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Abstract

Models for the conditional joint distribution of the U.S. Dollar/Japanese
Yen and Euro/Japanese Yen exchange rates, from November 2001 until June
2007, are evaluated and compared. The conditional dependency is allowed to
vary across time, as a function of either historical returns or a combination of
past return data and option-implied dependence estimates.

Using prices of currency options that are available in the public domain,
risk-neutral dependency expectations are extracted through a copula repre-
sentation of the bivariate risk-neutral density. For this purpose, we employ
either the one-parameter “Normal” or a two-parameter “Gumbel Mixture”
specification. The latter provides forward-looking information regarding the
overall degree of covariation, as well as, the level and direction of asymmetric
dependence. Specifications that include option-based measures in their in-
formation set are found to outperform, in-sample and out-of-sample, models
that rely solely on historical returns.
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1 Introduction

Obtaining insights regarding the dependence pattern of exchange rate returns is of
great importance for many economic agents (such as international investors, risk
managers and policymakers) because the value of investments in foreign assets is
affected by performance of the foreign currencies relative to the domestic one. For
the risk-averse investor, accurate estimates of dependence are of value because the
return distribution of his international portfolio is affected by the comovement of the
involved exchange rates. An appropriate model must at least allow for time-varying
(conditional) dependency, since the latter is usually not constant across time (see
Andersen et al (2001), among others) and in certain cases exhibits apparent struc-
tural changes (Engle, 2002; Andreou and Ghysels, 2003). Furthermore, some empir-
ical studies suggest that exchange rate dependence is deviating from the Gaussian
paradigmT| where linear correlation measures are conveniently couched? Sudden
changes and/or neglected non-linearities in the dependence pattern can lead to a
serious underestimation of risk, which poses an important challenge to researchers
and practitioners alike.

Time-series models of conditional dependency generally rely on the historical
record of financial returns in order to update their next period forecasts. In essence,
the aim of these models is to provide conditional dependency estimates that are
consistent with past return data. Although one cannot dispute the novelty of this
approach given this limited information set, it must be noted that these models are
essentially backward-looking. Whenever a change in the dependence pattern occurs,
it may take a considerable amount of time until enough return data reflecting this
change accumulate.

One tempting approach that can be used to enhance the performance of histori-
cal return models is to include option-implied dependence measures in the analysis.
If markets are efficient, then the prices of multi-asset options must reflect market ex-
pectations regarding the future, risk-neutral, association of asset returns. Notably,
these option-implied dependency expectations are formed by aggregating every piece
of relevant information which includes, but far exceeds, historical return data. More-
over, these measures refer to the maturity of the option at some future date, so they
have forward-looking features by construction.

Numerous authors have utilized distributional information from the prices of

1See, for instance, Patton (2006) or Dias and Embrechts (2009).
2Embrechts, McNeil and Straumann (1999) explain why the use of the linear correlation coef-
ficient is inappropriate outside the world of elliptical distributions.



derivatives, though the main strand of this literature considers exclusively implied
volatilities. Indeed, it is now well-established that the latter contain information
about future volatility levels that is absent from historical return dataf’] Besides
implied volatilities, there are additional option-based measures that have been found
to be constructive for forecasting purposes. Liu et al (2007) and Shackleton, Taylor
and Yu (2007) find that option-implied forecast densities either outperform forecast
densities obtained by ARCH processes or contribute significantly in mixture models
that combine both sources of information. Christoffersen, Jacobs and Vainberg
(2008) extract forward-looking betas, using the prices of individual and stock index
options, and find that they contain incremental information relative to historical
betas. Kostakis, Panigirtzoglou and Skiadopoulos (2009) consider a static asset
allocation problem using either historical returns or adjusted risk-neutral densities
and find that the latter deliver superior results.

Some work has also been done for the case of option-implied exchange rate de-
pendence, which relates closely to this study. Siegel (1997) was the first to formally
show, in a Black-Scholes setting, how the implied correlation of two exchange rates
that have the same currency as a numeraire can be recovered from the prices of
options written on these exchange rates, as well as, the cross-rate. This and sub-
sequent empirical studies have generally reached to the same conclusion, namely
that implied correlation forecasts contain incremental information with respect to
those obtained from historical return models. In particular, Bodurtha and Shen
(1995) find that implied correlations provide incremental explanatory power over
return-based forecasts, while the results of Campa and Chang (1998) clearly favor
the option-implied measures. Lopez and Walter (2000), who examine more than
one currency trio, report that implied correlation forecasts, although less useful in
certain cases, provide constructive information for the majority of the exchange rate
pairs that they consider. Similarly, Castren and Mazzotta (2005) find that, although
option-implied correlation forecasts are not always superior to those of historical re-
turn models, they tend to provide the most consistent results. In addition, their
empirical results show that models that combine option-implied and return-based
correlation measures deliver the most accurate forecasts.

While the aforementioned papers differ with respect to their data sources or
the number of exchange rate pairs that they consider, they essentially share the
same scope and methodology. Correlation forecasts obtained from historical re-
turn models (such as rolling window, RiskMetrics or bivariate GARCH models) and
Black-Scholes implied correlations are compared, in a regression setting, using re-

3See the comprehensive literature reviews of Poon and Granger (2003) and Taylor (2005).



alized correlation as the target quantity. For the needs of both practitioners and
regulators, however, it appears more suitable to evaluate the competing alterna-
tives in terms of the conditional joint distribution that they define, and not just
the covariance/correlation estimates. Unlike other financial applications where the
challenge lies in the robust estimation of large variance/covariance matrices (such
as the CAPM for instance), measuring and managing exchange rate risk requires an
accurate description of the (relatively low-dimensional) joint density that provides
the basis for the computation of risk measures such as Value-At-Risk or Expected
Shortfall. Moreover, correlation is not a very operational input for typical risk man-
agement applications, which usually involve non-elliptical distributions, since it does
not provide the necessary information to properly define a joint densityﬁ Problems
also arise when the dependence pattern exhibits non-linear characteristics, such as
asymmetric dependency for joint positive and joint negative returns, as correlation
is limited to reflect linear association. Generally, correlation is a scalar measure of
dependency and, as such, it does not provide an adequate description of how the
univariate distributions are associated, expect for very special cases.

With these considerations in mind, we employ a completely different econometric
methodology that is based on copula theoryﬂ Firstly, we use the copula represen-
tation of a multivariate risk-neutral density derived in Rosenberg (2003) and Taylor
and Wang (forthcoming), and find the copula’s dependency parameter(s) that pro-
vides the closest fit to the observed prices of exchange rate options. Compared to
the correlation-based studies, this approach allows the researcher to extract more
information about the association of exchange rate returns. For example, one of our
parametric (bivariate) copula specifications has two separate dependence parame-
ters (instead of only one as with the implied correlation case), each controlling for
either upper or lower tail dependency. In this way, we can study changes in either
the degree of association or level of asymmetry.

Subsequently, we incorporate this information in the time-varying conditional
copula model of Patton (2006b). There are at least three important reasons that
justify this selection. First of all, this choice appears natural given that copula
functions have been used in order to extract the dependency information from the
prices of options. Second, this model offers great benefits from a goodness-of-fit

4Combining two marginal distributions together with a correlation coefficient does not generally
lead to a valid or unique bivariate distribution. See Embrechts, McNeil and Straumann (1999) for
further details.

5Copula functions, discussed in Section 2.1, are functions that describe the dependence structure
of two or more random variables.



perspective; a well-specified joint density can always be constructed by combining
the conditional copula with the (arbitrary) marginals, as long as the latter are not
rejected by the data. This property is particularly appealing for the problem at
hand since different, fat-tailed, distributions are usually required for the (condi-
tional) marginal distributions of exchange rate returnsﬂ Finally, the flexibility of
the conditional copula model preserves the applicability of our approach to situa-
tions where the economic agent is already using a particular univariate model, or
has a strong preference for a given marginal specification, as it is possible to make
minor adjustments to the methodology presented in this paper and proceed with
the modeling of the dependence process. This facilitates the implementation of in-
tegrated risk-management policieq’] since individual and joint risks can be assessed
in a consistent fashion, while still allowing for the possibility to exploit the depen-
dency information embedded in the prices of exchange rate options. For the above
reasons, we believe that model comparisons within this laboratory environment are
more appropriate than those conducted in a simple regression setting.

In our empirical exercise we consider dynamic bivariate density models for the
U.S. Dollar/Japanese Yen and Euro/Japanese Yen exchange rates. Two parametric
copula functions, i.e. the (one-parameter) Normal and a (two-parameter) Gumbel
mixture specification, are used in order to extract dependency information from op-
tion prices, as well as to define the time-varying conditional copula models. The
univariate price processes of the aforementioned exchange rates are modeled using
ARCH specifications that are common for all bivariate models. The dependence
parameter of the Normal copula model is allowed to vary across time as a function
of either past return data or a combination of historical returns and option-implied
measures. In a similar fashion, we estimate two conditional copula models that
employ the Gumbel mixture copula specification. One where upper and lower tail
dependency are modeled using historical returns, and one where option-implied up-
per and lower tail dependency measures are included in the analysis.

Our empirical results indicate that the performance of the conditional copula
models is enhanced when option-implied dependency measures are used to augment
the return-based dynamic bivariate density specifications. For both the Normal and
the Gumbel mixture copulas, the augmented models are preferred relative to their
historical counterparts, using either in-sample or out-of-sample model selection cri-

6See, for example, Baillie and Bollerslev (1989), Wang et al (2001) or Alexander and Lazar
(2006).

"For an unconditional copula approach concerning the problem of aggregating individual risks
into an integrated risk management system see Rosenberg and Schuermann (2006).



teria. However, it is difficult to draw a firm conclusion regarding which of the four
models performs best overall. The augmented Normal copula model ranks favorably
in-sample, comes off second best out-of-sample, although some mild evidence of mis-
specification surface in both settings. Conversely, the augmented Gumbel mixture
copula delivers the best results out-of-sample but comes off second best in-sample,
as it is surpassed by the augmented Normal copula. Notably, the worst results are
obtained from the Normal copula that utilizes only historical return information.

The remainder of the paper is organized as follows. Section 2 explains the
methodology adopted in this study, i.e. the application of copula theory as a means
to extract option-implied dependency measures and construct bivariate time-series
models. Data issues and practical estimation of the univariate and bivariate risk-
neutral densities are discussed in Section 3. Section 4 contains the empirical results
of the paper, including the evaluation of the competing alternatives. The conclusions
are set out in Section 5.

2 Methodology

2.1 Copula Functions

Copula functions, firstly introduced by Sklar (1959), are multivariate cumulative
distribution functions whose marginals are uniform on the interval from 0 to 1.
According to the theorem of Sklar, any multivariate distribution function can be
decomposed into its marginal distributions and a copula functionﬂ When all the
marginal distributions are continuous, then this copula is unique.

As an example, consider the case of two random variables X and Y with cu-
mulative distributions functions F'(z) and G(y), respectively, and joint distribution
K(z,y). Also denote f(z), g(y), and k(x,y) the corresponding probability density
functions. According to Sklar’s theorem we have that:

K(z,y) = C(F(z),G(y)) and (1)

k(x,y) = c(F(x),G(y)) - f(z)-9(y) (2)

where C(-, ) and ¢(+, -) are the cumulative distribution and probability density func-
tion of the copula, respectively.

8For a detailed treatment of copula functions, see the textbooks of Joe (1997) and Nelsen (1999).
Applications of copula theory in the modeling of financial time series are reviewed in Patton (2009).



In this paper, we consider two distinct copula functions for the joint distribution
of the uniform variables u = F'(z) and v = G(y). The first one is the Normal cop-
ula which is derived from the normal distribution. Denoting ®,(-,-) the bivariate
cumulative distribution function (c.d.f.) of the standard normal with correlation
coefficient p and ®(-) the univariate c.d.f. of the standard normal, the c.d.f. corre-
sponding to the Normal copula with dependence parameter p is:

Cn(u,vip) = @, (27 (u), @7 (v)) , pe[-11] (3)

The structural form of the Normal copula implies symmetric dependence for joint
positive and joint negative innovations and no asymptotic tail dependency (except
for the boundary case where p = 1).

The second copula used in this paper is a mixture of the Gumbe]ﬂ and Rotated
Gumbel copulas, both of which belong to the Archimedean family. The c.d.f. of the
Gumbel copula is:

Co(u,v;01) = exp {— ((—logu)’™ + (—logv)51)1/61} , 01 € [1,00) (4)

The Gumbel copula implies stronger dependence for joint positive innovations.
The lower tail dependency of this copula is zero, while the upper tail dependency is
positive for any 6; > 1 and is equal to:

1-2 C 0
)\U: lim U+ G(u7ua 1)
u—1- 1—wu

=2-—2l/% (5)

The Rotated Gumbel copula is the mirror image of the Gumbel copula, and its
c.d.f. is:

Cre(u,v;8) =u+v—14+Co(l —u,1 —v;d3) , 09 € [1,00) (6)

The Rotated Gumbel copula is characterized by zero upper tail dependency and
positive lower tail dependency for any ds > 1, i.e.

A = lim Cra(u,u; 02)
u—0T u

=2 2l/% (7)

9The Gumbel copula was introduced by Gumbel (1960), but since it was also discussed in
Hougaard (1986), it is sometimes referred to as Gumbel-Hougaard copula.
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Figure 1: Contour plots on 9/17/2003 (A) and 11/8/2006 (B), using standard nor-
mal margins

Using the aforementioned properties of the Gumbel and Rotated Gumbel copulas
we construct a, two-parameter, Gumbel Mizxture copula defined as:

Comix(u,v; 7%, 7%) = 0.5Cq(u, v; §(77)) + 0.5CRrg (u, v; 6(7")) (8)

where §(7) =log(2)/log(2—17)) and 7°€]0,1), 7 €][0,1)

The Gumbel Mixture copula can accommodate asymmetric dependence in either
direction, i.e. the dependence is stronger for joint positive innovations whenever
7Y > 7% while the opposite is true if 7Y% < 7%. In the special case where 7V = 7"
the dependence pattern is symmetric, while when 79 = 7% = 0 the Gumbel Mixture



copula implies independence. Note that, since this copula is an equally weighted
mixture of the Gumbel and the Rotated Gumbel specifications, its asymptotic upper
and lower tail dependency are equal to 7V/2 and 7"/2, respectively.

Figure 1 illustrates how different copulas affect the shape of the bivariate den-
sity. The particular parameters of the Normal and Gumbel Mixture copulas were
estimated from the prices of exchange rate options, using the methods discussed in
Section 2.2 and Section 3.2. We have chosen two dates (9/17/2003 and 11/8/2006)
where the dependence parameter of the Normal copula was approximately equal to
0.55. The respective parameters of the Gumbel Mixture copula were 7% = 0.29 and
7" = 0.56 for the first date (9/17/2003), while on the second date (11/8/2006) the
estimated parameters were 7Y = 0.54 and 7" = 0.33.

Figures 1.a to 1.c show the contours of the copula densities with the afore-
mentioned parameters, while Figures 1.d to 1.f show the contours of the respective
bivariate densities. We use standard normal margins in all cases, so as to isolate the
effects of the different dependence patternd} While the graphs would be identical
for the case of the Normal copula, the plots corresponding to the Gumbel Mixture
specification differ substantially, reflecting the opposite direction of asymmetry. As
it can be seen from Figure 1.b (where the darker colors correspond to regions where
the copula assigns higher probability) there is stronger dependence for joint nega-
tive than joint positive returns in first case, while the opposite case is depicted in
Figure 1.c. Similarly, the bivariate density plots in Figure 1.e and 1.f illustrate how
asymmetric dependence introduces skewness, whose direction depends on the level
of the upper and lower tail dependence coefficients.

2.2 Extracting Dependence Information from Options

Similarly to the Black-Scholes implied volatilities, which can be computed using
the prices of plain vanilla options, forward-looking measures of (risk-neutral) de-
pendency involving two or more assets can sometimes be recovered from the prices
of multi-asset and plain vanilla options. This is indeed true for the case of two
exchange rates that are denominated in the same currency, as long as option prices
on all three involved exchange rates (i.e. the two exchange rates with the common
numeraire and the cross-rate) are observed and the law of one price holds. Within
the copula framework adopted in this paper, this can be achieved using the results of

10Note that the parameter estimates of each copula were obtained using the risk-neutral GB2
densities (see Section 3.2 for details). The standard normal margins are applied only in these
graphs, purely for exposition purposes.



Rosenberg (2003) and Taylor and Wang (forthcoming) who combine the triangular
no-arbitrage condition, that links the three exchange rates, with copula theory and
construct multivariate risk-neutral densities that are written as a product of the
univariate risk-neutral densities and a risk-neutral dependence function.

To facilitate exposition of how this risk-neutral density representation can be
used to extract dependency information, we discuss the construction of a copula-
based multivariate risk-neutral density applied to our Dollar-Yen-Euro currency trio
data. In what follows, we denote the time ¢ price of €1 in Japanese Yen S , the
time ¢ price of $1 in Japanese Yen S, ¥/% and the time ¢ dollar price of €1 (1.e. the
cross-rate) St$ /€ The domestic risk-free rates corresponding to the Japanese Yen,
U.S. Dollar and Euro currencies are ry,rg and rg, respectively.

Assume that markets are complete so that it is possible to define three unique
risk-neutral densities fy(x), g¥(y) and mg(z), that can be used to price European
options written on S, /8 S?f /€ and Sf; /e respectively. The subscripts ¥ and $ indicate
whether the numeraire is the Japanese Yen or the U.S. Dollar. Furthermore, denote
ky(x,y) the bivariate risk-neutral density that can be used to price Yen payoffs that
depend on S?E/g and S?%.

The fair dollar price of a European call option to buy €1 for $ K at some future
time 7" can be computed by taking expectations with respect to the univariate risk-
neutral density mg(z), i.e.

CALLg(K) = e s / mg(z)dz (9)

From the viewpoint of a Japanese investor, the same contract can be viewed as an
option to exchange one foreign currency asset for another foreign currency asset.
Specifically, it is the same as an option to exchange KS 5 for S¥ /€ at time T, so
that its fair price in Yen at time ¢ = 0 is given by the bivariate risk-neutral density
ky(x,y) as follows:

CALLy(K) = e ™TE° [max(y — Kx,0)] (10)
= e ¥l //max(y — Kx,0)ky(x,y)dxdy (11)

10



while the fair price of this option in $ is:

00
€

—reT x
CALLg(K) = W//max(y — Kz,0)ky(x,y)dzdy (12)
0
0

0

Rosenberg (2003) and Taylor and Wang (forthcoming) use equation (2) and de-
compose the bivariate risk-neutral density ky(x,y) into a product of the marginal
risk-neutral densities and the density of the risk-neutral copula, which leads to the
following pricing formula:

efr:gT

caLL(K) = " [ [ masty = Ke.0) f@as (eFelo). Gyto)dedy . (13

where the Fy(x), G¢(y) are the cumulative distributions functions corresponding to
fx(z) and gy (y),while ¢(-, -) is the probability density function of the copula.

When all marginal risk-neutral densities can be recovered from the prices of
traded options, this dual pricing representation, i.e. the pricing of a cross-rate option
either as a plain vanilla or a multi-asset product (see equation (9) and equation (13),
respectively) can provide insights regarding the covariation of exchange rate returns.
Specifically, this can be accomplished by finding the copula that provides consistent
prices for the cross-rate options. This “implied” information is reflective of the
dependency of one-period exchange rate returns, where the length of the period
corresponds to the maturity date of the observed options.

Estimating the dependence function from option data raises the important ques-
tion of which copula to selectlﬂ. Since there is no obvious choice, the answer usually
depends on the problem at hand. If the estimation of all marginal densities can
be done in a reliable fashion and the goodness-of-fit to the observed options data
is the primary concern, then a flexible specification seems appropriate. Following
this route, Bennett and Kennedy (2004) rely on a copula constructed by a Normal
copula that is perturbed by a cubic spline, while Salmon and Schleicher (2006) pre-
fer the Bernstein copula of Sancetta and Satchell (2004) that can approximate any
dependence function. Since the interest of this paper is to incorporate option-based
information in a time-series model, these flexible alternatives were discarded since
they are not very operational from a modeling perspective. Instead, we have decided

UTaylor and Wang (forthcoming) investigate, empirically, which copula to choose when limited
information is available from the prices of cross-rate options.
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to employ the (one-parameter) Normal copula, whose time-varying version is well-
studied in the literature, as well as the (two-parameter) Gumbel Mixture copula
which allows us to consider more complex dependence patterns.

2.3 Conditional Copula Models

The copula representation of a bivariate density provides a flexible way of linking
stationary distributions. However, a stylized fact of financial return data is that
their distributions vary across time, for instance they are heteroskedastic. A direct
application of Sklar’s theorem to time-series data is therefore inappropriate, as it is
inherently static.

Towards this purpose, Patton (2006b) has extended Sklar’s theorem to condi-
tional distributions. Denoting W the conditioning set, the copula representation a
bivariate conditional cumulative distribution function (c.d.f.) K(z,y|/W) and con-
ditional probability distribution function (p.d.f.) k(z,y|W) is:

K(z,y|W) = C(F(z|W),Gy[W) [W) and (14)
k(z,yW) = c(F(z[W),Gy|W) [W) - f(x[W) - g(y[W) (15)

Patton (2006b) uses the above decomposition in order to estimate the conditional
joint distribution of exchange rate returns. In his approach, the dynamics of the uni-
variate return series X = (7,1,759, ., 7o) and Y = (11,72, ..., 7, ») are modeled
using separate GARCH specifications, with parameter vectors 6, and 6,, respec-
tively. The degree of association imposed by the conditional copula is also allowed
to vary across time, according to the parameter vector #. and past return data of
both X and Y. The estimation of the parameters 0,, 0, and 8, is carried out using
maximum-likelihood, i.e. the following quantity is maximized:

Ingt(Tx,t77’y,t|Wt—1) = ZlOgCt(Ft<Tx,t’Wt—laex)aGt(Ty,t‘Wt—laey)‘Wt—laec)
t=1

+ Z log fi(re|Wi-1,0:)

t=1
+ ) log gi(rys Wi, 6) (16)
t=1

If the parameters of the marginal distributions can be separated from each other
and from those of the copula, then it is possible to estimate the model in two

12



steps, i.e. find the parameters that maximize the log-likelihood contribution of the
marginal densities and then estimate the copula parameters by maximizing the first
summation in equation (16). In the case of multi-stage estimation, the standard
errors of the estimated parameters need to be adjusted accordingly, as thoroughly
discussed in Patton (2006a).

Models for the marginal distributions

Commencing with Bollerslev (1987) a +GARCH(1,1) model has emerged as a par-
simonious, yet credible, specification that can capture the essential features of ob-
served exchange rate return data, namely heteroskedasticity of raw returns and
excess kurtosis of conditional densities. Along these lines, we model the mean and
conditional variance of each logarithmic return series as follows:

Ty = [ + €t, (17>
€t = \/E,Zt, Zt i.1.d. tl, (18)
he =w+ o€/ + Bhi (19)

where t,, is the (zero mean unit variance) standardized Student’s ¢ distribution with
v degrees of freedom.

Maximizing the log-likelihood of the model for each of the return series (i.e.
setting r, = 7,4 or r, = r,,) provides the estimated parameter vectors 6, =
(fhay W, Qs B, v) and 0, = (p1y,wy, oy, By, v,) that define the time ¢ conditional
probability density functions of the daily return innovations fi(r,¢|Wi-1,6,) and
Ge(ryt|Wiz1,6,), as well as the corresponding conditional cumulative distribution
functions Fi(r,|Wi_1,0,) and Gy(ry | Wi_1,0,).

It is important to clarify that the conditioning set W;_; must be common for
both series, i.e. the mean and variance specifications of r,; must be conditioned
on both 741,729, 721—n, as well as, 7 41,7y 1—2, 7y +—pn and vice versa. Otherwise,
as emphasized in Patton (2006b), the conditional copula will not generally define a
valid joint distribution function. However, tests discussed in Section 4.2 suggested
that the dynamic distributions of either r,; and r,; depended only on the past
values of their own series, which justifies the exclusion of irrelevant variables and
the application of the +GARCH(1,1) specifications described earlier.

Another critical assumption that is required for the application of conditional
copula theory is that the models for margins are correctly specified. If any of the
marginal models is not correct, then the conditional probability integral transforms

13



(either Fy(ry|Wi—1,6,) or Gi(ry|Wi—1,6,)) will not be ii.d. Uniform (0,1) , so any
copula model will automatically be misspecified. For this reason this assumption
should always be tested, and we do so in Section 4.2.

Models for the joint distribution

Given the empirical evidence indicating that the dependence between financial re-
turns is changing across time, it is necessary to allow the dependence parameters of
the conditional copulas to be time-varying as well. Following Granger, Terasvirta
and Patton (2006), Patton (2006b) and Bartram et al (2007) we use lagged valueq™]
of the variable |u; — v;| in order to capture changes in the degree of conditional
dependencyﬁ. The intuition behind this selection is that the quantity |u; — v;| be-
comes smaller (higher) in expectation as the dependence between v and v increases
(decreases). Furthermore, we consider the case where option-implied measures are
included as additional explanatory variables in the equations that determine the
conditional dependency parameters of the alternative copula specifications. Specif-
ically, for the case of the Normal copula the dependence parameter p; evolves as
follows:

10
pr = A (Wp + Bppr—1 + Oép% Zl [wi—i — veg| + ’YpPQ,t—1> ; (20)
where w, = Fy(r,¢|Wi—1,0,) and v, = Gy(ry|Wi—1, 0,) are the univariate cumulative
probabilities given by the marginal models, pq; is the option-implied “correlation”
coefficient at time ¢ and A (z) = (1 + e7*)(1 — e™*)7! is a modified logistic trans-
formation that ensures that p, is always between -1 and 1. Dropping the coefficient
7, from this model results in a more “standard” conditional copula specification, in
that only historical return information is utilized.

Concerning the Gumbel Mixture copula, the upper and lower dependency pa-
rameters 7,7 and 7 are modeled as follows:

10
_ 1
7, =A (wU + BuTi g + Oéul—o Z [ue—i — V| + ’YUTg,t1> (21)
i=1

12The selection of the number of lags corresponding to the |u; — v;| observations is somewhat
arbitrary. We have estimated the “simple” (i.e. without option-based information) Normal and
Gumbel mixture models with different lag lengths (5, 10 and 15) and found that 10 lags provided
the best results in terms of log-likelihood levels. For this reason we have decided to use 10 lags for
all models, which is the same as in Patton (2006b).

13For the case of the Normal copula we have also used the variable ® =1 (u;_;) - ®~(v;_;) but we
have obtained worst results compared to the forcing variable |u; — v;].
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10
_ 1
TtL =A <WL + 6L7—tL—1 + aLl_O Z |ut—i - Ut—i| + VLT(S,t—1> ? (22)
i=1

where A (z) = (1 4+ e7®)7! is a logistic transformation that keeps the values of 7
and 7, between 0 and 1. The variables 77, and 7, represent upper and lower tail
dependence indicators, computed from the prices of exchange rate options at time ¢.
Again, dropping the last coefficients in the two equations defines a model where only

past return data are used for the estimation of the copula’s dependence parameters.

3 Practical Implementation

3.1 Data Issues

Spot rates of the U.S. Dollar/Japanese Yen, Euro/Japanese Yen and Euro/U.S. Dol-
lar exchange rates are obtained from the Bank of England. They correspond to the
exchange rates observed by the Bank’s Foreign Exchange Desk in the London inter-
bank market around 4 PM every day. We collect these spot rates from 1/11/2001
until 29/6/2007, which corresponds to 1430 daily observations for each exchange
rate.

For the construction of option-based dependence measures, implied volatilities
are collected from the British Bankers Association (BBA) website. The BBA pub-
lishes 25-delta “risk reversals” and 25-delta “butterfly spreads”, as well as the “at-
the-money” implied Volatilitieﬁ, corresponding to options that have a constant
expiration of one month™ These measures are computed by aggregating informa-
tion from the over-the-counter market in London. Every day, approximately 12
major participants in the FX option market provide their volatility quotes which
are then averaged by the BBA, after removing the two highest and lower rates{:G]. All
contributors have to supply their rates between 3:30 and 3:50 PM, which is slightly
before the spot rates are recorded by the Bank of England. The BBA is also the
source of the interest rate data required for converting the implied volatility data
into option prices. Specifically, the BBA London InterBank Offer Rate is calculated

14These measures simply reflect the standard market quotation practice; it is straightforward to
convert them into option prices with strike prices corresponding to “deltas” of 0.25, 0.5 and 0.75.
See Section 3.2 for further details.

15The BBA source also provides data for other maturities but these have more missing observa-
tions.

I16Tf fewer than 5 rates are received by the contributors, then the benchmark is not published.
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using a panel of major banks and represents an indicative interest rate at which
these banks can borrow from each other in a particular currency. These rates are
distributed daily and reflect prevailing interest rates around 11 AM. In the case
where some of the aforementioned inputs, which are essential for the computation
of option prices, are missing we simply set the option-implied measures to their last
known values.

As this paper discusses the informational content of option-implied and return-
based dependency measures, it is important to highlight that the timing at which
the required inputs are recorded does not offer an a priori advantage to the option-
based estimates. This is because both implied volatilities and LIBOR rates are
recorded before the corresponding daily spot rates, so option prices are computed
using information that is already known to the market at the time at which spot rates
are observed. On the contrary, the fact that the inputs required for the estimation
of option prices (spot rates, implied volatilities and interest rates) are collected
at different times, introduces measurement errors in the option-implied measures
and, hence, impairs their performance. Nevertheless, we do not expect this non-
synchronicity problem to cause severe distortions, since the time at which the implied
volatilities are recorded is quite close to that of the spot rates, while interest rates
exhibit far less intraday fluctuations.

3.2 Risk-Neutral Density Estimation

The BBA data, in conjunction with equations (9) and (13), provide the necessary
information to extract the “implied” dependence parameter(s) of a given copula.
The implied volatility data provided by the BBA follow the over-the-counter FX
market conventions where, contrary to exchange-listed options, the quotes are in
terms of implied volatilities (instead of option prices) at fixed “deltas” (instead of
fixed strike prices). The “deltas” are those of the Garman-Kohlhagen (1983) option
pricing formula, where the delta of a call option (A.) at time ¢t = 0 is defined as:

In(S,/K)+ (rqg—ry+ )T
Ac — €7Tf7q)(d1) 7 dl — ( t/ ) ( d f 2 ) , (23)
oVT
with S; the current spot price, o the volatility parameter, r4 and r; the continuously
compounded domestic and foreign risk-free rates, T' the time to maturity and ®(-)

the c.d.f. of the standard normal density.

For each of the exchange rates, the options data are in the form of a delta-neutral
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straddle implied volatility (ATMIV), a 25-delta risk reversal (RRy;5) and a 25-delta
butterfly spread (BFy5) defined as:

ATMIV = ¢(0.5) (24)
RRys = 0(0.25) — 0(0.75) (25)
BFy; = 0.50(0.25) + 0.50(0.75) — ATMIV | (26)

where o(A,) is the implied volatility of a call option with delta equal to A.. Note that
the delta-neutral straddle implied volatility corresponds to the case where d; = 0,
so that the strike price is very close to either the spot or the forward price. For this
reason we refer to this quote as the at-the-money implied volatility quote (ATMIV).

Following Malz (1997), a continuous implied volatility “smile” can be con-
structed using the following functional form:

6(A,) = bpATMIV + by RRos(A, — 0.5) + by BFys(A. — 0.5)° (27)

As discussed in Malz (1997), setting by = 1, by = —2 and by = 16 ensures that
the implied volatility function perfectly matches the observed market data (i.e. the
ATMIV, RRy; and BFy;) and provides a reasonable approximation to the implied
volatility “smile”, especially for “deltas” that are roughly between 0.15 and 0.85.

For each of the three exchange rates, we use the aforementioned functional form
to generate implied volatilities at equally spaced deltas, ranging from 0.15 and 0.85,
with the stepsize set to 0.01. Each implied volatility-delta pair is then converted
to the (call) option price-strike space creating, thus, a series of call option prices
CALL;(K;,),CALL;(K,2),...,CALL;(K;y), with j denoting the exchange rate
under study (i.e. the Dollar-Euro (DE), Dollar-Yen (DY) or Euro-Yen (EY) rate)
and K1, Kjo, ..., K; y the respective strike prices.

We treat these prices as if they were observed in the market, and then fit the
Generalized Beta distribution of the second kindm (GB2), proposed by Bookstaber
and MacDonald (1987), to estimate the risk-neutral densities of the Yen denomi-
nated currencied™®} i.e. for j = DY or j = EY. The parameter vector of each GB2

"For some useful properties of the GB2 density see also Taylor (2005) and Liu et al (2007)

18Tt is important to clarify that, since all risk-neutral densities can be recovered by numerical
differentiation of the call price functions, the application of the GB2 density is not technically re-
quired. However, the GB2 density has closed form expressions for both the cumulative distribution
function and probability density function which, in light of equation (13), is a very appealing prop-
erty from a computational perspective. We do not expect significant estimation errors from this
simplification, since experimental results showed that the flexible GB2 density generally provides
a very close fit to the implied volatility function produced by the Malz (1997) method.
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density is estimated by minimizing the average of the squared pricing errors, i.e.

N

1
NZ(CALL( i) = CALLGp;(K;il0cB25))? (28)

i=1

where CALLGp2j(K;i|0cp2) is the theoretical (fitted) price of a call option given
by a GB2 density with parameter vector 0gps ;.

The univariate risk-neutral densities of the Yen denominated exchange rates
(defined by 0¢p2. py and Ocp2 gy ) and a copula function (i.e. either the Normal or the
Gumbel Mixture specification) with parameter vector 62 (containing either pq or 7y
and 75) can be used generate prices of cross-rate call options, say CALLSy (Kpy,),
through equation (13). Conversely, the “observed” cross-rate option prices, denoted
as CALLpy(Kpy;), can be used to estimate the copula’s dependence parameter

vector #¢, by minimizing the average of the squared pricing errors, i.e.
N
Z CALLpy(Kpy;) — CALLS, (Kpy,]09))? | (29)

Repeating the same procedure for both copula specifications and for all days in
the sample, we obtain the corresponding degree of dependence estimates, which we
can then introduce as explanatory variables in the equations that determine the
evolution of dependence in the conditional copula models.

It should be noted that these implied dependence estimates are reflective of the
dependence pattern of one month return innovations (since we use options with one
month to maturity), which is not the same as the daily return innovations used
in the time-varying conditional copula models. In any case, the empirical results
will indicate whether these option-implied estimates are informative despite the
distortions caused by this simplification.

4 Empirical Results

4.1 Risk-Neutral Dependency Estimates

Figure 2.a and Figure 2.b show the option-implied parameters of the two copulas.
In the first graph, the black line corresponds to the implied parameter of the Normal
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copula (Rho Q), while the grey line corresponds to the conditional copula param-
eter that is estimated using past return data (Rho P)H Not surprisingly, the two
parameter estimates move in tandem across time. The, implied, upper and lower
tail dependence parameters (denoted as UTD and LTD, respectively) of the Gumbel
Mixture copula are displayed in Figure 2.@. Excluding a few observations, where
the lower tail dependence parameter is slightly jagged, both series appear to be
well-behaved. Upper tail dependence is generally higher than lower tail dependence
at the beginning of the sample, while the opposite is true from the second quarter
of 2003 until the second quarter of 2004. Subsequently, the dependence becomes
roughly symmetric, i.e. the difference between upper and lower tail dependency (see
Figure 2.c) evolves around zero until the end of the dataset.

Patton (2006b) suggests that central bank interventions can introduce asym-
metric dependence of exchange rate returns. For the dataset that we examine, the
Bank of Japan (BoJ) was the only monetary authority that has actively tried to
influence the involved exchange rateﬂ Figure 2.d displays the daily volume (in
billion Yen) of the BoJ interventions from the end of 2001 until the middle of 2007.
These correspond to U.S. Dollar purchases using Japanese Yen, which represent the
vast majority of the BoJ interventionﬁ. According to Ito (2007), three distinct BoJ
intervention regimes took place between November 2001 and June 2007. The first
regime (21 June 1995 - 14 January 2003) was characterized by infrequent large-scale
interventions, while during the second regime (15 January 2003 - 1 July 2004) the
interventions were both frequent and large scale. In the last regime (from 2 July
2004 until the end of the dataset) BoJ adopted a no-intervention policy.

The two solid vertical lines (in grey) spanning all subfigures, indicate the end
of the first and second regime respectively. The two dashed vertical lines (also in
grey) indicate the dates when the public became officially aware about the changes
in the intervention activities of the BoJ. Specifically, on May 8, 2003 (first line)
it became known that there was a switch to a more frequent intervention regime,

19 A detailed discussion concerning the results of the conditional copula models is provided in
Sections 4.3-4.4.

20As noted in Section 2.1, the actual asymptotic upper or lower tail dependence of the Gumbel
Mixture copula is equal to the half of its corresponding parameter value.

21The BoJ intervention dates and respective amounts are published by the Japanese Ministry of
Finance.

22From June 2002 until May 2003 BoJ also intervened in the Euro/Yen exchange rate (buying
Euros with Japanese Yen), however these actions are not comparable, in terms of either frequency
or scale, with the U.S. Dollar interventions. For reasons of clarity, we only include the U.S. Dollar
activities in Figure 2.d
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Figure 2: Option-Implied Dependence Expectations and BoJ Interventions

while on May 12, 2004 (second line) it was announced that no interventions were
conducted for almost two month@. We have highlighted the aforementioned dates
because, during this particular regime, the BoJ has employed the, so called, “stealth
intervention” tactic, i.e. interventions were conducted without announcement or an
unintentional or intentional leak (Ito, 2005).

It is interesting to note that the asymmetry changes direction after the transition

23At the end of April 2004 the market already knew that no interventions took place within
that month, but there was still speculation about the details of the March 2004 activities. See Ito
(2005) for a detailed discussion regarding these events.
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to the second regime, especially after May 8, 2003 when the intervention details
became publicly known. Furthermore, the difference between upper and lower tail
dependency stabilizes close to zero around the time when the market recognized
that the BoJ has stopped its interventions activities. The fact that some changes in
the BoJ intervention policies appear to roughly coincide with changes in asymmetric
dependence, is in line the explanation proffered in Patton (2006b)@. Moreover, it is
in agreement with Andreou and Ghysels (2003) and Castren and Mazzotta (2005),
who find the BoJ interventions are related with changes in exchange rate correlations,
as well as Castren (2004), who reports that the three risk-neutral densities of the
Dollar-Yen-Euro currency trio exhibit systematic changes during episodes of BolJ
interventions. Establishing robust links between central bank interventions and
asymmetric dependence would be an interesting study, but it is beyond the scope
of this paper.

4.2 Models for the Marginal Distributions

Table 1 shows the estimation results of the +GARCH(1,1) specifications applied to
the U.S. Dollar/Japanese Yen (DY) and Euro/Japanese Yen (EY) exchange rate
return series. Panel A contains the parameter estimates along with the t-statistics
corresponding to the null that the parameter in question is zerﬂ Both series
exhibit similar volatility persistence, with the sum of the ARCH («) and GARCH
(8) parameters being equal to 0.98 and 0.99, for the DY and EY series respectively.
Furthermore, the hypothesis that the distribution of the standardized innovations
is standard normal is strongly rejected in both cases. A distributional specification
that is characterized by fatter tails is required to capture the essential features of
the data, as indicated by the degrees of freedom estimates which are equal to 6.42
(DY) and 9.39 (EY).

Panel B contains some familiar misspecification tests applied to the standard-
ized residual series, namely the Ljung-Box (1978) and Engle’s (1982) ARCH LM
test (for any remaining autocorrelation and heteroskedasticity respectively), the
Kolmogorov-Smirnov test (for the adequacy of the distributional assumptions) and
the LR3 test of Berkowitz (2001) which assesses whether w, = Fy(r,¢|W;_1,6,) and
v = Gy(ry|Wi-1,0,) are 1id. Uniform (0,1). None of these tests suggest that ei-
ther marginal model is misspecified, since all p-values are higher than conventional

24We note that, since our option-implied estimates are computed by taking expectations with
respect to the corresponding risk-neutral measures, a risk-premium effect could also be at play.
25Except for the degrees of freedom parameter v where the null is that 1/v is equal to zero.
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TABLE 1. MARGINAL MODELS

Panel A. GARCH FEstimates

DY EY

Kz Wy Oy Bz Vg My Wy Oy By Uy
Estimate 0.014 0.008 0.028 0.95 6.42 0.043 0.003 0.027 0.96 9.39
T-Stat. 0.99 1.89 2.88 57.6 6.14 3.21 1.38 2.95 72.54 4.56
Log-Lik. -1184.32 -1114.58
Panel B. Diagnostics on standardized residuals

DY EY

L-B ARCH K-S LR3 L-B ARCH K-S LR3
T-Stat. 4.2 7.53 0.026 0.31 10.01 10.86 0.027 1.67
P-Value 0.94 0.68 0.29 0.86 0.44 0.37 0.26 0.44
Panel C. “Hit” Tests

DY EY

Region LLyyr LLgrgp LR Stat. P-Val LLynr LLg LR Stat. P-Val.
R1 -301.84 -302.91 2.14 0.71 -307.81  -308.8 1.99 0.74
R2 -429.45  -431.7 4.5 0.34 -447.47  -449.28 3.62 0.46
R3 -794.32  -795.32 2.01 0.73 -780.63 -782.14 3.03 0.55
R4 -695.85 -699.88 8.06 0.09 -693.07 -697.11 8.07 0.09
R5 -819.92 -821.69 3.54 0.47 -835.1  -838.17 6.15 0.19
R6 -508.95 -510.8 3.7 0.45 -485.56  -488.83 6.53 0.16
R7 -245.67 -246.97 2.59 0.63 -241.17  -244.02 5.71 0.22

NOTE: Panel A contains the estimation results of the -GARCH(1,1) models. A t-statistic higher than 1.96 (1.65)

in absolute value indicates that the coefficent is significant at the 5% (10%) level. Panel B presents the results of

some diagnostic checks performed on the standardized residuals, i.e. the Ljung-Box (with 10 lags), Engle’s (1982)
ARCH LM (with 10 lags) and Kolmogorov-Smirnov (K-S) tests, as well as the likelihood ratio test (LR3) of Berko-

witz (2001). Panel C exhibits the results of the univariate “hit” tests applied for the seven regions of the probabi-

lity density (R1-R7). See the Appendix for further details.

rejection thresholds.

Since the assumption that the marginal densities are well-specified is crucial for

the application of conditional copula models, additional scrutiny on the adequacy of
the univariate models is required. For this reason, we apply “hit” tests (described in
the Appendix) to investigate whether the marginal distributions are well-specified,
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not only in their entirety, but also in various segments of the density supporﬂ We
consider seven regions in total. Region 1 (region 7) corresponds to the lower (upper)
5% tail, region 2 (region 6) to the interval from the 5th to the 15th (85th to the
95th) quantile, while region 3 (region 5) is referring to observations falling within
the 15th and 40th (60th and 85th) quantiles. Finally, region 3 relates to the central
part of the density, as it contains observations from the 40th until the 60th quantile.
As shown in Panel C of Table 1, both models pass the test for all regions at the 5%
level.

In all the aforementioned tests the i.i.d. assumption was examined using data
from a single return series, i.e. data from the DY return series were used for the
misspecification tests of the DY marginal model, and similarly for the EY exchange
rate. The application of conditional copulas requires that the i.i.d. property holds
with respect to the entire conditioning set, so that “cross-variable interactions”
should also be taken into account.

Along these lines we conduct two last tests. In the first one, we examine whether
the observations u; and v; are independent with respect to the lagged values of
both series. Note that if u; (v;) can be forecasted using past values of either w;
or v; then u; (v) is not an observation from an i.i.d. series, which in turn implies
that the estimated conditional distributions of the DY (EY) return series do not
coincide with the true ones. Using a test very similar to those applied in Diebold
et al (1998), Christoffersen and Mazzota (2005) and Patton (2006b), we attempt
to uncover any dependence operative through the conditional mean, conditional
variance, conditional skewness, or conditional kurtosis. Specifically, we use the
inverse of the standard normal density ®(-)~! to create two new series z,; = ®(u;) ™!
and z,; = ®(v;)”! and subsequently regress (2, — Zu+)? and (2, — Z,¢)? on 5 or
10 lags of both variables for ¢ = 1,2,3,4. We then test whether the respective
coefficients are jointly zero. As shown in Table 2, both series pass the “moment”
tests, so the i.i.d. hypothesis can not be rejected.

As a final test we examine whether the univariate models can be adequately
modeled using only their own past returns. Recall that in our standard GARCH
specifications the marginal model for the DY (EY) exchange rate is estimated using
past DY (EY) returns only, while conditional copula theory requires that the same
information set is used for both the margins and the conditional copula. Since the
latter is estimated using past returns of both exchange rates and, in certain cases,
option-implied dependency measures, it is necessary to check whether the reduction

26particularly, we use the “hit” test methodology proposed in Patton (2006b), which is an
extension of the “hit” regressions of Christoffersen (1998) and Engle and Manganelli (2004).
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TABLE 2. CROSS-VARIABLE INTERACTIONS

Panel A. Moment Independence Tests

Dollar-Yen Margin

15t Moment 274 Moment 374 Moment 4th Moment
Lags 5 10 5 10 5 10 5 10
P-val. 0.43 0.87 0.23 0.31 0.86 0.48 0.77 0.78
Euro-Yen Margin
15 Moment 27d Noment 374 Moment 4th Moment
Lags 5 10 5 10 5 10 5

P-val. 0.28 0.43 0.78 0.49 0.39 05 0.81 0.67

Panel B. Wald Tests

Normal Copula

Regression Equation Restrictions
Conditional Mean
DY ext =€y, 1+ BoFVii1+ Bspqi1 +m pr=P2=p03=0
EY eyt = Pres 1+ PoaF Vi1 + Bapqi—1 + Bi=02=p03=0
Conditional Variance
DY 22, =Po+ el 1+ BoFViii+ Bspqi-1+m pr=P02=03=0
EY ze = B0+ Bied 1+ BoaFVioy + Bapqi1 + e fr=p02=03=0

Gumbel Mixture Copula

Regression Equation Restrictions
Conditional Mean
DY ext = e, 1+ BoFViey + Bs78 1+ Bats i+ Pr=02=03=01=0
EY eyt =Pres, 1+ BoF Vi1 + B378 1+ Bath 1 + e Pr=P02=03=01=0

Conditional Variance
DY 22 =P+ el 1+ BoFVia+Bs78,  +Bars e Pr=Pa=Ps=01=0
EY ze i =Bo+ B 1+ BoFVia+ 8378+ Batss e Pr=Pa=Ps=01=0

P-Val.
0.98

0.36

0.34

0.08

P-Val.

0.94

0.24

0.48
0.13

NOTE: Panel A displays the results of the Lagrange Multiplier tests of serial independence in the first four moments of

the variables u; and v, described in Section 4.2. We regress (zu,t — Zu,t)? and (2v,+ — Zv,t)? on 5 lags or 10 of both vari-

ables for ¢ = 1,2,3,4. The p-values correspond to the null that the coefficients are jointly zero. Panel B contains the re-

sults for the regressions that examine whether mean and variance models of the DY and EY series would improve if addi-

tional conditioning variables were used. This test is also discussed at Section 4.2. The time t residuals and standardized

residuals of the GARCH model for DY (EY) are denoted as ez ¢ (ey,t) and zz ¢ (2y,t), respectively, pq ¢, Tgyt and TIQJ

represent the option-implied parameters of the Normal and Gumbel mixture copulas, while F'V; = 1—10 Z%ﬂl |ug—; —

is the forcing variable that is included in all conditional copula models.
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of the conditioning set used in the univariate models is innocuous. For this reason
we examine whether the mean and variance specifications for the DY (EY) margin
require the inclusion of the conditioning information used in the EY (DY) margin
and the conditional copula.

Following Patton (2006b) we test for misspecification in the conditional mean of
the DY (EY) series by regressing e, (e,:) on ey, ; (2, ), the conditional copula’s
implied dependence parameter(s) and the “forcing variable” & S i — v A
Wald test is then used to check if the respective coefficients are jointly zero. To
examine whether the model for the conditional variance of DY (EY) is adequate,
we regress the squared standardized residuals zit (z;t) on the same explanatory
variables plus a constant, and test if the coefficients of the explanatory variables are
jointly zero. Since we will estimate two separate conditional copula models (Normal
copula and Gumbel mixture copula) that have different conditioning sets (i.e. with
or without option-implied dependency measures), we run eight regressions in total.
As the results displayed in Table 2 Panel B indicate, we cannot reject the null at
the 5% level in any these test§”|

4.3 Bivariate Models: In-Sample Comparisons
Preliminary Remarks

Since no evidence indicating misspecification of the univariate models were found,
we can now proceed to the estimation of the Normal or Gumbel Mixture conditional
copula models that will define the time-varying bivariate distributions of u and
v. For each of these copula functions, time-variation in the degree of dependence
parameter(s) is introduced using either historical return data or a combination of
historical return and option-based information. To distinguish between the different
information sets, we will refer to these models as historical return and augmented
model, respectively. The main focus of the discussion that follows is whether the
inclusion of option-implied dependence estimates enhances the performance of the
models that rely solely on historical returns.

Along these lines we make comparisons in an in-sample as well as an out-of-
sample setting. In-sample, we initially examine the significance of the coefficients

2TThe regression corresponding to the conditional variance model of the Euro/Yen (EY) exchange
rate suggest a rejection of the null at the 10% level, however, none of the coefficients is significantly
different from zero at the 5% level when the robust standard errors of Newey and West (1987) are
used. The detailed regression results are available from the author upon request.
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referring to the option-implied measures and then compare the models using the
Schwarz Information Criterion (SIC). Furthermore we perform “hit” tests to evaluate
the goodness-of-fit of the competing bivariate model@. To carry out these tests,
we select seven economically meaningful segments of the joint density. Region 1
(region 5) refers to the case where both u and v are below 0.1 (above 0.9), while
region 2 (Region 4) contains the u, v realizations that are between their 10th and
the 25th (75th and the 90th) quantile. Region 3 relates to the central part of each
distribution, as it consists of observations falling within the 25th and 75th quantiles.
Finally, region 6 corresponds to the case where u is above its 75th quantile and v
below its 25th quantile, while the reverse is true for Region 7.

For reasons of clarity, we will generally discuss in terms of the log-likelihood of
the corresponding to the copula density, i.e.

Log-Like, = Y _log ¢y(F(rz[Wi1,0s), G(ry[Wir,0,) [Wie1,0.)  (30)
t=1

instead of the log-likelihood of the full model. Likewise, we will refer to the SIC
criterion corresponding to the copula, i.e.

SIC. = —2-log(Log-Like.) +p - log(n) (31)

where p is the number of estimated parameters in the reference model and n is the
number of observations. The implications of any model comparison using this metric
are the same as if the full bivariate model was used, since all models share the same
specification for the marginal dynamics.

Results

It is useful to recall that the models of the time-varying Normal copula densities,
presented in Section (2.3), have three free parameters for the “historical” and four
for the “augmented” specification. Specifically, w, corresponds to the constant term,
«, is the coefficient of the forcing variable %0 }21 |ug—; — ve—;|, while 3, refers to the
lagged degree of dependence. The coefficient 7, that controls for the effect of the
option-implied dependency “forecasts” is only present in the augmented model. In
an analogous fashion, the parameters of the Gumbel mixture models are wy, ay, Gy
vy for the upper tail and wy,, ay, By, 7. for the lower tail dependence case. We begin

our discussion with the Normal copula models. Table 3 contains the parameter

28The details of these tests are provided in the Appendix
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TABLE 3. CONDITIONAL NORMAL COPULA RESULTS

Historical Return Model

Wp Qp By Vp
Estimate 0.152 -0.611 2.192 -
T-Stat. 0.634 -1.337 8.014 -
P-Value 0.263  0.091 0 -
Log-Lik. 209.123
SIC -396.45
Augmented Model
Wp @p By Vo
Estimate -1.433  2.039 -1.812 5.869
T-Stat. -2.343  1.532 -9.337 7.376
P-Value 0.01  0.063 0 0
Log-Lik. 230.93
SIC -432.8

NOTE: Estimation results of the conditional Normal copula models, described in Section 2.3.
The p-values and t-statistics correspond to the null that the respective coefficients are equal to
zero. The asymptotic variance-covariance matrix of the estimated parameters is computed using
the methodology discussed in Patton (2006a). The log-likelihoods and SIC statistics refer to the
densities of the conditional copulas.

estimates, as well as the t-statistics and respective p-values corresponding to the
null that the coefficient in question is equal to zero. All coefficients are significant
at the 10% level, except for w, in the “historical” model. The 7, coefficient is
highly significant, indicating that options contain useful information regarding the
evolution of exchange rate dependence across time. It is worth noting that the
a, coefficient, that has a p-value of 9% at the simple model, remains statistically
significant at the (at the 7% level) in the augmented specification, suggesting that
the information contained in the record of historical returns complements that of
option-based, risk-neutral, “forecasts”. The enhancement over the simple model
is also evident by the non-trivial difference in the SIC values of the two models.
In particular, the SIC statistic of the augmented specification is equal to -432.8
which is smaller, and hence more preferable, that that of the historical return model
(-396.45).

The results of the “hit” tests, presented in Table 5, indicate that both models
appear somewhat problematic in Region 7 (where u is smaller than 0.25 and v is

27



TABLE 4. CONDITIONAL GUMBEL MIXTURE COPULA RESULTS

Historical Return Model

Wy Qy By Yu Wy, ay, B T
Estimate -1.497 -2.058 3.864 - 0.214 5.039 -3.714 -
T-Stat. -1.59  -0.929 4.446 - 0.133 1.31 -15.58 -
P-Value 0.056 0.176 0 - 0.447 0.095 0 -
Log-Lik. 227.37
SIC -411.14

Augmented Model

Wy Qy By Yu Wy, ay, B T
Estimate -2.218 -0.545 3.629 1.11 -2.365 4.909 -3.833 7.065
T-Stat. -2.307  -0.095 1.01 0.24 -1.279  0.689 -8.279 1.67
P-Value 0.011 0.462 0.156 0.407 0.101 0.246 0 0.046
Log-Lik. 243.38
SIC -428.65

NOTE: Estimation results of the conditional Gumbel Mixture copula models, described in Sect-
ion 2.3. The p-values and t-statistics correspond to the null that the respective coefficients are
equal to zero. The asymptotic variance-covariance matrix of the estimated parameters is compu-
ted using the methodology discussed in Patton (2006a). The log-likelihoods and SIC statistics re-

fer to densities of the conditional copulas.

larger than 0.75) of their estimated bivariate densities. The corresponding p-values
are approximately 0.05 for the historical and 0.07 for the augmented model, so that
the null would be rejected at the 5% and 10% level, respectively. No evidence of
misspecification can be found for rest of the regions, since the null is never rejected
for either model, while an interesting pattern is that the p-values are always (slightly)
higher for the model that includes option-based dependence measures.

Estimation results for the conditional copula models that assume a Gumbel Mix-
ture dependence structure for the DY, EY exchange rate return series are displayed
in Table 4. In the “historical return” model the autoregressive parameters (3, and
(3, are highly significant, while wy, and oy are significant at the 10% level. On the
contrary, a and w;, are not significantly different from zero, with p-values of 0.18
and 0.45, respectively. For the “augmented” Gumbel Mixture specification, the coef-
ficient oy, is no longer significant (p-value of 0.25), while w;, and [, are significant at
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the 11% and 1% level respectively. Interestingly, v, has a p-value of 0.046, indicating
that the lower tail dependence measures extracted from option prices are helpful in
describing the dynamics of lower tail dependency across time. For the upper tail
dependence case, the only coefficient that is statistically significant is wy. The rest
of the estimated coefficients, i.e. ay, By and 7y, are not significantly different from
zero, as their p-values are 0.46, 0.16 and 0.41 respectively.

It is worth noting that the p-value of ay is increasing when option-implied
estimates are included in the model and is the highest amongst all other coefficients
in the augmented specification. Hence, one plausible explanation for the fact that the
vy coefficient is not significant could be that the information provided by historical
returns and option based estimates is of a similar naturelﬂ. Maximizing the log-
likelihood of a model that excludes both vy and oy delivers a SIC value of -425.42,
which is higher (and therefore less preferable) than that of the full model whose
SIC value is -428.65. Since the exclusion of the corresponding variables appears to
worsen the performance of the full model, it is not unreasonable to conjecture that
these variables have a useful role in the modeling of the corresponding bivariate
density.

The hit-tests for the Gumbel Mixture copula models are presented in Table 5.
As it can be seen therein, neither the historical nor the augmented specification
have problems passing these misspecification tests for any of the seven regions. The
p-values are in most cases higher than those of the Normal copula models, but such
comparisons are probably misleading since the less parsimonious Gumbel Mixture
models are generally expected to provide a better in-sample fit.

Model selection using the Schwarz Information Criterion favors the augmented
Normal copula specification that has the lowest value (-432.8) amongst all other
alternatives, although the augmented Gumbel Mixture model achieves a comparable
SIC statistic (-428.65). There is sizable difference between the aforementioned SIC
values and those of the models that rely exclusively on historical return information,
which underscores the benefits of including option-implied measures of covariation.
In particular, the simple Gumbel Mixture has a SIC value of -411.14, while the

290f course, several other explanations can be proffered. For instance, the presence of “correla-
tion” risk-premiums, i.e. the difference between expected “correlations” under the Q (risk-neutral)
and P (real-world) measures, will impair the “forecast” performance of option-based dependence
estimates. Such a wedge between the expectations under the Q and P measure can occur in realistic
situations, such as when the price processes includes jump components (Branger and Schlag, 2004)
or when correlations follow diffusion processes (Driessen et al, 2009). One can also consider model
misspecification errors when extracting the dependence measures from option prices, or insufficient
number of observation in the time-series model (since the standard errors are asymptotic).
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TABLE 5. IN-SAMPLE HIT TESTS, JOINT DENSITY

NORMAL COPULA

Historical Returns Augmented Model
Region LLUNR LLRE LRStat P-Val. LLUNR LLRE LRStat P-Val.
R1 -247.16  -250.29 6.27 0.18 -249.11 -252.16 6.09 0.19
R2 -220.77  -222.22 2.9 0.58 -219.06 -220.48 2.83 0.59
R3 -847.63 -848 0.73 0.95 -848.37 -848.55 0.37 0.99
R4 -238.42 -239.91 2.99 0.56 -237.33 -238.72 2.77 0.6
R5 -210.83  -212.9 4.13 0.39 -208.16 -210.15 3.98 0.41
R6 -150.1 -150.8 1.4 0.84 -152.89 -153.42 1.06 0.9
R7 -182.87 -187.67 9.6 0.05 -177.82  -182.25 8.85 0.07

GUMBEL MIXTURE COPULA

Historical Returns Augmented Model
Region LLyyr LLgrg LRStat P-Val. LLynr LLgrg LRStat P-Val
R1 -247.03  -248.8 3.53 0.47 -248.86 -250.56 3.41 0.49
R2 -221 -222.42 2.84 0.58 -218.23 -219.76 3.07 0.55
R3 -847.12  -847.32 0.4 0.98 -847.34  -847.6 0.52 0.97
R4 -238.22 -239.3 2.16 0.71 -237.45 -238.41 1.93 0.75
R5 -210.72  -212.63 3.82 0.43 -208.94 -210.92 3.95 0.41
R6 -149.94  -150.05 0.22 0.99 -149.77  -149.9 0.25 0.99
R7 -181.91 -184.61 5.39 0.25 -179.41  -182.1 5.38 0.25

NOTE: Table 5 presents the estimation results of the “hit” tests applied to joint density defined
by the conditional Normal or Gumbel Mixture copula models. LLyygr and LLgrg corre-
spond to the unrestricted and restricted likelihood of the test described in the Appen-
dix. The p-values and t-statistics refer to the null that the model is correctly specified
for regions R1 to R7. For the definition of these regions see Section 4.3).

simple Normal copula model is the worst performer with a SIC statistic of -396.45.

4.4 Bivariate Models: Out-of-Sample Comparisons
Preliminary Remarks

To assess the out-of-sample performance of the conditional copula models, we divide
the sample into two parts. The first part contains all data from 31/10/2001 up to

30



12/30/2005 (1053 daily observations), and is used to estimate the parameters of
the marginal models (¢;,0;) and those of the copula density ¢, for each of the four
alternative copula models. These parameters are then kept fixed and the remain-
ing data (18 months, 376 daily observations) are used to evaluate the competing
specifications.

To illustrate how the out-of-sample exercise is carried out, consider the concrete
example where 6 corresponds to the “augmented” Normal copula specification. De-
noting s the last in-sample observation, the raw returns r, ; and r, ; already provide
the conditional mean and variance estimates one period ahead, i.e. py i1 5 hast1
and fiy 511, hy,s11 which (together with the degrees of freedom parameters v; and v;)
define the conditional marginal densities f,.1(:|Ws,0;) and g1 (:|Ws, 7). Similarly,
the value of the copula’s dependence parameter p,,; is also computable, since the
conditioning variables u,us_1,..., Us—g and vs,Vs_1,..., Vs_g (as well as ps and pq ;)
are all known at time s, so that we also have the estimate of the conditional copula
density corresponding to time s + 1, i.e. cop1(For1(-|Ws, 05), Gora (-|Ws, 07) [Ws, 07).

The first out-of-sample return observations r, s41 and 7, .11, can then be used
to evaluate the quantities i1 = Fiy1(74,641|Ws, 0;) and 051 = Gap1(rys01|Ws, 05),
as well as the out-of-sample log-likelihood of the copula density, i.e.

OLLC,S—H = 10g Cs—i—l(Fs-‘rl (rx,s-‘rl ’Ws> 9:)a Gs+l (Ty,s—i-l |W5, 9;) |W87 9:)

The observations r, ;41 and 7, 541 also provide the necessary information to update
the conditional mean and variance equations, and hence obtain fs o(:|Wsi1,0%) and
Gsr2 (| Wi, 9;) Likewise, the numerical values of @g;1, Ust1, ps+1 and pq s+1 enable
the computation of psyo which, in turn, defines the density of the copula one period
ahead, i.e. Cs+2(Fs+2('|W5+17 0;), G8+2('|W5+1, Z) |W5+1, 9:)

Proceeding in the same fashion until the end of the dataset (i.e. for j =
s+1,...,n) produces a series of @; and v; realizations that can be used to examine
whether the conditional copula model under study shows evidence of misspecifica-
tion. We do so by applying the same “hit” tests methodology described in Section
4.3 and the Appendix, with the key difference that u; and v; represent out-of-sample
observations.

Furthermore, we calculate the out-of-sample log-likelihood (OLL.) statistic of
the copula density, defined as:

OLL. = Y logc,(F(ry [Wi1,63), G(ry [Wi1,6;) [Wi_1,06;) (32)

t=s+1
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Following Amisano and Giacomini (2007), Bao, Lee and Saltoglou (2007) and
Lee and Long (2009), among others, out-of-sample log-likelihood levels are used as
a ranking criterion between competing density forecast methods. As these authors
discuss, if one of the methods correctly specifies the forecast densities then it will
have the highest expected out-of-sample log-likelihood, while in the case where all
forecast methods are imperfect, the highest statistic indicates the specification that
is closer to the true target density using the Kullback-Leibler Information Criterion
as a loss function. Accordingly, we prefer the conditional copula model that yields
the highest OLL,., which is the same as if the out-of-sample log-likelihood of the
entire bivariate density was used, since all forecast methods have identical out-of-
sample log-likelihood statistics for the two margins.

As the earlier discussion regarding the construction of this out-of-sample exper-
iment reveals, the competing models are essentially evaluated at their entirety, i.e.
forecasts concerning both the marginals and the copula density are involved. This
is because the u; and v; are computed by evaluating the univariate forecast densi-
ties and, consequently, any errors will be automatically transmitted to the bivariate
forecast distributions. While the marginal models, and hence @; and ©;, are common
for all bivariate specifications, it can be argued that these will affect the historical
models to greater extent since, in this case, the dynamics of the copulas’ degree of
dependence parameters are driven solely by past return observations (i.e. lagged
values of @; and 7;).

Results

Panel A of Table 6 summarizes the out-of-sample log-likelihood statistics for the four
conditional copula models. The augmented Gumbel Mixture specification delivers
the highest OLL, statistic (90.26), followed by the augmented Normal copula model
(86.15). Regarding the historical return models, the Gumbel Mixture copula model
has a OLL, statistic of 85.45, which is comparable to that of the augmented Normal
copula specification, while the worst performer is the historical Normal copula model
where the corresponding statistic is equal to 76.65.

The relative ranking of the competing alternatives in terms of their predictive
accuracy is very similar to that suggested by the in-sample log-likelihood selection
criterion (i.e. the SIC). The only discrepancy is that the augmented Gumbel Mixture
model emerges as the best performer out-of-sample and second best in-sample, while
the reverse is true for the augmented Normal copula specification. Notably, the
differences between the historical and augmented specifications for either the Normal
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TABLE 6. OUT-OF-SAMPLE RESULTS

Panel A. Out-of-Sample Log-likelithoods

NORMAL COPULA GUMBEL MIXTURE COPULA
Historical Augmented Historical Augmented
OLL. 76.649 86.148 85.451 90.261

Panel B. Hit Tests, Joint Density

NORMAL COPULA

Historical Returns Augmented Model
Region LLyygr LLgrg LRStat P-Val. LLynr LLgrg LRStat P-Val.
R1 -62.81  -65.96 6.3 0.18 -62.67  -65.37 5.39 0.25
R2 -49.9 -52.75 5.7 0.22 -49.76  -52.66 5.79 0.22
R3 -233.98 -237.63 7.29 0.12 -233.76  -236.63 5.76 0.22
R4 -80.95  -85.67 9.43 0.05 -80.32  -84.47 8.3 0.08
R5 -52.26  -52.73 0.94 0.92 -52.15  -52.71 1.12 0.89
R6 -12.07 -14.1 4.06 0.4 -11.71 -13.05 2.68 0.61
R7 -38.01 -38.5 0.98 0.91 -37.86  -38.86 1.98 0.74

GUMBEL MIXTURE COPULA

Historical Returns Augmented Model

Region LLUNR LLRE LRStat P-Val. LLUNR LLRE LRStat P-Val.
R1 -62.65  -65.41 5.51 0.24 -63.1 -65.63 5.06 0.28
R2 -49.91  -52.81 5.8 0.21 -49.26  -52.22 5.92 0.2

R3 -234.1  -236.62 5.06 0.28 -233.66  -235.71 4.1 0.39
R4 -80.6 -84.24 7.28 0.12 -79.53  -82.73 6.4 0.17
R5 -52.36  -52.95 1.18 0.88 -52.73  -53.42 1.38 0.85
R6 -12.18  -15.48 6.61 0.16 -11.57  -14.45 5.76 0.22
R7 -38.39 -38.6 0.42 0.98 -39.33 -39.6 0.52 0.97

Panel A displays the out-of-sample log-likelihood statistics of the alternative conditional copula
models. Panel B presents the results of the (out-of-sample) “hit” tests applied to the joint den-
sity constructed using the Normal or Gumbel Mixture copula models. LLyygr and LLgg refer
to the unrestricted and restricted likelihood of the test. The t-statistics and p-values correspond
to the null that the model is correctly specified for the regions R1 to R7. Details about the test
can be found in the Appendix, while the seven regions are defined in Section 4.3.
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and or the Gumbel Mixture copula remain discernible, while the historical Normal
copula is the least preferred model in either setting.

Further evidence concerning the out-of-sample performance of the competing
conditional copula models are provided by the “hit” tests, presented in the second
Panel of Table 6, that examine the performance of the alternative bivariate distri-
bution forecasts in a piece-wise fashion. Using the same region definitions as those
of the in-sample case, the test attempts to uncover potential shortcomings of the
forecast models by checking whether they imply the correct proportion of “hits”, as
well as by inspecting whether the “hit” observations are autocorrelated.

Tests conducted at the 5% level indicate that the historical Normal copula model
would be (marginally) rejected for Region 4, which corresponds to the case where
u and v are between their 75th and the 90th quantile. Similarly, the augmented
Normal copula model has a p-value of 8% for same region, so that the null would be
rejected at the 10% level. On the contrary, the respective p-values for the Gumbel
Mixture copula models are 12%, for the historical, and 17% for the augmented
specification. No problems surface for the remaining regions, since all models pass
the test at conventional significance levels. The only relatively low p-values are those
of Region 3 (12%) and Region 1 (18%) for the historical Normal copula, as well as
that of Region 6 (12%) in the historical Gumbel Mixture specification.

Although the inclusion of option-implied dependency measures in the Normal
copula model provides clear benefits in terms of the likelihood-based criteria SIC and
OLL,, it fails to correct the shortcomings revealed by the “hit” tests. Specifically,
neither the historical nor the augmented model would pass a 10% test for Region
7 (in-sample) and Region 4 (out-of-sample) and the source of this rejection is that
they assign incorrect probability mass in the corresponding segment of the bivariate
density{ﬂ Considering the above, it appears that option-implied information is
a very helpful indicator regarding the (concurrent or future) degree of dependence,
whereas the remaining problems simply reflect deficiencies in the type of dependence,
i.e. the structural form of association imposed by the Normal copula.

5 Conclusion

This paper examines whether option prices provide useful information regarding
the conditional dependency of the U.S. Dollar/Japanese Yen - Euro/Japanese Yen

30The detailed logit regression results, through which the hit tests are constructed, were omitted
for reasons of brevity, but they are available from the author upon request.
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exchange rate returns, for the period between November 2001 and June 2007. Bi-
variate time-series models that rely exclusively on historical return information are
compared with “augmented” specifications, where option-implied dependence mea-
sures are included in the analysis.

We resort to copula theory in order to construct dynamic bivariate densities, as
well as to extract forward-looking dependence indicators from the prices of options.
In the first case, the univariate price dynamics are modeled using standard ARCH
models and, subsequently, the conditional copula of Patton (2006b) is employed in
order to link the marginal return innovations. We focus on two copula functions;
the one-parameter “Normal” and a two-parameter “Gumbel Mixture” specification.
The two-parameter copula permits a separate treatment of upper and lower tail
dependency, so that asymmetry in either direction can be accommodated. This
allows us to study, for the first time in the literature, option-implied dependency
estimates that go beyond a scalar measure of association.

Our empirical results indicate that the information embedded in the prices of
exchange rate options enhances the performance of the time-series specifications
that we consider. For both the “Normal” and the “Gumbel Mixture” copulas, in-
sample model selection criteria favor the specifications that include option-implied
dependence measures in their information set. The same result holds true in the out-
of-sample setting; the augmented models are again preferable relative to their histor-
ical counterparts, as they deliver the highest out-of-sample log-likelihood statistics.
Pair-wise comparisons of the competing specifications indicate that the augmented
Normal copula model exhibits the best performance in-sample, followed by the aug-
mented Gumbel Mixture specification. The reverse is true in the out-of-sample
exercise, so that it becomes difficult to distinguish a clear winner. Notably, how-
ever, the Normal copula model that relies solely on past return data delivers the
worst results in all pair-wise comparisons.

This paper adds to the active literature that uses the prices of observed options
in order to extract useful forward-looking information, beyond the well-established
case of implied volatilities. As with implied correlation coefficients (Bodurtha and
Shen, 1995; Campa and Chang, 1998; Lopez and Walter, 2000; Castren and Maz-
zotta, 2005), implied forecast densities (Liu et al, 2007; Shackleton et al, 2007;
Kostakis et al, 2009) and implied betas (Christoffersen et al, 2008), we find that
option-implied expectations can improve the performance of historical return mod-
els. One distinctive feature of this study is that the setting is no longer univariate.
Moreover, our approach recognizes that the dependency of exchange rate returns
may display non-linear characteristics and, along these lines, we suggest a simple
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method that can be used to extract option-based information regarding both the
degree of dependency, as well as, the direction of asymmetric dependence.

Overall, our findings support the notion that derivative prices provide a rich
source of information that shouldn’t be ignored when building time-series models.
It is worth noting, however, that our approach can be refined in several respects. For
instance, one can use the entire cross-section of exchange rate options and estimate
the parameters of the risk-neutral price process for all the involved exchange rates.
Since the corresponding risk-neutral densities can be then derived for any maturity
date, one can find the dependence pattern that has the same horizon as that of the
corresponding historical return model (for instance daily or weekly). Furthermore,
one can also attempt to directly adjust the bivariate risk-neutral density using a
risk-transformation method, as it is done by Liu et al (2007) or Shackleton et al
(2007) in the univariate case. Including other copulas in the analysis might also be
of interest. For example, the popular Student’s ¢ copula also has two parameters,
one controlling for the degree of dependence and one determining the fat-tailness of
the bivariate density.

As a final remark, we emphasize that in this study we only use three, pub-
licly accessible, implied volatilities for the computation of each risk-neutral density.
Outside the public domain, data providers currently supply implied volatilities for
several strikes, so that the accuracy of option-implied dependency measures can be
further improved.
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Appendix

To investigate whether the (univariate or bivariate) conditional density models are
correctly specified in particular segments of the density we employ the “hit” test
methodology suggested by Patton (2006b), which is a simple extension of the original
test proposed in Christoffersen (1998) and refined in Engle and Manganelli (2004).

Let X; be the (possibly multivariate) random variable under study, R;, the
relevant density region and p;; the probability according to the forecast model that
X; will belong to that region, i.e. X; € R;;. The hit variable H;, is defined as

B 1 if X, e Riﬂg
710 otherwise.
For correctly specified forecasts we have that we have that p;=m; and H; ~
1.n.a.d. Bernoulli(pi)ﬂ, where m;; denotes the true probability that X; € R;;. Us-
ing this property, we can examine if a density forecast model shows evidence of
misspecification.

We follow Patton (2006b) and estimate the following logit model

Pi
i = Ti( Zit, Bi pir) = A <Zitﬂz' + In L tp ]) ; (33)
— Dit
where A (z) = (1+e7%)7! is the logistic transformation, Z; is a matrix containing
elements from the time t—1 information set that could reveal potential shortcomings
of the forecast model and f; is the parameter vector to be estimated. In this way
Ho: 8; =0 (Hy : 8; # 0) corresponds to Hy : i = pir (Hy @ 73 # pit).-
As in Patton (2006b), we include the following four variables in the Z; matrix:
a constant, to check whether the model has the correct proportion of hits, and
three variables that count the number of hits in that region in the last 1, 5 and 10
observations.

If the forecast model produces well specified forecasts for the R;; region, then
all four elements of the [3; vector must be zero. Denoting LLzg the restricted log-
likelihood of the model and LLyygr the unrestricted log-likelihood of the model

31The variables H;; are independent but not necessarily identically distributed (i.n.i.d) because
the density mass of the target region is not restricted to be constant across time. If the target
region of the univariate density is constant, then H;; would be i.i.d.. Regarding the multivariate
case, the probability of a hit is not constant and depends on the amount of probability mass
assigned by the copula in that region.
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corresponding to equation (33), a likelihood ratio test can be conducted using the
test statistic LR = —2(LLrg — LLyng) which approximately follows a x? distribu-
tion with 4 degrees of freedom under the null of correctly specified forecasts.
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