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Abstract

Building upon the work of Vogelsang (1998) and Harvey and Leybourne (2007) we derive tests

that are invariant to the order of integration when the null hypothesis of linearity is tested in

time-varying smooth transition models. As heteroscedasticity may lead to spurious rejections

of the null hypothesis, a White correction is also considered. The asymptotic properties of

the tests are studied. Our Monte Carlo simulations suggest that the newly proposed tests

exhibit good size and competitive power properties. An empirical application to US inflation

data from the Post-Bretton Woods period underlines the empirical usefulness of our tests.

Key Words: Linearity testing, Linear I(0) and (1) models, Non-linear I(0) and I(1) models,

White correction.

1 Introduction

Ample empirical evidence on the short-comings of AR(I)MA models to capture non-linearities

and structural changes in economic time-series have been gathered over the years. The research

during the last two or three decades has therefore very much focused on time-series models

accommodating both non-linearity and structural change in the dynamics and the deterministic

terms. In a sound modelling cycle of such models testing the linearity hypothesis is of obvious

∗E-mail: rkruse@creates.au.dk. Helpful comments by Sanne Hiller and financial support from CREATES funded

by the Danish National Research Foundation are gratefully acknowledged.
†E-mail: rickard.sandberg@hhs.se. Corresponding author.
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interest. A popular method to test linearity is based on Taylor-series approximations of the

original model. Thereafter tests are conducted by simple ordinary least squares (OLS), see

Luukkonen, Saikkonen, and Teräsvirta (1988), Granger and Teräsvirta (1993), Teräsvirta (1994),

Jansen and Teräsvirta (1996), and van Dijk, Teräsvirta, and Franses (2002) to list a few. Other

frequently used linearity tests are simulation based, see e.g. Andrews and Ploberger (1994) and

Hansen (1996).

It is important, though, to keep in mind that the asymptotic distribution of these linearity

tests are not invariant with respect to the order of integration under the null hypothesis of linearity

(see Kiliç 2004, and Sandberg 2008 for discussions and examples). This is an undesirable property

when they are applied to potentially high and low persistent time-series. Thus, it is not obvious if

a linear I(0) or a linear I(1) model should serve as null hypothesis. An obvious remedy employs a

unit root pre-test and subsequently works with levels or first-differences of the series. Pre-testing

is problematic since unit root tests may exhibit low power. Moreover, the overall significance

level is uncontrolled in such a procedure and the multiple testing problem arises.

Our main contribution is to follow up and extend the work on linearity tests in smooth

transition autoregressive (STAR) models by Harvey and Leybourne (2007), hereafter H&L, which

are invariant to the order of integration. More specifically, we derive invariant linearity tests in

the more general time-varying STAR (TV-STAR) model (see e.g. Van Dijk and Franses, 2002

and Lundbergh, Teräsvirta, and van Dijk, 2003).1 In this sequel we rely upon the seminal work

by Vogelsang (1998). In our case, this yields a Wald test statistic which exhibits the same

critical values regardless whether a linear I(0) or a linear I(1) model is considered under the null

hypothesis. This test is also shown to be consistent against non-linear I(0) or non-linear I(1)

TV-STAR models. In addition to the work by H&L, we allow for a linear trend-specification and

also consider heteroscedasticity robust linearity tests. Having macroeconomic time-series in mind

where both trend and the presence of GARCH effects are notable, these extensions seem very

natural.

The TV-STAR model is a natural extension of the STAR model, and it does not only ac-

count for a regime-switching behavior (the STAR part) but also parameter instability (structural

change). As Perron (2006) points out, structural change is of substantial importance for the mod-

elling of economic time-series. The TV-STAR model is frequently used to resemble the behavior

of macroeconomic variables (see e.g. Lundbergh, van Dijk, and Teräsvirta, 2003 for an applica-

tion to 214 U.S. macroeconomic time-series) for which a debate is still ongoing whether they are

best characterized as difference or trend stationary. Due to this dilemma it is common practice to

conduct two separate tests; one based on first-differences and another one on de-trended data.2

1The linearity tests in the TV-STAR model proposed by e.g. van Dijk, Teräsvirta, and Franses (2002) and

Lundbergh, Teräsvirta, and van Dijk (2003) are not invariant with respect to the order of integration. The large

sample results for their tests are instead based on that the model under the null hypothesis is a linear stationary

autoregressive process.
2This was also the approach taken on by Lundbergh, Teräsvirta, and van Dijk (2003).
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Evidently, such an approach may comprise conflicting results. Therefore, it is essential to derive

invariant linearity tests for TV-STAR models.

A few words on the notation in this work: ⇒ signifies weak convergence,
p
→ denotes conver-

gence in probability, B(s) abbreviates a standard Brownian motion on [0, 1], and integrals of the

type
∫ 1
0 B(s)ds and

∫ 1
0 B(s)dB(s) are denoted

∫

B and
∫

BdB for short.

The rest of the work is organized as follows. Section 2 presents trending non-linear I(0)

and I(1) TV-STAR processes, corresponding approximations, and also a hybrid specification

regression model. Testing procedures and large sample results for robust and invariant linearity

tests are given in Section 3. The finite sample properties of the tests are examined by Monte

Carlo experiments in Section 4. An empirical application is given in section 5. Conclusions are

drawn in Section 6. Finally, mathematical proofs are provided in the Appendix.

2 The Models

2.1 Non-linear I(0) and I(1) Models

Consider a stochastic process {yt} generated by

yt ≡ µt + vt, t = 1, ..., T, (1)

where µt = 0, µt = d0, and µt = d0 + d1t and are referred to as cases a, b, and c, respectively,

and vt is modelled via a first-order TV-STAR process

vt ≡ [φ1vt−1 {1 −G1(vt−1; γ1)} + φ2vt−1G1(vt−1; γ1)] [1 −G2(t
∗; γ2, c)]

+ [φ3vt−1 {1 −G1(vt−1; γ1)} + φ4vt−1G1(vt−1; γ1)]G2(t
∗; γ2, c) + ǫt. (2)

Here, (φ1, ..., φ4)
′ is a real-valued parameter vector, the starting value v0 is assumed fixed, ǫt is

an error term with properties discussed below, and the bounded non-linear functions G1(vt−1; γ1)

and G2(t
∗; γ2, c2) are defined by

G1(vt−1; γ1) ≡
1

1 + exp{−γvt−1}
, (3)

where γ1 ≥ 0 (an identifying restriction) and

G2(t
∗; γ2, c2) ≡

1

1 + exp {−γ2(t
∗ − c)}

, (4)

where t∗ = t/T , γ2 ≥ 0 (another identifying restriction), and 0 ≤ c ≤ 1.3 In (3) and (4), γ1 and

γ2 are parameters which controls for the smoothness, and c is a non-centrality parameter. One

3Defining the smooth transition function in (4) in terms of t∗ = t/T (rather than t) turns out to be convenient

when giving the proofs in the Appendix. Yet another advantage is that the speed of transition parameter γ
2

becomes scale-free.
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appealing feature with these functions is that not only smooth non-linearities are captured but

also the Heavside function (the step function) and the constant function can be approximated.

Specifically, the former function is obtained letting γ1 → ∞ (γ2 → ∞) which yields that G1 = 0

(= G2) when vt−1 < 0 (t∗ < c) and G1 = 1 (= G2) when vt−1 ≥ 0 (t∗ ≥ c). On the contrary, the

latter function is comprised letting γ1 → 0 (γ2 → 0) which implies that G1 = 1/2 (= G2). We

finally notice that G1 (G2) is bounded between 0 and 1 and is a non-decreasing function in vt−1

(t∗).

The TV-STAR process is preferably interpreted as describing vt as a STAR process, with

the transition variable vt−1, at all times. That is, for any fixed t∗ = t0 the TV-STAR process

accommodates a continuum of regimes for the dynamic root which increases from φ1+G2(t0)(φ3−

φ1) to φ2 +G2(t0)(φ4 − φ2) with vt−1. Furthermore, in the beginning of the sample these roots

equal φ1 and φ2 (associated with G2(t
∗) = 0) and the corresponding roots at the end of the

sample are φ3 and φ4 (associated with G2(t
∗) = 1). To this end, there are three nested models

of particular interest within the framework of the TV-STAR process. First, letting φ1 = φ2 and

φ3 = φ4 with φ1 6= φ3 yields a first-order time-varying autoregressive (TV-AR) process (see e.g.

Jansen and Teräsvirta, 1996). Second, instead letting φ1 = φ3 and φ2 = φ4 with φ1 6= φ2 implies

a STAR process. Finally, imposing the restriction φ1 = φ2 = φ3 = φ4, we arrive at a first-order

linear autoregressive process.

To the best of our knowledge, the statistical properties of the TV-STAR process in (2) are

not yet fully established in the literature. It is evident, though, that the usual definitions of

weak stationarity or geometric ergodicity can not be applied because the TV-STAR process has

(for instance) a time-varying variance and can not be written as a time-homogeneous Markow

chain. Despite this, it seems that a (heuristic) stability condition for the TV-STAR process can

be obtained by combining the stability results for pure TV-AR processes (which in essence states

that the roots of the time-varying characteristic equation should be larger than one in modulus at

all times) by e.g. Juntunen, Tervo, and Kaipio (1999), with the results for pure STAR processes

(that is, the roots associated with the two extreme regimes are less than unity in absolute values)

by e.g. Liebscher (2005) or Meitz and Saikkonen (2008). More specifically, because the TV-STAR

process for any fixed point in time (t∗ = t0) can be expressed as a STAR process with dynamic

roots associated to the two extreme regimes given by φ1 +G(t0)(φ3−φ1) and φ2 +G(t0)(φ4−φ2),

it seems reasonable to assume that these roots must lie inside the unit circle for any t0 ∈ [0, 1].

Thus, we arrive at the following stability condition for the above TV-STAR process.4

Stability Condition: If |φ1 + κ(φ3 − φ1)| < 1 and |φ2 + κ(φ4 − φ2)| < 1 hold for all κ ∈ [0, 1]

in (2), then we say that the TV-STAR process in (2) is stable.5

4A more rigorous treatment of the statistical properties of the TV-STAR model is beyond the scope of this

work.
5It is seen that this condition reduces to the stability condition by Meitz and Saikkonen (2008, p. 463) for pure

STAR models letting φ
1

= φ
3

and φ
2

= φ
4

with φ
1
6= φ

2
. Moreover, instead letting letting φ

1
= φ

2
and φ

3
= φ

4

with φ
1
6= φ

3
the condition reduces to the stability condition by Juntonen, Tervo, and Kaipio (p. 396) for pure
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If the TV-STAR process in (2) satisfy the above stability condition we say that the resultant

process {yt} in (1) is stable around µt, and such a process is referred to as a non-linear I(0)

model.

Having introduced a non-linear I(0) model, it seems that one possibility to define a non-linear

I(1) model is via a stable TV-STAR process in first-differences. Hence, we may define a non-linear

I(1) model by

yt ≡ µt + vt, t = 1, ..., T, (5)

where

∆vt ≡ [ψ1∆vt−1 {1 −G1(∆vt−1; γ1)} + ψ2vt−1G1(∆vt−1; γ1)] [1 −G2(t
∗; γ2, c)]

+ [ψ3∆vt−1 {1 −G1(∆vt−1; γ1)} + ψ4vt−1G1(∆vt−1; γ1)]G2(t
∗; γ2, c) + ǫt, (6)

and ∆ abbreviates the lag-operator.6 In (6), (ψ1, ..., ψ4)
′ is a real-valued parameter vector, the

initial values v−1 and v0 are assumed fixed, and the smooth transition functions G1 and G2 are

defined as in (3) and (4), respectively, but the transition variable in (3) is now replaced with

∆vt−1. Moreover, the TV-STAR process in first-differences in (6) is stable if its autoregressive

parameters satisfy the above Stability Condition. Accordingly, the first-differences of the process

in (5) {∆yt} is stable around ∆µt, and the resultant model in levels yt = ∆µt + yt−1 + ∆vt is

henceforth referred to as a non-linear I(1) model. Towards this end, it is noticed our terminology

of non-linear I(0) and I(1) models is somewhat different from that in H&L because they base

their work on logistic and exponential STAR processes corresponding to our case b.

2.2 Hybrid Regression Specification Models

To facilitate our testing situation we shall approximate our non-linear I(0) and I(1) models by

instead using the first-order Taylor-series expansions of the (smooth) transition functions (3) and

(4) around zero for the speed of transition parameters. This yields the following approximation

to the TV-STAR process in levels

vt = δ0vt−1 + δ1t
∗vt−1 + δ2v

2
t−1 + δ3t

∗v2
t−1 + ǫt,

and the approximation to the TV-STAR process in first-differences is given by

∆vt = λ0∆vt−1 + λ1t
∗∆vt−1 + λ2 (∆vt−1)

2 + λ3t
∗ (∆vt−1)

2 + ǫt.

Next, since we are interested in linear and non-linear I(0) and I(1) alternatives a hybrid specifica-

tion regression equation can be obtained by combining above approximations into one expression.

TV-AR models . Finally, the stability results for an AR(1) process follows by letting φ
1

= φ
2

= φ
3

= φ
4
.

6It should be noticed that the definition of vt in (2) does not imply the definition for ∆vt in (6) because ∆ is a

linear operator.
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To accomplish this we allow us to write

yt = µt + zt, t = 1, ..., T, (7)

where µt is defined as in (1), and

zt = δ0zt−1 + δ1t
∗zt−1 + δ2z

2
t−1 + δ3t

∗z2
t−1

+λ0∆zt−1 + λ1t
∗∆zt−1 + λ2 (∆zt−1)

2 + λ3t
∗ (∆zt−1)

2 + ǫt. (8)

Now, consider first maintained linear I(0) and I(1) models by (7) and (8). If δ1 = δ2 = δ3 = λ1 =

λ2 = λ3,
7 letting λ0 = 0 and assuming δ0 ∈ (−1, 1), zt is a stationary AR(1) process and yields

that yt is a linear I(0) model for the cases a and b and linear I(0) model with a drift in case c;

instead letting δ0 = 1 and assuming λ0 ∈ (−1, 1), ∆zt is a stationary AR(1) model implying that

yt is a linear I(1) model possibly with a drift in case c.

Considering next maintained (approximate) non-linear I(0) and I(1) models by (7) and (8).

Letting λ1 = λ2 = λ3 = 0 and δk 6= 0 for at least one k = 1, 2, 3, we shall assume that the

resultant process for {yt} is a stable non-linear I(1) model. Instead letting δ1 = δ2 = δ3 = 0

and λk 6= 0 for at least one k = 1, 2, 3, we will assume that the implied process for {∆yt} is a

non-linear I(0) model.

The model that is used in practice, and which also the subsequent linearity tests are build

upon, is a model expressed in terms of observed values That is, we substitute for zt = yt −µt and

∆zt = ∆yt − ∆µt into (8) to obtain the hybrid regression specification model

yt = β′mx
m
t + ǫt, m = a, b, c, (9)

where

βa = (β1, β2, ..., β8)
′,

βb = (β1, β2, ..., β10)
′,

βc = (β1, β2, ..., β13)
′,

7It may be noticed that these (linearity) restrictions are implications of letting γ
1

= 0 and γ
2

= 0 in the smooth

transition functions, i.e. if the speed of transition parameters are equated to zero the TV-STAR process yields a

linear model.
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and

xa

t = (yt−1,∆yt−1, t
∗yt−1, y

2
t−1, t

∗y2
t−1, t

∗∆yt−1, (∆yt−1)
2, t∗(∆yt−1)

2)′,

xb

t = (1, yt−1,∆yt−1, t
∗, t∗yt−1, y

2
t−1, t

∗y2
t−1, t

∗∆yt−1, (∆yt−1)
2, t∗(∆yt−1)

2)′,

xc

t = (1, t∗, t∗2, t∗3, yt−1,∆yt−1, t
∗yt−1, t

∗2yt−1, y
2
t−1, t

∗y2
t−1, t

∗∆yt−1, (∆yt−1)
2, t∗(∆yt−1)

2)′.

3 Testing Procedures

3.1 The Null Hypotheses of Linearity

The null hypothesis of linearity for the hybrid regression specification model in (9), which does

not specify if yt is a linear I(0) or a linear(1) model, can now for the three cases a, b, and c be

expressed as

H
a

0 : β3 = · · · = β8 = 0,

H
b

0 : β4 = · · · = β10 = 0,

H
c

0 : β5 = · · · = β13 = 0,

resulting in the restricted hybrid specification model

yt = β′m,rx
m,r
t + ǫt, m = a, b, c, (10)

where

βa,r = (β1, β2)
′, xa,r

t = (yt−1,∆yt−1)
′,

βb,r = (β1, β2, β3)
′, xb,r

t = (1, yt−1,∆yt−1)
′,

βc,r = (β1, β2, β3, β4)
′, xc,r

t = (1, t∗, yt−1,∆yt−1)
′,

Next, the alternative hypothesis of non-linearity, which does not specify whether yt is non-linear

I(0) or I(1), is simply not the null hypothesis, and can be written as

H
a

1 : at least one of β3, ..., β8 6= 0, (11)

H
b

1 : at least one of β4, ..., β10 6= 0, (12)

H
c

1 : at least one of β5, ..., β13 6= 0. (13)
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3.2 Robust Linearity Tests

The above null hypotheses of linearity in H
a
0, H

b
0, and H

c
0 are tested by the Wald statistic

Wm
T ≡ T (RSSm

r −RSSm
u )/RSSm

u , m = a, b, c, (14)

where RSSm
u and RSSm

r denote the residual sum of squares from the unrestricted OLS regression

yt on xm
t in (9) and the restricted OLS regression of yt on xm,r

t in (10), respectively. Before the

large sample properties of the Wm
T statistic are discussed, the following conditions are imposed

on the error term ǫt.

Assumption 1 Let {ǫt} be a sequence of independent and identically distributed (i.i.d.) random

variables defined on the probability triple (Ω,F ,P) such that Eǫt = 0 and Eǫ2t = σ2
ǫ hold. In

addition, assume that E |ǫt|
8+δ <∞ for some δ > 0.

In Assumption 1, the condition E |ǫt|
8+δ < ∞ is needed in the context of deriving the limiting

distribution of Wm
T under a linear I(1) model. In fact, if we only were interested in the asymptotic

distribution of Wm
T under a linear I(0) model weaker moment conditions do apply (see e.g. the

conditions in Lundbergh, Teräsvirta, and van Dijk, 2003, p. 106).

Theorem 1 Consider the regression equation (9) when Assumption 1 holds.

(i) Under H
m
0 , if yt is linear I(0), then Wm

T ⇒ Wm
0 , where W a

0 = χ2(6), W b
0 = χ2(7), and

W c
0 = χ2(9).

(ii) Under H
m
0 , if yt is linear I(1), then Wm

T ⇒ Wm
1 , where Wm

1 = Bm + χ2(3) and Bm

is a matrix function of B(s) which is given in the Appendix. Furthermore, the limiting

distribution Wm
1 is nuisance parameter free.

(iii) Under H
m
1 , Wm

T diverges to +∞ at the rate Op(T ) whether yt is non-linear I(0) or non-linear

I(1).

Proof. See the Appendix.

As to be expected, the distribution of Wm
T is not invariant to the order of integration under

the null hypothesis of linearity. It is interestingly noticed, though, that the test is consistent

against both non-linear I(0) and non-linear I(1) specifications. Furthermore, before a remedy the

order of integration problem is presented we shall introduce a heteroscedasticity robust version of

the Wald statistic in (14). In fact, it is has been shown in the literature that the size properties

of the Taylor-series based linearity type of tests are very sensitive to (G)ARCH effects. If such

effects are ignored, spurious rejection of the null hypothesis of linearity can occur as often as 70%

of the times at a 5% nominal significance level, see e.g. Pavlidis, Paya, and Peel (2009). The
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robust version of the Wald statistic utilized in this work is the one by White (see White, 1980)

and is for our testing situation given by

Wm
R,T ≡ T

(

Rmβ̂m

)′ [
RmV̂mR

′
m

]−1 (

Rmβ̂m

)

, m = a, b, c, (15)

where β̂
′
m is the OLS estimator of β′m in (9), Ra = [06×2 : I6], Rb = [07×3 : I7], Rc = [09×4 : I9],

and the estimated covariance matrix is given by

V̂m = S−1
m ŜmS

−1
m ,

with Sm = T−1
∑T

t=1 x
m
t x

m′
t , Ŝm = T−1

∑T
t=1 ǫ̂

2
tx

m
t x

m′
t , and ǫ̂t signifies the sample residual from

the regression in (9). The large sample properties of the Wm
R,T is given in the following theorem.

Theorem 2 Consider the regression equation (9) when Assumption 1 holds.

(i) Under H
m
0 , if yt is linear I(0) or linear I(1), then Wm

R,T −Wm
T = op(1).

(ii) Under H
m
1 , Wm

R,T diverges to +∞ at the rate Op(T ) whether yt is non-linear I(0) or non-

linear I(1).

Proof. See the Appendix.

It should be noticed that under the present assumptions it also follows from part (i) of Theorem 2

that Wm
R,T ⇒Wm

0 if yt is linear I(0) andWm
R,T ⇒Wm

1 if yt is linear I(1), i.e. Wm
R,T and Wm

T have in

this case the same asymptotic distribution. However, even though these tests are asymptotically

equivalent it is shown in our Monte Carlo study that Wm
R,T compares favorable to Wm

T in terms

of smaller size distortions in finite samples and the presence of heteroscedastic errors.

3.3 Robust and Invariant Linearity Tests

To propose test statistics whose critical values are the same irrespective of a linear I(0) or I(1)

processes are considered, we will closely follow the approach suggested by H&L and is outlined

below.

Consider first a modified non-robust Wald type of test statistic

W ∗m
T = exp{−bmH

m
T }Wm

T , m = a, b, c,

where bm is a non-zero constant, Hm
T is a test statistic with pivotal limiting distribution Hm

such that Hm
T ⇒ Hm when yt is linear I(1) and Hm

T

p
→ 0 when yt is linear I(0). It follows

now that under a linear I(0) hypothesis the statistic W ∗m
T has the same limiting distribution as

Wm
T in Theorem 1(i) because exp{−bmH

m
T }

p
→ 1. On the other hand, if a linear I(1) model is

9



Table 1: Asymptotic b-values

Significance level Case m = a (raw) Case m = b (constant) Case m = c (linear trend)

1% 0.250 0.405 0.825

5% 0.255 0.425 0.855

10% 0.275 0.455 0.905

Notes: Results are based on T=100,000 and 100,000 replications.

considered, then W ∗m
T ⇒ exp{−bmH

m}Wm
1 where Wm

1 is given in Theorem 1(ii). Taken these

results together it becomes evident that we should find a (asymptotic) bm-value such that

Pr (Wm
0 > cα) = Pr (exp{−bmH

m}Wm
1 ) > cα) = α,

where cα denotes the (asymptotic) critical value and α is the significance level of the test. Put

differently, if we can find such a bm-value, critical values from a standard chi-square distribution

can be used, irrespective of the order of integration, when the null hypothesis of linearity is tested.

It should be noticed that this bm-value depends on the desirable significance level α (cf. Table

1).

The Hm
T statistic we choose is the same one as in H&L, i.e. we will use the Dickey-Fuller

t-statistic, denoted DFm
T , for testing the unit root hypothesis π1 = 1 in the regression

yt = ϑ′dm + π1yt−1 + ω0∆yt−1 + ǫt, m = a, b, c, (16)

against the one-sided alternative π1 < 1, where da = 0, db = 1, and dc = (1, t)′, and ϑ is a

conformable parameter vector. The term ∆yt−1 is included because we allow ∆yt to be stationary

linear AR(1) process under the null hypothesis. One can now show that DFm
T ⇒ DFm and

|DFm
T |−1 ⇒ |DFm|−1 when yt is linear I(1).8 It is also a straightforward exercise to show that if

yt is linear I(0), then DFm
T

p
→ −∞ and |DFm

T |−1 p
→ 0. Taken these results together, the invariant

non-robust linearity test statistics employed in this work is defined by

W ∗m
T ≡ exp{−bm |DFm

T |−1}Wm
T , m = a, b, c.

To operationalize this test statistic asymptotic bm-values are needed. These values are found by

simulations and are for conventional significance levels reported in the Table 1.

The large sample properties under the null and the alternative hypothesis of the W ∗m
T statistic

are summarized in the corollary below.

Corollary 3 Consider the regression equation (9) when Assumption 1 holds.

(i) W ∗m
T ⇒Wm

0 if yt is linear I(0). W ∗m
T ⇒ exp{−bm |DFm|−1}Wm

1 if yt is linear I(1).

(ii) Under H
m
1 , W ∗m

T diverges to +∞ at the rate Op(T ) whether yt is non-linear I(0) or non-

linear I(1).

8Explicit results for the DFm distribution can in this case be found in e.g. Hamilton (1994 p. 494).
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The result (i) is an immediate consequence of the properties of the Wm
T statistic in part (i) and (ii)

of Theorem 1. Next, part (ii) follows noticing that if yt is non-linear I(0) then the DFm
T statistic is

consistent (diverges to −∞) and thus W ∗m
T = (1+op(1))W

m
T . If instead yt is non-linear I(1) then

the DFm
T statistic is Op(1) (and this Op(1) term is positive) so W ∗m

T = Op(1)W
m
T . Combining

these results with the result (iii) in Theorem 1 now establishes the results in the corollary.

The robust invariant linearity test in this work is defined by

W ∗m
R,T ≡ exp{−bm |DFm

T |−1}Wm
R,T , m = a, b, c.

Due to the results in Theorem 2, the W ∗m
R,T statistic has the same large sample properties as the

W ∗m
T statistic in Corollary 3.

3.4 Serially Correlated Errors

Accommodating serially correlated errors for the linearity tests above is most easily accomplished

by augmenting (8) with lagged changes in the {zt} sequence, that is

zt = δ0zt−1 + δ1t
∗zt−1 + δ2z

2
t−1 + δ3t

∗z2
t−1

+

p
∑

j=1

λ0,j∆zt−1 + λ1t
∗∆zt−1 + λ2 (∆zt−1)

2 + λ3t
∗ (∆zt−1)

2 + ǫt. (17)

where ǫt is a white noise process. To ensure that there are no more than a single unit root, all

the values of r satisfying the inverse characteristic equation: 1− λ0,1r− λ0,2r
2 + · · ·+ λ0,pr

p = 0

must lie outside the unit circle. The unrestricted and restricted hybrid regression equation in (9)

is then replaced with

yt = β′
mx

m
t +

p
∑

j=2

ξj∆yt−j + ǫt, m = a, b, c, (18)

and

yt = β′m,rx
m,r
t +

p
∑

j=2

ξj∆yt−j + ǫt, m = a, b, c, (19)

respectively. The non-robust version of our linearity test accommodating serially correlated errors,

signified as W ∗m
A,T , is now defined as

W ∗m
A,T ≡ exp{−bm |ADFm

T |−1}Wm
A,T , m = a, b, c,

where ADFm
T is the traditional augmented DF t-test for testing the unit root hypothesis π1 = 1

in

yt = ϑ′dm + π1yt−1 +

p
∑

j=1

ωj∆yt−j + ǫt, m = a, b, c. (20)

11



against the one-sided alternative π1 < 1. Moreover, Wm
A,T is defined as Wm

T in (14) but the

unrestricted and restricted residual sum of squares are instead obtained from (18) and (19),

respectively. It is noticed that the (asymptotic) bm-value is the same as for the case without

serially correlated errors and is due to the fact that ADFm
T −DFm

T = op(1) and Wm
A,T −Wm

T =

op(1). Towards this end, the lag-length p in (19) and (20) is an unknown parameter to be

determined. It is noticed that whether we have a linear I(0) or linear I(1) model under the

null hypothesis of linearity, p is estimated consistently (see Paulsen, 1984) by the Schwarz (see

Schwarz, 1978) information criteria (SIC).

We shall as a final test consider a robust version of the linearity test accommodating serial

correlation. This test is abbreviated W ∗m
A,R,T and is defined by

W ∗m
A,R,T ≡ exp{−bm |ADFm

T |−1}Wm
A,R,T , m = a, b, c,

where Wm
A,R,T is defined as Wm

R,T in (15) but xm
t and ǫ̂t are replaced with the covariates and the

sample residuals from (19). One can also show that the Wm
A,R,T statistic have the same asymptotic

distributions as the Wm
A,T statistic, and the (asymptotic) bm-values in Table 1 may therefore once

again be used.

4 Monte Carlo Study

This section evaluates the small sample performance of the W ∗m
T statistic by means of a Monte

Carlo study. The newly proposed test is compared to the extant one proposed by H&L, hereafter

signified as WHL. We focus solely on the case m = b as the H&L test is constructed for this

empirically relevant case.9 Size and power experiments are conducted. Regarding the former

one, we allow for three different distributions: Normal, χ2 − 1, and t(3) as well as for conditional

heteroscedasticity via a simple GARCH(1,1) process. These specifications permit skewness, fat

tails and volatility clustering which is commonly observed in many economic and financial time-

series. In addition to the W ∗
T statistic, we also consider the W ∗

R,T statistic which is expected to be

less sensitive to GARCH effects. When the power is evaluated, we focus on the case of normality

and homoscedastic errors for simplicity. Moreover, we set the lag length p equal to one. The

considered sample sizes are 150 and 300. The number of replications is set equal to 5,000 and

the nominal significance level is 5%.

4.1 Size Experiments

The data generating process (DGP) is a linear second-order autoregressive model

yt = ρyt−1 + φ∆yt−1 + ǫt,

9Simulation results for the cases of raw (m = a) and trending data (m = c) are available upon request from the

authors. For these cases, a direct comparison with the H&L test is not possible.
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Table 2: Size Experiments with different Distributions

Normally distributed errors

T = 150 T = 300

φ/ρ 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0

-0.5 0.071 0.041 0.044 0.076 0.060 0.035 0.033 0.063

0.128 0.043 0.045 0.050 0.123 0.042 0.043 0.049

0.0 0.056 0.039 0.041 0.081 0.049 0.034 0.032 0.067

0.052 0.049 0.054 0.058 0.052 0.047 0.049 0.054

0.5 0.057 0.044 0.041 0.093 0.051 0.038 0.034 0.071

0.055 0.053 0.056 0.061 0.051 0.049 0.050 0.056

χ2(1) − 1 distributed errors

T = 150 T = 300

φ/ρ 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0

-0.5 0.086 0.050 0.053 0.096 0.071 0.042 0.042 0.077

0.137 0.051 0.053 0.087 0.131 0.046 0.049 0.073

0.0 0.057 0.042 0.042 0.097 0.055 0.038 0.035 0.079

0.064 0.051 0.055 0.093 0.061 0.047 0.050 0.078

0.5 0.051 0.033 0.031 0.107 0.050 0.030 0.026 0.075

0.061 0.044 0.047 0.089 0.058 0.041 0.040 0.068

Student-t(3) distributed errors

T = 150 T = 300

φ/ρ 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0

-0.5 0.089 0.042 0.055 0.079 0.075 0.035 0.043 0.073

0.151 0.043 0.051 0.076 0.134 0.038 0.052 0.071

0.0 0.057 0.047 0.047 0.099 0.055 0.043 0.039 0.078

0.062 0.058 0.058 0.087 0.064 0.054 0.056 0.078

0.5 0.056 0.046 0.043 0.114 0.048 0.039 0.034 0.080

0.061 0.060 0.060 0.098 0.057 0.055 0.051 0.088

Notes: The DGP is given by yt = ρyt−1 + φ∆yt−1 + ǫt. Reported numbers

are simulated rejection frequencies of the W ∗
T

test (upper entries) and the WHL

test (lower entries).

where the autoregressive parameters ρ and φ take the following values: ρ = {0.0, 0.8, 0.9, 1.0}

and φ = {−0, 5, 0.0, 0.5}. This means that we consider I(0) and I(1) models under the null

hypothesis of linearity. The error term ǫt is either standard normally distributed, follows a

skewed χ2 − 1 distribution or a fat-tailed Student-t distribution with three degrees of freedom,

i.e. t(3). Moreover, we allow for a GARCH(1,1) process

ǫt = ηt

√

ht,

ht = ω0 + ω1ǫ
2
t−1 + ω2ht−1,

where ηt is either standard normally, χ2 − 1 or t(3)-distributed. The parameters are chosen to

resemble the typically observed behaviour of volatility clustering: (ω0, ω1, ω2) = (0.1, 0.3, 0.6).

Results are reported in Tables 2 and 3 for homoscedastic and heteroscedastic errors, respec-

tively. As an exception to other experiments, a third sample size of T = 500 is included here
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Table 3: Size Experiments with GARCH Effects

Performance of W ∗
T , W ∗

R,T and WHL under heteroscedastic errors

T = 150 T = 300 T = 500

φ/ρ 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0

-0.5 0.203 0.239 0.242 0.253 0.303 0.316 0.301 0.287 0.412 0.396 0.365 0.333

0.203 0.252 0.242 0.247 0.198 0.207 0.194 0.194 0.203 0.175 0.157 0.161

0.278 0.339 0.342 0.287 0.385 0.445 0.436 0.362 0.505 0.533 0.521 0.409

0.0 0.297 0.229 0.215 0.248 0.400 0.303 0.280 0.278 0.500 0.393 0.358 0.309

0.315 0.240 0.213 0.240 0.266 0.185 0.161 0.177 0.231 0.163 0.139 0.141

0.383 0.367 0.352 0.291 0.499 0.473 0.465 0.375 0.589 0.556 0.543 0.393

0.5 0.296 0.201 0.185 0.217 0.397 0.284 0.253 0.219 0.495 0.378 0.332 0.257

0.337 0.217 0.194 0.214 0.289 0.186 0.159 0.145 0.264 0.170 0.139 0.127

0.359 0.343 0.328 0.257 0.480 0.457 0.435 0.325 0.559 0.536 0.510 0.364

Performance of W ∗
R,T under homoscedastic errors

T = 150 T = 300 T = 500

φ/ρ 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0 0.0 0.8 0.9 1.0

-0.5 0.135 0.130 0.113 0.149 0.096 0.082 0.073 0.101 0.074 0.070 0.054 0.081

0.0 0.189 0.118 0.114 0.158 0.120 0.089 0.077 0.106 0.096 0.070 0.062 0.086

0.5 0.181 0.129 0.107 0.164 0.122 0.095 0.078 0.103 0.107 0.077 0.065 0.093

Notes: The DGP is given by yt = ρyt−1 + φ∆yt−1 + ǫt, where ǫt = ηt

√
ht, ηt

iid∼ N(0, 1) with ht = 0.1+ 0.3ǫ2t−1
+

0.6ht−1. Reported numbers are simulated rejection frequencies of the W ∗
T

test (upper entries), the heteroscedasticity-

robust W ∗
R,T test (middle entries) and the WHL test (lower entries), see upper panel. The lower panel reports only

the performance of the heteroscedasticity-robust W ∗
R,T

test. For the performance of the other two tests, see Table

2.

as well for the purpose of illustration. The results in Table 2 suggest the W ∗m
T test is generally

correctly sized with some minor discrepancies. Positive deviations mainly occur in the case of

an I(1) DGP. It can also be seen that the H&L test performs in general as good as the newly

proposed one. Thus, it appears that both our test and the WHL test are robust to skewed and

fat-tailed distributions. The results for heteroscedastic errors (lower panel of Table 3) reveal the

following:

First, all three test statistics (W ∗
T , W ∗

R,T , and WHL) are over-sized. Even though the W ∗
R,T

statistic performs similar to the W ∗
T statistic for T = 150, the size-distortions are substantially

mitigated for the W ∗
R,T statistic when the sample size is increased. It can also be seen that the

WHL test is for all cases considered even more sensitive to GARCH effects than the W ∗
T test.

Second, when no GARCH effects are present, the heteroscedasticity-robust test statistic is over-

sized, but the magnitude of distortions decline rapidly with an increasing sample size. Finally, it

appears that the heteroscedasticity-robust test is suitable for sample sizes larger than or equal to

T = 300, while it should be used with caution in smaller sample sizes.
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Table 4: Power Experiments for I(0) Data

STAR Model, φ
1

= φ
3
, φ

2
= φ

4

T = 150 T = 300

φ
1

φ
2

W ∗
T W 0

T WHL W ∗
T W 0

T WHL

0.5 0.7 0.070 0.085 0.087 0.096 0.128 0.134

0.3 0.7 0.127 0.182 0.209 0.249 0.346 0.394

0.5 0.9 0.111 0.177 0.264 0.236 0.362 0.551

0.3 0.9 0.189 0.298 0.467 0.417 0.594 0.797

TV-AR Model, φ
1

= φ
2
, φ

3
= φ

4

T = 150 T = 300

φ
1

φ
3

W ∗
T W 0

T WHL W ∗
T W 0

T WHL

0.5 0.7 0.098 0.127 0.058 0.167 0.244 0.062

0.3 0.7 0.284 0.405 0.089 0.620 0.755 0.108

0.5 0.9 0.384 0.559 0.121 0.812 0.921 0.172

0.3 0.9 0.713 0.866 0.193 0.986 0.997 0.333

TV-STAR Model, φ
4
− φ

3
= φ

2
− φ

1

T = 150 T = 300

φ
1

φ
2

φ
3

φ
4

W ∗
T W 0

T WHL W ∗
T W 0

T WHL

0.5 0.7 0.7 0.9 0.170 0.259 0.150 0.398 0.555 0.291

0.1 0.5 0.5 0.9 0.571 0.711 0.432 0.933 0.968 0.773

-0.3 0.3 0.3 0.9 0.883 0.942 0.714 0.998 1.000 0.968

4.2 Power Experiments

As a next step the empirical power of the tests are analyzed and evaluated. To this end, three

different DGPs are considered. They are similar to the cases (b), (c) and (f) in Lundbergh,

Teräsvirta, and van Dijk (2003) which are a STAR, a TV-AR and a TV-STAR process, respec-

tively. The STAR process is given by

yt = φ1yt−1G1(yt−1; γ1) + φ2yt−1{1 −G1(yt−1; γ1)} + ǫt,

∆yt = ψ1∆yt−1G1(∆yt−1; γ1) + ψ2∆yt−1{1 −G1(∆yt−1; γ1)} + ǫt,

for the I(0) and I(1) case, respectively. The second DGP is a time-varying AR model

yt = φ1yt−1[1 −G2(t
∗; γ2, c2)] + φ3yt−1G2(t

∗; γ2, c2) + ǫt,

∆yt = ψ1∆yt−1[1 −G2(t
∗; γ2, c2)] + ψ3∆yt−1G2(t

∗; γ2, c2) + ǫt.

The third DGP is a TV-STAR process where the autoregressive parameters are restricted in the

following way: φ4 − φ3 = φ2 − φ1 for the I(0) case and ψ4 − ψ3 = ψ2 − ψ1 for the I(1) case,

respectively.

The exact parameter constellations for autoregressive parameters φ1, φ2, φ3, φ4 and ψ1, ψ2,

ψ3, ψ4 are given in Tables 4 and 5.10 Following Lundbergh, Teräsvirta, and van Dijk (2003),

10The results for the opposite direction of autoregressive parameters, i.e. decreasing instead of increasing from
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Table 5: Power Experiments for I(1) Data

STAR Model, ψ
1

= ψ
3
, ψ

2
= ψ

4

T = 150 T = 300

ψ
1

ψ
2

W ∗
T W 1

T WHL W ∗
T W 1

T WHL

0.5 0.7 0.152 0.082 0.099 0.145 0.121 0.117

0.3 0.7 0.220 0.185 0.164 0.282 0.353 0.252

0.5 0.9 0.291 0.181 0.219 0.328 0.358 0.357

0.3 0.9 0.373 0.284 0.328 0.422 0.592 0.573

TV-AR Model, ψ
1

= ψ
2
, ψ

3
= ψ

4

T = 150 T = 300

ψ
1

ψ
3

W ∗
T W 1

T WHL W ∗
T W 1

T WHL

0.5 0.7 0.154 0.127 0.077 0.169 0.243 0.066

0.3 0.7 0.291 0.402 0.102 0.481 0.763 0.108

0.5 0.9 0.410 0.565 0.159 0.654 0.919 0.216

0.3 0.9 0.626 0.862 0.242 0.833 0.998 0.391

TV-STAR Model, ψ
4
− ψ

3
= ψ

2
− ψ

1

T = 150 T = 300

ψ
1

ψ
2

ψ
3

ψ
4

W ∗
T W 1

T WHL W ∗
T W 1

T WHL

0.5 0.7 0.7 0.9 0.230 0.248 0.141 0.351 0.536 0.243

0.1 0.5 0.5 0.9 0.507 0.697 0.361 0.782 0.968 0.677

-0.3 0.3 0.3 0.9 0.771 0.949 0.651 0.940 1.000 0.926

γ1 = 5 and γ2 = 25. The break point c2 is specified as 0.5. Innovations ǫt are drawn from the

standard normal distribution.

These three DGPs allows us to study the empirical power properties in empirically relevant

settings. The first DGP is a pure STAR model without structural change, and it is here expected

that the H&L test performs somewhat better than the newly proposed one. The reason for

this expectation is the fact that the H&L test is designed to detect non-linearity of this certain

type. The second DGP is a time-varying AR model with a smooth structural change in the AR

parameter. As such, the H&L test is not designed to direct power against this DGP whereas, to

some extents, our test is. Regarding the third DGP, our test is expected to perform better than

the H&L test, although the latter one may have satisfactory power if the structural changes are

less pronounced.

Similarly to H&L, the following W 0
T and W 1

T versions of linearity tests are considered as

benchmark tests. The former one assumes an I(0) model, while the latter one assumes an I(1)

model. In particular, the W 0
T is carried out by running the following OLS regression in levels

yt = β1 + β2yt−1 + β3t
∗ + β4t

∗yt−1 + β5y
2
t−1 + β6t

∗y2
t−1 + ǫt.

The null hypothesis of linearity is then given by H0 : β3 = . . . = β6 = 0. The corresponding

Wald statistic is asymptotically distributed as a χ2 random variable with four degrees of freedom.

(φ
1

over to φ
4

and ψ
1

over to ψ
4
, are not reported to save space. They are more or less symmetric and are available

from authors upon request.

16



M
on

th
ly

 U
S

 in
fla

tio
n

08/1973 11/1985 02/1998 04/2010

−
1

0
1

Figure 1: Monthly US inflation, August 1973 – April 2010.

Analogously, the W 1
T statistic is based on an OLS regression in first differences

∆yt = β1 + β2∆yt−1 + β3t
∗ + β4t

∗∆yt−1 + β5(∆yt−1)
2 + β6t

∗(∆yt−1)
2 + ǫt.

Again, the null hypothesis of linearity is given by H0 : β3 = . . . = β6 = 0 and the corresponding

Wald statistic is asymptotically distributed as a χ2 random variable with four degrees of freedom.

Results for the I(0) and I(1) cases are reported in Table 4 and 5, respectively. The upper,

middle and lower entry in each cell reports the empirical power of the W ∗
T test, the W 0

T and the

WHL test, respectively. The results in Table 4 for the STAR model suggest that the WHL test

indeed dominates the W ∗
T and the W 0

T test. The difference in power increases with the sample

size and the degree of non-linearity measured by the distance of AR parameters across regimes.

Nonetheless, the W ∗
T test exhibits non-trivial power to detect STAR dynamics. The results in

the case of a TV-AR model in Table 5 show that the W ∗
T test outperforms the WHL test, and it

appears that the extant WHL test is less useful in detecting a smooth structural change in the

autoregressive parameters. Moreover, the W ∗
T test performs often as good as the W 0

T benchmark

test which underlines its usefulness. For the TV-STAR model, the expected dominance of the

W ∗
T test over the WHL test is confirmed. The W ∗

T test exhibits satisfactory power.

The results in Table 5 for I(1) DGPs confirm the previous conclusions in general. Some

remarks on the minor differences to the results for I(0) DGPs are in order. In general, the W ∗
T

is more powerful when applied to I(0) time-series than to I(1). This result is in line with H&L.

It may also be noticed that for the pure STAR model the W ∗
T test performs in fact better even

better than the W 1
T test for T = 150. This result is can be attributed to the relatively small

sample size and the fact that both tests are misspecified.
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Table 6: Empirical Results for US Inflation

W ∗
T W ∗

R,T W 0

T W 1

T WHL

Test statistic 88.203 53.540 55.118 4.607 8.021

Critical value (5%) 14.067 14.067 9.488 9.488 9.488

Notes: The lag length p is chosen via SIC.

5 Empirical Application

This section contains an empirical application to US inflation data. Monthly inflation based on

CPI data obtained from the FREDII database is used. The sample spans from the Post-Bretton

Woods period up to the most recent observation, i.e. August 1973–April 2010 with T = 441. The

data is displayed in Figure 1.

Visual inspection of the time-series suggests that it is presumably characterized by serial

correlation, non-linearity, and heteroscedasticity. Moreover, it exhibits a few relatively extreme

observations leading to a mild degree of excess kurtosis (4.54). Therefore, it serves as an inter-

esting time-series for the application of W ∗
T and W ∗

R,T statistics. In the following, the case m = b

is considered, as it fits most with the nature of data shown in Figure 1. Table 6 reports the

results for the test statistics W ∗
T , W ∗

R,T , W 0
T , W 1

T and WHL together with their critical values at

a nominal significance level of five percent.

Evidence for TV-STAR dynamics is found by our W ∗
T test, but not by the WHL test. When

considering the heteroscedasticity-robust version W ∗
R,T , evidence for non-linearity is less strong,

but still significant. This underlines the practical usefulness of the W ∗
T test and the importance to

account for heteroscedasticity via the W ∗
R,T test. The test statistics W 0

T and W 1
T assume an I(0)

and an I(1) model, respectively. Only the test assuming stationarity rejects the null of linearity.

In the case of a rejection one is left inconclusive about the degree of integration. The same

problem is encountered in H&L and they advocate the use of the non-parametric test by Harris,

McCabe, and Leybourne (2003). This test is based on sample autocovariances and tests the null

hypothesis of stationarity against a unit root. Define at,k = ỹtỹt−k, where ỹt denotes the deviation

of yt from its mean ȳ ≡ T−1
∑T

t=1 yt. The test statistic is then given by

ST = T−1/2

∑T
t=k+1 at,k

ω̂(at,k)
d
→ N(0, 1)

where ω̂(at,k)
2 is the Bartlett kernel-based long run variance estimator of at,k. More specifically,

ω̂(at,k)2 = γ̂0(at,k) + 2
l
∑

j=1

(

1 −
j

l

)

γ̂j(at,k)

γ̂j(at,k) = T−1
T
∑

t=j+k+1

at,kat−j,k

The limiting distribution of ST is standard normal in the case of globally stationary processes.

The test rejects the null hypothesis of stationarity for large values of ST . In our case this test
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is not directly applicable since our non-linear I(0) model is not globally stationary as discussed

in Section 2.1.11 In further simulation studies (not reported here) it appears, however, that the

standard normal distribution yields a fairly good approximation to the limiting distribution of

the ST statistic when a stable TV-STAR process is considered. Thus, we proceed by using the

ST statistic to make inference about the order of integration under the alternative hypothesis.

The values of k and l are T 2/3 and 12(T/100)1/4 (rounded to the nearest integer), respectively.

The value of the test statistic ST equals 1.557 and is not significant at the nominal five percent

level. The null hypothesis of stationarity is therefore not rejected. Together with the outcomes

of the linearity tests, it is concluded that US inflation can be characterized by a non-linear and

stationary TV-STAR model.

6 Concluding Remarks

In this work we derive an invariant test for the linearity hypothesis against a TV-STAR alterna-

tive. Our test is invariant in the sense that critical values from a standard chi-square distribution

are applicable irrespectively whether a linear I(0) or I(1) model is considered under the null

hypothesis. The true degree of integration has not to be known, pre-specified or pre-tested. An-

other contribution of this work is to suggest an alternative test which is additionally robust to

heteroscedasticity which is often found in economic data. The robustness to heteroscedasticity is

achieved by using a White correction for the estimated covariance matrix.

The empirical properties of both tests are evaluated by means of a Monte Carlo study. The

results suggest that our tests are correctly sized even if the error distribution exhibits skewness

and fat tails. Moreover, the problem of spurious rejections due to neglected heteroscedasticity

is mostly remedied by applying the test including the White correction. The power experiments

reveal that our test is powerful and competitive with respect to the extant one by Harvey and

Leybourne (2007).

In our application to US inflation data from the Post-Bretton Woods period evidence in favour

of a non-linear I(0) model is found whereas the test by Harvey and Leybourne (2007) instead

lends support to a linear I(0) model. This might be explained by the fact that the Harvey and

Leybourne (2007) test is less powerful against time-series subject to non-linearities and structural

changes. Another insight of our application is that heteroscedasticity is of importance as the

evidence for non-linearity and structural change is reduced, but still significant, when the White

correction is applied.

11 The limiting distribution of the ST statistic is expected to fairly complicated when the DGP is TV-STAR

process, and establishing a complete expression for this distribution is beyond the scope of this work.
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Mathematical Appendix

The proofs in this appendix are only given for the case a. The proofs for the cases b and c

are similar and therefore omitted. Moreover, the proof of Theorem 1 below closely follows the

proof of Theorem 1 in H&L, but it is noticed that our large sample results are different from

those derived in H&L for the simple reason that different models are studied. To this end, all

summations in this appendix go from 1 to T and the short-hand notion used is
∑

t.

Proof of Theorem 1. (i) Standard.

Next, the proof of (ii). We notice first that the DGP under the null hypothesis is given by

yt = yt−1 + ǫt, with starting values y−1 and y0 assumed to be known (either fixed or stochastic).

Without loss of generality we may set y−1 = y0 = 0. Furthermore, it proves convenient to modify

some of the covariates in xa
t in (9) and also re-order them according to levels and first-differences

as follows (it is evident that RSSu is not affected by this manipulation):

xt = (yt−1, t
∗yt−1, y

2
t−1, t

∗y2
t−1,∆yt−1, t

∗∆yt−1, at−1, bt−1)
′,

where at−1 ≡ (∆yt−1)
2 −m2 and bt−1 ≡ t∗ (∆yt−1)

2 −m2/2 with m2 = E(∆yt−1)
2.12 Next, stack

xt into the matrix Xu and xa,r
t in (10) into Xr, and by ǫ̂u and ǫ̂r denote the sample counterparts

of ǫ = (ǫ1, ǫ2, ..., ǫT ) in (9) and (10), respectively. The Wald statistic in (14) can now be written

as

W a

T =
ǫ̂′r ǫ̂r − ǫ̂′uǫ̂u
ǫ̂′uǫ̂u/T

=
ǫ′Xu(X ′

uXu)−1X ′
uǫ− ǫ′Xr(X

′
rXr)

−1X ′
rǫ

ǫ̂′uǫ̂u/T

=

(

ǫ′Xuγ
−1
u

) [

γ−1
u (X ′

uXu) γ−1
u

]−1 (
γ−1

u X ′
uǫ
)

ǫ̂′uǫ̂u/T

−

(

ǫ′Xrγ
−1
r

) [

γ−1
r (X ′

rXr) γ
−1
r

]−1 (
γ−1

r X ′
rǫ
)

ǫ̂′uǫ̂u/T
, (A.1)

where γu = diag{T, T, T 3/2, T 3/2, T 1/2, T 1/2, T 1/2T 1/2} and γr = diag{T, T 1/2} are scaling ma-

trices.

In order to derive the limiting distribution of W a

T we start with examining the large sample

properties of γ−1
u (X ′

uXu) γ−1
u and γ−1

r (X ′
rXr) γ

−1
r in (A.1). Hence, consider first the partition

X ′
uXu =

[

X11 X12

X ′
12 X22

]

,

12Thereby T−1
∑

t
at−1

p
→ 0 and T−1

∑

t
bt−1

p
→ 0 as long as Eǫ2t <∞.
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where the sub-matrices are given by

X11 =













∑

t y
2
t−1

∑

t t
∗y2

t−1

∑

t y
3
t−1

∑

t t
∗y3

t−1
∑

t t
∗2y2

t−1

∑

t t
∗y3

t−1

∑

t t
∗2y3

t−1
∑

t y
4
t−1

∑

t t
∗y4

t−1
∑

t t
∗2y4

t−1













,

X12 =













∑

t ∆yt−1yt−1
∑

t t
∗∆yt−1yt−1

∑

t yt−1at−1
∑

t yt−1bt−1
∑

t t
∗∆yt−1yt−1

∑

t t
∗2∆yt−1yt−1

∑

t t
∗yt−1at−1

∑

t t
∗2yt−1bt−1

∑

t ∆yt−1y
2
t−1

∑

t t
∗∆yt−1y

2
t−1

∑

t y
2
t−1at−1

∑

t y
2
t−1bt−1

∑

t t
∗∆yt−1y

2
t−1

∑

t t
∗2∆yt−1y

2
t−1

∑

t t
∗y2

t−1at−1
∑

t t
∗y2

t−1bt−1













,

X22 =













∑

t (∆yt−1)
2 ∑

t t
∗ (∆yt−1)

2 ∑

t ∆yt−1at−1
∑

t ∆yt−1bt−1
∑

t t
∗2 (∆yt−1)

2 ∑

t t
∗∆yt−1at−1

∑

t t
∗∆yt−1bt−1

∑

t a
2
t−1

∑

t at−1bt−1
∑

t b
2
t−1













,

and also write

X ′
rXr =

[

∑

t y
2
t−1

∑

t yt−1∆yt−1
∑

t (∆yt−1)
2

]

.

where X11, X22, and X ′
rXr are symmetric matrices. Next, the moment conditions in Assumption

1 and the fact that {ǫt} is an i.i.d. sequence assert that we can use the results in Hansen (1992,

Theorem 4.1 and 4.2), He and Sandberg (2006, Lemma A1), Sandberg (2009, Theorem 1), and a

law of large numbers for martingale difference sequences (see e.g. White, 2000 Theorem 3.76) to

deduce that

γ−1
u

(

X ′
uXu

)

γ−1
u ⇒

[

σuBuσu 04×4

04×4 Zu

]

, (A.2)

γ−1
r

(

X ′
rXr

)

γ−1
r ⇒

[

σrBrσr 0

0 Zr

]

, (A.3)

converge jointly as T → ∞, where the sub-matrices are given by

Bu =













∫

B2
∫

sB2
∫

B3
∫

sB3

∫

s2B2
∫

sB3
∫

s2B3

∫

B4
∫

sB4

∫

s2B4













,

Br =
∫

B2,
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and

Zu =













m2 m2/2 m3 m3/2

m2/3 m3/2 m3/3

m4 −m2
2 m4/2 −m2

2/2

m4/3 −m2
2/4













,

Zr = m2,

where Bu and Zu are symmetric matrices, σu = diag{σǫ, σǫ, σ
2
ǫ , σ

2
ǫ , }, σr = σǫ, and mi =

E(∆yt−1)
i = E(ǫit−1). In particular, m2 = σ2

ǫ .

Considering next the limiting results for γ−1
u X ′

uǫ and γ−1
r X ′

rǫ in (A.1) Under Assumption 1,

once more using the results in Hansen (1992, Theorem 4.1 and 4.2), He and Sandberg (2006,

Lemma A1), Sandberg (2009, Theorem 1 and Corollary 1), and also a central limit theorem for

martingale difference sequences (see e.g. White, 2000 Corollary 5.26), it follows that

γ−1
u X ′

uǫ ⇒ σǫ

[

σuB̃u

Z̃u

]

, (A.4)

γ−1
r X ′

rǫ ⇒ σǫ

[

σrB̃r

Z̃r

]

, (A.5)

converge jointly as T → ∞, where the sub-vectors are given by

B̃u =













∫

BdB
∫

sBdB
∫

B2dB
∫

sB2dB













,

B̃r =
∫

BdB,

and

Z̃u =













N(0,m2)

N(0,m2/3)

N(0,m4 −m2
2)

N(0,m4/3 −m2
2/4)













,

Z̃r = N(0,m2).

Here, Z̃u ∼MVN(0, Zu), and Z̃u and Z̃r are independent of B(s). Finally, combining the results

in (A.2)-(A.5), also noticing that ǫ̂′uǫ̂u/T
p
→ σ2

ǫ holds under the null hypothesis, the continuous
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mapping theorem entails

W a

T ⇒

σ−2
ǫ

(

σǫ

[

σuB̃u

Z̃u

])′ [
σuBuσu 04×4

04×4 Zu

]−1(

σǫ

[

σuB̃u

Z̃u

])

−σ−2
ǫ

(

σǫ

[

σrB̃r

Z̃r

])′ [
σrBrσr 0

0 Zr

]−1(

σǫ

[

σrB̃r

Z̃r

])

= B̃′
uB

−1
u B̃u − B̃2

rB
−1
r + Z̃ ′

uZ
−1
u Z̃u − Z̃2

rZ
−1
r . (A.6)

Here, B̃′
uB

−1
u B̃u − B̃2

rB
−1
r ≡ Ba, and it is also straightforward to show that Z̃ ′

uZ
−1
u Z̃u − Z̃2

rZ
−1
r

is a χ2(3) variate.13 Finally, by (A.6) it becomes evident that the limiting distribution of W a

T is

nuisance parameter free.14

The proof of (iii). The following equivalent expression for the Wald statistic is used

W a

T =

(

Raβ̂a

)′ (
Ra [X∗′

a X
∗
a ]−1R′

a

)−1 (

Raβ̂a

)

ǫ̂′uǫ̂u/T
,

where the matrix X∗
a contains the stacked xa

t , and Ra and β̂a are defined as in (15). Next,

partition X∗′
a X

∗
a as

X∗′
a X

∗
a =

[

X∗
11 X∗

12

X∗′
12 X∗

22

]

,

where

X∗
11 =

[

∑

t y
2
t−1

∑

t ∆yt−1yt−1
∑

t (∆yt−1)
2

]

,

X∗′
12 =























∑

t t
∗y2

t−1

∑

t t
∗∆yt−1yt−1

∑

t y
3
t−1

∑

t ∆yt−1y
2
t−1

∑

t t
∗y3

t−1

∑

t t
∗∆yt−1y

2
t−1

∑

t t
∗∆yt−1yt−1

∑

t t
∗ (∆yt−1)

2

∑

t (∆yt−1)
2 yt−1

∑

t (∆yt−1)
3

∑

t t
∗ (∆yt−1)

2 yt−1
∑

t t
∗ (∆yt−1)

3























,

and

X∗
22 =

[

X∗
0,22 X∗

1,22

X∗′
1,22 X∗

2,22

]

,

13The expression B̃′
uB

−1

u B̃u corresponds to the limiting distribution for the linearity test in the TV-STAR model

under a unit root assumption by Sandberg (2008) and his expression (2.9) for i = 3. In addition, the expression

B̃2

rB
−1

r corresponds to the square of the Dickey-Fuller unit root t-statistic based on a mean-zero AR(1) process.
14Corresponding results for W b

T and W c

T are available upon request from the authors.
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with sub-matrices

X∗
0,22 =













∑

t t
∗2y2

t−1

∑

t t
∗y3

t−1

∑

t t
∗2y3

t−1

∑

t t
∗2∆yt−1yt−1

∑

t y
4
t−1

∑

t t
∗y4

t−1

∑

t t
∗∆yt−1y

2
t−1

∑

t t
∗2y4

t−1

∑

t t
∗2∆yt−1y

2
t−1

∑

t t
∗2 (∆yt−1)

2













,

X∗
1,22 =













∑

t t
∗ (∆yt−1)

2 yt−1
∑

t t
∗2 (∆yt−1)

2 yt−1
∑

t (∆yt−1)
2 y2

t−1

∑

t t
∗ (∆yt−1)

2 y2
t−1

∑

t t
∗ (∆yt−1)

2 y2
t−1

∑

t t
∗2 (∆yt−1)

2 y2
t−1

∑

t t
∗ (∆yt−1)

3 ∑

t t
∗2 (∆yt−1)

3













,

X∗
1,22 =

[

∑

t (∆yt−1)
4 ∑

t t
∗ (∆yt−1)

4

∑

t t
∗2 (∆yt−1)

4

]

,

where X∗
11 and X∗

0,22 are symmetric matrices. Consider next the partition β̂a =
(

β̂
′
L, β̂

′
NL

)′
where

β̂L = (β̂1, β̂2)
′ and β̂NL = (β̂3, β̂4, β̂5, β̂6, β̂7, β̂8)

′ are the OLS estimators of βL = (β1, β2)
′ and

βNL = (β3, β4, β5, β6, β7, β8)
′. This allows us to write W a

T as

W a

T =
β̂
′
NL

[

X∗
22 −X∗′

12 (X∗
11)

−1X∗
12

]

β̂NL

ǫ̂′uǫ̂u/T

=
β̂
′
NL∆−1

2 Q∆∆−1
2 β̂NL

ǫ̂′uǫ̂u/T

where results on the inverse of partitioned matrices are used to obtain the first equality and Q∆

in the second equality is given by

Q∆ = ∆2X
∗
22∆2 − (∆1X

∗
12∆2)

′(∆1X
∗
11∆1)

−1(∆1X
∗
12∆2),

where ∆1 and ∆2 are diagonal scaling matrices, explored in detail below, chosen such that Q∆ is

tight (Op(1)) and positive definite.

Consider now the case when yt is non-linear I(0). Letting ∆1 = T−1/2I2 and ∆2 = T−1/2I6

implies that Q∆ is Op(1) and positive definite, and it also follows that ∆−1
2 β̂NL is Op(T

1/2) since

β̂NL
p
→ (β3, β4, β5, 0, 0, 0)

′ where at least one of the parameters β3, β4, and β5 are different from

zero. Hence, the numerator of W a

T is Op(T ). Next, the consistency of the OLS estimators implies

that ǫ̂′uǫ̂u/T
p
→ σ2

ǫ and W a

T is thereby Op(T ).

Consider next the case when yt is non-linear I(1). Letting ∆1 = diag{T−1, T−1/2} and

∆2 = diag{T−1, T−3/2, T−3/2, T−1/2, T−1/2, T−1/2} ensures that Q∆ is tight and positive definite,

and it follows that ∆−1
2 β̂NL is Op(T

1/2) because β̂NL
p
→ (0, 0, 0, β6, β7, β8)

′ where at least one

of the parameters β6, β7, and β8 are different from zero. thus, the numerator of W a

T is Op(T ).

Finally, the OLS estimators are also in this case consistent yielding ǫ̂′uǫ̂u/T
p
→ σ2

ǫ and W a

T is

Op(T ).
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Proof of Theorem 2. The proof of (i) when if yt is linear I(0) is, more or less, standard.

Next, the proof of (i) when yt is linear I(1). The expression for W a

T (as given in the part (iii) of

Theorem 1) and W a

R,T can be written as (see e.g. Hamilton, 1994 p. 525)

W a

T =
(

Raγaβ̂a

)′ (
Ra

(

ǫ̂′uǫ̂u/T
)

γa

[

X∗′
a X

∗
a

]−1
γaR

′
a

)−1 (

Raγaβ̂a

)

,

and

W a

R,T =
(

Raγaβ̂a

)′ [
Raγa

(

V̂a/T
)

γaR
′
a

]−1 (

Raγaβ̂a

)

,

where γa = diag{T, T 1/2, T, T 3/2, T 3/2, T 1/2, T 1/2, T 1/2}. Thus, to prove that W a

R,T − W a

T =

op(1) we only have to show that the modified covariance matrices
(

ǫ̂′uǫ̂u/T
)

γa [X∗′
a X

∗
a ]−1 γa

and γa

(

V̂a/T
)

γa are stochastically equicontinuous. As such, the weak convergence result for

γa [X∗′
a X

∗
a ]−1 γa is, more or less, already derived in Theorem 1 and expression (A.2) and will here

be signified
(∫

Ba

)−1
for short.15 It follows that

(

ǫ̂′uǫ̂u/T
)

γa

[

X∗′
a X

∗
a

]−1
γa ⇒ σ2

ǫ

(
∫

Ba

)−1

.

Consider next the weak convergence results for γa

(

V̂a/T
)

γa. Write

γa

(

V̂a/T
)

γa = γa

[

X∗′
a X

∗
a

]−1
γa

(

γ−1
a

[

∑

t
ǫ̂2tx

a

tx
a′
t

]

γ−1
a

)

γa

[

X∗′
a X

∗
a

]−1
γa,

where it is only the middle component (the modified Ŝa-term) on the r.h.s. that must be fur-

ther examined. The consistency of the OLS estimators yields that ǫ̂t = ǫt + op(1), and it is

straightforward to show that

γ−1
a

[

∑

t
ǫ̂2tx

a

tx
a′
t

]

γ−1
a = γ−1

a

[

∑

t
ǫ2tx

a

tx
a′
t

]

γ−1
a + op(1). (A.7)

Furthermore, write

γ−1
a

[

∑

t
ǫ2tx

a

tx
a′
t

]

γ−1
a = γ−1

a

[

∑

t
σ2

ǫx
a

tx
a′
t

]

γ−1
a + γ−1

a

[

∑

t
(ǫ2t − σ2

ǫ)x
a

tx
a′
t

]

γ−1
a , (A.8)

where γ−1
a

[
∑

t σ
2
ǫx

a
tx

a′
t

]

γ−1
a ⇒ σ2

ǫ

∫

Ba and because the condition

lim
n→∞

sup
t

E
∣

∣E
(

ǫ2t |Ft−n

)

− Eǫ2t
∣

∣ = 0

is trivially fulfilled under the present assumptions (Ft−n is the sigma-algebra generated by

ǫt−n, ǫt−n−1, ...) we can apply Theorem 3.3 of Hansen (1992) to obtain

sup
0≤s≤1

∣

∣

∣

∣

∑[sT ]

t=1
γ−1

a

(

xa

tx
a′
t

)

γ−1
a (ǫ2t − σ2

ǫ)

∣

∣

∣

∣

p
→ 0,

15A complete expression for the weak convergence result of γ
a
[X∗′

a X
∗
a ]

−1
γ

a
is straightforward to derive using

Theorem 1 in Sandberg (2009), and is available upon request from the authors.
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and the second term on the r.h.s. in (A.8) is thus op(1). It follows that
∑

t ǫ
2
tγ

−1
a (xa

tx
a′
t ) γ−1

a ⇒

σ2
ǫ

∫

Ba, and the relationship in (A.7) yields γ−1
a

[
∑

t ǫ̂
2
tx

a
tx

a′
t

]

γ−1
a ⇒ σ2

ǫ

∫

Ba, and the claim of

stochastic equicontinuity between the two modified covariance matrices now follows since

(

ǫ̂′uǫ̂u/T
)

γa

[

X∗′
a X

∗
a

]−1
γa − γa

(

V̂a/T
)

γa ⇒ σ2
ǫ

(
∫

Ba

)−1

−

(
∫

Ba

)−1(

σ2
ǫ

∫

Ba

)(
∫

Ba

)−1

= 0.

The proof of (ii). Notice first that

Ra

(

V̂a/T
)

R′
a = Ra

(

X∗′
a X

∗
a

)−1
[

∑

t
ǫ̂2tx

a

tx
a′
t

]

(

X∗′
a X

∗
a

)−1
R′

a

=
(

X∗
22 −X∗′

12 (X∗
11)

−1X∗
12

)−1 [∑

t
ǫ̂2tx

∗a
t x

∗a′
t

] (

X∗
22 −X∗′

12 (X∗
11)

−1X∗
12

)−1
,

where x∗at = (t∗yt−1, y
2
t−1, t

∗y2
t−1, t

∗∆yt−1, (∆yt−1)
2, t∗(∆yt−1)

2). Using this result implies that

W a

R,T can be written as

W a

R,T = β̂
′
NL

(

X∗
22 −X∗′

12 (X∗
11)

−1X∗
12

) [

∑

t
ǫ̂2tx

∗a
t x

∗a′
t

]−1 (

X∗
22 −X∗′

12 (X∗
11)

−1X∗
12

)

β̂NL

= β̂
′
NL∆−1

2 QR
∆∆−1

2 β̂NL,

where

QR
∆ =

[

∆2X
∗
22∆2 − (∆1X

∗
12∆2)

′(∆1X
∗
11∆1)

−1(∆1X
∗
12∆2)

]

×
[

∆2

(

∑

t
ǫ̂2tx

∗a
t x

∗a′
t

)

∆2

]−1

×
[

∆2X
∗
22∆2 − (∆1X

∗
12∆2)

′(∆1X
∗
11∆1)

−1(∆1X
∗
12∆2)

]

= Q∆ ×
[

∆2

(

∑

t
ǫ̂2tx

∗a
t x

∗a′
t

)

∆2

]−1
×Q∆.

Here, Q∆ is defined as in the proof of Theorem (iii) and in the subsequent discussion we shall

prove that the same choices of the diagonal scaling matrices ∆1 and ∆2 as those in the proof of

Theorem 1(iii) ensure that W a

R,T is Op(T ) whether a non-linear I(0) or I(1) model is considered.

Hence, having the matrices ∆1 and ∆2 specified as in part (iii) of Theorem 1, it only remains to

show that ∆2

(
∑

t ǫ̂
2
tx

∗a
t x

∗a′
t

)

∆2 is Op(1) since Q∆ is Op(1) and β̂
′
NL∆−1

2 is Op(T
1/2) as before.

First, when yt is non-linear I(0), we have that

∆2

(

∑

t
ǫ̂2tx

∗a
t x

∗a′
t

)

∆2 = T−1
∑

t
ǫ̂2tx

∗a
t x

∗a′
t

p
→ E

∑

t
ǫ2tx

∗a
t x

∗a′
t ,

26



where the existence and finiteness of E
∑

t ǫ
2
tx

∗a
t x

∗a′
t is asserted by the present assumption and

∆2

(
∑

t ǫ̂
2
tx

∗a
t x

∗a′
t

)

∆2 is thereby Op(1). Consider finally the case when yt is non-linear I(1). It is

straightforward to show that ∆2

(
∑

t ǫ̂
2
tx

∗a
t x

∗a′
t

)

∆2 converges weakly under the present moment

condition to a matrix of stochastic integrals and is thus Op(1).
16
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