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Abstract

With a view to likelihood inference for discretely observed diffusion type models,

we propose a simple method of simulating approximations to diffusion bridges. The

method is applicable to all one-dimensional diffusion processes and has the advantage

that simple simulation methods like the Euler scheme can be applied to bridge simu-

lation. Another advantage over other bridge simulation methods is that the proposed

method works well when the diffusion bridge is defined in a long interval because the

computational complexity of the method is linear in the length of the interval. In a

simulation study we investigate the accuracy and efficiency of the new method and

compare it to exact simulation methods. In the study the method provides a very

good approximation to the distribution of a diffusion bridge for bridges that are likely

to occur in applications to likelihood inference. To illustrate the usefulness of the new

method, we present an EM-algorithm for a discretely observed diffusion process. We

demonstrate how this estimation method simplifies for exponential families of diffu-

sions and very briefly consider Bayesian inference.
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1 Introduction

In this paper we propose a general and very simple method for simulation of an approxima-
tion to diffusion bridges. Our main motivation for doing so is that simulation of diffusion
bridges plays an important role in some very useful approaches to likelihood inference (includ-
ing Bayesian inference) for discretely sampled diffusion processes and other diffusion-type
processes like stochastic volatility models. Our approach is based on the simple idea of let-
ting one diffusion process move forward from time zero out of one given point until it meets
another diffusion process that independently moves backwards from time one out of another
given point. Conditional on the event that the two diffusions intersect, we show that the
process constructed in this way is an approximation to a realization of a diffusion bridge
between the two points. The diffusions can be simulated by means of simple procedures like
the Euler scheme or the Milstein scheme, see Kloeden & Platen (1999). The new method
is therefore very easy to implement for likelihood inference for discretely sampled diffusion
processes.

It was previously though impossible to simulate diffusion bridges by means of simple
procedures like the Euler scheme, because a rejection sampler that tries to hit the prescribed
end-point for the bridge (or a small neighbourhood around it) will have an excessively high
rejection probability. The rejection sampler presented in this paper has a quite acceptable
rejection probability because what must be hit is a sample path rather than a point. MCMC-
algorithms for simulation of diffusion bridges were proposed by Roberts & Stramer (2001).
Later Beskos, Papaspiliopoulos & Roberts (2006) developed algorithms for exact simulation
of diffusion bridges when the drift and diffusion coefficients satisfy certain boundedness
conditions. Under strong boundedness conditions the algorithm is relatively simple, whereas
it is more involved under weaker condition. Recently Beskos, Papaspiliopoulos & Roberts
(2007) has proposed an algorithm that works for a broad class of diffusion processes, but is
more complex. A main advantage of the method proposed in this paper is that the same
simple algorithm can be used for essentially all one-dimensional diffusions, and that it is very
easy to understand and to implement. Another advantage is that a simulation study indicates
that the computational complexity of our method is linear in the distance between the two
end-points of the diffusion bridge, whereas the computer time seems to grow exponentially
with this distance for the exact algorithms.

The result in the present paper, that the proposed method simulates an approximation to
a diffusion bridge, is a correction of the previous paper Bladt & Sørensen (2007), where it was
claimed that the method simulated an exact diffusion bridge (apart from the discretization
error).

Methods for likelihood inference for discretely sampled diffusion processes have been
proposed by Ozaki (1985), Pedersen (1995), Poulsen (1999), Durham & Gallant (2002), Äıt-
Sahalia (2002), Beskos et al. (2006), Äıt-Sahalia (2008) and others, and Bayesian inference
methods have been developed by Elerian, Chib & Shephard (2001), Eraker (2001), and
Roberts & Stramer (2001). The methods by Roberts & Stramer (2001) and Beskos et al.
(2006) use bridge simulation in an essential way. To illustrate how our method can be used,
we modify an EM-algorithm in Beskos et al. (2006) by using our simple simulation method.

The paper is organized as follows. In Section 2 we present the new bridge simulation
method and show in what sense it approximates a diffusion bridge. In Section 3 a stochastic
differential equation for a diffusion bridge is presented. In Section 4 the new bridge simulation
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method is compared to exact simulation methods in two examples, the Ornstein–Uhlenbeck
process and the hyperbolic diffusion. The study indicates that our method provides a very
accurate approximation to the distribution of a diffusion bridge except for bridges that are
very unlikely to occur when using the method for maximum likelihood estimation. The EM-
algorithm is briefly presented in Section 5. It is demonstrated how the algorithm simplifies
for an exponential family of diffusions (i.e. when drift is linear in the parameters). In this
case Bayesian inference is considered too. Section 6 concludes.

2 Diffusion bridge simulation

Let X = {Xt}t≥0 be a one-dimensional diffusion given by the stochastic differential equation

dXt = α(Xt)dt + σ(Xt)dWt, (2.1)

where W is a Wiener process, and where the coefficients α and σ are sufficiently regular to
ensure that the equation has a unique weak solution that is a strong Markov process. Let
a and b be given points in the state–space of X. We present a method for simulating an
approximation to a sample path of X such that X0 = a and X1 = b. A solution of (2.1) in
the interval [t1, t2] such that Xt1 = a and Xt2 = b will in the following be called a (t1, a, t2, b)-
bridge. When t1 = 0 and t2 = 1, we sometimes simply call it an (a, b)-bridge. We will denote
the transition density of X by pt(x, y). Specifically, the conditional density of Xs+t given
Xs = x is y 7→ pt(x, y). The state space of X is denoted by (ℓ, r) where ∞ ≤ ℓ < r ≤ ∞.

Let W 1 and W 2 be two independent standard Wiener processes, and define X1 and X2

as the solutions to

dX i
t = α(X i

t)dt + σ(X i
t)dW i

t , i = 1, 2, X1
0 = a and X2

0 = b.

The main idea of the paper is to realize an approximation to a (0, a, 1, b)-bridge by simulating
the process X1 from a forward in time and X2 from b backward in time starting at time one.
If the samples paths of the two processes intersect, they can be combined into a realization
of a process that approximates a (0, a, 1, b)-bridge.

Thus to simulate an approximate diffusion bridge in the interval [0, ∆], we can use any
of the several methods available to simulate the diffusions X1 and X2, see e.g. Kloeden &
Platen (1999). Let Y 1

δi, i = 0, 1, . . . , N and Y 2
δi, i = 0, 1, . . . , N be (independent) simulations

of X1 and X2 in [0, ∆] with step size δ = ∆/N . Then a simulation of an approximation to
a (0, a, ∆, b)-bridge is obtained by the following rejection sampling scheme. Keep simulating
Y 1 and Y 2 until the sample paths cross, i.e. until there is an i such that either Y 1

δi ≥ Y 2
δ(N−i)

and Y 1
δ(i+1) ≤ Y 2

δ(N−(i+1)) or Y 1
δi ≤ Y 2

δ(N−i) and Y 1
δ(i+1) ≥ Y 2

δ(N−(i+1)). Once a trajectory crossing
has been obtained, define

Bδi =











Y 1
δi for i = 0, 1, . . . , ν − 1

Y 2
δ(N−i) for i = ν, . . .N,

(2.2)

where ν = min{i ∈ {1, . . .N}|Y 1
δi ≤ Y 2

δ(N−i)} if Y 1
0 ≥ Y 2

∆, and ν = min{i ∈ {1, . . .N}|Y 1
δi ≥

Y 2
δ(N−i)} if Y 1

0 ≤ Y 2
∆. Then B approximates a (0, a, ∆, b)-bridge. The rejection probability

(the probability of no trajectory crossing) depends on the drift and diffusion coefficients, on
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the values of a and b, and on the length of the interval ∆. Simulation studies indicate that
the number of rejections is small when a and b are not very far apart, see Section 4. This is
the typical situation when the simulation algorithm is used to make likelihood inference for
discretely observed diffusion processes as explained in Section 5.

The distribution of the process that is simulated by the algorithm above and the sense
in which it is an approximation of a diffusion bridge is seen from the following theorem.

Theorem 2.1 Let τ = inf{0 ≤ t ≤ 1|X1
t = X2

1−t} (inf ∅ = +∞) and define

Zt =











X1
t if 0 ≤ t ≤ τ

X2
1−t if τ < t ≤ 1.

Then the distribution of {Zt}0≤t≤1 conditional on the event {τ ≤ 1} equals the distributions of
a (0, a, 1, b)-bridge conditional on the event that the bridge is hit by an independent diffusion
with stochastic differential equation (2.1) and initial distribution with density p1(b, ·).

The quality of the approximation obviously depends on the probability π that a (0, a, 1, b)-
bridge is hit by an independent diffusion with initial distribution p1(b, ·). When π is close to
one, the simulated process is essentially a (0, a, 1, b)-bridge. It is important to realize that
the probability π is not equal to the acceptance probability P (τ ≤ 1). It is quite possible
that P (τ ≤ 1) is small while π is close to one. This happens, for instance, for a diffusion
with mean reversion to a level µ when a ≪ µ ≪ b. In Section 4 we shall investigate when
π can be expected to be close to one, and when a good approximation to a diffusion bridge
is obtained. Simulations indicate that also when π is not close to one (but also not close to
zero), the distribution of the simulated bridge is often indistinguishable from the distribution
of an exact diffusion bridge.

Before proving Theorem 2.1, we prove a lemma on the distribution of a time-reversed
diffusion. To do so we need the density of the speed measure

s(x) = exp

(

−2
∫ x

x#

α(y)

σ2(y)
dy

)

, x ∈ (ℓ, r), (2.3)

with x# denoting an arbitrary point in the state space of (ℓ, r).

Lemma 2.2 The distribution of the time-reversed process {X̄t} given by X̄t = X2
1−t has the

same distribution as the conditional distribution of the process {Xt} with X0 ∼ p1(b, ·) given
that X1 = b. The transition density of {X̄t} as well as of {Xt} conditional on X1 = b is

q(x, s, y, t) =
pt−s(x, y)p1−t(y, b)

p1−s(x, b)
=

pt−s(y, x)p1−t(b, y)

p1−s(b, x)
, s < t. (2.4)

Proof: The joint density of (X̄0, X̄t1 , . . . , X̄tn) = (X1, X1−t1 , . . . , X1−tn), where t1 < · · · <
tn < 1, is

f(y0, y1, . . . , yn) = p1−tn(b, yn)ptn−tn−1(yn, yn−1) · · ·pt2−t1(y2, y1)pt1(y1, y0).

The conditional joint density of (X0, Xt1 , . . . , Xtn), where X0 ∼ p1(b, ·), conditional on X1 = b
is

g(y0, y1, . . . , yn) = p1(b, y0)pt1(y0, y1)pt2−t1(y1, y2) · · · ptn−tn−1(yn−1, yn)p1−tn(yn, b)/p1(y0, b).
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That f(y0, y1, . . . , yn) = g(y0, y1, . . . , yn) follows from the fact that pt(x, y)s(x) = pt(y, x)s(y)
for any one-dimensional diffusion, where s is the density of the speed measure given by (2.3),
see Ito & McKean (1965), p. 149. That the two expressions for the transition density (2.4)
coincide follows from the same result. The first expression for q is the well-known expression
for the transition density of a diffusion bridge ending in b at time 1, see Fitzsimmons, Pitman
& Yor (1992), p. 111. It can be easily established by direct calculation. The second expression
for q can similarly be obtained as the transition density of X̄ by direct calculation:

pX̄s,X̄t
(x, y)/pX̄s

(x) = pX1−t,X1−s
(y, x)/pX1−s

(x) = p1−t(b, y)pt−s(y, x)/p1−s(b, x).

2

Remark: Note that the results of Lemma 2.2 hold for a multivariate diffusion too, provided
that there exists a function v such that pt(x, y)v(x) = pt(y, x)v(y). Diffusions with this
property are called v-symmetric, see the discussion in Kent (1978).

Proof of Theorem 2.1: Let W 3 be a standard Wiener processes independent of W 1, and
let X3 be the solution of

dX3
t = α(X3

t )dt + σ(X3
t )dW 3

t ,

where the distribution of X3
0 has the density p1(b, ·). Finally, let τ be the first time the

diffusion X3 hits the sample path of X1. Define a process by

Yt =











X1
t if 0 ≤ t ≤ τ

X3
t if τ < t ≤ 1

on {τ ≤ 1}, and Y = X1 on {τ = ∞}. By the strong Markov property Y has the same
distribution as X1. Now condition on X3

1 = b. Since

P (Y ∈ · |X3
1 = b, τ ≤ 1) = P (Y ∈ · | Y1 = b, τ ≤ 1),

the theorem follows because by Lemma 2.2 the distribution of {X2
1−t}0≤t≤1 equals that of

{X3
t }0≤t≤1 conditional on X3

1 = b. The event {Y1 = b, τ ≤ 1} is the event that Y is a
diffusion bridge from a to b and that the diffusion bridge is hit by X3.

2

By symmetry we see that the distribution of the process Z̃ defined by

Z̃t =











X1
t if 0 ≤ t ≤ 1 − τ̃

X2
1−t if 1 − τ̃ < t ≤ 1,

where τ̃ = inf{0 ≤ t ≤ 1|X1
1−t = X2

t }, is that of a (0, a, 1, b)-bridge conditional on the
event that the bridge is hit by {X3

1−t}, where X3 is an independent diffusion with stochastic
differential equation (2.1) and initial distribution with density p1(a, ·). Here we use X1 until
the last time it crosses the trajectory of {X2

1−t}, which happens at time 1 − τ̃ . Obviously,

an approximate diffusion bridge can also be simulated by using Z̃.
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3 Stochastic differential equations for diffusion bridges

In this section we give stochastic differential equations for diffusion bridges. These results
cannot in general be used to simulate diffusion bridges, because the drift depends on the
transition density of the original diffusion, which is usually not known explicitly. With a
suitable approximation to the transition density, the stochastic differential equations can
possibly be used to generate proposals for a Metropolis-Hastings sampler.

We consider the stochastic differential equation

dXt = α(Xt)dt + σ(Xt)dWt, (3.1)

where the solution X is either one-dimensional or a v-symmetric multivariate diffusion. The
reader is reminded that a diffusion is called v-symmetric if there exists a function v such
that pt(x, y)v(x) = pt(y, x)v(y). For a discussion of v-symmetric multivariate diffusions, see
Kent (1978). If X is p-dimensional, then α is a p-dimensional vector, σ is a p×p-matrix, and
v(x) = σ(x)σ(x)T . In this section we assume that the drift and diffusion coefficient satisfy
the usual global Lipschitz conditions. The domain of X is denoted by D.

Theorem 3.1 Assume that

∫ 1

t

∫

D

∣

∣

∣

∣

∣

∣

p
∑

j=1

∇xj
(vij(x)ps(b, x))

∣

∣

∣

∣

∣

∣

dxds < ∞, i = 1, . . . , p. (3.2)

Then the (0, a, 1, b)-bridge corresponding to (3.1) is a diffusion with diffusion coefficient σ(x)
and drift

b̄i(t, x) = −bi(x) +

∑p
j=1 ∇xj

(v(x)ijp1−t(b, x))

p1−t(b, x)
, i = 1, . . . , p.

For p = 1,
b̄(t, x) = −b(x) + v′(x) + v(x)∂x log p1−t(b, x). (3.3)

Proof: By Lemma 2.2, which also holds for v-symmetric multivariate diffusions, the tran-
sition density of the (0, a, 1, b)-bridge is equal to the transition density of the time-reversed
process X̄t = X1−t, which by Theorem 2.3 in Millet, Nualert & Sanz (1989) is a diffusion
with drift and diffusion coefficients as given in the theorem.

2

Conditions ensuring the local integrability condition (3.2) are discussed in Millet, Nualert
& Sanz (1989), where also a similar result under the local Lipschitz condition are given. The
condition (3.2) is implied if the two coefficients are twice continuously differentiable and if
there exists ǫ > 0 such that v(x) ≥ ǫI, where I is the p × p identity matrix. Alternative
conditions can be found in Haussmann & Pardoux (1986).

In cases, where the transition density is not differentiable with respect to x, the partial
derivative in the formula for the drift are in the distributional sense.

Example 3.2 For a standard Brownian motion, (3.3) gives the well-known result that the
drift of the Brownian bridge is −(x − b)/(1 − t).

2
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Example 3.3 For an Ornstein–Uhlenbeck process with drift −θx and diffusion coefficient
σ, the drift of the (0, a, 1, b)-bridge is, by (3.3),

b̄(t, x) = θ
(

x − 2(x − be−θ(1−t))/(1 − e−2θ(1−t))
)

,

which close to the boundary 1 behaves like

b̄(t, x) = −(x − b)/(1 − t) + θ(x − b) + O(1 − t).

2

4 Simulation study

In this section we simulate two examples of diffusion bridges for which exact algorithms
are available, the Ornstein–Uhlenbeck process and the hyperbolic diffusion. We compare
the distribution of exact bridge simulations to the distribution of the process obtained by
the approximate bridge simulation proposed in the present paper. It is found that the
approximation is very accurate in most cases, including bridges that are likely to occur in
applications to likelihood inference. We also compare CPU execution times.

4.1 The Ornstein–Uhlenbeck bridge

First we consider the case of an Ornstein–Uhlenbeck bridge, which is a solution to the
stochastic differential equations

dXt = −θXtdt + σdWt

conditionally on X0 = a and X1 = b for some a, b ∈ IR. From the well-known Gaussian tran-
sition densities of the Ornstein–Uhlenbeck process we can calculate the transition densities of
the Ornstein–Uhlenbeck bridge by (2.4). Thus we could in principle simulate the Ornstein–
Uhlenbeck bridge by sampling transitions from these densities. The following alternative
method is, however, numerically more stable.

Lemma 4.1 Generate Xt0 , Xt1 , . . .Xtn , Xtn+1, where 0 = t0 < t1 < · · · < tn < tn+1, by
X0 = x0 and

Xti = e−θ(ti−ti−1)Xti−1
+ Wi, i = 1, . . . , n + 1

where the Wis are independent and

Wi ∼ N

(

0,
σ2

2θ

(

1 − e−2θ(ti−ti−1)
)

)

.

Define

Zti = Xti + (x − Xtn+1)
eθti − e−θti

eθtn+1 − e−θtn+1
, i = 0, . . . , n + 1.

Then (Zt0 , Zt1 , . . . , Ztn, Ztn+1) is distributed like an Ornstein–Uhlenbeck bridge with Zt0 = x0

and Ztn+1=x.
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Figure 4.1: Q-Q plots that compare the empirical distribution at time 0.5 based on 25,000
simulated (0, 0) diffusion bridges obtained by our method to that based on 25,000 exactly
simulated diffusion bridges. The left plot is for the Ornstein–Uhlenbeck bridge and the right
plot is for the hyperbolic diffusion bridge. Exact simulations are obtained by the method
in Lemma 4.1 for the Ornstein–Uhlenbeck bridge and by the exact algorithm of Beskos,
Papaspiliopoulos & Roberts (2006) for the hyperbolic diffusion bridge.

Proof: The result follows straightforwardly because Z = (Zt1, . . . , Ztn)T is a linear trans-
formation of a normal distribution. For completeness, we give the details. Let Σ de-
note the covariance matrix of X = (Xt1 , . . . , Xtn)T , and define cT = (c1, . . . , cn), where
ci = Cov(Xti , Xtn+1) = σ2e−θtn+1(eθti − e−θti)/(2θ), i = 1, . . . , n. Since Var(Xtn+1) =
σ2(1 − e−2θtn+1)/2θ, it follows that

Y = X −
2θXtn+1

σ2(1 − e−2θtn+1)
c ∼ Nn

(

ξ −
2θx0e

−θtn+1

σ2(1 − e−2θtn+1)
c, Σ −

2θ

σ2(1 − e−2θtn+1)
ccT

)

,

where ξT = (x0e
−θt1 , . . . , x0e

−θtn). Thus

Z = Y +
2θx

σ2(1 − e−2θtn+1)
∼ Nn

(

ξ +
2θ(x − x0e

−θtn+1)

σ2(1 − e−2θtn+1)
c, Σ −

2θ

σ2(1 − e−2θtn+1)
ccT

)

,

which is the conditional distribution of X given Xtn+1 = x.

2

In all examples considered in the following we simulated 25,000 realizations of diffusion
bridges over the time interval [0, 1]. The Euler scheme was used with discretization level
N = 100 (δ = 0.01). The methods were implemented in Fortran 90 on a Dell Precision M65
workstation (laptop).

For the Ornstein–Uhlenbeck bridge we chose the parameter values θ = 0.5 and σ = 1.0.
This particular choice of the parameter values is not essential to the conclusions of the
simulations study. First we considered a bridge that started at 0 and ended at 0. We
compare our method presented in Section 2 and based on Theorem 2.1 to the exact algorithm
of Lemma 4.1. To the left in Figure 4.1 we have plotted the quantiles of the empirical
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Figure 4.2: Q-Q plots that compare the empirical distributions at time 0.5 based on 25,000
simulated (0, 1), (0, 2), (−1, 1) and (−1, 2) Ornstein–Uhlenbeck bridges obtained by our
method to that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges. Exact sim-
ulations are obtained by the method in Lemma 4.1.
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distribution at the time point 0.5 obtained by our method against the quantiles of the
empirical distribution obtained by the exact algorithm. The two distributions appear to be
equal. Similar comparisons of quantiles at time 0.5 for our method to quantiles of an exact
bridge are presented in Figure 4.2 for (0, 1), (0, 2), (−1, 1) and (−1, 2) Ornstein–Uhlenbeck
bridges. In all four cases the two distributions seem to be essentially equal, except for a
very small negative bias for the (0, 2)-bridge. Similar results were found for several other
comparisons of distributions with similar values of the start and end points, a and b.

The CPU execution time (in seconds) to simulate 10,000 Ornstein–Uhlenbeck bridges
using our method for the various starting points, a, and end points, b, are given in Table 4.1
together with estimated rejection probabilities. The table also gives the probabilities that an
Ornstein–Uhlenbeck process moves from a to b or farther in the time interval [0, 1]. We see
that for moves that are likely to appear in data sets, the CPU times and rejection probabilities
are small, and the CPU times are only slightly larger than the execution time for the exact
algorithm which is about 0.5 CPU seconds. For more unlikely moves the rejection probability
is quite large, but also in these cases the execution time is not a problem in applications.
The last column of Table 4.1 gives the (estimated) probability of the event that an exact
(a, b)-bridge is not hit by an independent diffusion with initial distribution p1(b, ·). These
probabilities were found by simulating exact Ornstein–Uhlenbeck bridges and independent
Ornstein–Uhlenbeck processes with initial distribution p1(b, ·). If this probability were zero,
our method would simulate an exact diffusion bridge. The probabilities are small, but not
negligible. It is remarkable that our method gives an accurate approximation to a diffusion
bridge in spite of this. The reason must be that the diffusion bridges are not hit by the
independent diffusion in a systematic way for the a and b values considered here.

a 7→ b CPU (sec.) rejection prob. probability of move 1 − π
0 7→ 0 0.5 0.17 0.28
0 7→ 1 0.7 0.41 0.1 0.21
0 7→ 2 1.7 0.77 0.006 0.08

−1 7→ 1 1.9 0.80 0.02 0.16
−1 7→ 2 11.9 0.97 0.0005 0.06

Table 4.1: The CPU execution time (in seconds) used to simulate 10,000 Ornstein–Uhlenbeck
bridges using our method for various starting points, a, and end points, b. Also estimated
rejection probabilities and the probabilities of a move from a to b or farther. The last column
gives the probability that an exact (a, b)-bridge is not hit by an independent diffusion with
initial distribution p1(b, ·).

In order to test out method in an extreme situation we simulated 25,000 Ornstein–
Uhlenbeck bridges that started from -2 and ended in 2. The probability that an Ornstein–
Uhlenbeck process with parameters θ = 0.5 and σ = 1.0 moves from -2 to 2 or farther in
the time interval [0, 1] equals the probability that a standard normal distribution is larger
than 4.04, which equals 0.00003, so this a indeed a very extreme test of the method. Not
surprisingly that rejection rate was very high, but as appears from Figure 4.3 the distribution
at time 0.5 fits the distribution obtained by exact simulation very well.

The only situation we have been able to find where the distribution obtained by our
simulation method differs appreciably from the distribution of an exact bridge is when the
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Figure 4.3: Q-Q plot that compares the empirical distribution at time 0.5 based on 25,000
simulated (−2, 2) Ornstein–Uhlenbeck bridges obtained by our method to that based on
25,000 exactly simulated Ornstein–Uhlenbeck bridges.

start and end points, a and b, have the same sign and are both far from the equilibrium
point zero. This is to be expected because we simulate an exact bridge conditional on the
event that it is hit by an independent diffusion with initial distribution p1(b, ·). When b is far
from zero, most of the probability mass of p1(b, ·) is located considerably closer to zero than
b (because of the drift towards zero). Moreover the independent diffusion will tend to move
towards zero. On the other hand, the (a, b)-bridge will tend to stay relatively close to a and
b. Only trajectories of the bridge that move sufficiently towards zero has a reasonable chance
of being hit by the independent diffusion. This creates a bias towards zero. The comparison
of quantiles at time 0.5 for (−1,−1), (−2,−2), (−3,−3) and (2, 3) bridges are presented
in Figure 4.4. For the (−1,−1)-bridge the bias is very small, and for the (−2,−2)-bridge
there is a relatively small positive bias (as expected from the consideration above). For the
(−3,−3)-bridge and the (2, 3) bridge there is a more considerable bias (positive and negative,
respectively, as expected). Note that the points are, to a good approximation, parallel to
the identity line, which indicates that essentially the only problem is that the position of the
distribution has been shifted a little.

Figure 4.5 illustrates Theorem 2.1. The plot to the left compares approximate simulation
of the (−3,−2)-bridge to the exact (−3,−2)-bridge in a way similar to the previous plots,
whereas the plot to the right is a Q-Q plot that compares the empirical distributions at
time 0.5 based on 25,000 simulated (−3,−2) Ornstein–Uhlenbeck bridges obtained by our
method to that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges, where the
exactly simulated bridges were removed from the sample if the bridge was not hit by an
independent diffusion with initial distribution p1(b, ·). As expected from Theorem 2.1 the
two distributions in the plot to the right appear to be equal.

Table 4.2 gives estimated rejection probabilities and the probability that an exact (a, b)-
bridge is not hit by an independent diffusion with initial distribution p1(b, ·). As expected
the probabilities of not being hit is quite substantial in most cases. The last column gives
the probability that a stationary Ornstein–Uhlenbeck process is a distance |a| or more from
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zero. We see that the process will only spend very little time in the parts of the state
space, where our method is biased. This information can be supplemented by the fact that
the probability that an Ornstein–Uhlenbeck process goes from 2 to 3 or farther in the time
interval [0, 1] is 0.01, so it is highly unlikely to observe an Ornstein–Uhlenbeck process at 2
at time zero and at 3 at time one. Therefore such a bridge will extremely rarely be needed
in simulation–based likelihood inference for an Ornstein–Uhlenbeck process.

a 7→ b rejection prob. 1 − π 2P (Xt > |a|)
−1 7→ −1 0.15 0.37 0.32
−2 7→ −2 0.09 0.55 0.05
−3 7→ −3 0.05 0.74 0.003

2 7→ 3 0.24 0.41 0.05
−3 7→ 2 0.24 0.74 0.003

Table 4.2: Estimated rejection probabilities for the Ornstein–Uhlenbeck bridges using our
method for various starting points, a, and end points, b. The second column gives the
probability that an exact (a, b)-bridge is not hit by an independent diffusion with initial
distribution p1(b, ·). The last column gives the probability of finding an Ornstein–Uhlenbeck
a distance |a| or more from zero.

The time point 0.5 was chosen in the simulation study because it is expected that this is
the time point where it is most difficult to to get a good approximation of the distribution
of a diffusion bridge. In order to check that our method works better close to the end-points
of the time interval, we have compared the distribution at time 0.1 obtained by our method
to that of an exact Ornstein–Uhlenbeck bridge for a (−1,−1)-bridge and a (−3,−3)-bridge.
The results are given in Figure 4.6, which shows that our method works better at time 0.1
than at time 0.5. For the (−1,−1)-bridge the bias has essentially disappeared at time 0.1,
and for the (−3,−3)-bridge the bias is considerably smaller at time 0.1 than at time 0.5.
Several similar comparisons confirm that our method works better close to the end-points
than at time 0.5.

4.2 The hyperbolic bridge

Next we consider the hyperbolic diffusion which is the solution to

dXt = −
θXt

√

1 + X2
t

dt + σdWt,

with θ > 0 and σ > 0. The hyperbolic diffusion was introduced by Barndorff-Nielsen (1978).
It is ergodic with the standardized symmetric hyperbolic distribution as invariant distribu-
tion, see e.g. Bibby & Sørensen (2003). In this case the transition density is not explicitly
known, but we can compare our method to the exact algorithm by Beskos, Papaspiliopou-
los & Roberts (2006). This method is referred to as EA1 in Beskos et al. (2006). It is is
applicable to diffusion processes on the form

dXt = α(Xt)dt + dWt, (4.1)
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Figure 4.4: Q-Q plots that compare the empirical distributions at time 0.5 based on 25,000
simulated (−1,−1), (−2,−2), (−3,−3) and (2, 3) Ornstein–Uhlenbeck bridges obtained by
our method to that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges. Exact
simulations are obtained by the method in Lemma 4.1.
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Figure 4.5: Q-Q plots that compare the empirical distributions at time 0.5 based on 25,000
simulated (−3,−2) Ornstein–Uhlenbeck bridges obtained by our method to that based on
25,000 exactly simulated Ornstein–Uhlenbeck bridges (left plot), and to that where the
exactly simulated Ornstein–Uhlenbeck bridges were removed from the sample if the bridge
was not hit by an independent diffusion with initial distribution p1(b, ·) (right plot). Exact
simulations are obtained by the method in Lemma 4.1.

Figure 4.6: Q-Q plots that compare the empirical distributions at time 0.1 based on 25,000
simulated (−1,−1) and (−3,−3) Ornstein–Uhlenbeck bridges obtained by our method to
that based on 25,000 exactly simulated Ornstein–Uhlenbeck bridges. Exact simulations are
obtained by the method in Lemma 4.1.
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provided that α is continuously differentiable, and the function α(x)2 + α′(x) is bounded
from above and below for all x. The hyperbolic diffusion process obviously satisfies this
boundedness condition. The algorithm by Beskos, Papaspiliopoulos & Roberts (2006) is
very quick for short intervals as it essentially only requires one simulation of a Brownian
bridge if not rejected. Rejection in the EA1 algorithm is not very costly computationally
in our example since it is only a few points that are thrown away per rejection. Thus we
compare our algorithm to a very efficient method.

Again we simulated 25,000 bridges using the Euler scheme with a 100 points subdivision
of [0, 1]. The parameter values were θ = σ = 1. We start with a bridge from 0 to 0 and
compare our method to the exact algorithm of Beskos, Papaspiliopoulos & Roberts (2006).
To the right in Figure 4.1 we have plotted the quantiles of the empirical distribution at the
time point 0.5 obtained by our method against the quantiles of the empirical distribution
obtained by the exact algorithm. Also for this example the two distributions appear to be
equal. Table 4.3 shows CPU execution times to simulate 10,000 hyperbolic diffusion bridges
by our method for various starting points, a, and end points, b. Also estimated rejection
probabilities are given. The pattern is similar to that for the Ornstein–Uhlenbeck process.
For moves that are likely to appear in data sets, the CPU times and rejection probabilities
are small, and for unlikely moves the execution time is not a problem in applications, even
though the rejection probability is quite large. The execution time for the EA1 algorithm
was 0.3 CPU seconds, which, as expected, is faster than our method. Note that there is
no reason to consider diffusions for which the EA1 algorithm does not work in order to
compare our method to the more complicated simulation methods EA2 and EA3 in Beskos,
Papaspiliopoulos & Roberts (2006) and Beskos, Papaspiliopoulos & Roberts (2007). The
EA2 and EA3 algorithms are clearly more time consuming than EA1, while execution times
for our methods can be expected to be approximately as for the two examples considered
here.

a 7→ b CPU (sec.) rejection prob.
0 7→ 0 0.6 0.14
0 7→ 1 0.8 0.36
0 7→ 2 2.1 0.77

−1 7→ 1 2.0 0.76
−1 7→ 2 12.6 0.96

Table 4.3: The CPU execution time (in seconds) used to simulate 10,000 hyperbolic diffusion
bridges with θ = σ = 1 by our method for various starting points, a, and end points, b. Also
estimated rejection probabilities are given.

Beskos, Papaspiliopoulos & Roberts (2006) noted that the computing time of their exact
algorithm is large for diffusion bridges over long time intervals. It is therefore of interest
to compare computer time and rejection probabilities for our algorithm to the algorithm in
Beskos, Papaspiliopoulos & Roberts (2006). To do so, we simulated 10,000 trajectories of
the (0, 0, ∆, 0)-bridge for the hyperbolic diffusion with θ = σ2 = 4. This was done for values
of the interval length ∆ ranging from 0.5 to 5. The CPU execution time (in seconds) used
to simulate the 10,000 trajectories are given in Table 4.4. We see that for this particular
diffusion the two methods use the same CPU time for an interval length of two. For smaller
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interval lengths the exact algorithm is somewhat faster, whereas the method proposed in
Section 2 is much faster for long intervals. The simulations indicate that the computational
complexity of the proposed method is linear in the interval length ∆, whereas it appears to
grow at least exponentially with ∆ for the exact algorithm; see Figure 4.7. The main reason
is that for long intervals the number of rejections becomes very large for the algorithm in
Beskos, Papaspiliopoulos & Roberts (2006), while the algorithm proposed in Section 2 has
a small rejection probability for long intervals. It is not surprising that the trajectories of
the two ergodic diffusions will intersect with a large probability for a long interval, which
implies a small rejection probability.

Present paper Beskos et al. (2006)
∆ CPU time # rejections CPU time # rejections
0.5 0.52 819 0.28 14497
1.0 0.99 307 0.59 53087
1.5 1.45 102 1.05 163599
2.0 1.93 44 1.92 457226
2.5 2.40 17 4.00 1242922
3.0 2.88 6 10.01 3491838
3.5 3.36 2 26.86 9357310
4.0 3.83 0 75.79 25232418
4.5 4.31 0 222.09 69299642
5.0 4.79 0 641.70 187069771

Table 4.4: The CPU execution time (in seconds) used to simulate 10,000 hyperbolic
(0, 0, ∆, 0)-bridges with θ = σ2 = 4 for the method proposed in Section 2 and for the
method in Beskos, Papaspiliopoulos & Roberts (2006) for different interval lengths ∆. Also
the number of rejections while simulating the 10,000 trajectories is given.

5 Maximum likelihood estimation

To give an example of an application of our diffusion bridge simulation method, we present a
way of finding the maximum likelihood estimator for discretely observed diffusion processes
that is a modification of a method by Beskos et al. (2006). The advantage of our method is
that it works for all one-dimensional diffusion processes. We also briefly discuss aspects of
Bayesian inference.

Consider the diffusion process

dXt = bα(Xt)dt + σβ(Xt)dWt, (5.1)

where α and β are unknown parameters to be estimated, and W is the standard Wiener
process. We assume that σβ(x) > 0 for all x in the state interval. Suppose that the
only data available from a realization of the diffusion process are observations at times
t1 < t2 < ... < tn, xi = Xti , i = 1, ..., n.
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Figure 4.7: The CPU execution time (in seconds) used to simulate 10,000 hyperbolic
(0, 0, ∆, 0)-bridges with θ = σ2 = 4. In the left plot the CPU time is plotted against ∆
for the method proposed in Section 2, while in the right plot the logarithm of the CPU time
is plotted against ∆ for the method in Beskos, Papaspiliopoulos & Roberts (2006).

Discrete time observation of a continuous time process can be viewed as an incomplete
observation problem so that the EM-algorithm (Dempster, Laird & Rubin (1977)) is a po-
tential method for finding the maximum likelihood estimator of the parameters. For instance
maximum likelihood estimation for discretely observed Markov jump processes was treated
in this way by Bladt & Sørensen (2005) and Bladt & Sørensen (2009). Unfortunately, the
probability measures corresponding to complete continuous time observation of the diffusion
model given by (5.1) are singular because the diffusion coefficient depends on the parameter
β. It is therefore not straightforward to implement the EM-algorithm, but an approach in
the spirit of Roberts & Stramer (2001) was proposed by Beskos et al. (2006). In the fol-
lowing we summarize a modification of this approach using our diffusion bridge simulation
technique. Moreover, we show how a considerable simplification of the algorithm can be
achieved when the model (5.1) is an exponential family of diffusions in the sense of Küchler
& Sørensen (1997).

The transformation

hβ(x) =
∫ x

x∗

1

σβ(y)
dy

is essential. Here x∗ is some arbitrary, but appropriately chosen, point in the state interval.
The point is that by Ito’s formula, Yt = hβ(Xt) solves

dYt = µα,β(Yt)dt + dWt, (5.2)

where

µα,β(y) =
bα(h−1

β (y))

σβ(h−1
β (y))

−
1

2
σ′

β

(

h−1
β (y)

)

.
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In (5.2) the diffusion coefficient does not depend on the parameters, so the probability
measures are equivalent and the likelihood function can be found. To do so the function

gα,β(x) = sα,β(x) − 1
2 log(σβ(x)), (5.3)

where

sα,β(x) =
∫ x

x∗

bα(z)

σ2
β(z)

dz, (5.4)

is needed. Note that
∫ y
y∗ µα,β(z)dz = gα,β(h

−1
β (y))−gα,β(h

−1
β (y∗)), and that the functions gα,β

and sα,β are closely related to the density ϕα,β of the stationary distribution of the original
diffusion model given by (5.1). Specifically, sα,β(x) equals 1

2
log(σβ(x)2ϕα,β(x)) apart from

an additive constant. Thus when the stationary density is known, the only problem is to
find hβ and its inverse. This is for instance the case for the Pearson diffusions studied by
Forman & Sørensen (2008).

The problem with the transformation hβ is that it is parameter dependent, while we need
to keep the original discrete time data fixed when running the EM-algorithm. To get around
this problem, define

Y ∗
t (β, β0) = Z

(i,α0,β0)
t +

(ti − t)(hβ(xi−1) − hβ0(xi−1)) + (t − ti−1)(hβ(xi) − hβ0(xi))

ti − ti−1

,

for ti−1 ≤ t ≤ ti, i = 2, . . . , n. Here Z
(i,α0,β0)
t denotes the (ti−1, hβ0(xi−1), ti, hβ0(xi))-bridge

for the diffusion (5.2) with parameter values α0 and β0, and Z
(i,α0,β0)
t , i = 2, . . . , n are

independent. Then the EM-algorithm works as follows. Let α0, β0 be initial values of the
parameters.

(1) (E–step) Calculate the function

q(α, β) = gα,β(xn) − gα,β(x1) −
1

2

n
∑

i=2

[hβ(xi) − hβ(xi−1)]
2/(ti − ti−1)

−
n
∑

i=2

log(σβ(xi)) −
1

2

n
∑

i=2

IEZ(i,α0,β0)

(

∫ ti

ti−1

[

µ′
α,β(Y ∗

t (β, β0)) + µα,β(Y ∗
t (β, β0))

2
]

dt

)

.

(2) (M–step) (α0, β0) = argmaxα,βq(α, β).

(3) GO TO (1).

In the E–step, IEZ(i,α0,β0) means that the data points are fixed so that only the diffusion bridge
is random, and expectation is with respect to the distribution of the diffusion bridge. Thus
the expectations in the E–step can be approximated by simulating independent diffusion
bridges by our method and averaging. Arguments that q(α, β) is the conditional expectation
of the relevant continuous time likelihood function can be found in Roberts & Stramer (2001)
and Beskos et al. (2006). As pointed out in the latter paper, the conditional expectation
can also be calculated as

IEZ(i,α0,β0),U

(

µ′
α,β(Y ∗

U (β, β0)) + µα,β(Y
∗
U (β, β0))

2
)

,
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where U is a uniformly distributed random variable on [ti−1, ti] that is independent of Z
(i,α0,β0)
t

and the data.
In the M–step the maximization of q(α, β) must in general be done by a suitable maxi-

mization algorithm. However when the drift of the original diffusion model (5.1) depends
linearly on the vector of parameters α, i.e. when

bα(x) = α1a1(x) + · · ·+ αkak(x), (5.5)

where a1, . . . , ak are known functions, then the maximization problem is simplified some-
what. When the drift has this form, and when the diffusion parameter β is fixed, the model
for continuous time observation of X as well as the transformed process Y is an exponen-
tial family of stochastic processes, see Küchler & Sørensen (1997). We can therefore take
advantage of well known properties of exponential families of diffusions.

For the EM–algorithm the specification (5.5) implies that the function q(α, β) has the
form

q(α, β) =
k
∑

i=1

αiHi,β −
1

2

k
∑

i=1

k
∑

j=1

αiαjBi,j,β + Gβ,

where

Hi,β = si,β(xn) − si,β(x1)

+
n
∑

j=2

IEZ(j,α0,β0)

(

∫ tj

tj−1

[

ai(h
−1
β (Y ∗

t (β, β0)))(log σβ)′(h−1
β (Y ∗

t (β, β0))) −
1
2a

′
i(h

−1
β (Y ∗

t (β, β0)))
]

dt

)

,

with si,β(x) =
∫ x
x∗ ai(y)/σ2

β(y)dy,

Bi,j,β =
n
∑

j=2

IEZ(j,α0,β0)

(

∫ tj

tj−1

ai(h
−1
β (Y ∗

t (β, β0)))aj(h
−1
β (Y ∗

t (β, β0)))

σ2
β(h−1

β (Y ∗
t (β, β0)))

dt

)

,

and

Gβ = −
1

2
log (σβ(xn)/σβ(x1)) −

1

2

n
∑

i=2

[hβ(xi) − hβ(xi−1)]
2/(ti − ti−1) −

n
∑

i=2

log(σβ(xi))

+
1

4

n
∑

j=2

IEZ(j,α0,β0)

(

∫ tj

tj−1

[

σ′′
β(h−1

β (Y ∗
t (β, β0)))σβ(h−1

β (Y ∗
t (β, β0))) −

1
2{σ

′
β(h−1

β (Y ∗
t (β, β0)))}

2
]

dt

)

.

For a fixed value of β, the function α 7→ q(α, β) is maximal for

α̂(β) = B
−1
β Hβ,

where α̂ = (α̂1, . . . , α̂k)
T , Hβ = (H1,β, . . . , Hk,β)

T and Bβ = {Bi,j,β}. This is provided that
Bβ is invertible, which it is when the functions ai, i = 1, . . . , k are linearly independent.

Thus q(α, β) attains its maximal value at (α̂(β̂), β̂), where β̂ maximizes

β 7→ q(α̂(β), β) = 1
2H

T
β B−1

β Hβ + Gβ.

The Gibbs sampler for Bayesian inference for discretely observed diffusion processes pro-
posed by Roberts & Stramer (2001) can also be modified by replacing the MCMC algorithm
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for simulating diffusion bridges in that paper by our diffusion bridge simulation method.
We will not go into any detail for general diffusions, but will limit ourselves to pointing out
that when the drift has the form (5.5), then the (continuous time) posterior distribution
of α simplifies. Choose as the prior for α the conjugate prior for an exponential family of
diffusions, which is a multivariate normal distribution with expectation ᾱ and covariance
matrix Σ. Then the posterior of α (given β = β0 and given simulated diffusion bridges)
is a k-dimensional normal distribution with expectation (Σ−1 + B̃β0)

−1(Σ−1ᾱ + H̃β0) and
covariance matrix (Σ−1 + B̃β0)

−1, where H̃β = (H̃1,β, . . . , H̃k,β)
T , Bβ = {Bi,j,β},

H̃i,β = si,β(xn) − si,β(x1)

+
n
∑

i=2

∫ ti

ti−1

[

ai(h
−1
β (Y ∗

t (β, β0)))(log σβ)′(h−1
β (Y ∗

t (β, β0))) −
1
2a

′
i(h

−1
β (Y ∗

t (β, β0)))
]

dt,

and

B̃i,j,β =
n
∑

i=2

∫ ti

ti−1

ai(h
−1
β (Y ∗

t (β, β0)))aj(h
−1
β (Y ∗

t (β, β0)))

σ2
β(h−1

β (Y ∗
t (β, β0)))

dt.

6 Conclusion

We have presented a straightforward way of simulating an approximation to a diffusion
bridge. The advantage of the new method is that it is very easy to understand and to im-
plement, and that the same simple algorithm can be used for essentially all one-dimensional
diffusion processes. The method allows the use of simple simulation procedures like the
Euler scheme or the Milstein scheme for bridge simulation. The simulation study showed
that the one-dimensional distributions obtained by the simple method compare accurately
to the results from exact simulations for bridges corresponding to data that are likely in
discrete–time samples from diffusion models.

The simulation study also showed that the computing time for the proposed algorithm
for small time intervals is of the same order of magnitude as for the exact method and for
long intervals is much faster than the exact method. Thus the new approximate diffusion
bridge simulation method seems to be suitable for likelihood inference for discretely observed
diffusions and can be used to simplify and in some cases speed up methods for likelihood
inference and Bayesian inference (the EM-algorithm and the Gibbs sampler) for discretely
observed diffusion processes. The method is also potentially useful for inference for more
general diffusion type models like stochastic volatility models.

References
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