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IIMAS, A.P. 20-726

01000 Mexico, D.F.

Mexico

sheva7.fernando@gmail.com

Michael Sørensen†

University of Copenhagen and CREATES

Dept. of Mathematical Sciences

Universitetsparken 5

DK-2100 Copenhagen Ø

Denmark

michael@math.ku.dk

August 5, 2010

Abstract

We propose a method for obtaining maximum likelihood estimates of parameters

in diffusion models when the data is a discrete time sample of the integral of the

process, while no direct observations of the process itself are available. The data are,

moreover, assumed to be contaminated by measurement errors. Integrated volatility is

an example of this type of observations. Another example is ice-core data on oxygen

isotopes used to investigate paleo-temperatures.

The data can be viewed as incomplete observations of a model with a tractable like-

lihood function. Therefore we propose a simulated EM-algorithm to obtain maximum

likelihood estimates of the parameters in the diffusion model. As part of the algorithm,

we use a recent simple method for approximate simulation of diffusion bridges. In sim-

ulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed

method works well.
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1 Introduction.

We consider estimation for a general one-dimensional diffusion process X = {Xt}t≥0. Like-
lihood based estimation (including Bayesian) for discretely observed diffusion processes has
been investigated by Ozaki (1985), Pedersen (1995), Poulsen (1999), Elerian, Chib & Shep-
hard (2001), Eraker (2001), Roberts & Stramer (2001), Äıt-Sahalia (2002), Durham & Gal-
lant (2002), Äıt-Sahalia & Mykland (2003), Beskos et al. (2006) Äıt-Sahalia (2008). Martin-
gale estimating functions for discretely observed diffusions are reviewed in Sørensen (1997)
and Sørensen (2010).

In this paper we consider maximum likelihood estimation in the situation where we do
not observe the process X itself directly, but instead observe integrals of the process over
disjoint time-intervals. These observations are, moreover, assumed to be contaminated by
measurement errors. Integrated diffusion processes play an important role in finance as
models for realized volatility, see e.g. Andersen et al. (2001b), Andersen et al. (2001a),
Bollerslev & Zhou (2002), and Barndorff-Nielsen & Shephard (2002). These processes are
also used for modelling purposes in fields of engineering and the sciences. An example
is provided by the records of the concentration of oxygen isotopes in ice-core data from
Greenland and Antarctica, see e.g. Ditlevsen, Ditlevsen & Andersen (2002). Such data are
used to investigate the paleo-climate.

The likelihood function for a discretely sampled integrated diffusion with observation
error is in almost all cases not explicitly available. Moreover, the integrated process is
not a Markov process, so there is no easily calculated martingales. Therefore martingale
estimating functions are not a feasible alternative, but prediction-based estimating function
can be applied, see Sørensen (2000). In the present paper, we note instead that the data
can be viewed as incomplete observations from a model with a tractable likelihood function.
The full data set is a continuous time record of the diffusion process and the observation
errors. We can therefore find maximum likelihood estimates by applying the Expectation-
Maximization (EM) algorithm, see Dempster, Laird & Rubin (1977) and McLachlan &
Krishnan (1997). To do so we need to calculate the conditional expectation of the log-
likelihood function for the full model given the observations. We do this by simulating
sample paths of the diffusion process given the data using ideas from Chib, Pitt & Shephard
(2006). An essential step in doing this is to simulate a part of a sample path given the rest,
which corresponds to simulation a diffusion bridge. This is done by applying the method for
approximate diffusion bridge simulation recently proposed by Bladt & Sørensen (2009).

Parametric inference for integrated diffusion process has been considered by Gloter
(2000), Bollerslev & Zhou (2002), Ditlevsen & Sørensen (2004), Gloter (2006), and Forman
& Sørensen (2008). Nonparametric inference has been considered in Comte, Genon-Catalot
& Rozenholc (2009).

In Section 2 the model of an integrated diffusion process with measurement error and
its assumptions are presented. Section 3 contains the calculation of the likelihood function
with full diffusion observation and the EM-algorithm. In Section 4 we present a method for
simulation of a diffusion process conditional on integrals observed with measurement error.
In Section 5 we consider the Ornstein-Uhlenbeck process in detail and a simulation study for
this model is reported. A similar investigation for the CIR/square root process is presented
in Section 6, where also stochastic volatility models are briefly discussed. Some concluding
remarks are given in Section 7.
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2 Model and data

We consider likelihood estimation the general one-dimensional diffusion process X = {Xt}t≥0

given by the stochastic differential equation

dXt = b(Xt;ψ)dt+ σ(Xt;ψ)dWt (2.1)

where W = {Wt} is a standard Wiener process, and where the drift and diffusion coefficients
depend on an unknown p-dimensional parameter ψ belonging to the parameter set Ψ ⊆ Rp.
We assume that the solutionX is an ergodic, stationary diffusion with invariant measure with
density function νψ(x) (X0 ∼ νψ is independent of W ). We also assume that the stochastic
differential equation has a unique weak solution, i.e. a solution exists and all solutions have
identical finite-dimensional distributions; see e.g. Karatzas & Shreve (1991). It is well-known
that sufficient conditions for these assumptions can be expressed in terms of the so-called
scale function and speed measure; see e.g. Karlin & Taylor (1981).

In this paper we consider the situation where the process X has not been observed di-
rectly. Instead the data are integrals of Xt over intervals [ti−1, ti] observed with measurement
error, i.e.

Yi =
∫ ti

ti−1

Xsds+ Zi, i = 1, . . . , n, (2.2)

where Zi ∼ N(0, τ 2), i = 1, . . . , n are mutually independent and independent of X. We
assume that t0 = 0, so the total interval of observation is [0, tn]. Note that the variance of
the measurement error, τ 2, is an extra unknown parameter. Thus we need to estimate the
p+ 1-dimensional parameter θ = (ψ, τ 2).

Conditionally on the sample path of X, the observations Yi, i = 1, . . . , n are independent
and normal distributed:

Yi |Xt : t ∈ [0, tn] ∼ N

(

∫ ti

ti−1

Xsds, τ
2

)

, (2.3)

We assume that the coefficients of the stochastic differential equation (2.1) satisfy the
following conditions which we need in the following sections.

Condition 2.1 The drift and diffusion coefficients of (2.1), b(x;ψ) and σ(x;ψ) satisfy that
for all ψ ∈ Ψ

• b(x;ψ) is continuously differentiable w.r.t. x

• σ(x;ψ) is twice continuously differentiable w.r.t. x

• σ(x;ψ) > 0 for all x in the state space of X

3 The likelihood function and the EM-Algorithm

We can think of the data set Y = (Y1, . . . , Yn) as an incomplete observation of a full data
set given by the sample path Xt, t ∈ [0, tn] and the measurement errors Z1, · · · , Zn, or
equivalently Xt, t ∈ [0, tn] and Y = (Y1, . . . , Yn). Therefore likelihood based estimation can
be done by means of the EM-algorithm or MCMC-methods. In this paper we concentrate
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on the EM-algorithm. We need to find the likelihood function for the full data set and
the conditional expectation of this full log-likelihood function given the observations Y =
(Y1, . . . , Yn).

3.1 Likelihood with full diffusion observation

The full observation of a diffusion sample path in the time interval [0, tn] is an element in
the space C of continuous functions from [0, tn] to IR. We equip this space with the usual σ-
algebra, C, generated by the cylinder sets, and consider the probability measures induced on
(C, C) by the solutions to (2.1). These measures are in general singular because the diffusion
coefficient depends on the parameter ψ. In order to obtain a likelihood function, we use the
standard 1-1 transformation

h(x;ψ) =
∫ x

x∗

1

σ(u;ψ)
du, (3.1)

where x∗ is some arbitrary element of the state space of X. By this parameter dependent
transformation, we obtain a diffusion process with unit diffusion coefficient. Specifically, we
obtain (by Ito’s formula) that

Ut = h(Xt;ψ)

satisfies the stochastic differential equation

dUt = µ(Ut;ψ)dt+ dWt, (3.2)

with

µ(u;ψ) =
b (h−1(u;ψ);ψ)

σ (h−1(u;ψ);ψ)
− σ′ (h−1(u;ψ);ψ)

2
,

where σ′ denotes the derivative of σ w.r.t. x. In (3.2) the diffusion coefficient does not
depend on the parameters, so the probability measures induced on (C, C) by the solution to
(3.2) are equivalent and the likelihood function can be found.

We can express the observations Yi in terms of the process U . By inserting Xs =
h−1(Us;ψ) in (2.2), we find that

Yi =
∫ ti

ti−1

h−1(Us;ψ)ds+ Zi, i = 1, . . . , n.

Therefore we will think of the full dataset as Ut, t ∈ [0, tn] and Y = (Y1, . . . , Yn). Since
conditionally on the sample path of U the observations Yi, i, . . . , n are independent, we have
that the likelihood of Y conditional on the sample path of U in [0, tn] is

L(Y1, . . . , Yn |Ut, t ∈ [0, tn]) =
n
∏

i=1

φ(Yi;
∫ ti

ti−1

h−1(Us;ψ)ds, τ 2) (3.3)

where φ(u; a1, a2) denotes the density of the normal distribution with mean a1 and variance
a2 evaluated at u.

Let Pψ be the probability measure induced by U = {Ut}t∈[0,tn] on (C, C), i.e. the prob-
ability measure with respect to which the coordinate process has the same distribution as
U , and let Q be the Wiener measure on (C, C). We assume that the coefficient µ satisfies
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conditions ensuring that the Girsanov theorem holds so that we have the Radon-Nykodym
derivative

dPψ
dQ

(B) = exp
{∫ tn

0
µ(Bt;ψ)dBt −

1

2

∫ tn

0
µ2(Bt;ψ)dt

}

; (3.4)

see e.g. Liptser & Shiryaev (1977), Jacod & Shiryaev (1987) or Øksendal (1998).

The evaluation of
dPψ
dQ

is difficult because of the Ito integral term. To simplify the likeli-
hood function, we apply the transformation

a(x;ψ) =
∫ x

µ(u;ψ)du

(any antiderivative of µ), which under Condition 2.1 is twice continuously differentiable. By
Ito’s formula

∫ tn

0
µ(Bt)dBt = a(Btn ;ψ) − a(B0;ψ) − 1

2

∫ tn

0
µ′(Bt;ψ)dt,

where µ′ denotes the derivative of µ(u;ψ) w.r.t. u. We can now write the likelihood function
(3.4) as

dPψ
dQ

(B) = exp
{

a(Btn ;ψ) − a(B0;ψ) − 1

2

∫ tn

0
[µ(Bt;ψ)2 + µ′(Bt;ψ)]dt

}

.

By combining this expression and (3.3), we see that the log-likelihood function for θ based
on the full data set Ut, t ∈ [0, tn] and Y = (Y1, . . . , Yn) is given by

logL(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn]) =
n
∑

i=1

log φ(Yi;
∫ ti

ti−1

h−1(Us;ψ)ds, τ 2) (3.5)

+ a(Utn ;ψ) − a(U0;ψ) − 1

2

∫ tn

0

(

µ(Ut;ψ)2 + µ′(Ut;ψ)
)

dt.

3.2 EM Algorithm.

We can now apply the EM-algorithm to the full log-likelihood function (3.5) to obtain the
maximum likelihood estimate of the parameter θ.

As the initial value for the algorithm, let θ̂ be any value of the parameter vector θ =
(ψ, τ 2) ∈ Ψ × (0,∞). Then the EM-algorithm works as follow.

1. E-STEP.

Generate M sample paths of the diffusion process X, X(k), k = 1, . . . ,M , conditional
on the observations Y1, . . . , Yn using the parameter value θ̂ = (ψ̂, τ̂ 2), and calculate

g(θ) =
1

M −M0

M
∑

k=M0+1

logL(θ;Y1, . . . , Yn, h(X
(k)
t ; ψ̂), t ∈ [0, tn]),

for a suitable burn-in period M0 and M sufficiently large.

2. M-STEP.

θ̂ = argmax g(θ).
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3. Go to 1.

To implement this algorithm, the main issue is how to generate sample paths of X con-
ditionally on Y1, . . . , Yn, where the relation between the Yis and X is given by (2.2). The
algorithm must produce a sequence X(k), k = 1, . . . ,M , that is sufficiently mixing to ensure
that g(θ) approximates the conditional expectation of the full log-likelihood function (3.5)
given the data. This problem is discussed at the next section.

4 Conditional diffusion process simulation.

In this section we present a method for generating a sample from

{Xt; t ∈ [0, tn]}|(Y1, . . . , Yn)

for a given value of the parameter vector θ, i.e. for simulating the diffusion X conditional on
the observations Y = (Y1, . . . , Yn) of integrals of X over subintervals [tj−1, tj ], j = 1, . . . , n
perturbed by measurement errors. This can be done by means of a Metropolis-Hastings
algorithm, see e.g. Chib & Greenberg (1995) or Gilks, Richardson & Spiegelhalter (1996).
However, if the sample path in the entire time interval [0, tn] is updated in one step, the
rejection probability is typically very large. Therefore it is more efficient to randomly divide
the time interval into subintervals and update the sample path in each of the subintervals
conditional on the rest of the sample path. This corresponds to simulating a (conditional)
diffusion bridge in each subinterval (except the end-intervals). The method outlined in this
section is a modification of the method in Chib, Pitt & Shephard (2006), where we use the
algorithm for approximate diffusion bridge simulation proposed by Bladt & Sørensen (2009).

In the following the parameter value θ = (ψ, τ 2) is fixed.

Algorithm 1

1. Generate an initial unrestricted stationary sample path, {X(0)
t : t ∈ [0, tn]}, of the

diffusion given by (2.1) using for instance the Milstein scheme or one of the other
methods in Kloeden & Platen (1999).

2. Set l = 1.

3. Generate a sample path {X(l)
t : t ∈ [0, tn]} conditional on Y by updating the subsets

of the sample path:

(a) Randomly split the time interval from 0 to tn in K blocks, and write these sub-
sampling times as

0 = τ0 ≤ τ1 ≤ . . . ≤ τK = tn,

where each τi is one of the end-points of the integration intervals, tj, j = 0, . . . , n.
Let Y{k} denote the collection of all observations Yj for which τk−1 < tj ≤ τk.

(b) Draw X
(l)
0 from the stationary distribution, νψ, and simulate the conditional sub-

path
{X(l)

t : t ∈ [τk−1, τk]} | Y{k}, X(l)
τk−1

, X(l−1)
τk

(4.1)
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for k = 1, . . . , K − 1. Finally, simulate a sample path from

{X(l)
t : t ∈ [τK−1, τK ]} | Y{K}, X

(l)
τK−1

.

4. l=l+1.

5. Go to 3.

To implement of this algorithm, the main issue is how to sample variables of the type
(4.1), which is a non-linear diffusion bridge. We use the method for approximate diffusion
bridge simulation proposed by Bladt & Sørensen (2009). The idea (in the case of a diffusion
bridge in the time interval [0, 1]) is to let one diffusion process move forward from time zero
out of one given point, a, until it meets another diffusion process that independently moves
backwards from time one out of another given point, b. Conditional on the event that the two
diffusions intersect, the process constructed in this way is an approximation to a realization
of a diffusion bridge between a and b. The diffusions can be simulated by means of simple
procedures like the Euler scheme or the Milstein scheme, see Kloeden & Platen (1999). The
method is therefore very easy to implement. The resulting sample path is an approximation
to a diffusion bridge in the sense that it has the distribution of a diffusion bridge from a to
b conditional on the event that the bridge is hit by an independent diffusion with stochastic
differential equation (2.1) and initial distribution with density p1(b, ·). Simulation studies in
Bladt & Sørensen (2009) indicate that the approximation is very good for bridges between
points that are likely to appear on a sample path of the diffusion, which is the type of bridges
that are relevant to this paper.

Alternative methods that provide exact diffusion bridges have been proposed by Beskos,
Papaspiliopoulos & Roberts (2006) and Beskos, Papaspiliopoulos & Roberts (2007). When
the drift and diffusion coefficients satisfy certain boundedness conditions, this algorithm is
relatively simple, but under weaker condition it is more complex. A simulation study in
Bladt & Sørensen (2009) indicates that for the method which we use here, the CPU-time
is linear in the length of the interval where the diffusion bridge is defined, whereas for the
method in Beskos, Papaspiliopoulos & Roberts (2006), the CPU time increases exponentially
with the interval length. This is an advantage of the method in Bladt & Sørensen (2009) in
the present context. MCMC algorithms for simulation of diffusion bridges were proposed by
Roberts & Stramer (2001), Durham & Gallant (2002), and Chib, Pitt & Shephard (2006).

To generate the random subintervals in step 3 (a) of Algorithm 1, we use the following
algorithm, where the number of integration subintervals [tj−1, tj] included in one of the ran-
dom subintervals is a Poisson distributed random number plus 1. The draws in the algorithm
are independent. First choose the expectation of the Poisson distribution, λ ≥ 1.

Algorithm 2

1. Draw k1 ∼ Poisson(λ) + 1 : if k1 ≥ n set k1 = n, K = 1 and stop, otherwise set i = 2.

2. Draw ki ∼ Poisson(λ)+1, if
∑i
j=1 kj ≥ n set ki = n, K = i and stop, else set i = i+1

and repeat 2.

Finally define τi = tki , i = 1, . . . , K.
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We have discussed how to simulate diffusion bridges, but we need diffusion bridges con-
ditional on the data Y . Sample paths of the conditional bridges (4.1) can be obtained by the
following Metropolis-Hastings algorithm. By a (t, a, s, b)–bridge, we mean a diffusion bridge
in the time interval [t, s] with Xt = a and Xs = b. After a burn-in period the following
algorithm will output samples from a (τk−1, a, τk, b)–bridge conditional on Y{k}, the data in
(τk−1, τk]. To formulate the algorithm we need to specify that the end-point τk−1 is equal to
tj , and that there are nk observations in the interval (τk−1, τk], namely, Yj+1, . . . , Yj+nk.

Algorithm 3

1. Simulate a (τk−1, a, τk, b)–bridge, X(0), and set l = 1.

2. Propose a new sample paths by simulating a (τk−1, a, τk, b)–bridge, X(l).

3. Accept the proposed diffusion bridge with probability

min



1,
nk
∏

i=1

φ(Yj+i;
∫ tj+i
tj+i−1

X(l)
s ds, τ

2)

φ(Yj+i;
∫ tj+i
tj+i−1

X
(l−1)
s ds, τ 2)



 .

Otherwise set X(l) = X(l−1).

4. Set l = l + 1 and go to 2.

As previously, φ(x;µ, τ 2) denotes the density function of the normal distribution with mean
µ and variance τ 2.

5 The Ornstein-Uhlenbeck process: a simulation study.

In this section we apply the method developed above to the Ornstein-Uhlenbeck process,
which is a solution of the stochastic differential equation

dXt = −αXtdt+ σdWt, (5.1)

where α > 0 and σ > 0 are unknown parameters to be estimated, and W is a standard
Wiener process. We investigate the bias of the estimators in a simulation study.

5.1 The likelihood and the EM-algorithm

The transformation (3.1) is here given by

h(x; σ) =
x

σ
,

so h−1(x; σ) = σx. Hence Ut = h(Xt; σ) = Xt/σ, solves the stochastic differential equation

dUt = −αUtdt+ dWt.
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We have µ(u;α, σ) = −αu, so

a(u;α, σ) = −1

2
αu2.

Thus the full log-likelihood function (3.5) is given by

logL(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn]) (5.2)

=
n
∑

i=1

logφ

(

Yi; σ
∫ ti

ti−1

Usds, τ
2

)

+
α

2
(U2

0 − U2
tn

+ tn) −
α2

2

∫ tn

0
U2
t dt,

where θ = (α, σ, τ 2).
Now, the EM algorithm works as follow.

E-STEP

The objective function g(θ) is for the Ornstein-Uhlenbeck process given by

g(θ) = − 1

2τ 2(M −M0)

M
∑

k=M0+1

n
∑

i=1

(Yi − σ
∫ ti

ti−1

U
(k)
t dt)2 − n

2
log(2πτ 2) +

α

2
tn

+
α

2(M −M0)

M
∑

k=M0+1

((U
(k)
0 )2 − (U

(k)
tn )2) − α2

2(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )2dt.

Here U
(k)
t = X

(k)
t /σ̂, where X

(k)
t is the k-th sample path of the process X simulated condi-

tionally on the data Y using the Algorithms 1 – 3 with the parameter value obtained in the
previous step (α̂, σ̂, τ̂ 2).

M-STEP

The maximum θ̂ is obtained as the solution to the following system of equations

∂g(θ)

∂α
=

1

2
tn +

∑M
k=M0+1

[

(U
(k)
0 )2 − (U

(k)
tn )2

]

2(M −M0)
− α

∑M
k=M0+1

∫ tn
0 (U

(k)
t )2dt

M −M0
= 0, (5.3)

∂g(θ)

∂σ
=

∑M
k=M0+1

∑n
i=1(Yi − σ

∫ ti
ti−1

U
(k)
t dt)(

∫ ti
ti−1

U
(k)
t dt)

τ 2(M −M0)
= 0 (5.4)

and
∂g(θ)

∂τ 2
=

∑M
k=M0+1

∑n
i=1(Yi − σ

∫ ti
ti−1

U
(k)
t dt)2

2τ 4(M −M0)
− n

2τ 2
= 0. (5.5)

From (5.3) we have

α̂ =
tn(M −M0) +

∑M
k=M0+1

[

(U
(k)
0 )2 − (U

(k)
tn )2

]

2
∑M
k=M0+1

∫ tn
0 (U

(k)
t )2dt

,

and from (5.4)

σ̂ =

∑M
k=M0+1

∑n
i=1 Yi

∫ ti
ti−1

U
(k)
t dt

∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(k)
t dt)2

. (5.6)
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Now inserting σ̂ given by (5.6) in (5.5) we obtain

τ̂ 2 =
(M −M0)(

∑n
i=1 Y

2
i )
[

∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(k)
t dt)2

]

−
[

∑M
k=M0+1

∑n
i=1 Yi

∫ ti
ti−1

U
(k)
t dt

]2

n(M −M0)
∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(k)
t dt)2

.

The Hessian matrix of g(θ) evaluated at θ̂ is negative define, so θ̂ is maximum.

5.2 A simulation study

In this section we present the result of a small simulation study, in which we simulated 1000
datasets and for each of them obtained estimates by means of the EM-algorithm proposed in
the present paper. Each data set was obtained by simulating a sample path of length 1500
with initial distribution X0 ∼ N(0, σ2/(2α)), and then calculating data Yi, i = 1, . . . , 1500
by (2.2) with ti = i, i = 0. . . . , n. The parameter values were α = 0.1, σ = 0.5 and τ 2 = 1.25.

The EM-algorithm was run with M = 10000 and M0 = 1000 and for three different values
of λ, namely λ = 10, 20, 30. The average of the estimates obtained for the 1000 dataset are
given in Table 5.1. The bias is small, and is overall most satisfactory for λ = 20.

λ α σ τ 2

10 0.106 0.523 1.229
20 0.101 0.507 1.235
30 0.084 0.458 1.252

Table 5.1: Average of parameter estimates obtained from 1000 simulated datasets with
parameter values α = 0.1, σ = 0.5 and τ 2 = 1.25.

6 The CIR process and a stochastic volatility model

In this section we apply our method to the CIR process, which solve

dXt = (α− βXt)dt+ σ
√

XtdWt, (6.1)

where X0 > 0, α > 0, β > 0, σ > 0 and W is a standard Brownian motion. If 2α > σ2, the
CIR process is strictly positive. Otherwise it can reach the boundary 0 in finite time with
positive probability, but if the boundary is made instantaneously reflecting the process stays
non-negative. In both cases, the stationary distribution is Γ(2α/σ2, σ2/β).

The CIR process plays important roles in financial mathematics, where it has been used
to describe the evolution of interest rates (Cox, Ingersoll, Jr. & Ross (1985)), and to model
the volatility in the Heston (1993) model. In the latter model, the dynamics of the logarithm
of the price, Pt, of a financial asset is given by

dPt = (κ+ νXt)dt+
√

XtdBt,

where the volatility process X is given by (6.1), and where the standard Brownian motion
B may possibly be correlated with the Brownian motion W in (6.1). If high frequency
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observations of the asset price are available at the time points jδ, j = 0, . . . , N , then the
integrated volatility over longer time intervals of length ∆ = mδ (e.g. hours or days)

∫ i∆

(i−1)∆
Xtdt,

i = 1, . . . , n = [N/m], can be estimated by the quadratic variation/realized volatility

Vi =
im
∑

j=(i−1)m+1

(Pjδ − P(j−1)δ)
2

i = 1, . . . , n. We can therefore estimate the parameters α, β, σ in the volatility process (6.1)
by treating the realized volatilities Vi, i = 1, . . . , n, as observations Yi of the type (2.2) with
X given by (6.1) and ti = i∆.

In the simulation study below, we investigate the bias of the estimators obtained by our
methods for data Yi, i = 1, . . . , n of the type (2.2) with X given by the CIR process (6.1).

6.1 The likelihood and the EM-algorithm

We apply the transformation (3.1), which for the CIR process is

h(x; σ) =
2
√
x

σ
,

with h−1(x; σ) = σ2x2/4. Hence Ut = h(Xt; σ) = 2
√
Xt/σ, solves the stochastic differential

equation
dUt = µ(Ut;α, β, σ)dt+ dWt,

where

µ(u;α, β, σ) =
4α− βσ2u2 − σ2

2σ2u
,

so that

a(u;α, β, σ) = log(u)
(

2α

σ2
− 1

2

)

− βu2

4
.

For the CIR model the full log-likelihood function (3.5) is given by

logL(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn])

=
n
∑

i=1

log φ

(

Yi;
1
4σ

2
∫ ti

ti−1

(Us)
2ds, τ 2

)

+
(

2α

σ2
− 1

2

)

log
(

Utn
U0

)

+
β

4
(U2

0 − U2
tn

)

+
αβtn
σ2

− β2

8

∫ tn

0
U2
t dt+

(

2α

σ2
− 2α2

σ4
− 3

8

)

∫ tn

0
U−2
t dt,

where θ = (α, β, σ, τ2).
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Now, we can specify the EM algorithm.

E-STEP

The objective function g(θ) is for the CIR process given by

g(θ) = − 1

2τ 2(M −M0)

M
∑

k=M0+1

n
∑

i=1

(

Yi − 1
4σ

2
∫ ti

ti−1

(U
(k)
t )2dt

)2

− n

2
log(2πτ 2) +

αβtn
σ2

+
2ασ−2 − 1

2

M −M0

M
∑

k=M0+1

log





U
(k)
tn

U
(k)
0



+
β

4(M −M0)

M
∑

k=M0+1

((U
(k)
0 )2 − (U

(k)
tn )2)

+
2ασ2 − 2α2

σ4(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )−2dt− 3

8(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )−2dt

− β2

8(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )2dt.

Here U
(k)
t = 2

√

X
(k)
t /σ̂, where X

(k)
t is the k-th sample path of the process X simulated

conditionally on the data Y using the Algorithms 1 – 3 with the parameter value obtained
in the previous step (α̂, β̂, σ̂, τ̂ 2).

M-STEP

The maximum θ̂ is obtained as the solution to the following system of equations

∂g(θ)

∂α
=

2

σ2(M −M0)

M
∑

k=M0+1

log





U
(k)
tn

U
(k)
0



+
βtn
σ2

+
2σ2 − 4α

σ4(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )−2dt = 0,

∂g(θ)

∂β
=

1

4(M −M0)

M
∑

k=M0+1

((U
(k)
0 )2 − (U

(k)
tn )2)+

αtn
σ2

− β

4(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )2dt = 0,

∂g(θ)

∂σ
=

σ

2τ 2(M −M0)

M
∑

k=M0+1

n
∑

i=1

(

Yi − 1
4σ

2
∫ ti

ti−1

(U
(k)
t )2dt

)

∫ ti

ti−1

(U
(k)
t )2dt− 2αβtn

σ3

− 4α

σ3(M −M0)

M
∑

k=M0+1

log





U
(k)
tn

U
(k)
0



+
4α(2α− σ2)

σ5(M −M0)

M
∑

k=M0+1

∫ tn

0
(U

(k)
t )−2dt = 0,

and
∂g(θ)

∂τ 2
=

1

2τ 2(M −M0)

M
∑

k=M0+1

n
∑

i=1

(

Yi − 1
4σ

2
∫ ti

ti−1

(U
(k)
t )2dt

)2

− n

2τ 2
= 0.

The solution θ̂ is given by

α̂ =
C5(2C2C4 + 2C1C4 + C3tn)

C6(C4C2 − t2n)

β̂ =
C3C2 + 2tn(C2 + C1)

C4C2 − t2n

12



σ̂ =
√

4C5/C6

τ̂ 2 =
C7C6 − C2

5

n(M −M0)C6

,

where the values of the constants Ci are

C1 =
1

M −M0

M
∑

k=M0+1

log
(

U
(k)
tn /U

(k)
0

)

C2 =
M
∑

k=M0+1

∫ tn

t0

(U
(k)
t )−2dt

C3 =
M
∑

k=M0+1

((U
(k)
0 )2 − (U

(k)
tn )2)

C4 =
M
∑

k=M0+1

∫ tn

0
(U

(k)
t )2dt

C5 =
M
∑

k=M0+1

n
∑

i=1

Yi

∫ ti

ti−1

(U
(k)
t )2dt

C6 =
M
∑

k=M0+1

n
∑

i=1

(
∫ ti

ti−1

(U
(k)
t )2dt)2

C7 =
M
∑

k=M0+1

n
∑

i=1

Yi.

6.2 A simulation study

Here we present a simulation study for the integrated CIR-model. We simulated 1500
datasets, and for each of them obtained estimates by means of our EM-algorithm. Each
data set was obtained by simulating a sample path of length 1500 with initial distribution
X0 ∼ Γ(2α/σ2, σ2/β), and then calculating data Yi, i = 1, . . . , 1500 by (2.2) with ti = i,
i = 0. . . . , n. The parameter values were α = 0.5, β = 0.2, σ = 0.5 and τ 2 = 1.25.

The EM-algorithm was run with M = 10000 and M0 = 1000 for three values of λ. The
average of the estimates obtained for the 1500 dataset are given in Table 6.1. Also for the
CIR model the bias is small.

λ α β σ τ2

30 0.4802 0.2056 0.4787 1.2432
20 0.4727 0.2043 0.4698 1.2406
10 0.4587 0.1965 0.4609 1.2287

Table 6.1: Average of parameter estimates obtained from 1500 simulated datasets with
parameter values α = 0.1, σ = 0.5 and τ 2 = 1.25.
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7 Concluding remarks

We have presented an EM-algorithm for obtaining maximum likelihood estimates of pa-
rameters in diffusion models when the data is a discrete time sample of the integral of the
diffusion process contaminated by measurement errors, while no direct observations of the
process itself are available. This was done by viewing the data as an incomplete observation,
where the full data set includes a continuous time record of the diffusion process.

It is not difficult to generalize the method presented in this paper to the situation, where
the diffusion process is integrated w.r.t. a more general measure than the Lebesgue measure
considered in this paper. This would allow analysis of e.g. weighted averages of diffusion
processes, and discrete time observation would be a particular case. Note also that a Gibbs
sampler could easily be set up in close analogy to the EM-algorithm used in the present
paper. This would be much closer to the approach in Chib, Pitt & Shephard (2006).
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