

CREATES Research Paper 2010-36

Linearity Testing in Time-Varying Smooth Transition Autoregressive Models under Unknown Degree of Persistency

Robinson Kruse and Rickard Sandberg

School of Economics and Management Aarhus University Bartholins Allé 10, Building 1322, DK-8000 Aarhus C Denmark

Linearity Testing in Time-Varying Smooth Transition Autoregressive Models under Unknown Degree of Persistency

Robinson Kruse^{*} and Rickard Sandberg[†]

* CREATES, School of Economics and Management, Aarhus University Building 1322, DK-8000 Aarhus, Denmark

[†]Department of Economic Statistics, Stockholm School of Economics P.O. Box 6501, SE-113 83 Stockholm, Sweden

July 26, 2010

Abstract

Building upon the work of Vogelsang (1998) and Harvey and Leybourne (2007) we derive tests that are invariant to the order of integration when the null hypothesis of linearity is tested in time-varying smooth transition models. As heteroscedasticity may lead to spurious rejections of the null hypothesis, a White correction is also considered. The asymptotic properties of the tests are studied. Our Monte Carlo simulations suggest that the newly proposed tests exhibit good size and competitive power properties. An empirical application to US inflation data from the Post-Bretton Woods period underlines the empirical usefulness of our tests.

Key Words: Linearity testing, Linear I(0) and (1) models, Non-linear I(0) and I(1) models, White correction.

1 Introduction

Ample empirical evidence on the short-comings of AR(I)MA models to capture non-linearities and structural changes in economic time-series have been gathered over the years. The research during the last two or three decades has therefore very much focused on time-series models accommodating both non-linearity and structural change in the dynamics and the deterministic terms. In a sound modelling cycle of such models testing the linearity hypothesis is of obvious

^{*}E-mail: rkruse@creates.au.dk. Helpful comments by Sanne Hiller and financial support from CREATES funded by the Danish National Research Foundation are gratefully acknowledged.

[†]E-mail: rickard.sandberg@hhs.se. Corresponding author.

interest. A popular method to test linearity is based on Taylor-series approximations of the original model. Thereafter tests are conducted by simple ordinary least squares (OLS), see Luukkonen, Saikkonen, and Teräsvirta (1988), Granger and Teräsvirta (1993), Teräsvirta (1994), Jansen and Teräsvirta (1996), and van Dijk, Teräsvirta, and Franses (2002) to list a few. Other frequently used linearity tests are simulation based, see e.g. Andrews and Ploberger (1994) and Hansen (1996).

It is important, though, to keep in mind that the asymptotic distribution of these linearity tests are not invariant with respect to the order of integration under the null hypothesis of linearity (see Kiliç 2004, and Sandberg 2008 for discussions and examples). This is an undesirable property when they are applied to potentially high and low persistent time-series. Thus, it is not obvious if a linear I(0) or a linear I(1) model should serve as null hypothesis. An obvious remedy employs a unit root pre-test and subsequently works with levels or first-differences of the series. Pre-testing is problematic since unit root tests may exhibit low power. Moreover, the overall significance level is uncontrolled in such a procedure and the multiple testing problem arises.

Our main contribution is to follow up and extend the work on linearity tests in smooth transition autoregressive (STAR) models by Harvey and Leybourne (2007), hereafter H&L, which are invariant to the order of integration. More specifically, we derive invariant linearity tests in the more general time-varying STAR (TV-STAR) model (see e.g. Van Dijk and Franses, 2002 and Lundbergh, Teräsvirta, and van Dijk, 2003).¹ In this sequel we rely upon the seminal work by Vogelsang (1998). In our case, this yields a Wald test statistic which exhibits the same critical values regardless whether a linear I(0) or a linear I(1) model is considered under the null hypothesis. This test is also shown to be consistent against non-linear I(0) or non-linear I(1) TV-STAR models. In addition to the work by H&L, we allow for a linear trend-specification and also consider heteroscedasticity robust linearity tests. Having macroeconomic time-series in mind where both trend and the presence of GARCH effects are notable, these extensions seem very natural.

The TV-STAR model is a natural extension of the STAR model, and it does not only account for a regime-switching behavior (the STAR part) but also parameter instability (structural change). As Perron (2006) points out, structural change is of substantial importance for the modelling of economic time-series. The TV-STAR model is frequently used to resemble the behavior of macroeconomic variables (see e.g. Lundbergh, van Dijk, and Teräsvirta, 2003 for an application to 214 U.S. macroeconomic time-series) for which a debate is still ongoing whether they are best characterized as difference or trend stationary. Due to this dilemma it is common practice to conduct two separate tests; one based on first-differences and another one on de-trended data.²

¹The linearity tests in the TV-STAR model proposed by e.g. van Dijk, Teräsvirta, and Franses (2002) and Lundbergh, Teräsvirta, and van Dijk (2003) are not invariant with respect to the order of integration. The large sample results for their tests are instead based on that the model under the null hypothesis is a linear stationary autoregressive process.

²This was also the approach taken on by Lundbergh, Teräsvirta, and van Dijk (2003).

Evidently, such an approach may comprise conflicting results. Therefore, it is essential to derive invariant linearity tests for TV-STAR models.

A few words on the notation in this work: \Rightarrow signifies weak convergence, \xrightarrow{p} denotes convergence in probability, B(s) abbreviates a standard Brownian motion on [0, 1], and integrals of the type $\int_0^1 B(s)ds$ and $\int_0^1 B(s)dB(s)$ are denoted $\int B$ and $\int BdB$ for short.

The rest of the work is organized as follows. Section 2 presents trending non-linear I(0) and I(1) TV-STAR processes, corresponding approximations, and also a hybrid specification regression model. Testing procedures and large sample results for robust and invariant linearity tests are given in Section 3. The finite sample properties of the tests are examined by Monte Carlo experiments in Section 4. An empirical application is given in section 5. Conclusions are drawn in Section 6. Finally, mathematical proofs are provided in the Appendix.

2 The Models

2.1 Non-linear I(0) and I(1) Models

Consider a stochastic process $\{y_t\}$ generated by

$$y_t \equiv \mu_t + v_t, \quad t = 1, ..., T, \tag{1}$$

where $\mu_t = 0$, $\mu_t = d_0$, and $\mu_t = d_0 + d_1 t$ and are referred to as cases **a**, **b**, and **c**, respectively, and v_t is modelled via a first-order TV-STAR process

$$v_{t} \equiv [\phi_{1}v_{t-1} \{1 - G_{1}(v_{t-1};\gamma_{1})\} + \phi_{2}v_{t-1}G_{1}(v_{t-1};\gamma_{1})] [1 - G_{2}(t^{*};\gamma_{2},c)] + [\phi_{3}v_{t-1} \{1 - G_{1}(v_{t-1};\gamma_{1})\} + \phi_{4}v_{t-1}G_{1}(v_{t-1};\gamma_{1})] G_{2}(t^{*};\gamma_{2},c) + \epsilon_{t}.$$

$$(2)$$

Here, $(\phi_1, ..., \phi_4)'$ is a real-valued parameter vector, the starting value v_0 is assumed fixed, ϵ_t is an error term with properties discussed below, and the bounded non-linear functions $G_1(v_{t-1}; \gamma_1)$ and $G_2(t^*; \gamma_2, c_2)$ are defined by

$$G_1(v_{t-1};\gamma_1) \equiv \frac{1}{1 + \exp\{-\gamma v_{t-1}\}},\tag{3}$$

where $\gamma_1 \geq 0$ (an identifying restriction) and

$$G_2(t^*; \gamma_2, c_2) \equiv \frac{1}{1 + \exp\left\{-\gamma_2(t^* - c)\right\}},\tag{4}$$

where $t^* = t/T$, $\gamma_2 \ge 0$ (another identifying restriction), and $0 \le c \le 1.^3$ In (3) and (4), γ_1 and γ_2 are parameters which controls for the smoothness, and c is a non-centrality parameter. One

³Defining the smooth transition function in (4) in terms of $t^* = t/T$ (rather than t) turns out to be convenient when giving the proofs in the Appendix. Yet another advantage is that the speed of transition parameter γ_2 becomes scale-free.

appealing feature with these functions is that not only smooth non-linearities are captured but also the Heavside function (the step function) and the constant function can be approximated. Specifically, the former function is obtained letting $\gamma_1 \to \infty$ ($\gamma_2 \to \infty$) which yields that $G_1 = 0$ (= G_2) when $v_{t-1} < 0$ ($t^* < c$) and $G_1 = 1$ (= G_2) when $v_{t-1} \ge 0$ ($t^* \ge c$). On the contrary, the latter function is comprised letting $\gamma_1 \to 0$ ($\gamma_2 \to 0$) which implies that $G_1 = 1/2$ (= G_2). We finally notice that G_1 (G_2) is bounded between 0 and 1 and is a non-decreasing function in v_{t-1} (t^*).

The TV-STAR process is preferably interpreted as describing v_t as a STAR process, with the transition variable v_{t-1} , at all times. That is, for any fixed $t^* = t_0$ the TV-STAR process accommodates a continuum of regimes for the dynamic root which increases from $\phi_1 + G_2(t_0)(\phi_3 - \phi_1)$ to $\phi_2 + G_2(t_0)(\phi_4 - \phi_2)$ with v_{t-1} . Furthermore, in the beginning of the sample these roots equal ϕ_1 and ϕ_2 (associated with $G_2(t^*) = 0$) and the corresponding roots at the end of the sample are ϕ_3 and ϕ_4 (associated with $G_2(t^*) = 1$). To this end, there are three nested models of particular interest within the framework of the TV-STAR process. First, letting $\phi_1 = \phi_2$ and $\phi_3 = \phi_4$ with $\phi_1 \neq \phi_3$ yields a first-order time-varying autoregressive (TV-AR) process (see e.g. Jansen and Teräsvirta, 1996). Second, instead letting $\phi_1 = \phi_3$ and $\phi_2 = \phi_4$ with $\phi_1 \neq \phi_2$ implies a STAR process. Finally, imposing the restriction $\phi_1 = \phi_2 = \phi_3 = \phi_4$, we arrive at a first-order linear autoregressive process.

To the best of our knowledge, the statistical properties of the TV-STAR process in (2) are not yet fully established in the literature. It is evident, though, that the usual definitions of weak stationarity or geometric ergodicity can not be applied because the TV-STAR process has (for instance) a time-varying variance and can not be written as a time-homogeneous Markow chain. Despite this, it seems that a (heuristic) stability condition for the TV-STAR process can be obtained by combining the stability results for pure TV-AR processes (which in essence states that the roots of the time-varying characteristic equation should be larger than one in modulus at all times) by e.g. Juntunen, Tervo, and Kaipio (1999), with the results for pure STAR processes (that is, the roots associated with the two extreme regimes are less than unity in absolute values) by e.g. Liebscher (2005) or Meitz and Saikkonen (2008). More specifically, because the TV-STAR process for any fixed point in time ($t^* = t_0$) can be expressed as a STAR process with dynamic roots associated to the two extreme regimes given by $\phi_1 + G(t_0)(\phi_3 - \phi_1)$ and $\phi_2 + G(t_0)(\phi_4 - \phi_2)$, it seems reasonable to assume that these roots must lie inside the unit circle for any $t_0 \in [0, 1]$. Thus, we arrive at the following stability condition for the above TV-STAR process.⁴

Stability Condition: If $|\phi_1 + \kappa(\phi_3 - \phi_1)| < 1$ and $|\phi_2 + \kappa(\phi_4 - \phi_2)| < 1$ hold for all $\kappa \in [0, 1]$ in (2), then we say that the TV-STAR process in (2) is stable.⁵

 $^{{}^{4}\}mathrm{A}$ more rigorous treatment of the statistical properties of the TV-STAR model is beyond the scope of this work.

⁵It is seen that this condition reduces to the stability condition by Meitz and Saikkonen (2008, p. 463) for pure STAR models letting $\phi_1 = \phi_3$ and $\phi_2 = \phi_4$ with $\phi_1 \neq \phi_2$. Moreover, instead letting letting $\phi_1 = \phi_2$ and $\phi_3 = \phi_4$ with $\phi_1 \neq \phi_3$ the condition reduces to the stability condition by Juntonen, Tervo, and Kaipio (p. 396) for pure

If the TV-STAR process in (2) satisfy the above stability condition we say that the resultant process $\{y_t\}$ in (1) is stable around μ_t , and such a process is referred to as a non-linear I(0) model.

Having introduced a non-linear I(0) model, it seems that one possibility to define a non-linear I(1) model is via a stable TV-STAR process in first-differences. Hence, we may define a non-linear I(1) model by

$$y_t \equiv \mu_t + v_t, \quad t = 1, \dots, T,\tag{5}$$

where

$$\Delta v_t \equiv [\psi_1 \Delta v_{t-1} \{ 1 - G_1(\Delta v_{t-1}; \gamma_1) \} + \psi_2 v_{t-1} G_1(\Delta v_{t-1}; \gamma_1)] [1 - G_2(t^*; \gamma_2, c)]$$

+ $[\psi_3 \Delta v_{t-1} \{ 1 - G_1(\Delta v_{t-1}; \gamma_1) \} + \psi_4 v_{t-1} G_1(\Delta v_{t-1}; \gamma_1)] G_2(t^*; \gamma_2, c) + \epsilon_t,$ (6)

and Δ abbreviates the lag-operator.⁶ In (6), $(\psi_1, ..., \psi_4)'$ is a real-valued parameter vector, the initial values v_{-1} and v_0 are assumed fixed, and the smooth transition functions G_1 and G_2 are defined as in (3) and (4), respectively, but the transition variable in (3) is now replaced with Δv_{t-1} . Moreover, the TV-STAR process in first-differences in (6) is stable if its autoregressive parameters satisfy the above Stability Condition. Accordingly, the first-differences of the process in (5) $\{\Delta y_t\}$ is stable around $\Delta \mu_t$, and the resultant model in levels $y_t = \Delta \mu_t + y_{t-1} + \Delta v_t$ is henceforth referred to as a non-linear I(1) model. Towards this end, it is noticed our terminology of non-linear I(0) and I(1) models is somewhat different from that in H&L because they base their work on logistic and exponential STAR processes corresponding to our case **b**.

2.2 Hybrid Regression Specification Models

To facilitate our testing situation we shall approximate our non-linear I(0) and I(1) models by instead using the first-order Taylor-series expansions of the (smooth) transition functions (3) and (4) around zero for the speed of transition parameters. This yields the following approximation to the TV-STAR process in levels

$$v_t = \delta_0 v_{t-1} + \delta_1 t^* v_{t-1} + \delta_2 v_{t-1}^2 + \delta_3 t^* v_{t-1}^2 + \epsilon_t,$$

and the approximation to the TV-STAR process in first-differences is given by

$$\Delta v_t = \lambda_0 \Delta v_{t-1} + \lambda_1 t^* \Delta v_{t-1} + \lambda_2 \left(\Delta v_{t-1} \right)^2 + \lambda_3 t^* \left(\Delta v_{t-1} \right)^2 + \epsilon_t.$$

Next, since we are interested in linear and non-linear I(0) and I(1) alternatives a hybrid specification regression equation can be obtained by combining above approximations into one expression.

TV-AR models . Finally, the stability results for an AR(1) process follows by letting $\phi_1 = \phi_2 = \phi_3 = \phi_4$.

⁶It should be noticed that the definition of v_t in (2) does not imply the definition for Δv_t in (6) because Δ is a linear operator.

To accomplish this we allow us to write

$$y_t = \mu_t + z_t, \quad t = 1, ..., T,$$
 (7)

where μ_t is defined as in (1), and

$$z_{t} = \delta_{0} z_{t-1} + \delta_{1} t^{*} z_{t-1} + \delta_{2} z_{t-1}^{2} + \delta_{3} t^{*} z_{t-1}^{2} + \lambda_{0} \Delta z_{t-1} + \lambda_{1} t^{*} \Delta z_{t-1} + \lambda_{2} (\Delta z_{t-1})^{2} + \lambda_{3} t^{*} (\Delta z_{t-1})^{2} + \epsilon_{t}.$$
(8)

Now, consider first maintained linear I(0) and I(1) models by (7) and (8). If $\delta_1 = \delta_2 = \delta_3 = \lambda_1 = \lambda_2 = \lambda_3$,⁷ letting $\lambda_0 = 0$ and assuming $\delta_0 \in (-1, 1)$, z_t is a stationary AR(1) process and yields that y_t is a linear I(0) model for the cases **a** and **b** and linear I(0) model with a drift in case **c**; instead letting $\delta_0 = 1$ and assuming $\lambda_0 \in (-1, 1)$, Δz_t is a stationary AR(1) model implying that y_t is a linear I(1) model possibly with a drift in case **c**.

Considering next maintained (approximate) non-linear I(0) and I(1) models by (7) and (8). Letting $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and $\delta_k \neq 0$ for at least one k = 1, 2, 3, we shall assume that the resultant process for $\{y_t\}$ is a stable non-linear I(1) model. Instead letting $\delta_1 = \delta_2 = \delta_3 = 0$ and $\lambda_k \neq 0$ for at least one k = 1, 2, 3, we will assume that the implied process for $\{\Delta y_t\}$ is a non-linear I(0) model.

The model that is used in practice, and which also the subsequent linearity tests are build upon, is a model expressed in terms of observed values That is, we substitute for $z_t = y_t - \mu_t$ and $\Delta z_t = \Delta y_t - \Delta \mu_t$ into (8) to obtain the hybrid regression specification model

$$y_t = \beta'_m x_t^m + \epsilon_t, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c}, \tag{9}$$

where

$$\beta_{a} = (\beta_{1}, \beta_{2}, ..., \beta_{8})',$$

 $\beta_{b} = (\beta_{1}, \beta_{2}, ..., \beta_{10})',$

 $\beta_{c} = (\beta_{1}, \beta_{2}, ..., \beta_{13})',$

⁷It may be noticed that these (linearity) restrictions are implications of letting $\gamma_1 = 0$ and $\gamma_2 = 0$ in the smooth transition functions, i.e. if the speed of transition parameters are equated to zero the TV-STAR process yields a linear model.

and

$$\begin{aligned} x_t^{\mathbf{a}} &= (y_{t-1}, \Delta y_{t-1}, t^* y_{t-1}, y_{t-1}^2, t^* y_{t-1}^2, t^* \Delta y_{t-1}, (\Delta y_{t-1})^2, t^* (\Delta y_{t-1})^2)', \\ x_t^{\mathbf{b}} &= (1, y_{t-1}, \Delta y_{t-1}, t^*, t^* y_{t-1}, y_{t-1}^2, t^* y_{t-1}^2, t^* \Delta y_{t-1}, (\Delta y_{t-1})^2, t^* (\Delta y_{t-1})^2)', \\ x_t^{\mathbf{c}} &= (1, t^*, t^{*2}, t^{*3}, y_{t-1}, \Delta y_{t-1}, t^* y_{t-1}, t^{*2} y_{t-1}, y_{t-1}^2, t^* y_{t-1}^2, t^* \Delta y_{t-1}, (\Delta y_{t-1})^2, t^* (\Delta y_{t-1})^2)'. \end{aligned}$$

3 Testing Procedures

3.1 The Null Hypotheses of Linearity

The null hypothesis of linearity for the hybrid regression specification model in (9), which does not specify if y_t is a linear I(0) or a linear(1) model, can now for the three cases **a**, **b**, and **c** be expressed as

$$\begin{split} & \mathsf{H}_{0}^{\mathsf{a}} \ : \ \beta_{3} = \dots = \beta_{8} = 0, \\ & \mathsf{H}_{0}^{\mathsf{b}} \ : \ \beta_{4} = \dots = \beta_{10} = 0, \\ & \mathsf{H}_{0}^{\mathsf{c}} \ : \ \beta_{5} = \dots = \beta_{13} = 0, \end{split}$$

resulting in the restricted hybrid specification model

$$y_t = \beta'_{m,r} x_t^{m,r} + \epsilon_t, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c}, \tag{10}$$

where

$$\begin{split} \beta_{\mathbf{a},r} &= (\beta_1, \beta_2)', \quad x_t^{\mathbf{a},r} = (y_{t-1}, \Delta y_{t-1})', \\ \beta_{\mathbf{b},r} &= (\beta_1, \beta_2, \beta_3)', \quad x_t^{\mathbf{b},r} = (1, y_{t-1}, \Delta y_{t-1})', \\ \beta_{\mathbf{c},r} &= (\beta_1, \beta_2, \beta_3, \beta_4)', \quad x_t^{\mathbf{c},r} = (1, t^*, y_{t-1}, \Delta y_{t-1})', \end{split}$$

Next, the alternative hypothesis of non-linearity, which does not specify whether y_t is non-linear I(0) or I(1), is simply not the null hypothesis, and can be written as

 $\mathsf{H}_{1}^{\mathsf{a}} \quad : \quad \text{at least one of } \beta_{3}, ..., \beta_{8} \neq 0, \tag{11}$

$$H_1^{\mathbf{b}}$$
: at least one of $\beta_4, \dots, \beta_{10} \neq 0$, (12)

$$\mathsf{H}_{1}^{\mathsf{c}} \hspace{0.1 in} : \hspace{0.1 in} \text{at least one of } \beta_{5},...,\beta_{13} \neq 0. \hspace{1.5 in} (13)$$

3.2 Robust Linearity Tests

The above null hypotheses of linearity in H_0^a , H_0^b , and H_0^c are tested by the Wald statistic

$$W_T^m \equiv T(RSS_r^m - RSS_u^m)/RSS_u^m, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c}, \tag{14}$$

where RSS_u^m and RSS_r^m denote the residual sum of squares from the unrestricted OLS regression y_t on x_t^m in (9) and the restricted OLS regression of y_t on $x_t^{m,r}$ in (10), respectively. Before the large sample properties of the W_T^m statistic are discussed, the following conditions are imposed on the error term ϵ_t .

Assumption 1 Let $\{\epsilon_t\}$ be a sequence of independent and identically distributed (i.i.d.) random variables defined on the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathsf{E}\epsilon_t = 0$ and $\mathsf{E}\epsilon_t^2 = \sigma_\epsilon^2$ hold. In addition, assume that $\mathsf{E} |\epsilon_t|^{8+\delta} < \infty$ for some $\delta > 0$.

In Assumption 1, the condition $\mathsf{E} |\epsilon_t|^{8+\delta} < \infty$ is needed in the context of deriving the limiting distribution of W_T^m under a linear I(1) model. In fact, if we only were interested in the asymptotic distribution of W_T^m under a linear I(0) model weaker moment conditions do apply (see e.g. the conditions in Lundbergh, Teräsvirta, and van Dijk, 2003, p. 106).

Theorem 1 Consider the regression equation (9) when Assumption 1 holds.

- (i) Under H_0^m , if y_t is linear I(0), then $W_T^m \Rightarrow W_0^m$, where $W_0^a = \chi^2(6)$, $W_0^b = \chi^2(7)$, and $W_0^c = \chi^2(9)$.
- (ii) Under H_0^m , if y_t is linear I(1), then $W_T^m \Rightarrow W_1^m$, where $W_1^m = B^m + \chi^2(3)$ and B^m is a matrix function of B(s) which is given in the Appendix. Furthermore, the limiting distribution W_1^m is nuisance parameter free.
- (iii) Under H_1^m , W_T^m diverges to $+\infty$ at the rate $O_p(T)$ whether y_t is non-linear I(0) or non-linear I(1).

Proof. See the Appendix.

As to be expected, the distribution of W_T^m is not invariant to the order of integration under the null hypothesis of linearity. It is interestingly noticed, though, that the test is consistent against both non-linear I(0) and non-linear I(1) specifications. Furthermore, before a remedy the order of integration problem is presented we shall introduce a heteroscedasticity robust version of the Wald statistic in (14). In fact, it is has been shown in the literature that the size properties of the Taylor-series based linearity type of tests are very sensitive to (G)ARCH effects. If such effects are ignored, spurious rejection of the null hypothesis of linearity can occur as often as 70% of the times at a 5% nominal significance level, see e.g. Pavlidis, Paya, and Peel (2009). The robust version of the Wald statistic utilized in this work is the one by White (see White, 1980) and is for our testing situation given by

$$W_{R,T}^{m} \equiv T \left(R_{m} \hat{\beta}_{m} \right)' \left[R_{m} \hat{V}_{m} R_{m}' \right]^{-1} \left(R_{m} \hat{\beta}_{m} \right), \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c},$$
(15)

where $\hat{\beta}'_m$ is the OLS estimator of β'_m in (9), $R_a = [0_{6\times 2} : I_6]$, $R_b = [0_{7\times 3} : I_7]$, $R_c = [0_{9\times 4} : I_9]$, and the estimated covariance matrix is given by

$$\hat{V}_m = S_m^{-1} \hat{S}_m S_m^{-1},$$

with $S_m = T^{-1} \sum_{t=1}^T x_t^m x_t^{m'}$, $\hat{S}_m = T^{-1} \sum_{t=1}^T \hat{\epsilon}_t^2 x_t^m x_t^{m'}$, and $\hat{\epsilon}_t$ signifies the sample residual from the regression in (9). The large sample properties of the $W_{R,T}^m$ is given in the following theorem.

Theorem 2 Consider the regression equation (9) when Assumption 1 holds.

- (i) Under H_0^m , if y_t is linear I(0) or linear I(1), then $W_{B,T}^m W_T^m = o_p(1)$.
- (ii) Under H_1^m , $W_{R,T}^m$ diverges to $+\infty$ at the rate $O_p(T)$ whether y_t is non-linear I(0) or non-linear I(1).

Proof. See the Appendix.

It should be noticed that under the present assumptions it also follows from part (i) of Theorem 2 that $W_{R,T}^m \Rightarrow W_0^m$ if y_t is linear I(0) and $W_{R,T}^m \Rightarrow W_1^m$ if y_t is linear I(1), i.e. $W_{R,T}^m$ and W_T^m have in this case the same asymptotic distribution. However, even though these tests are asymptotically equivalent it is shown in our Monte Carlo study that $W_{R,T}^m$ compares favorable to W_T^m in terms of smaller size distortions in finite samples and the presence of heteroscedastic errors.

3.3 Robust and Invariant Linearity Tests

To propose test statistics whose critical values are the same irrespective of a linear I(0) or I(1) processes are considered, we will closely follow the approach suggested by H&L and is outlined below.

Consider first a modified non-robust Wald type of test statistic

$$W_T^{*m} = \exp\{-b_m H_T^m\} W_T^m, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c},$$

where b_m is a non-zero constant, H_T^m is a test statistic with pivotal limiting distribution H^m such that $H_T^m \Rightarrow H^m$ when y_t is linear I(1) and $H_T^m \xrightarrow{p} 0$ when y_t is linear I(0). It follows now that under a linear I(0) hypothesis the statistic W_T^{*m} has the same limiting distribution as W_T^m in Theorem 1(i) because $\exp\{-b_m H_T^m\} \xrightarrow{p} 1$. On the other hand, if a linear I(1) model is

 Table 1: Asymptotic b-values

Significance level	Case $m = a$ (raw)	Case $m = b$ (constant)	Case $m = c$ (linear trend)
1%	0.250	0.405	0.825
5%	0.255	0.425	0.855
10%	0.275	0.455	0.905

Notes: Results are based on T=100,000 and 100,000 replications.

considered, then $W_T^{*m} \Rightarrow \exp\{-b_m H^m\}W_1^m$ where W_1^m is given in Theorem 1(ii). Taken these results together it becomes evident that we should find a (asymptotic) b_m -value such that

$$\Pr\left(W_0^m > c_\alpha\right) = \Pr\left(\exp\{-b_m H^m\}W_1^m\right) > c_\alpha\right) = \alpha,$$

where c_{α} denotes the (asymptotic) critical value and α is the significance level of the test. Put differently, if we can find such a b_m -value, critical values from a standard chi-square distribution can be used, irrespective of the order of integration, when the null hypothesis of linearity is tested. It should be noticed that this b_m -value depends on the desirable significance level α (cf. Table 1).

The H_T^m statistic we choose is the same one as in H&L, i.e. we will use the Dickey-Fuller *t*-statistic, denoted DF_T^m , for testing the unit root hypothesis $\pi_1 = 1$ in the regression

$$y_t = \vartheta' d_m + \pi_1 y_{t-1} + \omega_0 \Delta y_{t-1} + \epsilon_t, \ m = \mathsf{a}, \mathsf{b}, \mathsf{c},$$
(16)

against the one-sided alternative $\pi_1 < 1$, where $d_a = 0$, $d_b = 1$, and $d_c = (1, t)'$, and ϑ is a conformable parameter vector. The term Δy_{t-1} is included because we allow Δy_t to be stationary linear AR(1) process under the null hypothesis. One can now show that $DF_T^m \Rightarrow DF^m$ and $|DF_T^m|^{-1} \Rightarrow |DF^m|^{-1}$ when y_t is linear I(1).⁸ It is also a straightforward exercise to show that if y_t is linear I(0), then $DF_T^m \xrightarrow{p} -\infty$ and $|DF_T^m|^{-1} \xrightarrow{p} 0$. Taken these results together, the invariant non-robust linearity test statistics employed in this work is defined by

$$W_T^{*m} \equiv \exp\{-b_m |DF_T^m|^{-1}\} W_T^m, \quad m = a, b, c.$$

To operationalize this test statistic asymptotic b_m -values are needed. These values are found by simulations and are for conventional significance levels reported in the Table 1.

The large sample properties under the null and the alternative hypothesis of the W_T^{*m} statistic are summarized in the corollary below.

Corollary 3 Consider the regression equation (9) when Assumption 1 holds.

- (i) $W_T^{*m} \Rightarrow W_0^m$ if y_t is linear I(0). $W_T^{*m} \Rightarrow \exp\{-b_m |DF^m|^{-1}\}W_1^m$ if y_t is linear I(1).
- (ii) Under H_1^m , W_T^{*m} diverges to $+\infty$ at the rate $O_p(T)$ whether y_t is non-linear I(0) or non-linear I(1).

⁸Explicit results for the DF^m distribution can in this case be found in e.g. Hamilton (1994 p. 494).

The result (i) is an immediate consequence of the properties of the W_T^m statistic in part (i) and (ii) of Theorem 1. Next, part (ii) follows noticing that if y_t is non-linear I(0) then the DF_T^m statistic is consistent (diverges to $-\infty$) and thus $W_T^{*m} = (1 + o_p(1))W_T^m$. If instead y_t is non-linear I(1) then the DF_T^m statistic is $O_p(1)$ (and this $O_p(1)$ term is positive) so $W_T^{*m} = O_p(1)W_T^m$. Combining these results with the result (iii) in Theorem 1 now establishes the results in the corollary.

The robust invariant linearity test in this work is defined by

$$W_{R,T}^{*m} \equiv \exp\{-b_m |DF_T^m|^{-1}\} W_{R,T}^m, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c}.$$

Due to the results in Theorem 2, the $W_{R,T}^{*m}$ statistic has the same large sample properties as the W_T^{*m} statistic in Corollary 3.

3.4 Serially Correlated Errors

Accommodating serially correlated errors for the linearity tests above is most easily accomplished by augmenting (8) with lagged changes in the $\{z_t\}$ sequence, that is

$$z_{t} = \delta_{0} z_{t-1} + \delta_{1} t^{*} z_{t-1} + \delta_{2} z_{t-1}^{2} + \delta_{3} t^{*} z_{t-1}^{2} + \sum_{j=1}^{p} \lambda_{0,j} \Delta z_{t-1} + \lambda_{1} t^{*} \Delta z_{t-1} + \lambda_{2} (\Delta z_{t-1})^{2} + \lambda_{3} t^{*} (\Delta z_{t-1})^{2} + \epsilon_{t}.$$
 (17)

where ϵ_t is a white noise process. To ensure that there are no more than a single unit root, all the values of r satisfying the inverse characteristic equation: $1 - \lambda_{0,1}r - \lambda_{0,2}r^2 + \cdots + \lambda_{0,p}r^p = 0$ must lie outside the unit circle. The unrestricted and restricted hybrid regression equation in (9) is then replaced with

$$y_t = \beta'_m x_t^m + \sum_{j=2}^p \xi_j \Delta y_{t-j} + \epsilon_t, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c},$$
(18)

and

$$y_t = \beta'_{m,r} x_t^{m,r} + \sum_{j=2}^p \xi_j \Delta y_{t-j} + \epsilon_t, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c},$$
(19)

respectively. The non-robust version of our linearity test accommodating serially correlated errors, signified as $W_{A,T}^{*m}$, is now defined as

$$W_{A,T}^{*m} \equiv \exp\{-b_m |ADF_T^m|^{-1}\} W_{A,T}^m, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c},$$

where ADF_T^m is the traditional augmented DF *t*-test for testing the unit root hypothesis $\pi_1 = 1$ in

$$y_t = \vartheta' d_m + \pi_1 y_{t-1} + \sum_{j=1}^p \omega_j \Delta y_{t-j} + \epsilon_t, \quad m = \mathsf{a}, \mathsf{b}, \mathsf{c}.$$
(20)

against the one-sided alternative $\pi_1 < 1$. Moreover, $W_{A,T}^m$ is defined as W_T^m in (14) but the unrestricted and restricted residual sum of squares are instead obtained from (18) and (19), respectively. It is noticed that the (asymptotic) b_m -value is the same as for the case without serially correlated errors and is due to the fact that $ADF_T^m - DF_T^m = o_p(1)$ and $W_{A,T}^m - W_T^m = o_p(1)$. Towards this end, the lag-length p in (19) and (20) is an unknown parameter to be determined. It is noticed that whether we have a linear I(0) or linear I(1) model under the null hypothesis of linearity, p is estimated consistently (see Paulsen, 1984) by the Schwarz (see Schwarz, 1978) information criteria (SIC).

We shall as a final test consider a robust version of the linearity test accommodating serial correlation. This test is abbreviated $W_{A,R,T}^{*m}$ and is defined by

$$W_{A,R,T}^{*m} \equiv \exp\{-b_m |ADF_T^m|^{-1}\} W_{A,R,T}^m, \quad m = a, b, c,$$

where $W_{A,R,T}^m$ is defined as $W_{R,T}^m$ in (15) but x_t^m and $\hat{\epsilon}_t$ are replaced with the covariates and the sample residuals from (19). One can also show that the $W_{A,R,T}^m$ statistic have the same asymptotic distributions as the $W_{A,T}^m$ statistic, and the (asymptotic) b_m -values in Table 1 may therefore once again be used.

4 Monte Carlo Study

This section evaluates the small sample performance of the W_T^{*m} statistic by means of a Monte Carlo study. The newly proposed test is compared to the extant one proposed by H&L, hereafter signified as W_{HL} . We focus solely on the case $m = \mathbf{b}$ as the H&L test is constructed for this empirically relevant case.⁹ Size and power experiments are conducted. Regarding the former one, we allow for three different distributions: Normal, $\chi^2 - 1$, and t(3) as well as for conditional heteroscedasticity via a simple GARCH(1,1) process. These specifications permit skewness, fat tails and volatility clustering which is commonly observed in many economic and financial timeseries. In addition to the W_T^* statistic, we also consider the $W_{R,T}^*$ statistic which is expected to be less sensitive to GARCH effects. When the power is evaluated, we focus on the case of normality and homoscedastic errors for simplicity. Moreover, we set the lag length p equal to one. The considered sample sizes are 150 and 300. The number of replications is set equal to 5,000 and the nominal significance level is 5%.

4.1 Size Experiments

The data generating process (DGP) is a linear second-order autoregressive model

$$y_t = \rho y_{t-1} + \phi \Delta y_{t-1} + \epsilon_t,$$

⁹Simulation results for the cases of raw (m = a) and trending data (m = c) are available upon request from the authors. For these cases, a direct comparison with the H&L test is not possible.

Normally distributed errors									
		T =	150		T = 300				
ϕ/ ho	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	
-0.5	0.071	0.041	0.044	0.076	0.060	0.035	0.033	0.063	
	0.128	0.043	0.045	0.050	0.123	0.042	0.043	0.049	
0.0	0.056	0.039	0.041	0.081	0.049	0.034	0.032	0.067	
	0.052	0.049	0.054	0.058	0.052	0.047	0.049	0.054	
0.5	0.057	0.044	0.041	0.093	0.051	0.038	0.034	0.071	
	0.055	0.053	0.056	0.061	0.051	0.049	0.050	0.056	
$\chi^2(1) - 1$ distributed errors									
		T =	150			T =	300		
ϕ/ ho	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	
-0.5	0.086	0.050	0.053	0.096	0.071	0.042	0.042	0.077	
	0.137	0.051	0.053	0.087	0.131	0.046	0.049	0.073	
0.0	0.057	0.042	0.042	0.097	0.055	0.038	0.035	0.079	
	0.064	0.051	0.055	0.093	0.061	0.047	0.050	0.078	
0.5	0.051	0.033	0.031	0.107	0.050	0.030	0.026	0.075	
	0.061	0.044	0.047	0.089	0.058	0.041	0.040	0.068	
		St	udent- $t($	3) distri	buted er	rors			
		T =	150		T = 300				
ϕ/ ho	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	
-0.5	0.089	0.042	0.055	0.079	0.075	0.035	0.043	0.073	
	0.151	0.043	0.051	0.076	0.134	0.038	0.052	0.071	
0.0	0.057	0.047	0.047	0.099	0.055	0.043	0.039	0.078	
	0.062	0.058	0.058	0.087	0.064	0.054	0.056	0.078	
0.5	0.056	0.046	0.043	0.114	0.048	0.039	0.034	0.080	
	0.061	0.060	0.060	0.098	0.057	0.055	0.051	0.088	

Table 2: Size Experiments with different Distributions

where the autoregressive parameters ρ and ϕ take the following values: $\rho = \{0.0, 0.8, 0.9, 1.0\}$ and $\phi = \{-0, 5, 0.0, 0.5\}$. This means that we consider I(0) and I(1) models under the null hypothesis of linearity. The error term ϵ_t is either standard normally distributed, follows a skewed $\chi^2 - 1$ distribution or a fat-tailed Student-*t* distribution with three degrees of freedom, i.e. t(3). Moreover, we allow for a GARCH(1,1) process

$$\begin{aligned} \epsilon_t &= \eta_t \sqrt{h_t}, \\ h_t &= \omega_0 + \omega_1 \epsilon_{t-1}^2 + \omega_2 h_{t-1}, \end{aligned}$$

where η_t is either standard normally, $\chi^2 - 1$ or t(3)-distributed. The parameters are chosen to resemble the typically observed behaviour of volatility clustering: $(\omega_0, \omega_1, \omega_2) = (0.1, 0.3, 0.6)$.

Results are reported in Tables 2 and 3 for homoscedastic and heteroscedastic errors, respectively. As an exception to other experiments, a third sample size of T = 500 is included here

Notes: The DGP is given by $y_t = \rho y_{t-1} + \phi \Delta y_{t-1} + \epsilon_t$. Reported numbers are simulated rejection frequencies of the W_T^* test (upper entries) and the W_{HL} test (lower entries).

					1								
		Per	formanc	e of W_T^*	, $W_{R,T}^*$ a	and W_{HI}	$_L$ under	heterosc	edastic e	errors			
		T =	150			T = 300				T = 500			
ϕ/ ho	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	
-0.5	0.203	0.239	0.242	0.253	0.303	0.316	0.301	0.287	0.412	0.396	0.365	0.333	
	0.203	0.252	0.242	0.247	0.198	0.207	0.194	0.194	0.203	0.175	0.157	0.161	
	0.278	0.339	0.342	0.287	0.385	0.445	0.436	0.362	0.505	0.533	0.521	0.409	
0.0	0.297	0.229	0.215	0.248	0.400	0.303	0.280	0.278	0.500	0.393	0.358	0.309	
	0.315	0.240	0.213	0.240	0.266	0.185	0.161	0.177	0.231	0.163	0.139	0.141	
	0.383	0.367	0.352	0.291	0.499	0.473	0.465	0.375	0.589	0.556	0.543	0.393	
0.5	0.296	0.201	0.185	0.217	0.397	0.284	0.253	0.219	0.495	0.378	0.332	0.257	
	0.337	0.217	0.194	0.214	0.289	0.186	0.159	0.145	0.264	0.170	0.139	0.127	
	0.359	0.343	0.328	0.257	0.480	0.457	0.435	0.325	0.559	0.536	0.510	0.364	
			Per	formanc	e of W_R^*	T under	homose	edastic e	errors				
		T =	150		T = 300				T = 500				
ϕ/ ho	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	0.0	0.8	0.9	1.0	
-0.5	0.135	0.130	0.113	0.149	0.096	0.082	0.073	0.101	0.074	0.070	0.054	0.081	
0.0	0.189	0.118	0.114	0.158	0.120	0.089	0.077	0.106	0.096	0.070	0.062	0.086	
0.5	0.181	0.129	0.107	0.164	0.122	0.095	0.078	0.103	0.107	0.077	0.065	0.093	

 Table 3: Size Experiments with GARCH Effects

Notes: The DGP is given by $y_t = \rho y_{t-1} + \phi \Delta y_{t-1} + \epsilon_t$, where $\epsilon_t = \eta_t \sqrt{h_t}, \eta_t \stackrel{iid}{\sim} N(0,1)$ with $h_t = 0.1 + 0.3\epsilon_{t-1}^2 + 0.6h_{t-1}$. Reported numbers are simulated rejection frequencies of the W_T^* test (upper entries), the heteroscedasticity-robust $W_{R,T}^*$ test (middle entries) and the W_{HL} test (lower entries), see upper panel. The lower panel reports only the performance of the heteroscedasticity-robust $W_{R,T}^*$ test. For the performance of the other two tests, see Table 2.

as well for the purpose of illustration. The results in Table 2 suggest the W_T^{*m} test is generally correctly sized with some minor discrepancies. Positive deviations mainly occur in the case of an I(1) DGP. It can also be seen that the H&L test performs in general as good as the newly proposed one. Thus, it appears that both our test and the W_{HL} test are robust to skewed and fat-tailed distributions. The results for heteroscedastic errors (lower panel of Table 3) reveal the following:

First, all three test statistics $(W_T^*, W_{R,T}^*, \text{ and } W_{HL})$ are over-sized. Even though the $W_{R,T}^*$ statistic performs similar to the W_T^* statistic for T = 150, the size-distortions are substantially mitigated for the $W_{R,T}^*$ statistic when the sample size is increased. It can also be seen that the W_{HL} test is for all cases considered even more sensitive to GARCH effects than the W_T^* test. Second, when no GARCH effects are present, the heteroscedasticity-robust test statistic is oversized, but the magnitude of distortions decline rapidly with an increasing sample size. Finally, it appears that the heteroscedasticity-robust test is suitable for sample sizes larger than or equal to T = 300, while it should be used with caution in smaller sample sizes.

	Table 4: Power Experiments for $I(0)$ Data								
	STAR Model, $\phi_1 = \phi_3, \phi_2 = \phi_4$								
	$T = 150 \qquad \qquad T = 300$)
ϕ_1	ϕ_2			W_T^*	W_T^0	W_{HL}	W_T^*	W_T^0	W_{HL}
0.5	0.7			0.070	0.085	0.087	0.096	0.128	0.134
0.3	0.7			0.127	0.182	0.209	0.249	0.346	0.394
0.5	0.9			0.111	0.177	0.264	0.236	0.362	0.551
0.3	0.9			0.189	0.298	0.467	0.417	0.594	0.797
	TV-AR Model, $\phi_1 = \phi_2, \phi_3 = \phi_4$								
	T = 150 $T = 300$)		
ϕ_1		ϕ_3		W_T^*	W_T^0	W_{HL}	W_T^*	W_T^0	W_{HL}
0.5		0.7		0.098	0.127	0.058	0.167	0.244	0.062
0.3		0.7		0.284	0.405	0.089	0.620	0.755	0.108
0.5		0.9		0.384	0.559	0.121	0.812	0.921	0.172
0.3		0.9		0.713	0.866	0.193	0.986	0.997	0.333
			TV-S	FAR Mo	del, ϕ_4 -	$-\phi_3 = \phi$	$\phi_2 - \phi_1$		
					T = 150			T = 300)
ϕ_1	ϕ_2	ϕ_3	ϕ_4	W_T^*	W_T^0	W_{HL}	W_T^*	W_T^0	W_{HL}
0.5	0.7	0.7	0.9	0.170	0.259	0.150	0.398	0.555	0.291
0.1	0.5	0.5	0.9	0.571	0.711	0.432	0.933	0.968	0.773
-0.3	0.3	0.3	0.9	0.883	0.942	0.714	0.998	1.000	0.968

4.2**Power Experiments**

As a next step the empirical power of the tests are analyzed and evaluated. To this end, three different DGPs are considered. They are similar to the cases (b), (c) and (f) in Lundbergh, Teräsvirta, and van Dijk (2003) which are a STAR, a TV-AR and a TV-STAR process, respectively. The STAR process is given by

$$y_t = \phi_1 y_{t-1} G_1(y_{t-1}; \gamma_1) + \phi_2 y_{t-1} \{ 1 - G_1(y_{t-1}; \gamma_1) \} + \epsilon_t,$$

$$\Delta y_t = \psi_1 \Delta y_{t-1} G_1(\Delta y_{t-1}; \gamma_1) + \psi_2 \Delta y_{t-1} \{ 1 - G_1(\Delta y_{t-1}; \gamma_1) \} + \epsilon_t,$$

for the I(0) and I(1) case, respectively. The second DGP is a time-varying AR model

$$y_t = \phi_1 y_{t-1} [1 - G_2(t^*; \gamma_2, c_2)] + \phi_3 y_{t-1} G_2(t^*; \gamma_2, c_2) + \epsilon_t,$$

$$\Delta y_t = \psi_1 \Delta y_{t-1} [1 - G_2(t^*; \gamma_2, c_2)] + \psi_3 \Delta y_{t-1} G_2(t^*; \gamma_2, c_2) + \epsilon_t.$$

The third DGP is a TV-STAR process where the autoregressive parameters are restricted in the following way: $\phi_4 - \phi_3 = \phi_2 - \phi_1$ for the I(0) case and $\psi_4 - \psi_3 = \psi_2 - \psi_1$ for the I(1) case, respectively.

The exact parameter constellations for autoregressive parameters ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 and ψ_1 , ψ_2 , ψ_3 , ψ_4 are given in Tables 4 and 5.¹⁰ Following Lundbergh, Teräsvirta, and van Dijk (2003),

¹⁰The results for the opposite direction of autoregressive parameters, i.e. decreasing instead of increasing from

	Table 5: Power Experiments for $I(1)$ Data								
	STAR Model, $\psi_1 = \psi_3, \psi_2 = \psi_4$								
		$T = 150 \qquad \qquad T = 300$							I
ψ_1	ψ_2			W_T^*	W_T^1	W_{HL}	W_T^*	W_T^1	W_{HL}
0.5	0.7			0.152	0.082	0.099	0.145	0.121	0.117
0.3	0.7			0.220	0.185	0.164	0.282	0.353	0.252
0.5	0.9			0.291	0.181	0.219	0.328	0.358	0.357
0.3	0.9			0.373	0.284	0.328	0.422	0.592	0.573
TV-AR Model, $\psi_1 = \psi_2, \psi_3 = \psi_4$									
			T = 150 $T = 300$					T = 300	l.
ψ_1		ψ_3		W_T^*	W_T^1	W_{HL}	W_T^*	W_T^1	W_{HL}
0.5		0.7		0.154	0.127	0.077	0.169	0.243	0.066
0.3		0.7		0.291	0.402	0.102	0.481	0.763	0.108
0.5		0.9		0.410	0.565	0.159	0.654	0.919	0.216
0.3		0.9		0.626	0.862	0.242	0.833	0.998	0.391
		ŗ	TV-S7	TAR Mo	del, ψ_4 -	$-\psi_3 = \psi$	$\psi_2 - \psi_1$		
					T = 150			T = 300	J
ψ_1	$\boldsymbol{\psi}_2$	ψ_3	ψ_4	W_T^*	W_T^1	W_{HL}	W_T^*	W_T^1	W_{HL}
0.5	0.7	0.7	0.9	0.230	0.248	0.141	0.351	0.536	0.243
0.1	0.5	0.5	0.9	0.507	0.697	0.361	0.782	0.968	0.677
-0.3	0.3	0.3	0.9	0.771	0.949	0.651	0.940	1.000	0.926

 $\gamma_1 = 5$ and $\gamma_2 = 25$. The break point c_2 is specified as 0.5. Innovations ϵ_t are drawn from the standard normal distribution.

These three DGPs allows us to study the empirical power properties in empirically relevant settings. The first DGP is a pure STAR model without structural change, and it is here expected that the H&L test performs somewhat better than the newly proposed one. The reason for this expectation is the fact that the H&L test is designed to detect non-linearity of this certain type. The second DGP is a time-varying AR model with a smooth structural change in the AR parameter. As such, the H&L test is not designed to direct power against this DGP whereas, to some extents, our test is. Regarding the third DGP, our test is expected to perform better than the H&L test, although the latter one may have satisfactory power if the structural changes are less pronounced.

Similarly to H&L, the following W_T^0 and W_T^1 versions of linearity tests are considered as benchmark tests. The former one assumes an I(0) model, while the latter one assumes an I(1) model. In particular, the W_T^0 is carried out by running the following OLS regression in levels

$$y_t = \beta_1 + \beta_2 y_{t-1} + \beta_3 t^* + \beta_4 t^* y_{t-1} + \beta_5 y_{t-1}^2 + \beta_6 t^* y_{t-1}^2 + \epsilon_t$$

The null hypothesis of linearity is then given by $H_0: \beta_3 = \ldots = \beta_6 = 0$. The corresponding Wald statistic is asymptotically distributed as a χ^2 random variable with four degrees of freedom.

 $^{(\}phi_1 \text{ over to } \phi_4 \text{ and } \psi_1 \text{ over to } \psi_4$, are not reported to save space. They are more or less symmetric and are available from authors upon request.

Figure 1: Monthly US inflation, August 1973 – April 2010.

Analogously, the W_T^1 statistic is based on an OLS regression in first differences

$$\Delta y_t = \beta_1 + \beta_2 \Delta y_{t-1} + \beta_3 t^* + \beta_4 t^* \Delta y_{t-1} + \beta_5 (\Delta y_{t-1})^2 + \beta_6 t^* (\Delta y_{t-1})^2 + \epsilon_t.$$

Again, the null hypothesis of linearity is given by $H_0: \beta_3 = \ldots = \beta_6 = 0$ and the corresponding Wald statistic is asymptotically distributed as a χ^2 random variable with four degrees of freedom.

Results for the I(0) and I(1) cases are reported in Table 4 and 5, respectively. The upper, middle and lower entry in each cell reports the empirical power of the W_T^* test, the W_T^0 and the W_{HL} test, respectively. The results in Table 4 for the STAR model suggest that the W_{HL} test indeed dominates the W_T^* and the W_T^0 test. The difference in power increases with the sample size and the degree of non-linearity measured by the distance of AR parameters across regimes. Nonetheless, the W_T^* test exhibits non-trivial power to detect STAR dynamics. The results in the case of a TV-AR model in Table 5 show that the W_T^* test outperforms the W_{HL} test, and it appears that the extant W_{HL} test is less useful in detecting a smooth structural change in the autoregressive parameters. Moreover, the W_T^* test performs often as good as the W_T^0 benchmark test which underlines its usefulness. For the TV-STAR model, the expected dominance of the W_T^* test over the W_{HL} test is confirmed. The W_T^* test exhibits satisfactory power.

The results in Table 5 for I(1) DGPs confirm the previous conclusions in general. Some remarks on the minor differences to the results for I(0) DGPs are in order. In general, the W_T^* is more powerful when applied to I(0) time-series than to I(1). This result is in line with H&L. It may also be noticed that for the pure STAR model the W_T^* test performs in fact better even better than the W_T^1 test for T = 150. This result is can be attributed to the relatively small sample size and the fact that both tests are misspecified.

Table 6: I	Empirical	Results f	or US Inf	lation	
	W_T^*	$W_{R,T}^*$	W_T^0	W_T^1	W_{HL}
Test statistic	88.203	53.540	55.118	4.607	8.021
Critical value (5%)	14.067	14.067	9.488	9.488	9.488
- t Th - l - l		CIC			

Notes: The lag length p is chosen via SIC.

$\mathbf{5}$ **Empirical Application**

-

This section contains an empirical application to US inflation data. Monthly inflation based on CPI data obtained from the FREDII database is used. The sample spans from the Post-Bretton Woods period up to the most recent observation, i.e. August 1973–April 2010 with T = 441. The data is displayed in Figure 1.

Visual inspection of the time-series suggests that it is presumably characterized by serial correlation, non-linearity, and heteroscedasticity. Moreover, it exhibits a few relatively extreme observations leading to a mild degree of excess kurtosis (4.54). Therefore, it serves as an interesting time-series for the application of W_T^* and $W_{R,T}^*$ statistics. In the following, the case m = bis considered, as it fits most with the nature of data shown in Figure 1. Table 6 reports the results for the test statistics W_T^* , $W_{R,T}^*$, W_T^0 , W_T^1 and W_{HL} together with their critical values at a nominal significance level of five percent.

Evidence for TV-STAR dynamics is found by our W_T^* test, but not by the W_{HL} test. When considering the heteroscedasticity-robust version $W_{R,T}^*$, evidence for non-linearity is less strong, but still significant. This underlines the practical usefulness of the W_T^* test and the importance to account for heteroscedasticity via the $W_{R,T}^*$ test. The test statistics W_T^0 and W_T^1 assume an I(0) and an I(1) model, respectively. Only the test assuming stationarity rejects the null of linearity.

In the case of a rejection one is left inconclusive about the degree of integration. The same problem is encountered in H&L and they advocate the use of the non-parametric test by Harris, McCabe, and Leybourne (2003). This test is based on sample autocovariances and tests the null hypothesis of stationarity against a unit root. Define $a_{t,k} = \tilde{y}_t \tilde{y}_{t-k}$, where \tilde{y}_t denotes the deviation of y_t from its mean $\bar{y} \equiv T^{-1} \sum_{t=1}^T y_t$. The test statistic is then given by

$$S_T = T^{-1/2} \frac{\sum_{t=k+1}^T a_{t,k}}{\hat{\omega}(a_{t,k})} \xrightarrow{d} N(0,1)$$

where $\hat{\omega}(a_{t,k})^2$ is the Bartlett kernel-based long run variance estimator of $a_{t,k}$. More specifically,

$$\hat{\omega}(a_{t,k})^2 = \hat{\gamma}_0(a_{t,k}) + 2\sum_{j=1}^l \left(1 - \frac{j}{l}\right) \hat{\gamma}_j(a_{t,k})$$
$$\hat{\gamma}_j(a_{t,k}) = T^{-1} \sum_{t=j+k+1}^T a_{t,k} a_{t-j,k}$$

The limiting distribution of S_T is standard normal in the case of globally stationary processes. The test rejects the null hypothesis of stationarity for large values of S_T . In our case this test is not directly applicable since our non-linear I(0) model is not globally stationary as discussed in Section 2.1.¹¹ In further simulation studies (not reported here) it appears, however, that the standard normal distribution yields a fairly good approximation to the limiting distribution of the S_T statistic when a stable TV-STAR process is considered. Thus, we proceed by using the S_T statistic to make inference about the order of integration under the alternative hypothesis.

The values of k and l are $T^{2/3}$ and $12(T/100)^{1/4}$ (rounded to the nearest integer), respectively. The value of the test statistic S_T equals 1.557 and is not significant at the nominal five percent level. The null hypothesis of stationarity is therefore not rejected. Together with the outcomes of the linearity tests, it is concluded that US inflation can be characterized by a non-linear and stationary TV-STAR model.

6 Concluding Remarks

In this work we derive an invariant test for the linearity hypothesis against a TV-STAR alternative. Our test is invariant in the sense that critical values from a standard chi-square distribution are applicable irrespectively whether a linear I(0) or I(1) model is considered under the null hypothesis. The true degree of integration has not to be known, pre-specified or pre-tested. Another contribution of this work is to suggest an alternative test which is additionally robust to heteroscedasticity which is often found in economic data. The robustness to heteroscedasticity is achieved by using a White correction for the estimated covariance matrix.

The empirical properties of both tests are evaluated by means of a Monte Carlo study. The results suggest that our tests are correctly sized even if the error distribution exhibits skewness and fat tails. Moreover, the problem of spurious rejections due to neglected heteroscedasticity is mostly remedied by applying the test including the White correction. The power experiments reveal that our test is powerful and competitive with respect to the extant one by Harvey and Leybourne (2007).

In our application to US inflation data from the Post-Bretton Woods period evidence in favour of a non-linear I(0) model is found whereas the test by Harvey and Leybourne (2007) instead lends support to a linear I(0) model. This might be explained by the fact that the Harvey and Leybourne (2007) test is less powerful against time-series subject to non-linearities and structural changes. Another insight of our application is that heteroscedasticity is of importance as the evidence for non-linearity and structural change is reduced, but still significant, when the White correction is applied.

¹¹ The limiting distribution of the S_T statistic is expected to fairly complicated when the DGP is TV-STAR process, and establishing a complete expression for this distribution is beyond the scope of this work.

Mathematical Appendix

The proofs in this appendix are only given for the case **a**. The proofs for the cases **b** and **c** are similar and therefore omitted. Moreover, the proof of Theorem 1 below closely follows the proof of Theorem 1 in H&L, but it is noticed that our large sample results are different from those derived in H&L for the simple reason that different models are studied. To this end, all summations in this appendix go from 1 to T and the short-hand notion used is \sum_t .

Proof of Theorem 1. (i) Standard.

Next, the proof of (ii). We notice first that the DGP under the null hypothesis is given by $y_t = y_{t-1} + \epsilon_t$, with starting values y_{-1} and y_0 assumed to be known (either fixed or stochastic). Without loss of generality we may set $y_{-1} = y_0 = 0$. Furthermore, it proves convenient to modify some of the covariates in x_t^a in (9) and also re-order them according to levels and first-differences as follows (it is evident that RSS_u is not affected by this manipulation):

$$x_t = (y_{t-1}, t^* y_{t-1}, y_{t-1}^2, t^* y_{t-1}^2, \Delta y_{t-1}, t^* \Delta y_{t-1}, a_{t-1}, b_{t-1})',$$

where $a_{t-1} \equiv (\Delta y_{t-1})^2 - m_2$ and $b_{t-1} \equiv t^* (\Delta y_{t-1})^2 - m_2/2$ with $m_2 = \mathsf{E}(\Delta y_{t-1})^2$.¹² Next, stack x_t into the matrix X_u and $x_t^{\mathfrak{a},r}$ in (10) into X_r , and by $\hat{\epsilon}_u$ and $\hat{\epsilon}_r$ denote the sample counterparts of $\epsilon = (\epsilon_1, \epsilon_2, ..., \epsilon_T)$ in (9) and (10), respectively. The Wald statistic in (14) can now be written as

$$W_{T}^{a} = \frac{\hat{\epsilon}_{x}'\hat{\epsilon}_{r} - \hat{\epsilon}_{u}'\hat{\epsilon}_{u}}{\hat{\epsilon}_{u}'\hat{\epsilon}_{u}/T}$$

$$= \frac{\epsilon' X_{u}(X_{u}'X_{u})^{-1}X_{u}'\epsilon - \epsilon' X_{r}(X_{r}'X_{r})^{-1}X_{r}'\epsilon}{\hat{\epsilon}_{u}'\hat{\epsilon}_{u}/T}$$

$$= \frac{(\epsilon' X_{u}\gamma_{u}^{-1}) \left[\gamma_{u}^{-1}(X_{u}'X_{u})\gamma_{u}^{-1}\right]^{-1} (\gamma_{u}^{-1}X_{u}'\epsilon)}{\hat{\epsilon}_{u}'\hat{\epsilon}_{u}/T}$$

$$- \frac{(\epsilon' X_{r}\gamma_{r}^{-1}) \left[\gamma_{r}^{-1}(X_{r}'X_{r})\gamma_{r}^{-1}\right]^{-1} (\gamma_{r}^{-1}X_{r}'\epsilon)}{\hat{\epsilon}_{u}'\hat{\epsilon}_{u}/T}, \quad (A.1)$$

where $\gamma_u = diag\{T, T, T^{3/2}, T^{3/2}, T^{1/2}, T^{1/2}, T^{1/2}T^{1/2}\}$ and $\gamma_r = diag\{T, T^{1/2}\}$ are scaling matrices.

In order to derive the limiting distribution of W_T^a we start with examining the large sample properties of $\gamma_u^{-1}(X'_uX_u)\gamma_u^{-1}$ and $\gamma_r^{-1}(X'_rX_r)\gamma_r^{-1}$ in (A.1). Hence, consider first the partition

Y' Y =	X_{11}	X_{12}]
$\Lambda_u \Lambda_u -$	X'_{12}	X_{22} .	,

¹²Thereby $T^{-1}\sum_{t} a_{t-1} \xrightarrow{p} 0$ and $T^{-1}\sum_{t} b_{t-1} \xrightarrow{p} 0$ as long as $\mathsf{E}\epsilon_t^2 < \infty$.

where the sub-matrices are given by

$$X_{11} = \begin{bmatrix} \sum_{t} y_{t-1}^2 & \sum_{t} t^* y_{t-1}^2 & \sum_{t} y_{t-1}^3 & \sum_{t} t^* y_{t-1}^3 \\ & \sum_{t} t^{*2} y_{t-1}^2 & \sum_{t} t^* y_{t-1}^3 & \sum_{t} t^{*2} y_{t-1}^3 \\ & & \sum_{t} y_{t-1}^4 & \sum_{t} t^* y_{t-1}^4 \\ & & & \sum_{t} t^{*2} y_{t-1}^4 \end{bmatrix},$$

$$X_{12} = \begin{bmatrix} \sum_{t} \Delta y_{t-1}y_{t-1} & \sum_{t} t^* \Delta y_{t-1}y_{t-1} & \sum_{t} y_{t-1}a_{t-1} & \sum_{t} y_{t-1}b_{t-1} \\ \sum_{t} t^* \Delta y_{t-1}y_{t-1} & \sum_{t} t^{*2} \Delta y_{t-1}y_{t-1} & \sum_{t} t^* y_{t-1}a_{t-1} & \sum_{t} t^{*2}y_{t-1}b_{t-1} \\ \sum_{t} \Delta y_{t-1}y_{t-1}^2 & \sum_{t} t^* \Delta y_{t-1}y_{t-1}^2 & \sum_{t} y_{t-1}^2a_{t-1} & \sum_{t} y_{t-1}^2b_{t-1} \\ \sum_{t} t^* \Delta y_{t-1}y_{t-1}^2 & \sum_{t} t^{*2} \Delta y_{t-1}y_{t-1}^2 & \sum_{t} t^* y_{t-1}^2a_{t-1} & \sum_{t} t^* y_{t-1}^2b_{t-1} \end{bmatrix},$$

$$X_{22} = \begin{bmatrix} \sum_{t} (\Delta y_{t-1})^2 & \sum_{t} t^* (\Delta y_{t-1})^2 & \sum_{t} \Delta y_{t-1} a_{t-1} & \sum_{t} \Delta y_{t-1} b_{t-1} \\ & \sum_{t} t^{*2} (\Delta y_{t-1})^2 & \sum_{t} t^* \Delta y_{t-1} a_{t-1} & \sum_{t} t^* \Delta y_{t-1} b_{t-1} \\ & & \sum_{t} a_{t-1}^2 & \sum_{t} a_{t-1} b_{t-1} \\ & & & \sum_{t} b_{t-1}^2 \end{bmatrix},$$

and also write

$$X'_{r}X_{r} = \begin{bmatrix} \sum_{t} y_{t-1}^{2} & \sum_{t} y_{t-1}\Delta y_{t-1} \\ & \sum_{t} (\Delta y_{t-1})^{2} \end{bmatrix}.$$

where X_{11} , X_{22} , and $X'_r X_r$ are symmetric matrices. Next, the moment conditions in Assumption 1 and the fact that $\{\epsilon_t\}$ is an i.i.d. sequence assert that we can use the results in Hansen (1992, Theorem 4.1 and 4.2), He and Sandberg (2006, Lemma A1), Sandberg (2009, Theorem 1), and a law of large numbers for martingale difference sequences (see e.g. White, 2000 Theorem 3.76) to deduce that

$$\gamma_u^{-1} \left(X'_u X_u \right) \gamma_u^{-1} \quad \Rightarrow \quad \left[\begin{array}{cc} \sigma_u B_u \sigma_u & 0_{4 \times 4} \\ 0_{4 \times 4} & Z_u \end{array} \right], \tag{A.2}$$

$$\gamma_r^{-1} \left(X_r' X_r \right) \gamma_r^{-1} \quad \Rightarrow \quad \left[\begin{array}{cc} \sigma_r B_r \sigma_r & 0\\ 0 & Z_r \end{array} \right], \tag{A.3}$$

converge jointly as $T \to \infty,$ where the sub-matrices are given by

$$B_{u} = \begin{bmatrix} \int B^{2} & \int sB^{2} & \int B^{3} & \int sB^{3} \\ & \int s^{2}B^{2} & \int sB^{3} & \int s^{2}B^{3} \\ & & \int B^{4} & \int sB^{4} \\ & & & \int s^{2}B^{4} \end{bmatrix},$$
$$B_{r} = \int B^{2},$$

and

$$Z_u = \begin{bmatrix} m_2 & m_2/2 & m_3 & m_3/2 \\ & m_2/3 & m_3/2 & m_3/3 \\ & & m_4 - m_2^2 & m_4/2 - m_2^2/2 \\ & & & m_4/3 - m_2^2/4 \end{bmatrix}$$
$$Z_r = m_2,$$

where B_u and Z_u are symmetric matrices, $\sigma_u = diag\{\sigma_{\epsilon}, \sigma_{\epsilon}, \sigma_{\epsilon}^2, \sigma_{\epsilon}^2, \}$, $\sigma_r = \sigma_{\epsilon}$, and $m_i = \mathsf{E}(\Delta y_{t-1})^i = \mathsf{E}(\epsilon_{t-1}^i)$. In particular, $m_2 = \sigma_{\epsilon}^2$.

Considering next the limiting results for $\gamma_u^{-1} X'_u \epsilon$ and $\gamma_r^{-1} X'_r \epsilon$ in (A.1) Under Assumption 1, once more using the results in Hansen (1992, Theorem 4.1 and 4.2), He and Sandberg (2006, Lemma A1), Sandberg (2009, Theorem 1 and Corollary 1), and also a central limit theorem for martingale difference sequences (see e.g. White, 2000 Corollary 5.26), it follows that

$$\gamma_u^{-1} X'_u \epsilon \Rightarrow \sigma_\epsilon \begin{bmatrix} \sigma_u \tilde{B}_u \\ \tilde{Z}_u \end{bmatrix},$$
 (A.4)

$$\gamma_r^{-1} X'_r \epsilon \Rightarrow \sigma_\epsilon \begin{bmatrix} \sigma_r \tilde{B}_r \\ \tilde{Z}_r \end{bmatrix},$$
(A.5)

converge jointly as $T \to \infty$, where the sub-vectors are given by

$$\tilde{B}_{u} = \begin{bmatrix} \int B dB \\ \int sB dB \\ \int B^{2} dB \\ \int sB^{2} dB \end{bmatrix},$$
$$\tilde{B}_{r} = \int B dB.$$

and

$$\tilde{Z}_u = \begin{bmatrix} N(0, m_2) \\ N(0, m_2/3) \\ N(0, m_4 - m_2^2) \\ N(0, m_4/3 - m_2^2/4) \end{bmatrix},$$
$$\tilde{Z}_r = N(0, m_2).$$

Here, $\tilde{Z}_u \sim MVN(0, Z_u)$, and \tilde{Z}_u and \tilde{Z}_r are independent of B(s). Finally, combining the results in (A.2)-(A.5), also noticing that $\hat{\epsilon}'_u \hat{\epsilon}_u / T \xrightarrow{p} \sigma_{\epsilon}^2$ holds under the null hypothesis, the continuous mapping theorem entails

=

$$W_T^{a} \Rightarrow$$

$$\sigma_{\epsilon}^{-2} \left(\sigma_{\epsilon} \begin{bmatrix} \sigma_u \tilde{B}_u \\ \tilde{Z}_u \end{bmatrix} \right)' \begin{bmatrix} \sigma_u B_u \sigma_u & 0_{4 \times 4} \\ 0_{4 \times 4} & Z_u \end{bmatrix}^{-1} \left(\sigma_{\epsilon} \begin{bmatrix} \sigma_u \tilde{B}_u \\ \tilde{Z}_u \end{bmatrix} \right)$$

$$-\sigma_{\epsilon}^{-2} \left(\sigma_{\epsilon} \begin{bmatrix} \sigma_r \tilde{B}_r \\ \tilde{Z}_r \end{bmatrix} \right)' \begin{bmatrix} \sigma_r B_r \sigma_r & 0 \\ 0 & Z_r \end{bmatrix}^{-1} \left(\sigma_{\epsilon} \begin{bmatrix} \sigma_r \tilde{B}_r \\ \tilde{Z}_r \end{bmatrix} \right)$$

$$= \tilde{B}'_u B_u^{-1} \tilde{B}_u - \tilde{B}_r^2 B_r^{-1} + \tilde{Z}'_u Z_u^{-1} \tilde{Z}_u - \tilde{Z}_r^2 Z_r^{-1}. \qquad (A.6)$$

Here, $\tilde{B}'_u B^{-1}_u \tilde{B}_u - \tilde{B}^2_r B^{-1}_r \equiv B^a$, and it is also straightforward to show that $\tilde{Z}'_u Z^{-1}_u \tilde{Z}_u - \tilde{Z}^2_r Z^{-1}_r$ is a $\chi^2(3)$ variate.¹³ Finally, by (A.6) it becomes evident that the limiting distribution of W^a_T is nuisance parameter free.¹⁴

The proof of (iii). The following equivalent expression for the Wald statistic is used

$$W_T^{\mathbf{a}} = \frac{\left(R_{\mathbf{a}}\hat{\beta}_{\mathbf{a}}\right)' \left(R_{\mathbf{a}}\left[X_{\mathbf{a}}^{*\prime}X_{\mathbf{a}}^{*}\right]^{-1}R_{\mathbf{a}}'\right)^{-1} \left(R_{\mathbf{a}}\hat{\beta}_{\mathbf{a}}\right)}{\hat{\epsilon}'_u \hat{\epsilon}_u/T},$$

where the matrix X_a^* contains the stacked x_t^a , and R_a and $\hat{\beta}_a$ are defined as in (15). Next, partition $X_a^{*'}X_a^*$ as

$$X_{\mathsf{a}}^{*\prime}X_{\mathsf{a}}^{*} = \begin{bmatrix} X_{11}^{*} & X_{12}^{*} \\ X_{12}^{*\prime} & X_{22}^{*} \end{bmatrix},$$

where

$$X_{11}^{*} = \begin{bmatrix} \sum_{t} y_{t-1}^{2} & \sum_{t} \Delta y_{t-1} y_{t-1} \\ & \sum_{t} (\Delta y_{t-1})^{2} \end{bmatrix},$$

$$X_{12}^{*\prime} = \begin{bmatrix} \sum_{t} t^{*} y_{t-1}^{2} & \sum_{t} t^{*} \Delta y_{t-1} y_{t-1} \\ \sum_{t} y_{t-1}^{3} & \sum_{t} \Delta y_{t-1} y_{t-1}^{2} \\ \sum_{t} t^{*} y_{t-1}^{3} & \sum_{t} t^{*} \Delta y_{t-1} y_{t-1}^{2} \\ \sum_{t} t^{*} \Delta y_{t-1} y_{t-1} & \sum_{t} t^{*} (\Delta y_{t-1})^{2} \\ \sum_{t} (\Delta y_{t-1})^{2} y_{t-1} & \sum_{t} t^{*} (\Delta y_{t-1})^{3} \\ \sum_{t} t^{*} (\Delta y_{t-1})^{2} y_{t-1} & \sum_{t} t^{*} (\Delta y_{t-1})^{3} \end{bmatrix}$$

and

$$X_{22}^* = \begin{bmatrix} X_{0,22}^* & X_{1,22}^* \\ X_{1,22}^{*\prime} & X_{2,22}^* \end{bmatrix}$$

¹³The expression $\tilde{B}'_u B^{-1}_u \tilde{B}_u$ corresponds to the limiting distribution for the linearity test in the TV-STAR model under a unit root assumption by Sandberg (2008) and his expression (2.9) for i = 3. In addition, the expression $\tilde{B}^2_r B^{-1}_r$ corresponds to the square of the Dickey-Fuller unit root *t*-statistic based on a mean-zero AR(1) process.

¹⁴Corresponding results for W_T^{b} and W_T^{c} are available upon request from the authors.

with sub-matrices

$$\begin{split} X_{0,22}^{*} &= \begin{bmatrix} \sum_{t} t^{*2} y_{t-1}^{2} & \sum_{t} t^{*y} y_{t-1}^{3} & \sum_{t} t^{*2} y_{t-1}^{3} & \sum_{t} t^{*2} \Delta y_{t-1} y_{t-1} \\ & \sum_{t} y_{t-1}^{4} & \sum_{t} t^{*y} y_{t-1}^{4} & \sum_{t} t^{*\Delta} \Delta y_{t-1} y_{t-1}^{2} \\ & \sum_{t} t^{*2} y_{t-1}^{4} & \sum_{t} t^{*2} \Delta y_{t-1} y_{t-1}^{2} \\ & \sum_{t} t^{*2} (\Delta y_{t-1})^{2} y_{t-1} & \sum_{t} t^{*2} (\Delta y_{t-1})^{2} y_{t-1} \\ & \sum_{t} t^{*2} (\Delta y_{t-1})^{2} y_{t-1}^{2} & \sum_{t} t^{*2} (\Delta y_{t-1})^{2} y_{t-1} \\ & \sum_{t} t^{*} (\Delta y_{t-1})^{2} y_{t-1}^{2} & \sum_{t} t^{*2} (\Delta y_{t-1})^{2} y_{t-1}^{2} \\ & \sum_{t} t^{*} (\Delta y_{t-1})^{2} y_{t-1}^{2} & \sum_{t} t^{*2} (\Delta y_{t-1})^{2} y_{t-1}^{2} \\ & \sum_{t} t^{*} (\Delta y_{t-1})^{3} & \sum_{t} t^{*2} (\Delta y_{t-1})^{3} \end{bmatrix}, \end{split}$$

$$X_{1,22}^{*} &= \begin{bmatrix} \sum_{t} (\Delta y_{t-1})^{4} & \sum_{t} t^{*} (\Delta y_{t-1})^{4} \\ & \sum_{t} t^{*2} (\Delta y_{t-1})^{4} \end{bmatrix}, \end{split}$$

where X_{11}^* and $X_{0,22}^*$ are symmetric matrices. Consider next the partition $\hat{\beta}_{\mathsf{a}} = (\hat{\beta}'_L, \hat{\beta}'_{NL})'$ where $\hat{\beta}_L = (\hat{\beta}_1, \hat{\beta}_2)'$ and $\hat{\beta}_{NL} = (\hat{\beta}_3, \hat{\beta}_4, \hat{\beta}_5, \hat{\beta}_6, \hat{\beta}_7, \hat{\beta}_8)'$ are the OLS estimators of $\beta_L = (\beta_1, \beta_2)'$ and $\beta_{NL} = (\beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_8)'$. This allows us to write W_T^{a} as

$$\begin{split} W_{T}^{a} &= \frac{\hat{\beta}_{NL}^{\prime} \left[X_{22}^{*} - X_{12}^{*\prime} (X_{11}^{*})^{-1} X_{12}^{*} \right] \hat{\beta}_{NL}}{\hat{\epsilon}_{u}^{\prime} \hat{\epsilon}_{u} / T} \\ &= \frac{\hat{\beta}_{NL}^{\prime} \Delta_{2}^{-1} Q_{\Delta} \Delta_{2}^{-1} \hat{\beta}_{NL}}{\hat{\epsilon}_{u}^{\prime} \hat{\epsilon}_{u} / T} \end{split}$$

where results on the inverse of partitioned matrices are used to obtain the first equality and Q_{Δ} in the second equality is given by

$$Q_{\Delta} = \Delta_2 X_{22}^* \Delta_2 - (\Delta_1 X_{12}^* \Delta_2)' (\Delta_1 X_{11}^* \Delta_1)^{-1} (\Delta_1 X_{12}^* \Delta_2),$$

where Δ_1 and Δ_2 are diagonal scaling matrices, explored in detail below, chosen such that Q_{Δ} is tight $(O_p(1))$ and positive definite.

Consider now the case when y_t is non-linear I(0). Letting $\Delta_1 = T^{-1/2}I_2$ and $\Delta_2 = T^{-1/2}I_6$ implies that Q_{Δ} is $O_p(1)$ and positive definite, and it also follows that $\Delta_2^{-1}\hat{\beta}_{NL}$ is $O_p(T^{1/2})$ since $\hat{\beta}_{NL} \xrightarrow{p} (\beta_3, \beta_4, \beta_5, 0, 0, 0)'$ where at least one of the parameters β_3, β_4 , and β_5 are different from zero. Hence, the numerator of W_T^a is $O_p(T)$. Next, the consistency of the OLS estimators implies that $\hat{\epsilon}'_u \hat{\epsilon}_u / T \xrightarrow{p} \sigma_{\epsilon}^2$ and W_T^a is thereby $O_p(T)$.

Consider next the case when y_t is non-linear I(1). Letting $\Delta_1 = diag\{T^{-1}, T^{-1/2}\}$ and $\Delta_2 = diag\{T^{-1}, T^{-3/2}, T^{-3/2}, T^{-1/2}, T^{-1/2}, T^{-1/2}\}$ ensures that Q_Δ is tight and positive definite, and it follows that $\Delta_2^{-1}\hat{\beta}_{NL}$ is $O_p(T^{1/2})$ because $\hat{\beta}_{NL} \xrightarrow{p} (0, 0, 0, \beta_6, \beta_7, \beta_8)'$ where at least one of the parameters β_6 , β_7 , and β_8 are different from zero. thus, the numerator of W_T^a is $O_p(T)$. Finally, the OLS estimators are also in this case consistent yielding $\hat{\epsilon}'_u \hat{\epsilon}_u / T \xrightarrow{p} \sigma_{\epsilon}^2$ and W_T^a is $O_p(T)$. **Proof of Theorem 2.** The proof of (i) when if y_t is linear I(0) is, more or less, standard. Next, the proof of (i) when y_t is linear I(1). The expression for W_T^a (as given in the part (iii) of Theorem 1) and $W_{R,T}^a$ can be written as (see e.g. Hamilton, 1994 p. 525)

$$W_T^{\mathsf{a}} = \left(R_{\mathsf{a}} \gamma_{\mathsf{a}} \hat{\beta}_{\mathsf{a}} \right)' \left(R_{\mathsf{a}} \left(\hat{\epsilon}'_u \hat{\epsilon}_u / T \right) \gamma_{\mathsf{a}} \left[X_{\mathsf{a}}^{*\prime} X_{\mathsf{a}}^{*} \right]^{-1} \gamma_{\mathsf{a}} R'_{\mathsf{a}} \right)^{-1} \left(R_{\mathsf{a}} \gamma_{\mathsf{a}} \hat{\beta}_{\mathsf{a}} \right),$$

and

$$W_{R,T}^{\mathsf{a}} = \left(R_{\mathsf{a}}\gamma_{\mathsf{a}}\hat{\beta}_{\mathsf{a}}\right)' \left[R_{\mathsf{a}}\gamma_{\mathsf{a}}\left(\hat{V}_{\mathsf{a}}/T\right)\gamma_{\mathsf{a}}R_{\mathsf{a}}'\right]^{-1} \left(R_{\mathsf{a}}\gamma_{\mathsf{a}}\hat{\beta}_{\mathsf{a}}\right),$$

where $\gamma_{a} = diag\{T, T^{1/2}, T, T^{3/2}, T^{3/2}, T^{1/2}, T^{1/2}, T^{1/2}\}$. Thus, to prove that $W_{R,T}^{a} - W_{T}^{a} = o_{p}(1)$ we only have to show that the modified covariance matrices $(\hat{\epsilon}'_{u}\hat{\epsilon}_{u}/T)\gamma_{a}[X_{a}^{*\prime}X_{a}^{*}]^{-1}\gamma_{a}$ and $\gamma_{a}(\hat{V}_{a}/T)\gamma_{a}$ are stochastically equicontinuous. As such, the weak convergence result for $\gamma_{a}[X_{a}^{*\prime}X_{a}^{*}]^{-1}\gamma_{a}$ is, more or less, already derived in Theorem 1 and expression (A.2) and will here be signified $(\int B_{a})^{-1}$ for short.¹⁵ It follows that

$$\left(\hat{\epsilon}'_{u}\hat{\epsilon}_{u}/T\right)\gamma_{\mathsf{a}}\left[X_{\mathsf{a}}^{*\prime}X_{\mathsf{a}}^{*}\right]^{-1}\gamma_{\mathsf{a}}\Rightarrow\sigma_{\epsilon}^{2}\left(\int B_{\mathsf{a}}\right)^{-1}$$

Consider next the weak convergence results for $\gamma_{a}\left(\hat{V}_{a}/T\right)\gamma_{a}$. Write

$$\gamma_{\mathsf{a}}\left(\hat{V}_{\mathsf{a}}/T\right)\gamma_{\mathsf{a}} = \gamma_{\mathsf{a}}\left[X_{\mathsf{a}}^{*\prime}X_{\mathsf{a}}^{*}\right]^{-1}\gamma_{\mathsf{a}}\left(\gamma_{\mathsf{a}}^{-1}\left[\sum_{t}\hat{\epsilon}_{t}^{2}x_{t}^{\mathsf{a}}x_{t}^{\mathsf{a}\prime}\right]\gamma_{\mathsf{a}}^{-1}\right)\gamma_{\mathsf{a}}\left[X_{\mathsf{a}}^{*\prime}X_{\mathsf{a}}^{*}\right]^{-1}\gamma_{\mathsf{a}},$$

where it is only the middle component (the modified \hat{S}_{a} -term) on the r.h.s. that must be further examined. The consistency of the OLS estimators yields that $\hat{\epsilon}_{t} = \epsilon_{t} + o_{p}(1)$, and it is straightforward to show that

$$\gamma_{\mathsf{a}}^{-1} \left[\sum_{t} \hat{\epsilon}_{t}^{2} x_{t}^{\mathsf{a}} x_{t}^{\mathsf{a}'} \right] \gamma_{\mathsf{a}}^{-1} = \gamma_{\mathsf{a}}^{-1} \left[\sum_{t} \epsilon_{t}^{2} x_{t}^{\mathsf{a}} x_{t}^{\mathsf{a}'} \right] \gamma_{\mathsf{a}}^{-1} + o_{p}(1).$$
(A.7)

Furthermore, write

$$\gamma_{\mathsf{a}}^{-1} \left[\sum_{t} \epsilon_{t}^{2} x_{t}^{\mathsf{a}} x_{t}^{\mathsf{a}\prime} \right] \gamma_{\mathsf{a}}^{-1} = \gamma_{\mathsf{a}}^{-1} \left[\sum_{t} \sigma_{\epsilon}^{2} x_{t}^{\mathsf{a}} x_{t}^{\mathsf{a}\prime} \right] \gamma_{\mathsf{a}}^{-1} + \gamma_{\mathsf{a}}^{-1} \left[\sum_{t} (\epsilon_{t}^{2} - \sigma_{\epsilon}^{2}) x_{t}^{\mathsf{a}} x_{t}^{\mathsf{a}\prime} \right] \gamma_{\mathsf{a}}^{-1}, \tag{A.8}$$

where $\gamma_{\mathsf{a}}^{-1} \left[\sum_t \sigma_{\epsilon}^2 x_t^{\mathsf{a}} x_t^{\mathsf{a}} \right] \gamma_{\mathsf{a}}^{-1} \Rightarrow \sigma_{\epsilon}^2 \int B_{\mathsf{a}}$ and because the condition

$$\lim_{n \to \infty} \sup_{t} \mathsf{E} \left| \mathsf{E} \left(\epsilon_t^2 | \mathcal{F}_{t-n} \right) - \mathsf{E} \epsilon_t^2 \right| = 0$$

is trivially fulfilled under the present assumptions (\mathcal{F}_{t-n}) is the sigma-algebra generated by $\epsilon_{t-n}, \epsilon_{t-n-1}, ...$ we can apply Theorem 3.3 of Hansen (1992) to obtain

$$\sup_{0 \le s \le 1} \left| \sum_{t=1}^{[sT]} \gamma_{\mathsf{a}}^{-1} \left(x_t^{\mathsf{a}} x_t^{\mathsf{a}} \right) \gamma_{\mathsf{a}}^{-1} (\epsilon_t^2 - \sigma_\epsilon^2) \right| \xrightarrow{p} 0,$$

¹⁵A complete expression for the weak convergence result of $\gamma_a [X_a^{*'}X_a^{*}]^{-1} \gamma_a$ is straightforward to derive using Theorem 1 in Sandberg (2009), and is available upon request from the authors.

and the second term on the r.h.s. in (A.8) is thus $o_p(1)$. It follows that $\sum_t \epsilon_t^2 \gamma_{\mathsf{a}}^{-1} (x_t^{\mathsf{a}} x_t^{\mathsf{a}'}) \gamma_{\mathsf{a}}^{-1} \Rightarrow \sigma_{\epsilon}^2 \int B_{\mathsf{a}}$, and the relationship in (A.7) yields $\gamma_{\mathsf{a}}^{-1} \left[\sum_t \hat{\epsilon}_t^2 x_t^{\mathsf{a}} x_t^{\mathsf{a}'}\right] \gamma_{\mathsf{a}}^{-1} \Rightarrow \sigma_{\epsilon}^2 \int B_{\mathsf{a}}$, and the claim of stochastic equicontinuity between the two modified covariance matrices now follows since

$$(\hat{\epsilon}'_u \hat{\epsilon}_u / T) \gamma_{\mathsf{a}} [X^{*\prime}_{\mathsf{a}} X^*_{\mathsf{a}}]^{-1} \gamma_{\mathsf{a}} - \gamma_{\mathsf{a}} (\hat{V}_{\mathsf{a}} / T) \gamma_{\mathsf{a}} \Rightarrow \sigma_{\epsilon}^2 \left(\int B_{\mathsf{a}} \right)^{-1} - \left(\int B_{\mathsf{a}} \right)^{-1} \left(\sigma_{\epsilon}^2 \int B_{\mathsf{a}} \right) \left(\int B_{\mathsf{a}} \right)^{-1} = 0.$$

The proof of (ii). Notice first that

$$\begin{aligned} R_{\mathsf{a}}\left(\hat{V}_{\mathsf{a}}/T\right)R'_{\mathsf{a}} &= R_{\mathsf{a}}\left(X_{\mathsf{a}}^{*\prime}X_{\mathsf{a}}^{*}\right)^{-1}\left[\sum_{t}\hat{\epsilon}_{t}^{2}x_{t}^{\mathsf{a}}x_{t}^{\mathsf{a}\prime}\right]\left(X_{\mathsf{a}}^{*\prime}X_{\mathsf{a}}^{*}\right)^{-1}R'_{\mathsf{a}} \\ &= \left(X_{22}^{*} - X_{12}^{*\prime}\left(X_{11}^{*}\right)^{-1}X_{12}^{*}\right)^{-1}\left[\sum_{t}\hat{\epsilon}_{t}^{2}x_{t}^{*\mathsf{a}}x_{t}^{*\mathsf{a}\prime}\right]\left(X_{22}^{*} - X_{12}^{*\prime}\left(X_{11}^{*}\right)^{-1}X_{12}^{*}\right)^{-1}, \end{aligned}$$

where $x_t^{*a} = (t^* y_{t-1}, y_{t-1}^2, t^* y_{t-1}^2, t^* \Delta y_{t-1}, (\Delta y_{t-1})^2, t^* (\Delta y_{t-1})^2)$. Using this result implies that $W_{R,T}^{a}$ can be written as

$$\begin{split} W_{R,T}^{a} &= \hat{\beta}_{NL}^{\prime} \left(X_{22}^{*} - X_{12}^{*\prime} (X_{11}^{*})^{-1} X_{12}^{*} \right) \left[\sum_{t} \hat{\epsilon}_{t}^{2} x_{t}^{*a} x_{t}^{*a\prime} \right]^{-1} \left(X_{22}^{*} - X_{12}^{*\prime} (X_{11}^{*})^{-1} X_{12}^{*} \right) \hat{\beta}_{NL} \\ &= \hat{\beta}_{NL}^{\prime} \Delta_{2}^{-1} Q_{\Delta}^{R} \Delta_{2}^{-1} \hat{\beta}_{NL}, \end{split}$$

where

$$Q_{\Delta}^{R} = \left[\Delta_{2} X_{22}^{*} \Delta_{2} - (\Delta_{1} X_{12}^{*} \Delta_{2})' (\Delta_{1} X_{11}^{*} \Delta_{1})^{-1} (\Delta_{1} X_{12}^{*} \Delta_{2}) \right] \times \left[\Delta_{2} \left(\sum_{t} \hat{\epsilon}_{t}^{2} x_{t}^{*a} x_{t}^{*a\prime} \right) \Delta_{2} \right]^{-1} \\ \times \left[\Delta_{2} X_{22}^{*} \Delta_{2} - (\Delta_{1} X_{12}^{*} \Delta_{2})' (\Delta_{1} X_{11}^{*} \Delta_{1})^{-1} (\Delta_{1} X_{12}^{*} \Delta_{2}) \right] \\ = Q_{\Delta} \times \left[\Delta_{2} \left(\sum_{t} \hat{\epsilon}_{t}^{2} x_{t}^{*a} x_{t}^{*a\prime} \right) \Delta_{2} \right]^{-1} \times Q_{\Delta}.$$

Here, Q_{Δ} is defined as in the proof of Theorem (iii) and in the subsequent discussion we shall prove that the same choices of the diagonal scaling matrices Δ_1 and Δ_2 as those in the proof of Theorem 1(iii) ensure that $W_{R,T}^{\mathfrak{s}}$ is $O_p(T)$ whether a non-linear I(0) or I(1) model is considered. Hence, having the matrices Δ_1 and Δ_2 specified as in part (iii) of Theorem 1, it only remains to show that $\Delta_2 \left(\sum_t \hat{\epsilon}_t^2 x_t^{\mathfrak{sa}} x_t^{\mathfrak{sa'}}\right) \Delta_2$ is $O_p(1)$ since Q_{Δ} is $O_p(1)$ and $\hat{\beta}'_{NL} \Delta_2^{-1}$ is $O_p(T^{1/2})$ as before.

First, when y_t is non-linear I(0), we have that

$$\begin{split} \Delta_2 \left(\sum_t \hat{\epsilon}_t^2 x_t^{*\mathbf{a}} x_t^{*\mathbf{a}\prime} \right) \Delta_2 &= T^{-1} \sum_t \hat{\epsilon}_t^2 x_t^{*\mathbf{a}} x_t^{*\mathbf{a}\prime} \\ &\xrightarrow{p} \mathsf{E} \sum_t \epsilon_t^2 x_t^{*\mathbf{a}} x_t^{*\mathbf{a}\prime}, \end{split}$$

where the existence and finiteness of $\mathsf{E}\sum_t \epsilon_t^2 x_t^{*a} x_t^{*a'}$ is asserted by the present assumption and $\Delta_2 \left(\sum_t \hat{\epsilon}_t^2 x_t^{*a} x_t^{*a'}\right) \Delta_2$ is thereby $O_p(1)$. Consider finally the case when y_t is non-linear I(1). It is straightforward to show that $\Delta_2 \left(\sum_t \hat{\epsilon}_t^2 x_t^{*a} x_t^{*a'}\right) \Delta_2$ converges weakly under the present moment condition to a matrix of stochastic integrals and is thus $O_p(1)$.¹⁶

References

- ANDREWS, D. W., AND W. PLOBERGER (1994): "Optimal tests when a nuisance parameter is present only under the alternative," *Econometrica*, 62, 1383–1414.
- GRANGER, C. W., AND T. TERÄSVIRTA (1993): Modelling Nonlinear Economic Relationships. Oxford University Press.
- HAMILTON, J. D. (1994): Time Series Analysis. Princeton University Press, New Jersey.
- HANSEN, B. E. (1992): "Convergence to stochastic integrals for dependent heterogeneous processes," *Econometric Theory*, 8, 489–501.
- (1996): "Inference when a nuisance parameter is not identified under the null hypothesis," *Econometrica*, 64, 413–430.
- HARRIS, D., B. MCCABE, AND S. LEYBOURNE (2003): "Some limit theory for autocovariances whose order depends on the sample size," *Econometric Theory*, 19, 829–864.
- HARVEY, D. I., AND S. J. LEYBOURNE (2007): "Testing for time series linearity," *Econoemtrics Journal*, 10, 149–165.
- HE, C., AND R. SANDBERG (2006): "Dickey-Fuller Type of Tests Against Non-Linear Dynamic Models," Oxford Bulletin of Economic and Statistics, 68, 835–861.
- JANSEN, E. S., AND T. TERÄSVIRTA (1996): "Testing Parameter Constancy and Super Exogeneity in Econometric Equations," Oxford Bulletin of Economics and Statistics, 58, 735–763.
- JUNTUNEN, M., J. TERVO, AND J. P. KAIPIO (1999): "Stabilization of Subba Rao-Liporace models," *Circuits Systems Signal Process*, 18, 395–406.
- KILIÇ, R. (2004): "Linearity tests and stationarity," *Econometrics Journal*, 7, 55–62.
- LIEBSCHER, E. (2005): "Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes," *Journal of Time Series Analysis*, 26, 669–689.
- LUNDBERGH, S., T. TERÄSVIRTA, AND D. VAN DIJK (2003): "Time-Varying Smooth Transition Autoregressive Models," *Journal of Business and Economic Statistics*, 21, 104–121.

¹⁶The proof of this claim is similar to the proof of that the l.h.s. in (A.7) converges weakly to a matrix of stochastic integrals $(\sigma_{\epsilon}^2 \int B_{a})$ and is therefore omitted.

- LUUKKONEN, R., P. SAIKKONEN, AND T. TERÄSVIRTA (1988): "Testing linearity against smooth transition autoregressive models," *Biometrika*, 75, 491–499.
- MEITZ, M., AND P. SAIKKONEN (2008): "Stability of nonlinear AR-GARCH models," *Journal* of Time Series Analysis, 29, 453–475.
- PAULSEN, J. (1984): "Order determination of multivariate autoregressive time series with unit roots," *Journal of Time Series Analysis*, 5, 115–127.
- PAVLIDIS, E., I. PAYA, AND D. PEEL (2009): "Specifying Smooth TRansition Regression Models in the Presence of Conditional Heteroscedsaticity of Unknown Form," Lancaster University Manangement School, Working Paper No. 2009/009.
- PERRON, P. (2006): "Dealing with Structural Breaks," *Palgrave Handbook of Econometrics*, vol.1: Econometric Theory, pp. 278–352.
- SANDBERG, R. (2008): "Critical values for linearity tests in time-varying smooth transition auturegressive type of models when data are highly persistent," *Econometrics Journal*, 11, 638–647.
- (2009): "Convergence to stochastic power integrals for dependent heterogeneous processes," *Econometric Theory*, 25, 739–747.
- SCHWARZ, G. (1978): "Estimating the dimension of a model," Annals of Statistics, 6, 461–464.
- TERÄSVIRTA, T. (1994): "Specification, estimation and evaluation of smooth transition autoregressive models," *Journal of the American Statistical Association*, 89, 208–18.
- VAN DIJK, D., T. TERÄSVIRTA, AND P. FRANSES (2002): "Smooth Transition Autorgeressive Models-A survey of Recent Developments," *Journal of Business and Economic Statistics*, 21, 1–47.
- VOGELSANG, T. J. (1998): "Trend function hypothesis testing in the presence of serial correlation," *Econometrica*, 66, 123–148.
- WHITE, H. (1980): "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," *Econometrica*, 48, 817–838.

(2000): Asymptotic Theory for Econometricians. Academic Press.

Research Papers 2010

- 2010-22: Ivan Nourdin, Giovanni Peccati and Mark Podolskij: Quantitative Breuer-Major Theorems
- 2010-23: Matias D. Cattaneo, Richard K. Crump and Michael Jansson: Bootstrapping Density-Weighted Average Derivatives
- 2010-24: Søren Johansen and Morten Ørregaard Nielsen: Likelihood inference for a fractionally cointegrated vector autoregressive model
- 2010-25: Tom Engsted and Bent Nielsen: Testing for rational bubbles in a coexplosive vector autoregression
- 2010-26: Robinson Kruse: On European monetary integration and the persistence of real effective exchange rates
- 2010-27: Sanne Hiller and Robinson Kruse: Milestones of European Integration: Which matters most for Export Openness?
- 2010-28: Robinson Kruse: Forecasting autoregressive time series under changing persistence
- 2010-29: Nikolaus Hautsch and Mark Podolskij: Pre-Averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence
- 2010-30: Martin M. Andreasen: Non-linear DSGE Models and The Central Difference Kalman Filter
- 2010-31: Morten Ørregaard Nielsen and Per Frederiksen: Fully Modified Narrow-Band Least Squares Estimation of Weak Fractional Cointegration
- 2010-32: Mogens Bladt and Michael Sørensen: Simple simulation of diffusion bridges with application to likelihood inference for diffusions
- 2010-33: Fernando Baltazar-Larios and Michael Sørensen: Maximum likelihood estimation for integrated diffusion processes
- 2010-34: Leonidas Tsiaras: The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks
- 2010-35: Leonidas Tsiaras: Dynamic Models of Exchange Rate Dependence Using Option Prices and Historical Returns
- 2010-36: Robinson Kruse and Rickard Sandberg: Linearity Testing in Time-Varying Smooth Transition Autoregressive Models under Unknown Degree of Persistency