviate from the estimated coefficients by only 0.001.
In the results with 7" = 1, 000, implied and estimated coefficients deviate by
at most 0.008. Thus, it seems that with respect to predictability regressions,
the approximation error in the log-linear return approximation is completely
negligible, even in cases with substantial volatility in the log dividend-price
ratio.

5 Concluding remarks

In this paper we have investigated in detail the log-linear return approxi-
mation of Campbell and Shiller (1988a) which has become one of the cor-
nerstones of empirical finance. First, we have derived an upper bound for
the mean approximation error, given stationarity of the log dividend-price
ratio, d;, and we have shown that the minimum upper bound is obtained
by setting the point of linearization equal to the unconditional mean of ¢;.
This gives support to the usual practice in the empirical literature using the
Campbell-Shiller approximation of defining the ’discount factor’, p, in the
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approximation in term of the sample mean of d;.

Second, we have studied the properties of the Campbell-Shiller approx-
imation in the presence of rational explosive bubbles. We have done that
by simulating various periodically collapsing explosive bubbles of the Evans
(1991) type, and then investigated the approximation error in each case.
We find - perhaps surprisingly - that unless the sample size is very large,
such bubbles do not induce large approximation errors in the log-linear rela-
tion. Thus, in practice in a given finite sample, the presence of a speculative
bubble which induces explosive components into prices does not necessarily
destroy the Campbell-Shiller approximative relation as a useful framework
for empirical analysis.

Third, within the log-linear approximative framework we have investi-
gated whether periodically collapsing explosive bubbles may explain the com-
mon finding of predictability of log stock returns from the log dividend-price
ratio. Using the simulated bubble data from a model where expected re-
turns are constant, we find that indeed log returns, .1, appear significantly
predictable from §;, and that ; appears stationary. In fact, for a number
of empirically plausible bubbles, we are able to match very closely the pre-
dictability results reported recently by Cochrane (2008), thus offering an
alternative interpretation of Cochrane’s results. Cochrane interprets his re-
sults as implying that variation in dividend yields reflects only time-varying
expected returns, with nothing coming from dividends or bubbles. Our sim-
ulations show that Cochrane’s results may equally well be explained as a
result of bubbles.

Naturally, in reality Cochrane may well be correct in arguing that ex-
pected returns are time-varying and that bubbles play no role. Our results
just show that in principle the presence of a bubble in a model with constant
expected returns may also lead to the dividend yield appearing stationary
and having predictive ability for future stock returns. Thus, Cochrane’s find-
ings cannot be used to rule of bubbles.

Finally, our predictability results on the simulated data show that with
regard to common return predictability regressions, the approximation error
in the Campbell-Shiller log-linear approximation is completely negligible.

The main conclusion from our analyses is that the Campbell-Shiller ap-
proximation appears highly accurate and robust, even when the log dividend-
price ratio is highly volatile and contains non-stationary components.
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7 Tables

Approx. Percent Percent

Exact  Approx. error error, E1 error, E2
A: Log return
Mean 0.0262  0.0250 0.0012 4.58% 7.21%
Median 0.0252  0.0239 0.0013 5.16% 4.06%
Std.dev. 0.2587  0.2586 0.0001 0.04% 0.07%

Corr(r,7*) = 1.0000

B: Log dividend-price
Mean -4.4810 -4.4306 -0.0504 1.12% 1.09%
Median -4.3925  -4.3458 -0.0467 1.06% 0.77%
Std.dev. 0.5342  0.5284 0.0058 1.09% 1.20%

Corr(9,6") = 0.9992

Notes: The table reports the mean, median, standard deviation, and correlation
of exact and approximate log returns (r; and 77) and exact and approximate
log dividend-price ratios (d; and ¢;), using the simulated data from the bub-
ble model (10), (12), (13), and (14). Approximate log returns are computed as
75 1= PPi+(1 — p)d, ,—py+k, and approximate log dividend-price ratios are
computed as J; in equation (9). p is calculated as p = (1+exp (3))71, where &
is the average log dividend-price ratio in the particular simulation run. "Approx.
error” is obtained as "Exact" minus "Approx". "Percent error, E1" gives the per-
centage average error, computed as "Approx. error" divided by "Exact". "Percent
error, E2" gives the average percentage error, computed as the percentage error
at each observation averaged over the T' = 100 observations. The numbers in the
table are averages over 10,000 simulations.

Table 1: Simulated distribution of the approximation error. No-burst prob-
ability m = 0.85; bubble factor A = 100; sample size T" = 100.
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Bubble factor, A

0 1 50 100 150 200 250
AB/P 0.00% 2.59% 382% 51.7% 59.7% 65.1% 69.0%
A: Log return:
Corr(r,r*) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
El (avgr) 0.00% 0.25% 3.92% 4.58% 5.53% 6.02% 5.97%
E2 (avg r) 0.00% 0.61% 6.49% 7.21% 6.45% 7.755% 7.79%
El (sdr) 0.00% 0.00% 0.09% 0.04% 0.04% 0.03% 0.00%
E2 (sd r) 0.00% 0.02% 0.09% 0.07% 0.05% 0.04% 0.03%
B: Log div/price:
Corr(d,0™) - 0.9998 0.9991 0.9992 0.9993 0.9993 0.9994
El (avg §) 0.00% 0.11% 0.99% 1.12% 1.15% 1.13% 1.10%
E2 (avg §) 0.00% 0.11% 0.93% 1.09% 1.11% 1.12% 1.11%
El (sd ) 0.00% 0.78% 0.99% 1.09% 1.16% 1.17% 1.20%
E2 (sd §) 0.00% 0.27% 1.10% 1.20% 1.24% 1.25% 1.25%

Notes: The table reports percentage approximation errors (E1 and E2) for the
mean and standard deviation of log returns ("avg r" and "sd r"), and for the mean
and standard deviation of log dividend-price ratios ("avg 6" and "sd 0"). The table
also reports the correlation between exact and approximate values. AB/P is the
average size of the bubble relative to the total valuation of the stock. Otherwise
see the notes to Table 1.

Table 2: Approximation error in the simulated data with varying bubble size
(A). No-burst probability = = 0.85; sample size 7" = 100.
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Bubble factor, A

0 1 50 100 150 200 250
AB/P 0.00% 0.70% 9.62% 13.5% 16.0% 17.9% 19.4%
A: Log return:
Corr(r,r*) 1.0000 1.0000 0.9998 0.9997 0.9997 0.9996 0.9996
El (avgr) 0.00% 0.25% 2.67% 4.16% 5.68% 6.96% 7.96%
E2 (avg r) 0.00% 0.14% 2.99% 4.92% 6.45% 7.73% 8.84%
El (sdr) 0.00% 0.00% 0.18% 0.22% 0.26% 0.20% 0.19%
E2 (sdr) 0.00% 0.02% 0.17% 0.20% 0.21% 0.22% 0.22%
B: Log div/price:
Corr(d,0™) - 0.9981 0.9890 0.9873 0.9864 0.9858 0.9854
El (avg §) 0.00% 0.05% 1.13% 1.90% 2.53% 3.08% 3.57%
E2 (avg §) 0.00% 0.05% 1.08% 1.79% 2.38% 2.89% 3.31%
Bl (sd §) 0.00% 530% 102% 11.3% 11.7% 12.0% 12.0%
E2 (sd §) 0.00% 1.59% 9.17% 11.1% 12.0% 125% 12.8%

Notes: The table reports percentage approximation errors (E1 and E2) for the
mean and standard deviation of log returns ("avg r" and "sd r"), and for the mean
and standard deviation of log dividend-price ratios ("avg 6" and "sd 0"). The table
also reports the correlation between exact and approximate values. AB/P is the
average size of the bubble relative to the total valuation of the stock. Otherwise
see the notes to Table 1.

Table 3. Approximation error in the simulated data with varying bubble size
(A). No-burst probability = = 0.85; sample size T" = 1, 000.
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No-burst probability, 7
0.65 0.75 0.85 0.95 0.99

AB/P 48.2% 49.3% 51.7% 60.0% 72.3%
A: Log return:
Corr(r,r*) 1.0000 1.0000 1.0000 0.9999 0.9997
El (avgr) 3.49% 3.86% 4.58% 5.80% 4.26%
E2 (avgr) 4.59% 554% 7.21% 8.74% 6.15%
El(sdr) 0.12% 0.12% 0.04% 0.04% 1.41%
E2 (sdr) 0.11% 0.10% 0.07% 0.06% 0.15%
B: Log div/price:

) 0.9994 0.9993 0.9992 0.9991 0.9995
El (avg §) 0.70% 0.84% 1.12% 1.55% 1.21%

) 0.68% 0.82% 1.09% 1.49% 1.22%

) 1.02%  1.07% 1.09% 0.51% 1.22%

E2 (sd ) 1.06% 1.13% 1.20% 0.93% 0.72%
Notes: The table reports percentage approximation errors (E1 and E2) for the
mean and standard deviation of log returns ("avg r" and "sd r"), and for the mean
and standard deviation of log dividend-price ratios ("avg 6" and "sd 0"). The table
also reports the correlation between exact and approximate values. AB/P is the
average size of the bubble relative to the total valuation of the stock. Otherwise
see the notes to Table 1.

Table 4: Approximation error in the simulated data with varying no-burst
probability (7). Bubble factor A = 100; sample size 7" = 100.
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No-burst probability, 7
0.65 0.75 0.85 0.95 0.99

AB/P 11.8% 12.3% 13.5% 18.8% 41.5%
A: Log return:
Corr(r,r*) 0.9998 0.9998 0.9997 0.9994 0.9996
El (avgr) 3.01% 3.30% 4.16% 9.51% 29.6%
E2 (avgr) 3.37% 3.82% 4.92% 10.8% 32.1%
El(sdr) 0.23% 023% 022% 0.14% 0.05%
E2 (sdr) 021% 0.21% 0.20% 0.14% 0.03%
B: Log div/price:

) 0.9924 0.9908 0.9873 0.9759 0.9529
El (avg 0) 1.22% 1.41% 1.90% 5.35% 37.1%

) 1.15% 1.33% 1.79% 4.98% 32.4%

) 10.4% 10.6% 11.3% 13.6% 9.50%

E2 (sd ) 101% 104% 11.1% 13.5% 11.6%
Notes: The table reports percentage approximation errors (E1 and E2) for the
mean and standard deviation of log returns ("avg r" and "sd r"), and for the mean
and standard deviation of log dividend-price ratios ("avg 6" and "sd 0"). The table
also reports the correlation between exact and approximate values. AB/P is the
average size of the bubble relative to the total valuation of the stock. Otherwise

see the notes to Table 1.

Table 5: Approximation error in the simulated data with varying no-burst
probability (7). Bubble factor A = 100; sample size T' = 1, 000.
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(a)

(b)

A=100 7=085 AB/P=52% A=250 m=085 AB/P=69%
b, b G implied b, b G implied
r 0117  0.065 0.118 0.113  0.057 0.113
Ad -0.026  0.039 -0.027 0.019  0.026 -0.020
5§ 0866  0.062 0.867 0.873  0.060 0.874
(c) (d)
A=100 7=065 AB/P=48% A=100 =099 AB/P=T72%
b, b G implied b, b G implied
r 0.167  0.090 0.169 0.023  0.041 0.022
Ad -0.037  0.045 -0.038 0.014  0.027 -0.013
5§ 0805  0.087 0.806 0.968  0.041 0.967

Note: The table reports estimates of b,, by, and ¢ (and associated standard er-
rors, 0) in the system (15)-(17), using the simulated data from the bubble model
(10), (12), (13), and (14). The numbers are averages of regressions over 10,000
simulated series with T = 100 observations in each. "implied" denotes the calcu-
lated coefficient based on the other two coefficients and the identity (18), using
p=(14+exp(3))”". The values of p in parts (a), (b), (c), and (d) are: 0.9888,
0.9935, 0.9872, and 0.9954. A\ is the bubble multiplication factor. 1 — 7 is the
probability that the bubble will burst every period. AB/P is the average size of

the bubble relative to the total valuation of the stock.

Table 6: Predictability regressions on the simulated bubble data. Sample
size T = 100.
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(a)

(b)

A=100 7=085 AB/P=13% A=250 7=085 AB/P=19%
b, b G implied b, b G implied
r 0.059  0.021 0.067 0.048  0.014 0.055
Ad -0.009  0.017 -0.017 -0.005  0.010 -0.012
5§ 0945  0.017 0.953 0.958  0.014 0.965
(c) (d)
A=100 7=065 AB/P=12% A=100 =099 AB/P =86%
b, b G implied b, b G implied
r 0077 0.034 0.083 0.017 _ 0.008 0.015
Ad -0.012  0.020 -0.018 -0.0015  0.004 -0.0002
5§ 0926  0.032 0.932 0.987  0.006 0.986

Note: The table reports estimates of b,, by, and ¢ (and associated standard er-
rors, 0) in the system (15)-(17), using the simulated data from the bubble model
(10), (12), (13), and (14). The numbers are averages of regressions over 10,000
simulated series with T = 1,000 observations in each. "implied" denotes the cal-
culated coefficient based on the other two coefficients and the identity (18), using
p = (1+exp (3))71 The values of p in parts (a), (b), (c), and (d) are: 0.9781,
0.9811, 0.9771, and 0.9960. A\ is the bubble multiplication factor. 1 — 7 is the
probability that the bubble will burst every period. AB/P is the average size of

the bubble relative to the total valuation of the stock.

Table 7: Predictability regressions on the simulated bubble data. Sample
size T' =1, 000.
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Fundamentals and Price
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Figure 1: Simulated periodically collapsing bubble

31




log D/P and Approximate log D/P
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Figure 2: Exact and approximate log dividend-price ratio, computed from
the simulated periodically collapsing bubble
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