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Abstract

This study examines the information content of alternative implied volatil-
ity measures for the 30 components of the Dow Jones Industrial Average Index
from 1996 until 2007. Along with the popular Black-Scholes and “model-free”
implied volatility expectations, the recently proposed corridor implied volatil-
ity (CIV) measures are explored. For all pair-wise comparisons, it is found
that a CIV measure that is closely related to the model-free implied volatil-
ity, nearly always delivers the most accurate forecasts for the majority of the
firms. This finding remains consistent for different forecast horizons, volatility
definitions, loss functions and forecast evaluation settings.
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1 Introduction

Market efficiency suggests that volatility expectations embedded in option prices
should also contain information about future volatility levels. More importantly,
this information may be absent from the historical record of asset returns, because
option-implied volatilities incorporate both relevant historical information as well as
traders’ expectations regarding future horizons. Another attractive property of im-
plied volatilities is that they have forward-looking features by construction. Given
the above, it is natural to expect that they may be useful in enhancing volatil-
ity forecast models and, indeed, empirical analysis has confirmed these theoretical
predictions for a variety of markets and asset classeq!|

However, volatility information is not necessarily dispersed uniformly across the
entire cross-section of option prices. Systematic differences can arise for a variety
of reasons of either theoretical nature (for instance biases caused by the pricing of
volatility risk) or of pragmatic substance (such as the relative illiquidity of particular
contracts). For this reason, various approaches of extracting risk-neutral volatility
expectations can be proposed. Essentially, alternative methodologies are motivated
either by different assumptions about the asset price dynamics or by criteria con-
cerning the relative informational efficiency of options trading at different strikes.
The existence of several candidate option-implied measures has obvious implications
when building forecast models.

The issue of which implied volatility to use arose naturally in early studies,
since the inversion of the Black-Scholes formula did not produce a flat volatility
surface. Commencing with Latane and Rendleman (1976) it was recognized that
some options may be more informative than others because their observed prices
are less sensitive to measurement errors or model misspecification distortions. These
authors, together with Trippi (1977) and Chiras and Manaster (1978), were the first
to suggest that some sort of averaging between different implied volatilities could
improve the accuracy of the forecasts. Perhaps due to their ad-hoc nature, such
weighting schemes have enjoyed little success as they were found to perform worst
than individual implieds (Beckers, 1981; Gemmill, 1986; Fung et al, 1990). When
selecting between individual implieds, on the other hand, the general consensus is
to prefer at-the-money contracts since they usually trade more heavily. Along these
lines, it is custom to select a single option to extract volatility information and
discard all other observations.

1See Poon and Granger (2003) or Taylor(2005) for a survey of the related literature.



An important development towards the understanding of volatility measures
implied by option prices was derived by Britten-Jones and Neuberger (2000), Carr
and Madan (1998) and Demeterfi, Derman, Kamal and Zou (1999). Building on
Ross (1976) and Breeden and Litzenberger (1978), these studies show that ex-ante
risk-neutral expectations of future realized variance can be obtained through the fair
value of a variance swap rate. Under mild assumptions, the value of this position
can be well approximated using the prices of observed option contracts, resulting
in a model-free variance estimate that does not require the existence of a particular
option pricing model and remains approximately valid under a wide class of asset
price dynamics, including jump-diffusive semi-martingale processes. Using these
results, it becomes possible to extract a single implied volatility estimate that is
consistent with the entire cross-section of observed option prices.

Despite their theoretical novelty, model-free estimates also suffer from two lim-
itations when it comes to forecasting future volatility. The first one is that, at
least for stock indices, volatility expectations will be magnified due to the presence
of volatility risk-premia. While the existence of the latter per se would have mild
implications if they were constant across time, their apparent time-variation (Boller-
slev, Gibson and Zhou, 2006; Todorov, 2007) contaminates volatility expectations
with fluctuations that are not relevant to the object of interest, but rather corre-
spond to changes in the market pricing of volatility risk. Secondly, they do not take
into account that away-from-the-money options are traded far less frequently, which
implies that their relative informational efficiency is expected to be lower.

A handful of studies have recently compared the information content of at-the-
money Black-Scholes and model-free implied volatility estimates (BSIV and MFIV
henceforth), inspired by the appealing theoretical properties of the latter. Jiang and
Tian (2005) examine the S&P 500 index (from 1988 to 1994) and their in-sample
results favor volatility estimates extracted using the model-free approach. These
findings are in sharp contrast with those of Andersen and Bondarenko (2007) who use
S&P 500 futures data (1990-2006) and report that MFIV consistently underperforms
BSIV in both in-sample and out-of-sample exercises. Further evidence, revealing
some of the deficiencies of MFIV measure in the context of volatility forecasting,
are put forth by Taylor et al (2007).

Selecting the most informative volatility forecast given panel of option prices
remains largely an open question. It is unlikely that a unique answer will emerge,
as the optimal choice may depend on the asset class or the characteristics of the
underlying market. To this end, a coherent way of systematizing the range of option
prices that may contain useful volatility information is proposed by Andersen and



Bondarenko (2007) who utilize the concept of corridor implied volatility (CIV),
introduced earlier in Carr and Madan (1998). Unlike variance swaps, which pay the
accumulated return variation irrespective of the price path of the underlying asset,
corridor variance contracts pay the return variation that is accumulated when the
asset price lies between two, pre-specified, reference asset levels or barriers. A key
difference between the calculation of model-free and corridor implied volatility is
that the first requires the prices of options with any attainable strike price, while for
the latter only the contracts with strikes that lie inside the barriers are needed. In
this way, CIV measures can potentially serve as a mechanism to alleviate volatility
risk-premia fluctuations by extracting volatility expectations using a range of option
prices that is less susceptible to such distortions. From a more practical perspective,
a CIV approach recognizes that different parts of the risk-neutral density (whose
entire support needs to be assumed so as to compute the MFIV) are estimated with
different degrees of reliability. This is especially true for the part of the risk-neutral
density that falls outside the range of traded option prices. The aforementioned
arguments are indeed confirmed in Andersen and Bondarenko (2007), who find that
certain CIV measures perform better than either the BSIV or the MFIV in terms
of forecasting index volatility.

The contribution of this paper is twofold. Firstly, the forecast performance of
corridor implied volatility measures is scrutinized from a cross-sectional perspective.
By definition, any CIV measure will have the handicap that the there is a mismatch
between the estimated quantity (risk-neutral expectation of corridor integrated vari-
ance) and the target quantity (integrated variance). Whether the advantages pos-
tulated by a CIV approach outweigh this major drawback is largely an empirical
question. In this respect, the analysis of Andersen and Bondarenko (2007) is limited
to a single stock index. Given that several corridor definitions are explored in their
paper, it is difficult to draw a firm conclusion about the overall usefulness of these
alternative volatility measures. For this purpose, this study investigates a pool of
thirty individual stocks, facilitating more reliable inferences.

In addition, this paper supplements the literature that uses option prices to
forecast the volatility of individual stocks. Unlike the case of equity index or cur-
rency options, studies that focus on the firm level are scarce, with Lamoureux and
Lastrapes (1993) and Taylor et al (2007) being two notable exceptions. This work
relates closely to the latter paper where the authors examine 149 individual firms for
a four year period (1996-1999) and report that BSIV appears to be more informa-
tive than its model-free counterpart. Besides the use of additional implied volatility
measures, significant improvements are also made in the empirical part of the study.



Specifically, a more recent and substantially longer dataset is explored (1996-2007),
while forecasts are evaluated using realized volatility estimates constructed by ac-
cumulating intraday returns, facilitating more robust comparisons. In-sample, as
well as out-of-sample, forecast evaluations are made for two distinct horizons, using
different loss functions and formal tests of predictive accuracy.

The main result that emerges from the empirical forecast evaluations is that sys-
tematic differences exist in the performance of several implied volatility measures.
More importantly, one particular CIV measure, which corresponds to a wide barrier
width, produces more accurate forecasts for the majority of the firms irrespective
of the competing alternative, including the BSIV and MFIV measures. It is note-
worthy that, in contrast with Andersen and Bondarenko (2007), it is found that
wide CIV measures perform better than their narrow corridor counterparts. This
difference could be potentially rationalized by the dissimilar magnitudes of volatility
risk-premia embedded in away-from-the-money options for stocks and stock indices,
documented in Driessen et al (2009) among others. Comparisons between BSIV and
MFTIV forecasts produce mixed results, so that it becomes difficult to favor one of
the two measures.

The paper is organized as follows. Section 2 briefly describes the dataset. Section
3 discusses the definition and estimation of the various implied volatility measures.
Sample construction and forecast evaluation issues are treated in Section 4. Section
5 contains the empirical results of the study, while the main conclusions are set out
in Section 6.

2 Data Description

Options data were obtained from the Ivy database of OptionMetrics, which provides
historical option prices for equity and index options based on closing quotes at the
Chicago Board of Options Exchange. For reasons of computational convenience, the
analysis is restricted to the 30 components of the Dow-Jones Industrial Average (as
of April 2004), which also offers some comfort against low liquidity considerations.
The dataset spans a period of approximately 11 years, from January 1996 to May
2007 inclusive.

Implied volatilities, provided by OptionMetrics, are based on mid-quote option
prices. When the options are European, Ivy uses the Black-Scholes formula for
dividend paying assets, while for American options a binomial tree approach, that
takes into account the early exercise premium, is adopted. As an attempt to filter



out uninformative options data several screening criteria were applied?

The same source also provides the remaining inputs that are required for the
computation of option prices. Continuously compounded interest rates were ob-
tained by linearly interpolating between the two adjacent zero-coupon rates from
the Yield Curve file. The Ivy DB also supplies detailed information about dividend
distributions and splits for each security, while the Security Price file contains the
respective spot prices. The time zero price of forward contracts for delivery at time
T were computed by subtracting the present value of all dividends from time zero
up to time 7' from the observed spot price, and subsequently multiplying by the
risk-free rate that corresponds to the relevant horizon. Interest rates were assumed
non-stochastic so that forward and futures prices are equal.

Intra-day return data were obtained from the Trade and Quote (TAQ) database
which contains trades and quotes for all securities listed on the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), as well as the Nasdaq
National Market System (NMS). Mid-quote prices were extracted every 30-minutes,
from December 1995 to July 2007 inclusive. To limit any recoding errors, screening
criteria similar to those of Barndorff-Nielsen et al (2008) were applied. Finally, for
days that included a dividend payment, the value of the corresponding intraday
return was set to zero.

3 Construction of Implied Volatility Measures

3.1 Volatility Definitions

Let S; denote the spot price of an asset at time ¢t and F; the corresponding futures
price that follows a continuous-time process,

dF;

— =g dW,; 1

Ft t t ( )
where W, and o; are a Wiener and a volatility process, respectively. In the current
setting the risk-free rate and the dividend yield are assumed to be deterministid’]
Note that no restrictions are imposed for the volatility dynamics, other than that o,

2See Appendix A for further details.

3Note that these restrictions are not generally required (see for instance Jiang and Tian, 2005).
However, in the empirical part of the study options on spot prices are going to be used so it is
necessary that these conditions hold.



follows a strictly positive stochastic process. Letting o <t < T and fixing t, = 0,
the integrated variance from time tq to T is then

T
IVAR(ty,T) = / oldt (2)
0

In what follows, also assume the absence of arbitrage opportunities and the existence
of a unique risk-neutral density that can be used to price European put and call op-
tions expiring at some future time 7". Following Carr and Madan (1998), Demeterfi,
Derman, Kamal, and Zou (1999) and Britten-Jones and Neuberger (2000), ex-ante
risk-neutral expectations of future integrated variance can be obtained by comput-
ing the fair value of a portfolio that consists of options traded at a continuum of
strike prices. In particular,
T 00

EC[IVAR(ty,T)] = EY| / oldt] = 2e"" / Mt%u()

0 0

2

dK (3)

where M, 7(K) equals the value of a put option maturing at time 7', if the strike
price K is below the current futures price, or a call option maturing at time T
otherwise. Because this, option-implied, expectation does not make any assumptions
about the underlying option pricing model, it is commonly referred to as model-free
implied volatility. Similarly, by defining two positive barriers, By and B, and the
following indicator function

L(By, By) = I[By < F; < By (4)

one can also introduce a corridor integrated variance measure as
T
CIVAR(ty, T) = / o21,(By, By)dt (5)
0

The difference compared to the pure integrated variance definition is that now the
return variation is only accumulated when the futures price of the underlying at
time t is between the two pre-specified barrier levels. As demonstrated in Carr
and Madan (1998) and Andersen and Bondarenko (2007), the corresponding risk-
neutral expectation of this measure can be computed, using similar arguments as
in the previous case, by estimating the value of a portfolio of options with strikes
ranging from By to By. Specifically, the risk-neutral expectation of future corridor
integrated variance at time ty = 0 can be computed as

b2 Mto,T(K)

dK 6
s (6)

T
EC[CIVAR(t,,T)] = E9] / o21,(By, By)dt] = 2"
0
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It is clear that when the barriers are set to By = 0, By = +00 the definitions of
corridor integrated variance and integrated variance coincide. Likewise, one can
also set either By = 0 or By = +00 and obtain barrier integrated variance measures
as in Carr and Madan (1998) and Andersen and Bondarenko (2007). Two special
cases of the barrier variance definitions that could potentially be of interest are the
up-variance (UVAR) and down-variance (DVAR) measures, where return variation
is accumulated only when the futures price F; is strictly above (UVAR) or below
(DVAR) the futures price at time zero.

Although the aforementioned theory is developed for the return variance, analo-
gous measures in terms of volatilities (i.e. standard deviations) can be approximated
by taking square roots in the relevant expressions. Throughout the paper the term
CIV will refer to either corridor implied variance or corridor implied volatility, de-
pending on the context. Similarly, the term MFIV will refer to either model-free
implied variance or model-free implied volatility, while UVOL (DVOL) will denote
either up-variance(down-variance) or up-volatility (down-volatility) expectations.

3.2 Practical Implementation
3.2.1 Risk-Neutral Density Estimation

The computation of model-free implied volatility requires the market prices of op-
tions trading at every strike for which the risk-neutral measure assigns a positive
probability. Similarly, corridor implied volatility measures require option prices trad-
ing at all possible strikes within the corridor width. In practice, of course, options
only trade at discrete strikes whose range is not sufficiently wide.

Given a set of observed option prices with maturity 7', the problem of obtaining
option prices for arbitrary strikes is equivalent to estimating the risk-neutral den-
sity (RND) of the underlying for a future date 7. Numerous alternatives exist to
perform the latter taskﬁ, including parametric (mixture or flexible densities, expan-
sion methods) or non-parametric (curve fitting, kernel regression, entropy methods)
approaches and others that share some features of both (positive convolution ap-
proximation). As noted in Taylor (2005), when options data for a wide spectrum
of strikes are available, as it is the usually the case for major stock indices, sev-
eral methods will generally provide satisfactory results. On the other hand, options
written on individual stocks are far less liquid, which renders some of the existing
techniques inapplicable. As in this study RNDs will have to be computed on a daily

4For an overview of the related literature see Jackwerth (1999) or Taylor (2005).



basis, a highly desirable feature of the estimation technique is that it is not data
intensive.

In this setting the implied volatility function approach (Shimko, 1993) appears
as the most reasonable candidate, since the RND can be extracted with as few as
three option prices. The essence behind this approach is to estimate a quadratic
function that fits the observed volatility “smile”, which in turn provides a continu-
ous price function from which the RND can be inferred by numerical differentiation.
Building on Malz (1997) and Bliss and Panigirtzoglou (2002), Taylor et al (2007)
propose a variation of this approach which this paper also adopts. In particular, a
quadratic implied volatility function is fitted at the volatility/delta, rather than the
volatility /strike, space by minimizing the sum of weighted squared differences be-
tween observed and fitted implied volatilities. The weighting scheme uses a function
of the option’s delta (that can be used as a proxy for the moneyness of the con-
tract) which imposes a smaller penalty for errors that correspond to away-from-the
money options. An additional advantage of this method is that, through the non-
linear mapping from the volatility/delta to the volatility/strike space, the volatility
function becomes flat at extreme strike providing, thus, sensible bounds for implied
volatilities.

3.2.2 Corridor Selection

In total, six different corridor-related implied volatility measures are considered.
Following Andersen and Bondarenko (2007), barrier levels are determined using the
inverse cumulative distribution function of the reference risk-neutral density, Fy.
Specifically, letting

By = F3'(p). B2 = F3'(1—p) 7)

and using the general formula in equation (6) the first four corridor measures, CIV1-
CIV4, are obtained by setting p = 0.45,0.35,0.25,0.10 respectively. For the other
two measures, DVOL and UVOL, the barriers are set to By = Fél(O), B, = F§1(0.5)
and By = Fél(O.B), By = Fél(l), respectively.

3.2.3 Further Notes

As mentioned previously, MFIV and at-the-money BSIV estimates are also included
in the analysis. For the first the case, one can use equation (6) with By = Fél(O),
and By = Fél(l). Regarding the case of BSIV, its value is obtained from the daily
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Figure 1: Time-series plots of different implied volatility measures for the IBM stock, from
the beginning of 1996 until the middle of 2007. All volatility expectations are annualized and
correspond to a 30-day horizon. Corridor Implied Volatility measures correspond to increasingly
wider corridors as we move from CIV1 to CIV4. DVOL and UVOL refer to Up-Volatility and
Down-Volatility estimates respectively, while MFIV represents the model-free implied volatility.

volatility smile using the contract whose strike price is equal to the forward price of
the stock.

In order to approximate the integral in equation (6), firstly, the region for
which the risk-neutral density assigns positive probabilities is determined and, sub-
sequently, 2000 option prices having equally spaced strikes are computed.

For each day, and for each stock, two risk-neutral densities with different ma-
turities are estimatedﬂ For the monthly forecast horizon case, implied volatility
expectations are matched with the forecast horizon using linear interpolation as in
Carr and Wu (2009)@. Concerning the daily horizon case, volatility expectations

5As explained in Appendix A, these usually refer to the two closest maturities (after ignoring
options that expire in eight days or less).
6 After trying different interpolation methods, these authors report that the results they obtained
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are computed using the following steps. Firstly, linear interpolation is used so as to
compute fixed-horizon, 30 day, volatility measures. Subsequently, these are trans-
formed into daily estimates by appropriate scaling. An alternative method would
be to use only the closest to maturity options and then compute daily expectations
by appropriate scaling. The reason for preferring the fixed-horizon approach was
to abstract from potential liquidity effects that could emerge as the short maturity
contracts were getting closer to their expiry date.

Since some of these aforementioned estimation methods involved some subjective
choices, the results of the empirical section were repeated for the case where the at-
the-money implied volatility was estimated using the spot, instead of forward, price
as well as for the case where only the closest to maturity options were used to derive
daily volatility expectations. The empirical findings, however, remained intactlj.

Figure 1 depicts the time-series behavior of various implied volatility estimates.
While all measures clearly covary, their dynamics also exhibit some differences, as
some appear more stable than others. Essentially, the dynamics of each series is
reflecting changes in the implied volatility surface. Down-Volatility (DVOL) esti-
mates, for instance, exceed in level their natural counterparts (UVOL) for prolonged
periods of time, revealing the existence of negative skewness in risk-neutral density.
Noteworthy, the CIV4 measure, that has a large corridor width, is strongly corre-
lated with the model-free implied volatility (MFIV) measure.

4 FEvaluating Volatility Forecasts

In order to assess the relative performance of competing volatility forecasts, ex-post
measures of the realized quantity in question are required. As demonstrated in
Andersen and Bollerslev (1998) among others, the use of one-period squared returns
provides unbiased, yet very noisy, realized volatility estimates. As a result, one-
period squared returns will suggest lower explanatory power for volatility forecasts,
even when the latter are indeed optimal. More reliable inferences can be made when
realized volatility is calculated by aggregating intra-day returns, which drastically
eliminates noise in the measurement of volatility.

Formally, ex-post measures of integrated variance realized on day ¢, using N

were very similar.
"The results are available from the author upon request.

11



intraday returns plus the squared overnight return, can be obtained by

N

RVAR,y =Y _[(In(Sh;) = In(Se;-1)* + [(In(Seoren) — (In(Stcrose)”  (8)

j=1

In this study N = 13 as intraday prices are recorded every 30-minutes, from 9:30
until 16:00. So as to remove the spurious serial correlation of high-frequency returns
induced by market microstructure effects, this study follows Andersen et al (2001)
in estimating demeaned pseudo-returns obtained by an applying an MA(1) filter. In
a similar fashion, T-day realized variance estimates are obtained by accumulating
intraday and overnight returns for the relevant horizon, while realized volatility (i.e.
standard deviation) measures are obtained by taking square roots.

4.1 Sample Construction

The relative performance of the competing volatility forecasts is assessed using both
in-sample and out-of-sample criteria, for two distinct horizons, i.e. monthly and
daily. Both realized standard deviations as well as variances are examined. Typi-
cally, standard deviations are the object of interest in the related literature, although
the theory of model-free volatilities is based on the variance of returns, so that ex-
amining the latter quantity is more natural from this perspective.

Having estimated risk-neutral densities for all days in the sample, it is now pos-
sible to construct a series of non-overlapping forecasts for the two horizons in ques-
tion. While our daily forecasts are non-overlapping by definition, for the monthly
horizon case this paper follows a construction methodology similar to that of Jiang
and Tian (2005). Specifically, the Wednesday immediately following the expiration
date of each month is chosen as the day when implied volatilities are observed. If
this happens to be a non-trading day then the following Thursday is selected. If
this is also a non-trading day then the preceding Tuesday is chosenff] The forecast
horizon is then determined by the minimum of 30 calendar days and the difference
between the current and the next observation date. While in doing so the forecast
horizon is not always exactly 30 calendar days, the resulting forecasts are strictly
non-overlapping. The other alternative would be to fix the horizon at 30 days, as
in Jiang and Tian (2005), but this would result in forecasts that would occasionally
overlap.

8Jiang and Tian (2005) use this sample construction methodology motivated by the liquidity
patterns of the listed options.
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Regarding the out-of-sample forecast models, the parameter estimation is done
using a rolling window approach. In particular, the estimation window width is kept
fixed and corresponds to 1 year and 4 years of past data, for the daily and monthly
case respectively.

4.2 Ranking Volatility Forecasts

One major consideration when ranking volatility forecast models is that the target
quantity is a latent variable, so its realized estimates will contain measurement
errors. Inference and model comparison problems that arise in the presence of noise
in the volatility proxy are analyzed in Andersen and Bollerslev (1998), Meddahi
(2001) and Andersen et al (2005) among others. Focusing particularly on the issue
of ranking competing volatility forecasts, Hansen and Lunde (2006) and Patton
(2006) demonstrate that severe distortions can arise when noisy volatility proxies
are used.

We attempt to alleviate such considerations in two ways. The first is by using
30-minute returns in order to get more precise realized volatility estimates. As Pat-
ton and Sheppard (2007) demonstrate in a simulation environment, daily realized
variance proxies based on 30-minute, instead of daily, returns provide large gains in
terms of consistent ranking and forecast comparison tests. In the case of monthly
realized volatility estimates, it is reasonable to expect that distortions will be sig-
nificantly smaller. Secondly, as it is discussed in Section 4.2.2, the loss functions
employed in this study are “robust” to noise, in the sense of Patton (2006) and
Hansen and Lunde (2006).

4.2.1 In-Sample Evaluation Criteria

As it is common in the literature (Canina and Figlewski, 1993; Christensen and
Prabhala, 1998; Jiang and Tian, 2005; Taylor et al, 2007; Andersen and Bondarenko,
2007) the in-sample fit of the volatility forecasts for a given stock is investigated using
the Mincer-Zarnowitz regression, i.e.

RVigvmg = ;i + Bl Viy + €40 (9)

where the superscript H indicates the forecast horizon (either 1 day or approximately
30 calendar days), the subscript ¢ the time at which the forecast is made, RV is the
realized volatility from time ¢ up to time ¢t + H and i denotes the option-implied
volatility measure (for instance BSIV or MFIV).

13



The resulting R? of this regression gives an indication of the association between
volatility forecasts and volatility realizations, so that indicative comparisons between
different specifications can be made. Similarly, one can also examine “encompassing-
style” regressions defined as:

RViyom = a; + BidViy + Birv RVic s + €t (10)

The first lag of realized volatility is added as an explanatory variable at the right-
hand side of the above equation because it may contain information that is absent
from certain implied volatility measures and, thus, improve the forecasting perfor-
mance of reference modeld]

4.2.2 Out-of-Sample Evaluation Criteria

While the above OLS specifications consider forecast values against realized quan-
tities, ranking models in this way may be misleading because the parameters of the
each specification are estimated ex-post. Consequently, the resulting R? will incor-
porate a look-back bias that will overstate the actual degree of forecast accuracy. A
preferred methodology is to use data known up to time ¢ in order to estimate the
parameters corresponding to equations (9) and (10) and obtain the time ¢ forecast of
the target quantity RV, .ym, say RVf;t +x- According to the adopted loss function,
competing models can be then evaluated according to their realized losses.

In this study, forecast comparisons are made by relying on the parametric family
of “robust” loss functions defined in Patton (2006). This appears as a natural choice
since, as shown in Patton (2006), such loss functions have the attractive property
that they deliver consistent rankings of realized variance forecasts even when the
underlying latent target quantity is replaced by a noisy, but conditionally unbiased,
proxy. For a particular forecast produced by model i at time ¢, the employed loss
functions are defined as:

MSEi; : L(RVieyn, RV i) = (RVisprr — RV nr)’ (11)
RViiin

QLIKE;;: L(RViin, R‘/;,I;,tJrH) = log(RV;iHH) to5oF
RV vom

(12)

9Tt should be noted that this paper does not investigate the relative performance of volatility
forecasts obtained by option prices versus those constructed using solely historical return infor-
mation. In order to do so, one should explicitly model the volatility process (using past returns)
instead of merely relying on this naive (i.e. the lag value of RV;) forecast.

14



The first loss function is the well-studied Mean-Squared-Error (MSE), while the
second one is the QLIKE function discussed in Bollerslev et al (1994). One important
difference between the two is that the MSE criterion treats positive and negative
errors equally, while the QLIKE loss function imposes a larger penalty when the
forecast underestimates the realized quantity. Given that positive volatility spikes
are generally associated with bad news and that investors treat gains and losses
differently, this can be considered as a desirable property.

Pair-wise comparisons of volatility forecasts are implemented using the test of
Diebold and Mariano (1995). Specifically, defining the average loss differential dr
for a given loss function L as

T
1
dT - T Z di,j,t ) (13>
=1
where u;y = L(RV; 44 m, RV;?HH) and d;j = Ui — Ujy (14)

a Diebold-Mariano test (DM henceforth) of equal predictive accuracy can be con-
ducted as a standard t-test using the following statistic:

DMy = VTdr : (15)

T_1V[ﬁdT]

where V is a consistent estimator of asymptotic variance of v/Tdy. Under the null
hypothesis of equal predictive ability the test statistic has, asymptotically, a stan-
dard normal distribution™]

5 Empirical Results

Throughout this section, only the case when volatility is the forecast quantity is
analyzed. The results for the variance case point towards the same findings, so we
omit this part for reasons of brevity. Similar tables as those presented in this section,
along with a brief discussion of the results, can be found in Appendix BE

10Tn this paper the relevant hypothesis are examined using two-tailed tests. The asymptotic
variance estimates are computed using the Newey-West (1986) estimator with 10 lags.

1 One case that might be of interest for the reader is that of the out-of-sample daily regressions
results, where the CIV4 measure performs worst on average than some other measures.
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5.1 Monthly Horizon
5.1.1 In-Sample

We begin the discussion of the results from the monthly horizon case. Table 1
presents pair-wise comparisons between the competing alternatives. These compar-
isons are made using both the univariate Minzer-Zarnowitz (MZ) and the bivariate
regression specifications (presented in parenthesis). The statistics in Table 1 indicate
the proportion of firms for which a reference model, presented in rows, exhibited a
higher R? than the column model.

Both MZ and encompassing regressions point towards similar findings. The
CIV4 measure, which corresponds to a wide corridor, emerges as the best performer
on average. When compared to other forecasts, CIV4 produces a larger R? in the
MZ (encompassing) regressions for 73% (73%) of the firms when compared with
MFIV and for 60% (67%) of the firms for the case of BSIV. The outperformance
of CIV4 is even greater when the other measures are considered, with the statistics
ranging from 77% to 100%. The next best performers are the MFIV and BSIV,
with the MFIV being marginally better in the MZ regression and marginally worst
in the encompassing regression framework.

Focusing exclusively on the corridor volatility measures, two patters emerge.
The first one is that the explanatory power in the OLS regressions increases mono-
tonically as we move towards wider corridor measures (i.e. from CIV1 to CIV4),
but as we move from the wide corridor CIV4 measure towards the full MFIV mea-
sure the explanatory power decreases. The second pattern is that DVOL appears
more informative than the UVOL measure. In particular, DVOL produces a higher
R? than UVOL for 80% and 67% of the DJIA components, using univariate and
bivariate regression specifications respectively.

5.1.2 Out-of-Sample

Pair-wise, out-of-sample, comparisons between all models are presented in Table
2, where each element i, j in the table corresponds to the proportion of firms for
which the model in row 7 exhibited a smaller realized loss compared to the model
in column j. Starting from the univariate regressions, CIV4 provides again the
most accurate volatility forecasts on average, irrespective of the loss function. In
terms of MSE (QLIKE), CIV4 produces a lower realized loss for 63% (63%) of the
firms when compared to the MFIV, 67% (77%) when compared to the BS and 57%
(70%) when the competing model relies on the DVOL measure. CIV4 also provides
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TABLE 1
Comparison of Volatility Forecasts, In-Sample, Monthly Horizon

Univariate (Bivariate) OLS Regressions

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.57 (0.47) 0.87 (0.73) 0.8 (0.67) 0.67 (0.5) 0.27 (0.27) 0.67 (0.7) 1 (0.93)
BSIV  0.43 (0.53) - 0.93 (0.93) 0.93 (0.8) 0.83(0.7) 0.33 (0.4) 0.57 (0.6) 1 (0.93)
CIV1  0.13 (0.27) 0.07 (0.07) - 0.03 (0.17) 0.03 (0.07) 0.1 (0.17) 0.4 (0.47) 0.77 (0.77)
CIV2 0.2 (0.33) 0.07 (0.2) 0.97 (0.83) - 0.03 (0.1) 0.17 (0.23) 0.43 (0.53) 0.87 (0.8)
CIV3 0.33 (0.5)  0.17 (0.3) 0.97 (0.93) 0.97 (0.9) - 0.23 (0.3) 0.47 (0.57) 0.9 (0.87)
CIV4  0.73 (0.73) 0.67 (0.6) 0.9 (0.83) 0.83 (0.77) 0.77 (0.7) - 0.77 (0.77) 1 (0.93)
DVOL  0.33(0.3) 0.3 (0.4) 0.6 (0.53) 0.57 (0.47) 0.53 (0.43) 0.23 (0.23) - 0.8 (0.67)

UVOL  0(0.07)  0(0.07) 0.23(0.23) 0.13(0.2) 0.1(0.13) 0(0.07) 0.2 (0.33)

NOTE: Each element 4, j in the table refers to the proportion of firms for which the reference forecast model in
row 4 exhibited a higher R? than a competing alternative, presented in column j. The OLS models are those of
Section4.2.1.

better results on average than the CIV1, CIV2, CIV3 and UVOL measures with
the relevant statistics being 80 % (80%), 70% (80%), 63 % (63%) and 87 % (93%),
respectively. The second best measure appears to be the MFIV, whose forecasts
are found somewhat more accurate than those of the BSIV (57% for the MSE and
53% for the QLIKE criterion). MFIV also ranks favorably against the rest of the
measures. The performance of narrow CIV forecasts is again poor, while UVOL
delivers the worst results. Notably, DVOL is superior to its natural counterpart
(UVOL) for the overwhelming majority of the firms in the sample (73% under the
MSE and 80% under the QLIKE criterion).

Additional evidence are provided by the Diebold-Mariano (DM) tests of equal
predictive ability[?] From tests that are conducted at the 5% level it is evident that
UVOL produces the least efficient forecasts, as the null of equal predictive ability is
often rejected in favor of other alternatives. When the loss is defined by the MSE
function, the percentage of firms for which UVOL is rejected ranges from 13% to
30%, while rejection rates are even higher for the case of the QLIKE, where the
corresponding statistics range from 23% to 53%. CIV1 and CIV2 are also quite
frequently rejected in favor of the BSIV, MFIV or broader corridor measures. It is
difficult to draw a firm conclusion from the comparative evaluation of the MFIV,
BSIV and CIV4 expectations because the rejection rates are generally low. The
only exception is the difference between BSIV and CIV4 measures where the null,
under a QLIKE loss, is rejected 17% of the time in favor of the CIV4 while the
opposite is never true. Lastly, the substantial difference between the DVOL and
UVOL rejection rates further confirms the significant differences in their forecasting

12The detailed results corresponding to these DM tests can be found in Appendix C.
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TABLE 2
Comparison of Volatility Forecasts, Out-of-Sample, Monthly Horizon

Panel A. Univariate Models: RV, y1g = a; + Bil Vi + €441

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.57 (0.53) 0.8 (0.77) 0.7 (0.63) 0.6 (0.6) 0.37 (0.37) 0.63 (0.67) 0.9 (0.97)
BSIV 0.3 (0.47) - 0.83 (0.83) 0.8 (0.8) 0.67 (0.63) 0.33 (0.23) 0.53 (0.6) 0.87 (0.93)
CIvi 0.2 (0.23) 0.17 (0.17) - 0.13 (0.13) 0.13 (0.1) 0.2 (0.2) 0.33 (0.33) 0.83 (0.87)
CIV2 0.3 (0.37) 0.2(0.2) 0.87 (0.87) - 0.13 (0.13) 0.3 (0.2) 0.4 (0.47) 0.87 (0.93)
CIV3 0.4 (0.4) 0.33(0.37) 0.87 (0.9) 0.87 (0.87) - 0.37 (0.33) 0.5 (0.53) 0.9 (0.93)
CIV4  0.63 (0.63) 0.67 (0.77) 0.8 (0.8) 0.7 (0.8) 0.63 (0.67) - 0.57 (0.7)  0.87 (0.93)

DVOL  0.37 (0.33) 0.47 (0.4) 0.67 (0.67) 0.6 (0.53) 0.5 (0.47)  0.43 (0.3) - 0.73 (0.8)
UVOL 0.1 (0.03) 0.13 (0.07) 0.17 (0.13) 0.13 (0.07) 0.1 (0.07) 0.13 (0.07) 0.27 (0.2) -

Panel B. Bivariate Models: RV, yyn = a; + BidViy + Bi rv RBVi—m e + €441

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.6 (0.47) 0.7 (0.73) 0.63 (0.67) 0.63 (0.57) 0.23 (0.37) 0.63 (0.67) 0.9 (0.93)
BSIV 0.4 (0.53) - 0.83 (0.77) 0.77 (0.73) 0.67 (0.67) 0.33 (0.37) 0.6 (0.67) 0.9 (0.93)
CIV1 0.3 (0.27) 0.17 (0.23) 0.2 (0.23) 0.17 (0.17) 0.27 (0.27) 0.4 (0.4) 0.9 (0.9)
CIV2  0.37 (0.33) 0.23 (0.27) 0.8 (0.77) - 0.17 (0.2)  0.33 (0.3) 0.5 (0.53) 0.93 (0.93)
CIV3  0.37 (0.43) 0.33 (0.33) 0.83 (0.83) 0.83 (0.8) - 0.33 (0.37) 0.5 (0.63) 0.9 (0.93)
CIV4  0.77 (0.63) 0.67 (0.63) 0.73 (0.73) 0.67 (0.7) 0.67 (0.63) - 0.67 (0.73) 0.9 (0.93)
DVOL  0.37 (0.33) 0.4 (0.33) 0.6 (0.6) 0.5 (0.47) 0.5 (0.37) 0.33 (0.27) - 0.67 (0.83)

UVOL 0.1 (0.07) 0.1(0.07) 0.1 (0.1) 0.07 (0.07) 0.1(0.07) 0.1(0.07) 0.33(0.17) -

NOTE: Proportion of firms for which a reference model i, represented in rows, exhibited a smaller realized loss
than a competing alternative, represented in columns, under the MSE (QLIKE) criterion. The model parame-
ters are estimated by rolling regressions using alternative implied volatility (IV) specifications and monthly rea-
lized volatilities (RV).

performance.

A similar picture is given by the DM tests conducted at the 10% level. What
stands out is that under the MSE (QLIKE) loss function CIV4 is significantly more
accurate than the MFIV and BSIV measures for 13% (13%) and 20% (23%) of the
firms respectively. The rejection rates that correspond to the opposite case are lower,
with the relevant statistics being 13% (7%) for the BSIV case, while MFIV forecasts
do not significantly outperform CIV4 forecasts for any of the 30 stocks. Regarding
the relative performance of MFIV and BSIV, their differences are small. Bivariate
forecast models, where lagged realized volatility is also included in the rolling window
regressions, do not alter the findings that emerged from the univariate specifications.
For a substantial majority of the firms, CIV4 again produces the smaller realized
loss irrespective of the implied volatility measure included the in alternative model.
Specifically, CIV4 produces smaller MSE (QLIKE) losses for 77% (63%) of the firms
when the alternative model contains the MFIV and 67% (63%) when the model uses
BS implied volatilities. The same holds true for the rest of the forecast models with
the corresponding statistics ranging from 63% to 93%.
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Further support regarding the superiority of the CIV4 when compared to the
MFIV is provided by the DM statistics. For tests at conducted at the 10% level,
CIV4 significantly outperforms a MFIV specification for 20% of the firms using under
either a MSE or a QLIKE loss, while the respective hypothesis is never rejected in
favor of the MFIV.

Forecast comparisons between BSIV and MFIV again provide mixed results.
Under a MSE loss, MFIV produces better results than the BSIV forecasts for 60% of
the firms, however, the DM tests do not offer further support of superior forecasting
accuracy since the null of equal predictive accuracy is rejected, at the 10% level,
in favor of MFIV for only one stock. On the contrary, DM test conducted at the
same significance level indicate that an encompassing model that includes BSIV
implied volatilities is significantly better than the MFIV measure for 13% of the
firms. When the QLIKE function is employed, the performance of BSIV and MFIV
models is essentially indistinguishable, since the corresponding statistics are very
similar.

In agreement with the in-sample findings, CIV measures perform better as we
move from CIV1 to CIV4. This can be either due to the fact that the corridor
measure is getting closer to the definition of the target quantity or because fur-
ther volatility information is contained in away-from-the-money options. On the
other hand, MFIV is outperformed by CIV4, presumably reflecting the difficulty of
estimating the tails of the risk-neutral density with acceptable accuracy.

5.2 Daily Horizon
5.2.1 In-Sample

We now turn to the daily horizon case. Table 3 contains the results of all pair-
wise comparisons, in terms of R?, using the MZ and the “encompassing” forecast
regressions. Since the results are generally the same irrespective of the specification,
they are discussed jointly.

When judged against other models, CIV4 again produces a higher R? for the
majority of the firms. For the MZ (encompassing) regression case the relevant
statistics are 67% (70%) for the MFIV, 63% (60%) for the BSIV and 80% (77%) for
the CIV3. For the rest of the forecast models, CIV4 displays a higher R? for the
overwhelming majority of the firms, with the statistics ranging from 87% to 100%.
MFIV comes as second best model in this respect, surpassing BSIV for 57% of the
firms for either OLS specification.
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TABLE 3
Comparison of Volatility Forecasts, In-Sample, Daily Horizon

Univariate (Bivariate) OLS Regressions

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV B 0.57 (0.57) 0.97 (0.93) 08 (0.8) 0.7 (0.63) 0.33 (0.3) 0.97 (0.93) 0.97 (0.93)
BSIV 0.3 (0.43) - 1(1) 1(0.97) 0.97 (0.93) 0.37 (0.4) 0.87 (0.83) 0.97 (0.97)
CIVI  0.03(0.07) 0 (0) - 0 (0) 0 (0) 0 (0) 0.53 (0.5) 0.9 (0.87)
CIV2 0.2 (0.2)  0(0.03) 1(1) - 0(0)  0.07(0.13) 0.7 (0.7)  0.93 (0.9)
CIvV3 0.3 (0.37) 0.03 (0.07) 1 (1) 1(1) - 0.2 (0.23) 0.8 (0.8) 0.97 (0.93)
CIV4 0.67 (0.7)  0.63 (0.6) 1(1) 093 (0.87) 0.8 (0.77) - 0.93 (0.93) 0.97 (0.93)
DVOL  0.03 (0.07) 0.13 (0.17) 0.47 (0.5) 0.3 (0.3) 0.2 (0.2) 0.07 (0.07) - 0.73 (0.73)

UVOL ~ 0.03 (0.07) 0.03 (0.03) 0.1 (0.13) 0.07 (0.1) 0.03 (0.07) 0.03 (0.07) 0.27 (0.27) -

NOTE: Each element 4, j in the table refers to the proportion of firms for which the reference forecast model in
row 4 exhibited a higher R? than a competing alternative, presented in column j. The OLS models are those of
Section 4.2.1.

The main patterns discussed in the monthly horizon case survive in the daily
setting as well. Specifically, volatility expectations conditioned on narrow corridors
perform rather poorly, while DVOL, although also exhibiting quite poor results, is
again better that UVOL for 73% of the firms.

5.2.2 Out-of-Sample

Out-of-sample results of the rolling regressions, presented in Table 4, continue to of-
fer support for the CIV4 measure. The proportion of firms for which CIV4 produces
lower losses compared to the BSIV model is still above 50%, although the differ-
ences are not large. Particularly, CIV4-based forecasts are more accurate for 57%
of the firms under both the MSE and the QLIKE loss functions at the univariate
regressions, while the corresponding proportion for the encompassing specifications
is 53% and 63%, for the MSE and the QLIKE respectively. Tests for equal predictive
ability usually indicate very low rejection rates in favor of either model, although
the number of firms for which the null is rejected in favor of the CIV4 forecasts is
never lower than the number of significant rejections that correspond to the opposite
case. A similar picture is found when CIV4 is compared to the MFIV. This time,
the proportion of firms for which CIV4 is more accurate ranges from 67% to 73%
for different OLS models and loss functions. The DM statistics, however, display
very low rejection rates.

A contest for the second best performer is between models containing the BSIV
and the MFIV measures but, once more, it is impossible to draw a clear winner
between the two. Forecast specifications that contain BSIV deliver better forecasts
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TABLE 4
Comparison of Volatility Forecasts, Out-of-Sample, Daily Horizon

Panel A. Univariate Models: RV, i1y = a; + BilVie + €441

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.47 (0.53) 0.97 (1) 0.83 (0.87) 0.7 (0.77) 0.27 (0.33) 1 (1) (D)
BSIV  0.53 (0.47) - 1(1) 1(1) 0.93 (0.9) 0.7 (0.37) 1 (1) 1(1)
CIV1 0.03 (0) 0 (0) - 0 (0) 0 (0) 0 (0) 0.47 (0.5)  0.77 (0.8)
CIV2 017 (0.13) 0 (0) 1(1) - 0 (0) 0.1 (0.1) 0.7 (0.77) 0.87 (0.93)
CIV3 0.3 (0.23) 0.07 (0.1) 1 (1) 1(1) - 0.27 (0.13) 0.93 (0.93) 1 (0.97)
CIV4  0.73 (0.67) 0.53 (0.63) 1 (1) 0.9 (0.9)  0.73 (0.87) - 1(1) 1(1)
DVOL 0 (0) 0(0)  0.53(0.5) 0.3(0.23) 0.07(0.07) 0 (0) - 0.63 (0.77)
UVOL 0 (0) 0(0)  0.23(0.2) 0.13(0.07) 0 (0.03) 0(0)  0.37 (0.23)

Panel B. Bivariate Models: RV, yyn = a; + BidViy + Bi rv RBVi—m e + €441

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.4 (0.57) 0.93 (0.97) 0.73 (0.9) 0.57 (0.77) 0.3 (0.37)  0.97 (1) 0.97 (1)
BSIV 0.6 (0.43) - 1(1) 1(0.97) 0.87 (0.9) 0.43 (0.33) 0.97 (1) 1 (1)
CIVI  0.07 (0.03) 0 (0) - 0 (0) 0 (0) 0.03 (0) 0.43 (0.5)  0.83 (0.9)
CIV2 0.27 (0.1) 0 (0.03) 1(1) - 0 (0) 0.07 (0.1) 0.7 (0.73) 0.9 (0.93)
CIV3 043 (0.23) 0.13 (0.1) 1(1) 1(1) - 0.27 (0.13) 0.9 (0.93)  0.97 (0.97)
CIV4 0.7 (0.63) 0.57 (0.67)  0.97 (1)  0.93 (0.9) 0.73 (0.87) - 1(1) 0.97 (1)
DVOL  0.03(0)  0.03(0) 0.57(0.5) 0.3(0.27) 0.1 (0.07) 0 (0) - 0.63 (0.7)
UVOL  0.03 (0) 0 (0) 0.17 (0.1) 0.1 (0.07) 0.03 (0.03) 0.03 (0) 0.37 (0.3) -

NOTE: Proportion of firms for which a reference model i, represented in rows, exhibited a smaller realized loss
than a competing alternative, represented in columns, under the MSE (QLIKE) criterion. The model parame-
ters are estimated by rolling regressions using alternative implied volatility (IV) specifications and daily realized
volatilities (RV).

for the majority of the firms under a MSE loss (53% and 60% for the univariate and
bivariate specifications respectively) but the ranking is reversed under a QLIKE loss,
with the statistics favoring the MFIV (53% and 60% for the univariate and bivariate
specifications respectively).

6 Conclusion

In this paper the forecasting performance of different option-implied volatility mea-
sures was evaluated and compared for the case of the DJIA components. Along
with the popular Black-Scholes and “model-free” implied volatility expectations, the
recently suggested corridor implied volatility (CIV) measures were included in the
analysis. In contrast to model-free implied volatility, corridor volatility contracts ac-
cumulate return variation only when the futures price lies within two, pre-specified,
barrier levels. For this reason, only options that have strike prices within the cor-
ridor range are required to compute the corresponding option-implied expectations.
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As the corridor becomes wide enough so as to contain all the asset levels for which
the risk-neutral measure assigns a positive probability, the definitions of corridor
and model-free implied volatility coincide.

Along with at-the-money Black-Scholes and model-free implied volatilities, six
corridor-related measures were included in the empirical analysis. Using realized
volatility or variance as the target quantity, univariate and bivariate, regression-
based, forecast models were evaluated for two distinct horizons (daily and monthly).
Pair-wise comparisons were made using three different ranking criteria (R?, MSE,
QLIKE). Ex-post realizations of return variation were computed using intra-day
data, so as to alleviate the effect of measurement errors.

When the forecast quantity was realized volatility, a particular CIV measure with
a wide corridor width delivered the most accurate forecasts for the majority of the
firms, in all settings and for all possible pair-wise comparisons. When the forecast
quantity was realized variance, the same was true in 9 out of the 12 possible settings.
Formal tests of predictive accuracy, although still favoring the same measure, did not
clearly establish its superiority. This is perhaps natural, given that most measures
share a similar information set. As far as model-free and Black-Scholes forecasts are
concerned, it was impossible to draw a clear winner.

The results of this paper indicate that systematic differences exist in the per-
formance of several CIV measures. For the sample of the 30 DJIA stocks, CIV
forecasts became increasingly more accurate as the width of the corridor increased.
When, however, the corridor became so wide so as to include extreme strikes, and
hence equal the full model-free volatility estimate, their forecast accuracy weakened.
This is not surprising, given that the tails of the risk-neutral density are notoriously
difficult to estimate.

The results of this study are in line with the work of Andersen and Bondarenko
(2007) who also favor a CIV approach in their S&P 500 study. Nevertheless, it is
important to consider other asset classes and markets in the analysis in order to
firmly establish the overall usefulness of such measures in the context of volatility
forecasting. Given that the determinants of option premiums, as well the liquidity
characteristics of the underlying markets, exhibit substantial differences from asset
to asset, further empirical studies are required.
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Appendix

A. Construction of the Dataset

To construct the options dataset for each day, the following screening criteria are
used:

1) Option contracts whose time-to-maturity is 8 days or less are ignored.

2) Option prices that violate standard no arbitrage restrictions are excluded from
the dataset. Monotonicity and convexity restrictions are checked using the price
bounds of Bertsimas and Popescu (2002).

3) Only options with strictly positive ask prices and strictly positive bid-ask spreads
are considered.

4) Contracts whose absolute value of delta (provided by OptionMetrics) is above
0.75 are discarded. This is because, as the early exercise premium is increasing with
moneyness, the provided implied volatilities are more susceptible to approximation
errors. Moreover, deep in-the-money options are usually the least liquid.

5) Using a similar argumentation, when both puts and calls with the same strike
and maturity exist, only the implied volatility of the out-of-money contract is used.

6) From each daily panel, those options that have the two closest maturities are
selected. When one of these two contract sets has less than 3 options, then it is
replaced by the next closest maturity set. If again, at least one of the contract sets
has less than 3 options, then no data are extracted for this particular date and the
implied measures are replaced with their last known values.

7) Finally, when for a given maturity at least four contracts with non-zero vol-

ume exist, options that have zero volume are eliminated. The reason is that the
prices of such options volume are likely to be stale.
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B. Forecast Comparison Results, Variance

Tables Al to A3 contain the results of the pair-wise comparisons when the target
quantity is realized variance. Table A1 corresponds to the in-sample regression case,
where the competing alternatives are ranked according to the R? criterion. Except
for the daily horizon case where the statistics for the CIV4 and BSIV measures are
equal, CIV4 outperforms other alternatives irrespective of the setting (i.e. daily or
monthly horizon, univariate or bivariate regression).

Out-of-sample comparisons in terms of MSE or QLIKE losses for the case of
monthly variance forecasts (Table A2) also favor CIV4. While CIV4 and MFIV
exhibit equal predictive ability in the univariate models under MSE loss, CIV4
produces the most accurate forecasts for the majority of the firms for any other
comparison (univariate or bivariate models, MSE or QLIKE).

The only setting at which the CIV4 measure is somewhat problematic is the,
out-of-sample, daily variance forecasting exercise (Table A3). Specifically, univariate
models that include BSIV produce more accurate forecasts for 57% of the firms,
while in the bivariate regression framework BSIV is more accurate for 60% of the
firms under MSE but less accurate for 63% of the firms under QLIKE. Furthermore,
MFIV (marginally) outperforms CIV4 in the bivariate regressions in terms of QLIKE
losses, while the bivariate models that contain CIV3 or CIV4 have equal statistics
under MSE loss. For all other comparisons CIV4 emerges as the best performer.
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TABLE Al
Comparison of Variance Forecasts, In-Sample

Panel A. Daily Horizon, Univariate (Bivariate) OLS Regressions

MFIV BSIV CIV1 CIV2 CIV3 CIv4 DVOL UVOL
MFIV - 0.53 (0.53)  0.73 (0.7) 0.6 (0.6)  0.57 (0.57) 0.3 (0.27) 0.9 (0.83)  0.77 (0.77)
BSIV  0.47 (0.47) . 0.9 (0.9) 087 (0.87) 0.7 (0.67) 0.5 (0.5) 0.8 (0.77) 0.8 (0.8)
CIV1 027 (0.3)  0.1(0.1) . 0.07 (0.07)  0.07 (0.07) 0.2 (0.2) 0.6 (0.6) 0.7 (0.73)
CIV2 04 (0.4)  0.13(0.13) 0.93 (0.93) - 0.13 (0.17) 0.3 (0.3) 0.7 (0.7)  0.73 (0.73)
CIV3  0.43 (0.43) 0.3 (0.33) 0.93 (0.93) 0.87 (0.83) - 0.4 (0.4)  0.73 (0.73)  0.73 (0.73)
CIV4 0.7 (0.73) 0.5 (0.5) 0.8 (0.8) 0.7 (0.7) 0.6 (0.6) . 0.9 (0.83)  0.77 (0.77)
DVOL 0.1 (0.17)  0.2(0.23) 0.4 (0.4)  0.3(0.3) 027 (0.27) 0.1 (0.17) - 0.53 (0.53)
UVOL  0.23 (0.23) 0.2 (0.2) 0.3 (0.27) 0.27 (0.27) 0.27 (0.27) 0.23 (0.23)  0.47 (0.47) -
Panel B. Monthly Horizon, Univariate (Bivariate) OLS Regressions

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.67 (0.7)  0.77 (0.77) 0.73 (0.73) 0.7 (0.67)  0.47 (0.47) 0.6 (0.6) 0.9 (0.9)
BSIV  0.33 (0.3) . 0.9 (0.87)  0.83(0.77) 0.7 (0.7)  0.33(0.33) 0.53 (0.57) 0.9 (0.87)
CIVI  0.23 (0.23) 0.1 (0.13) . 0.1(0.13) 0.1 (0.13) 0.2 (0.23)  0.33 (0.37)  0.67 (0.63)
CIV2  0.27 (0.27) 0.17 (0.23) 0.9 (0.87) - 0.07 (0.17)  0.23 (0.23) 0.4 (0.4)  0.77 (0.73)
CIV3  0.3(0.33)  0.3(0.3) 0.9 (0.87)  0.93 (0.83) . 0.3 (0.3) 0.5 (0.5)  0.87 (0.83)
CIV4 053 (0.53) 0.67 (0.67) 0.8 (0.77)  0.77 (0.77) 0.7 (0.7) . 0.6 (0.6) 0.93 (0.9)
DVOL 0.4 (0.4)  0.47 (0.43) 0.67 (0.63) 0.6 (0.6) 0.5 (0.5) 0.4 (0.4) - 0.77 (0.73)
UVOL 0.1 (0.1)  0.1(0.13) 0.33 (0.37) 0.23 (0.27) 0.13 (0.17)  0.07 (0.1)  0.23 (0.27) -

NOTE: Proportion of firms for which a reference model %, represented in rows, exhibited a higher R? than a competing

alternative, represented in columns.
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TABLE A2
Comparison of Variance Forecasts, Out-of-Sample, Monthly Horizon

Panel A. Univariate Models: RV, y+n = a; + Bil Vit + €41

MFIV BSIV CIV1 CIV2 CIV3 CIv4 DVOL UVOL
MFIV - 0.67 (0.53) 0.7 (0.7) 0.7 (0.67)  0.67 (0.6) 0.5 (0.4) 0.7 (0.6) 0.8 (0.9)
BSIV  0.33 (0.47) 0.77 (0.77)  0.77 (0.77)  0.67 (0.7) 0.4 (0.43)  0.57 (0.57)  0.73 (0.9)
CIVI 03 (0.3)  0.23 (0.23) - 017 (0.2)  0.2(0.27) 0.2(0.27)  0.4(0.3) 057 (0.8)
CIV2 0.3 (0.33) 0.23 (0.23) 0.83 (0.8) 0.23 (0.23) 0.27 (0.27) 0.43 (0.4) 0.63 (0.83)
CIV3 033 (0.4) 0.33(0.3) 0.8 (0.73)  0.77 (0.77) - 0.37 (0.27)  0.53 (0.4) 0.7 (0.93)
CIV4 0.5 (0.6) 0.6 (0.57) 0.8(0.73)  0.73 (0.73)  0.63 (0.73) . 0.7 (0.63) 0.8 (0.9)
DVOL 0.3 (0.4) 043 (0.43) 0.6 (0.7) 057 (0.6)  0.47 (0.6) 0.3 (0.37) § 0.7 (0.8)
UVOL 0.2 (0.1) 027 (0.1) 043 (0.2) 037 (0.17) 0.3 (0.07) 0.2 (0.1) 0.3 (0.2) -
Panel B. Bivariate Models: RV; ;yg = o; + 8iIVi+ + Bi rv RVi_ i + €041

MFIV BSIV CIV1 CIV2 CIV3 CIvV4 DVOL UVOL
MFIV - 0.6 (0.53)  0.73 (0.63) 0.73 (0.67) 0.7 (0.57)  0.47 (0.37)  0.67 (0.7) 0.77 (0.9)
BSIV 0.4 (0.47) . 0.8 (0.7)  0.77 (0.63) 0.77 (0.67) 0.4 (0.37) 0.6 (0.67) 0.73 (0.9)
CIVI 027 (0.37) 0.2 (0.3) - 027 (0.3)  0.3(0.3) 027 (0.3) 043 (0.4)  0.53 (0.83)
CIV2 027 (0.33) 0.23 (0.37)  0.73 (0.7) - 0.2 (0.3)  0.27(0.33) 0.47 (0.43) 0.7 (0.87)
CIV3 0.3 (0.43) 0.23(0.33) 0.7 (0.7) 0.8 (0.7) . 0.33 (0.37) 0.5 (0.53) 7 (0.87)
CIV4 053 (0.63) 0.6 (0.63)  0.73 (0.7)  0.73 (0.67)  0.67 (0.63) - 0.67 (0.73)  0.73 (0.9)
DVOL  0.33 (0.3) 0.4 (0.33)  0.57 (0.6) 0.53 (0.57) 0.5 (0.47)  0.33 (0.27) - 0.63 (0.8)
UVOL  0.23 (0.1) 027 (0.1) 047 (0.17) 0.3 (0.13) 0.3 (0.13)  0.27 (0.1)  0.37 (0.2) -

NOTE: Proportion of firms for which a reference model i, represented in rows, exhibited a smaller realized loss than a

competing alternative, represented in columns, under the MSE (QLIKE) criterion. The model parameters are estimated

by rolling regressions using alternative implied variance (IV) specifications and monthly realized variances (RV).

30



TABLE A3
Comparison of Variance Forecasts, Out-of-Sample, Daily Horizon

Panel A. Univariate Models: RV, y+n = a; + Bil Vit + €41

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV 0.43 (0.43) 0.77 (0.77) 0.6 (0.6)  0.47 (0.47) 0.4 (0.4)  0.93 (0.93) 0.83 (0.83)
BSIV 057 (0 57) - 0.83 (0.83) 0.83 (0.83) 0.73 (0.73) 0.57 (0.57) 0.83 (0.83)  0.83 (0.83)
CIV1 023 (0.23) 0.17 (0.17) 0.17 (0.17) 1(0.1)  0.17 (0.17) 6 (0.6) 0.6 (0.6)
CIV2 4(0.4) 017 (0.17) 0.83 (0 83) - 0.17 (0.17)  0.33 (0.33)  0.73 (0.73)  0.67 (0.67)
CIV3 053 (0.53) 0.27 (0.27) 9 (0.9)  0.83(0.83) 0.47 (0.47) 8 (0.8) 0.8 (0.8)
CIV4 6 (0.6)  0.43 (0.43) 0.83 (0.83) 0.67 (0.67) 0.53 (0 53) - 0.93 (0.93)  0.83 (0.83)
DVOL  0.07 (0.07) 0.17 (0.17) 4(0.4)  0.27 (0.27) 2(0.2)  0.07 (0.07) - 0.57 (0.57)
UVOL  0.17 (0.17)  0.17 (0.17) 4(0.4)  0.33(0.33) 2(0.2) 017 (0.17)  0.43 (0.43) -

Panel B. Bivariate Models: RV; ;yg = o; + 8iIVi+ + Bi rv RVi_ i + €041

MFIV BSIV CIvi CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.5 (0.57)  0.73 (0.63) 0.57 (0.57) 0.47 (0.63) 0.47 (0.53)  0.93 (0.7) 0.8 (0.6)
BSIV 0.5 (0.43) - 0.83 (0.5)  0.73 (0.53) 0.7 (0.63) 0.6 (0.37)  0.87 (0.77)  0.87 (0.63)
CIV1 027 (0.37)  0.17 (0.5) - 0.07 (0.37) 0.1 (0.47)  0.23 (0.4)  0.67 (0.47)  0.63 (0.6)
CIV2 0.3 (0.43) 0.27 (0.47) 0.93 (0.63) - 0.2 (0.47) 03 (04) 0.7 (0.67)  0.83 (0.67)
CIV3 0.3 (0.37) 0.3 (0.37) 0.9 (0.53) 0.8 (0.53) - 0.5 (0.33) 0.8 (0.63) 0.83 (0.6)
CIV4 053 (0.47) 0.4 (0.63) 0.77 (0.6) 0.7 (0.6) 0.5 (0.67) - 0.93 (0.73)  0.83 (0.6)
DVOL  0.07 (0.3) 0.13(0.23) 0.33 (0.53) 0.3 (0.33) 0.2 (0.37)  0.07 (0.27) - 0.5 (0.7)

UVOL 0.2 (0.4) 0.13(0.37) 0.37 (0.4) 0.17 (0.33)  0.17 (0.4)  0.17 (0.4) 0.5 (0.3) -

NOTE: Proportion of firms for which a reference model i, represented in rows, exhibited a smaller realized loss than a
competing alternative, represented in columns, under the MSE (QLIKE) criterion. The model parameters are estimated

by rolling regressions using alternative implied variance (IV) specifications and daily realized variances (RV).
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C. Diebold-Mariano Tests

TABLE B1
Diebold-Mariano Tests, Monthly Horizon, Volatility, MSE

Panel A. Univariate Models: RV; s10 = a; + Bil Vit + €141

MFTV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.03 (0.03) 0.2 (0.33)  0.13(0.2)  0.03 (0.17) 0 (0) 0.07 (0.23) 0.3 (0.43)
BSIV  0.03 (0.1) - 0.23 (0.4)  0.2(0.37) 017 (0.27) 0.07 (0.13) 0.1 (0.17)  0.27 (0.43)
CIV1  0.03 (0.07) 0 (0.03) - 0 (0.03) 0 (0.07)  0.03(0.07) 0.13 (0.13) 0.17 (0.23)
CIV2  0.03 (0.1) 0.03 (0.07) 0.4 (0.43) - 0.03 (0.07)  0.07 (0.1)  0.13 (0.17) 0.2 (0.33)
CIV3 0 (0.1) 0 (0.03)  0.23 (0.37)  0.17 (0.33) - 0.03 (0.1) 0.1 (0.17)  0.17 (0.37)
CIV4  0.07 (0.13)  0.03 (0.2)  0.2(0.33)  0.17 (0.3)  0.07 (0.23) - 0.1 (0.3)  0.27 (0.47)
DVOL  0.07 (0.1)  0.07 (0.07) 0.07 (0.17) 0.07 (0.13)  0.07 (0.1)  0.07 (0.07) - 0.13 (0.23)
UVOL 0 (0.03) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0.03)  0.03 (0.03) -

Panel B. Bivariate Models: RV, sy g = o; + 8 IV + B, rv RVi—mt + €041

MFIV BSIV CIvi CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0(0.03)  0.13(0.2) 0 (0.17) 0 (0.1) 0 (0) 0.07 (0.2)  0.23 (0.33)
BSIV  0.07 (0.13) - 0.2 (0.43)  02(0.3)  0.07(0.2) 003 (0.1) 0.13(0.2)  0.23(0.33)
CIV1  0.07 (0.07) 0.07 (0.07) - 0 (0.07)  0.07 (0.07) 0.07 (0.07) 0.1 (0.13) 0.1 (0.2)
CIV2  0.03 (0.07) 0.03 (0.07) 0.27 (0.33) - 0.07 (0.07)  0.07 (0.07) 1(0.17)  0.13 (0.27)
CIV3  0.03(0.07)  0(0.03) 027 (0.4) 0.2 (0.4) - 0.03 (0.1) 0.1 (0.2) 0.2 (0.23)
CIV4  0.07 (0.2) 0.07(0.13) 0.17 (0.3) 0.1 (0.23)  0.07 (0.17) - 0.1 (0.17)  0.17 (0.37)
DVOL  0.03 (0.03) 0.07 (0.07)  0.07 (0.1)  0.07 (0.07) 0.07 (0.07) 0.07 (0.07) - 0.13 (0.17)
UVOL  0.03 (0.03) 0 (0) 0 (0) 0 (0) 0 (0) 0.03 (0.03)  0.03 (0.03) -

NOTE: Proportion of firms for which the null hypothesis of equal predictive ability between model ¢ (presented in rows)
and model j (presented in columns) was rejected in favor of the row model. The realized losses are based on the MSE

criterion, while the relevant p-values are computed using the two-tailed test of Diebold and Mariano (1995). The test is
conducted at the 5% (10%) level. The asymptotic variance of the statistic is computed using the Newey-West estimator

with 10 lags. The parameters of each model are estimated by rolling regressions using 4 years of historical data.
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TABLE B2
Diebold-Mariano Tests, Monthly Horizon, Volatility, QLIKE

Panel A. Univariate Models: RV, y+n = a; + Bil Vit + €41

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL

MFIV - 0.07 (0.1)  0.27 (0.4)  0.17 (0.27)  0.07 (0.13) 0 (0) 0.1 (0.17)  0.57 (0.6)
BSIV 0 (0.07) - 0.37 (0.43)  0.23 (0.4)  0.13 (0.2) 0 (0.07) 0.1(0.2)  0.43 (0.57)
CIV1  0.03 (0.03) 0.03 (0.03) - 0 (0.03) 0 (0.03)  0.03 (0.03) 0.07 (0.07) 0.33 (0.37)
CIV2  0(0.03)  0.03(0.03) 0.37 (0.43) - 0.03 (0.03)  0.03 (0.03) 0.07 (0.1) 0.4 (0.43)
CIV3  0(0.03)  0.03(0.03) 0.43(0.43) 0.3 (0.47) - 0(0.03)  0.03(0.13) 0.4 (0.47)
CIV4  0.07 (0.13) 0.17 (0.23) 0.33 (0.47)  0.23 (0.4)  0.17 (0.3) - 0.1 (0.2) 5 (0.63)
DVOL  0.03 (0.1) 0.03(0.1) 0.13(0.2)  0.1(0.2)  0.03 (0.13)  0.03 (0.1) - 0.23 (0.3)
UVOL  0.03 (0.03) 0 (0) 0 (0) 0 (0) 0 (0) 0(0.03)  0.03 (0.03) -

Panel B. Bivariate Models: RV; ;yg = o; + 8iIVi+ + Bi rv RVi_ i + €041

MFIV BSIV CIvi CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.03 (0.1)  0.13 (0.23) 0.1 (0.17)  0.03 (0.1) 0 (0) 0.1 (0.17)  0.37 (0.47)
BSIV  0.03 (0.13) - 0.23 (0.37) 0.17 (0.23) 0.1 (0.17)  0.03 (0.07)  0.07 (0.2)  0.33 (0.57)
CIV1  0.07 (0.07) 0.07 (0.07) - 0(0.03)  0.03 (0.07) 0.07 (0.07) 0.1 (0.1) 0.3 (0.33)
CIV2  0.07 (0.07) 0.03 (0.07) 0.3 (0.4) - 0.07 (0.07)  0.07 (0.07) 0.1 (0.17) 0.3 (0.4)
CIV3  0.03 (0.07) 0.03 (0.03) 0.37 (0.4)  0.23 (0.33) - 0.03 (0.07)  0.13 (0.17) 0.3 (0.4)
CIV4 1(0.2)  0.1(0.13) 0.17(0.33) 0.13 (0.23)  0.07 (0.13) - 0.1 (0.2) 0.33 (0.57)
DVOL  0.03 (0.1) 0.03 (0.07) 0.03 (0.1) 0.03 (0.07) 0.03 (0.07) 0.03 (0.07) - 0.17 (0.27)

UVOL  0.03 (0.03) 0 (0) 0 (0) 0 (0) 0 (0) 0.03 (0.03)  0.03 (0.03) -

NOTE: Proportion of firms for which the null hypothesis of equal predictive ability between model i (presented in rows)
and model j (presented in columns) was rejected in favor of the row model. The realized losses are based on the QLIKE
criterion, while the relevant p-values are computed using the two-tailed test of Diebold and Mariano (1995). The test is
conducted at the 5% (10%) level. The asymptotic variance of the statistic is computed using the Newey-West estimator

with 10 lags. The parameters of each model are estimated by rolling regressions using 4 years of historical data.
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TABLE B3
Diebold-Mariano Tests, Daily Horizon, Volatility, MSE

Panel A. Univariate Models: RV, y+n = a; + Bil Vit + €41

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.03 (0.07) 0.33 (0.47) 0.2 (0.3) 0.13(0.13) 0.03 (0.07) 0.5 (0.6) 6 (0.73)
BSIV 0 (0.03) - 0.67 (0.87)  0.43 (0.67)  0.33 (0.43) 0 (0) 0.4 (0.43) 7 (0.77)
CIV1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.03 (0.13) 2 (0.33)
CIV2 0 (0) 0 (0) 0.8 (0.83) 0 (0) 0 (0) 0.13 (0.2) 4 (0.47)
CIV3 0 (0) 0 (0) 0.73 (0.83) 0.5 (0.63) - 0 (0) 0.17 (0.33) 0.5 (0.6)
CIV4  0.03(0.1) 0(0.03) 043 (0.53) 0.3 (0.37) 0.17 (0.23) - 0.53 (0.67)  0.67 (0.73)
DVOL 0 (0) 0 (0) 0.03 (0.07) 0 (0) 0 (0) 0 (0) . 0.1 (0.13)
UVOL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.03 (0.07) -
Panel B. Bivariate Models: RV; ;yg = o; + 8iIVi+ + Bi rv RVi_ i + €041

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0(0)  0.2(043) 0.13(0.23) 0.03(0.1) 0(0) 043 (0.57) 0.47 (0.7)
BSIV 0 (0) § 0.5 (0.53)  0.37 (0.43) 0.23 (0.33) 0 (0) 0.33 (0.43) 0.6 (0.73)
CIV1 0 (0) 0 (0) - 0 (0) 0 (0) 0(0)  0(0.07) 0.2 (0.3)
CIV2 0 (0) 0(0)  0.57(0.8) - 0 (0) 0(0) 0.07 (0.17) 0.4 (0.43)
CIV3 0 (0) 0 (0) 6 (0.7) 0.4 (0.53) . 0(0) 0.17 (0.3) 0.47 (0.5)
CIV4  0.03 (0.07) 0 (0.03) 027 (0.43) 0.13 (0.3)  0.03 (0.1) - 043 (057) 0.47 (0.67)
DVOL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) - 0.1 (0.1)
UVOL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) -

NOTE: Proportion of firms for which the null hypothesis of equal predictive ability between model i (presented in rows)
and model j (presented in columns) was rejected in favor of the row model. The realized losses are based on the MSE

criterion, while the relevant p-values are computed using the two-tailed test of Diebold and Mariano (1995). The test is
conducted at the 5% (10%) level. The asymptotic variance of the statistic is computed using the Newey-West estimator

with 10 lags. The parameters of each model are estimated by rolling regressions using 1 year of historical data.
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TABLE B4

Diebold-Mariano Tests, Daily Horizon, Volatility, QLIKE

Panel A. Univariate Models: RV, y+n = a; + Bil Vit + €41

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.1 (0.13)  0.43 (0.6)  0.37 (0.43) 0.13 (0.23) 0.03 (0.07)  0.83 (0.9)  0.73 (0.8)
BSIV 0 (0.07) - 0.8 (0.83) 0.7 (0.8)  0.5(0.67) 0.3 (0.03) 0.43 (0.6) 0.73 (0.77)
CIV1 0 (0) 0 (0) . 0 (0) 0 (0) 0 (0) 0.07 (0.17)  0.17 (0.3)
CIV2 0 (0) 0 (0) 0.8 (0.9) - 0 (0) 0 (0) 0.1 (0.27)  0.37 (0.47)
CIV3 0 (0.03) 0 (0) 0.83 (0.9)  0.73 (0.83) - 0(0.03)  0.23(0.33) 0.57 (0.67)
CIV4  0.03(0.1) 0.1(0.2) 057 (0.77) 0.43 (0.57)  0.37 (0.4) . 0.73 (0.83) 0.7 (0.8)
DVOL 0 (0) 0 (0) 0 (0.07) 0 (0) 0 (0) 0 (0) . 0.1 (0.2)
UVOL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0.07) -
Panel B. Bivariate Models: RV; ;yg = o; + 8iIVi+ + Bi rv RVi_ i + €041

MFIV BSIV CIV1 CIV2 CIV3 CIV4 DVOL UVOL
MFIV - 0.03 (0.07) 0.3 (0.43)  0.13 (0.27) 0.07 (0.13) 0 (0.03) 0.5 (0.77) 0.63 (0.73)
BSIV  0.03 (0.03) . 0.67 (0.8) 047 (0.7) 0.3 (0.47)  0(0.03) 0.3 (0.43) 0.63 (0.73)
CIV1 0 (0) 0 (0) - 0 (0) 0 (0) 0(0)  0.07 (0.07) 0.17 (0.17)
CIV2 0 (0) 0 (0) 0.67 (0.77) - 0 (0) 0 (0) 0.1 (0.1) 0.2 (0.43)
CIV3  0.03 (0.07) 0 (0) 0.73 (0.87) 0.6 (0.77) . 0 (0.03) 0.1 (0.23) 0.43 (0.6)
CIV4 007 (0.1)  0.03 (0.03) 0.4 (0.53) 0.33 (0.43) 0.1 (0.27) - 0.47 (0.73) 0.67 (0.73)
DVOL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) - 0.07 (0.17)
UVOL 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) -

NOTE: Proportion of firms for which the null hypothesis of equal predictive ability between model i (presented in rows)

and model j (presented in columns) was rejected in favor of the row model. The realized losses are based on the QLIKE

criterion, while the relevant p-values are computed using the two-tailed test of Diebold and Mariano (1995). The test is

conducted at the 5% (10%) level. The asymptotic variance of the statistic is computed using the Newey-West estimator

with 10 lags. The parameters of each model are estimated by rolling regressions using 1 year of historical data.
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