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Abstract

This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen-

tral Di¤erence Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially

non-Gaussian shocks. We argue that this estimator can be expected to be consistent and as-

ymptotically normal for DSGE models solved up to third order. A Monte Carlo study shows

that this QML estimator is basically unbiased and normally distributed in �nite samples for

DSGE models solved using a second order or a third order approximation. These results hold

even when structural shocks are Gaussian, Laplace distributed, or display stochastic volatility.
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1 Introduction

Likelihood based inference has emerged as a standard approach to estimate linearized DSGE models

with unobserved state variables. The approach relies on the use of the Kalman Filter to evaluate the

log-likelihood function in closed form when shocks and potential measurement errors are Gaussian.

A similar closed form solution for the log-likelihood function does not exist when DSGE models

are solved with non-linear terms and/or have non-Gaussian shocks. The important contribution by

Fernández-Villaverde & Rubio-Ramírez (2007) addresses this problem by introducing a sequential

Monte Carlo method called particle �ltering as a way to estimate the log-likelihood function for

non-linear DSGE modes with potentially non-Gaussian shocks. Throughout this paper we refer to

the particle �lter used in Fernández-Villaverde & Rubio-Ramírez (2007) as the standard Particle

Filter (PF).

Although the idea of using particle �ltering for likelihood inference is appealing, the method has

the disadvantage of being computationally very demanding. Even for models with just two or three

shocks, tens of thousands of particles are needed to get a reliable approximation to the log-likelihood

function, and this makes the estimation process very time consuming - if at all feasible - for larger

models. The numerical di¢ culties related to particle �ltering imply that a relatively small number

of non-linear DSGE models have so far been estimated by likelihood inference compared to the

large number of estimated linearized DSGE models. Hence, more e¢ cient �ltering and estimation

methods would clearly be useful in relation to estimation of non-linear DSGE models.

As an alternative to particle �ltering, Norgaard, Poulsen & Ravn (2000) have developed the

Central Di¤erence Kalman Filter (CDKF) for state estimation in general non-linear and non-

Gaussian state space systems. Contrary to particle �lters, the updating rule for the state vector

in the CDKF is restricted to have a linear functional form, and the recursive equations for the

state estimator and its covariance matrix are therefore only functions of �rst and second moments.

The CDKF approximates these moments up to at least second order accuracy by a deterministic

sampling approach based on multivariate Stirling interpolations. This approximation method is

computationally very fast and reasonably accurate. Like particle �ltering, the CDKF frequently

outperforms the Extended Kalman Filter (EKF) which for many years has been the preferred �lter

for non-linear and non-Gaussian systems (see for instance Jazwinski (1970)).
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The contribution of this paper is to introduce a Quasi Maximum Likelihood (QML) method

using the CDKF to estimate non-linear DSGE models with potentially non-Gaussian shocks. We

focus on the case where the observed variables contain measurement errors, and we argue that

this QML estimator can be expected to be consistent and asymptotically normal for DSGE models

solved up to third order. These results hold both when Gaussian and non-Gaussian shocks are

driving the economy. The main advantage of the proposed QML estimator is that it is much faster

to compute than any particle �lter and this greatly eases the estimation. Our QML estimator could

therefore be expected to facilitate an increase in the number of estimated non-linear DSGE models.

We test the performance of the CDKF and the suggested QML estimator in a Monte Carlo

study using a New Keynesian DSGE model approximated to �rst, second, and third order. The

key results from this Monte Carlo study are as follows. Firstly, the state vector is estimated more

precisely by the CDKF than the EKF and the standard PF (with 200,000 particles) when shocks

are Gaussian and Laplace distributed. This shows that a linear updating rule and the multivariate

Stirling interpolation used in the CDKF may lead to quite accurate approximations. However, the

standard PF performs better than the CDKF and the EKF when shocks display stochastic volatility.

Secondly, the quasi log-likelihood function derived from the CDKF is a better approximation to the

log-likelihood function in the standard PF than the quasi log-likelihood function based on the EKF.

For Gaussian shocks, the quasi log-likelihood function from the CDKF is either very close or within

the 95% con�dence interval for the estimated log-likelihood function in the standard PF. The same

conclusion does not hold when shocks have a Laplace distribution or display stochastic volatility.

Thirdly, the suggested QML estimator is found to be normally distributed and basically unbiased

in �nite samples for second and third order approximations to the considered DSGE model. These

results hold regardless of whether shocks to the economy are Gaussian, Laplace distributed, or

display stochastic volatility. Asymptotic standard errors can in all cases be computed based on the

Hessian matrix and the variance of the score function. Reliable inference is here greatly facilitated

by the property that only �rst order derivatives are needed to compute the Hessian matrix for this

quasi log-likelihood function.

Based on these �ndings, we therefore believe that the suggested QML approach is a useful new

tool for taking non-linear DSGE models to the data. Our QML estimator may be considered as an
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alternative to the likelihood approach advocated by Fernández-Villaverde & Rubio-Ramírez (2007)

but also as a useful supplement. For instance, the Classical researcher may use the QML estimates

as good starting values for the maximization of the log-likelihood function from a particle �lter

as this should make the optimization considerable easier. Also the Bayesian researcher may �nd

the QML estimator useful because i) the QML estimates can be used as good starting values for

the Markov chain, and ii) the Hessian matrix of the quasi log-likelihood function can be used to

specify the proposal distribution in the random walk Metropolis algorithm for the MCMC analysis.

Both features should help to ensure faster convergence of the Markov chain where the log-likelihood

function is estimated by a particle �lter.

The rest of the paper is organized as follows. We present the state space representation of

DSGE models in section 2. Some theory related to �ltering is discussed in section 3 where we also

present the EKF and the CDKF. We then introduce the QML approach based on the CDKF in

section 4. Section 5 describes a standard DSGE model which is calibrated to account for higher

order moments in the post-war US economy. The performance of the various �lters and the QML

estimator are examined in a Monte Carlo study in section 6. Concluding comments are provided

in section 7.

2 The state space representation of DSGE models

We consider the class of DSGE models that can be represented in a dynamic state space system (see

Thomas F. Cooley (1995) and Schmitt-Grohé & Uribe (2004) for illustrations). The observables in

period t are denoted by the vector yt with dimension ny � 1, and these observables are a function

of the state vector xt with dimension nx � 1. Allowing for additive measurement errors vt in all

observables, we then get

yt = g (xt;�) + vt, (1)

where vt � IID (0;Rv (t)) denotes independent and identically distributed measurement errors.

The function g (�) is determined by the structural parameters � 2 � in the economic model and

the model�s equilibrium conditions. We refer to (1) as the set of measurement equations.
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For the state vector, we consider a standard �rst order Markovian law of motion

xt+1 = h (xt;wt+1;�) ; (2)

where wt+1 � IID (0;Rw (t+ 1)). The vector wt+1 of structural innovations is assumed to be

uncorrelated at all leads and lags with vt. We refer to (2) as the set of transition equations. The

state vector is assumed to be unobserved, but observed state variables can be incorporated by

letting one or more elements in g (�) be identity mappings.

3 Filtering

The objective of �ltering is to estimate the unobserved state vector xt as data on yt becomes

available. We start in section 3.1 by deriving recursive equations for the estimation of xt and its

covariance matrix based on a two-step procedure of prediction and updating. The updating rule for

the state vector is assumed to be linear in the observables because it leads to simple equations with

only �rst and second moments from the state space system in (1) and (2). The next two sections

show how these moments are approximated by linearization in the EKF and by multivariate Stirling

interpolations in the CDKF. The �nal section discusses prediction and smoothing in the CDKF.

3.1 A linear updating rule for the state vector

We use the standard notation where a bar denotes a priori estimates and a hat denotes posterior

estimates. For instance, �xt+1 � Et [xt+1] and x̂t+1 � Et+1 [xt+1], where Et is the conditional

expectation given the observations y1:t � fy1;y2; :::;ytg.1

The a priori state estimator follows directly from (2) and is given by

�xt+1 � Et [h (xt;wt+1;�)] : (3)

1An alternative notation is x t+1jt = Et [xt+1] and x t+1jt+1 � Et+1 [xt+1] as in Hamilton (1994), for instance. We
choose �xt+1 and x̂t+1 because this notation is more parsimonious.
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The conditional error covariance matrix for this estimator is denoted by

�Pxx (t+ 1) � Et
�
(xt+1 � �xt+1) (xt+1 � �xt+1)0

�
: (4)

The updating rule of the a priori state estimator is for tractability restricted to be linear in the

observables, i.e.

x̂t+1 = bt+1 +Kt+1yt+1; (5)

where bt+1 and Kt+1 are determined below. If we choose bt+1 such that the a priori and the

posterior state estimators are unbiased, then it follows directly that

bt+1 = �xt+1 �Kt+1�yt+1; where �yt+1 � Et [g (xt+1;�)] : (6)

This gives rise to the well-known updating rule

x̂t+1 = �xt+1 +Kt+1 (yt+1 � �yt+1) : (7)

The value of the Kalman gain Kt+1 is determined such that the conditional error covariance matrix

for x̂t+1 is minimized. It is straightforward to show that this criterion implies (see Lewis (1986))

Kt+1 = Pxy (t+ 1)Pyy (t+ 1)
�1 ; (8)

where we have de�ned

Pxy (t+ 1) � Et
�
(xt+1 � �xt+1) (yt+1 � �yt+1)0

�
(9)

�Pyy (t+ 1) � Et
�
(yt+1 � �yt+1) (yt+1 � �yt+1)0

�
: (10)

The conditional error covariance matrix for x̂t+1 can be expressed as

P̂xx (t+ 1) = �Pxx (t+ 1)�Kt+1
�Pyy (t+ 1)K

0
t+1: (11)

Thus, the �ltering equations for the class of updating rules implied by (5) are given by (3), (4),
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and (7) - (11).

Two remarks are in order. Firstly, if we are able to accurately evaluate the required �rst and

second moments, then the a priori and the posterior state estimators in (3) and (7) are unbiased

by construction. This result holds even though the state space system is non-linear and no distri-

butional assumptions are imposed on vt and wt. Secondly, the required �rst and second moments

can be evaluated exactly when g (�) and h (�) are linear functions, and this leads to the Kalman

Filter. Recall that the Kalman Filter has a linear updating rule for the posterior state vector, and

the �lter can be derived without imposing distributional assumptions for vt and wt (see for in-

stance Tanizaki (1996)). However, the non-linearity in (1) and (2) imply that some approximation

is needed to calculate the required moments.

3.2 The Extended Kalman Filter

One way to proceed is to linearize the state space system such that

yt � g (�xt;�) +Gx;t (xt � �xt) + vt (12)

xt+1 � h (x̂t;�) +Hx;t (xt � x̂t) +Hw;t (wt+1 � �wt+1) (13)

where

Gx;t �
@g (x;�)

@x

����
x=�xt

Hx;t �
@h (x;�)

@x

����
x=x̂t

Hw;t �
@h (x̂t;w;�)

@w

����
w=�wt+1

(14)

Using these approximations, the �rst and second moments in the �ltering equations are given by

�xt+1 = h (x̂t; �wt+1;�) �yt+1 = g (�xt+1;�) (15)

�Pxx (t+ 1) = Hx;tP̂xx (t)H
0
x;t +Hw;tRw (t+ 1)H

0
w;t (16)

Pxy (t+ 1) = �Pxx (t+ 1)G
0
x;t+1 (17)

�Pyy (t+ 1) = Gx;t+1
�Pxx (t+ 1)G

0
x;t+1 +Rv (t+ 1) (18)
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Applying these approximations lead to the Extended Kalman Filter (see for instance Jazwinski

(1970)). The approximations in (15) are only accurate up to �rst order and do not account for the

probability distribution of (x̂t;wt+1). This is because the linearizations in (15) are done around a

single point. The approximations in (16) - (18) are more precise as they are accurate up to second

order. However, it is possible to improve the accuracy of these approximations with no additional

computational costs as we will see in the next section.

3.3 The Central Di¤erence Kalman Filter

The idea behind the CDKF is to approximate the non-linear expectations in (3), (4), and (7) -

(11) by second order multivariate Stirling interpolations.2 We introduce some additional notation

to describe how this is done. First, let Sw (t), Sv (t), �Sx (t), and Ŝx (t) be squared and upper

triangular Cholesky factorizations of Rw (t), Rv (t), �Pxx (t), and P̂xx (t), respectively. That is,

Rw (t) = Sw (t)Sw (t)
0 and so on. Lower case vectors denote elements in these matrices, for

instance Sw (t+ 1) =
�
sw;1 sw;2 ::: sw;nw

�
. We next de�ne

S
(1)
xx (t)

(nx�nx)
= f(hi (x̂t + hŝx;j ; �wt+1;�)� hi (x̂t � hŝx;j ; �wt+1;�)) =2hg (19)

S
(1)
xw (t)

(nx�nw)
= f(hi (x̂t; �wt+1 + hsw;j ;�)� hi (x̂t; �wt+1 � hsw;j ;�)) =2hg (20)

S
(1)
yx (t)

(ny�nx)
= f(gi (�xt + h�sx;j ;�)� gi (�xt � h�sx;j ;�)) =2hg (21)

where we use the notation h (�) �
�
h1 (�) h2 (�) ::: hnx (�)

�0
and similarly for the function g (�).

The matrices in (19) - (21) contain the �rst order e¤ects of the general non-linear functions and

this is denoted by the superscript (1). The corresponding matrices for the second order e¤ects are:

S
(2)
xx (t)

(nx�nx)
=

(p
h2 � 1
2h2

(hi (x̂t + hŝx;j ; �wt+1;�) + hi (x̂t � hŝx;j ; �wt+1;�)� 2hi (x̂t; �wt+1;�))
)

(22)

S
(2)
xw (t)

(nx�nw)
=

(p
h2 � 1
2h2

(hi (x̂t; �wt+1 + hsw;j ;�) + hi (x̂t; �wt+1 � hsw;j ;�)� 2hi (x̂t; �wt+1;�))
)
(23)

2Our presentation of the CDKF is adapted to the state space system in (1) and (2).
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S
(2)
yx (t)

(ny�nx)
=

(p
h2 � 1
2h2

(gi (�xt + h�sx;j ; ;�) + gi (�xt � h�sx;j ;�)� 2gi (�xt;�))
)

(24)

Norgaard et al. (2000) recommend to determine the value of the scalar h based on the distribution

of the random variable subject to the multivariate Stirling interpolation. It is here optimal to let

h2 equal the kurtosis of this distribution.

As shown by Norgaard et al. (2000), the a priori state estimator in the CDKF is

�xt+1 =
h2 � nx � nw

h2
h (x̂t; �wt+1;�) (25)

+
1

2h2
Pnx
p=1 (h (x̂t + hŝx;p; �wt+1;�) + h (x̂t � hŝx;p; �wt+1;�))

+
1

2h2
Pnw
p=1 (h (x̂t; �wt+1 + hsw;p;�) + h (x̂t; �wt+1 � hsw;p;�)) :

This approximation accounts for the distribution of the state vector x̂t and the distribution of the

structural innovationswt+1 due to the second and third term in (25), respectively. The computation

in each of these terms is very similar to computing numerical derivatives of h (�). The important

thing to notice is that the step size in (25) depends on the covariance matrix of the variable

subject to the approximation, whereas the step size is arbitrary small and mutually ortogonal when

numerical derivatives are computed. Norgaard et al. (2000) shows that the a priori estimator in

(25) is accurate up to second order. If the state distribution and the structural shocks are normally

distributed, then this estimator is even accurate up to third order.

The a priori covariance matrix of (25) is obtained by a QR decomposition of the matrix

�
S
(1)
xx (t) S

(1)
xw (t) S

(2)
xx (t) S

(2)
xw (t)

�
: (26)

We follow Norgaard et al. (2000) and use the Householder transformation � (A) to perform the

QR decomposition of a rectangular matrix A. This transformation produces a squared and upper

triangular matrix S = � (A) such that AA0= SS0. Hence,

�Sx (t+ 1) = �

��
S
(1)
xx (t) S

(1)
xw (t) S

(2)
xx (t) S

(2)
xw (t)

��
: (27)

To see how this approximation of �Sx (t+ 1) relates to the expression in the EKF, we use the
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de�nition of the Householder transformation to get

�Pxx (t+ 1) = S
(1)
xx (t)S

(1)
xx (t)

0 + S
(2)
xx (t)S

(2)
xx (t)

0 + S
(1)
xw (t)S

(1)
xw (t)

0 + S
(2)
xw (t)S

(2)
xw (t)

0 : (28)

In comparison to the EKF, we thus have that S(1)xx (t)S
(1)
xx (t)

0 + S
(2)
xx (t)S

(2)
xx (t)

0 corresponds to

Hx;tP̂xx (t)H
0
x;t, and S

(1)
xw (t)S

(1)
xw (t)

0+S
(2)
xw (t)S

(2)
xw (t)

0 corresponds to Hw;tRw (t+ 1)H
0
w;t. How-

ever, the approximations in (28) are in general more accurate than those in the EKF (Norgaard

et al. (2000)).

The a priori estimator for the vector of observables is given by

�yt+1 =
h2 � nx
h2

g (�xt+1;�) +
1

2h2
Pnx
p=1 (g (�xt+1 + h�sx;p;�) + g (�xt+1 � h�sx;p;�)) (29)

This estimator has the same structure and properties as the a priori state estimator in (25). The

covariance matrix of �yt+1 is calculated based on

�Sy (t+ 1) = �

��
S
(1)
yx (t+ 1) Sv (t+ 1) S

(2)
yx (t+ 1)

��
; (30)

and the Kalman gain is given by

Kt+1 = �Sx (t+ 1)S
(1)
yx (t+ 1)

0 ��Sy (t+ 1) �Sy (t+ 1)0��1 : (31)

Finally, the covariance matrix of the posterior state estimator follows from

Ŝx (t+ 1) = �

��
�Sx (t+ 1)�Kt+1S

(1)
yx (t+ 1) Kt+1Sv (t+ 1) Kt+1S

(2)
yx (t+ 1)

��
(32)

An overview of the CDKF is given in appendix A.

We emphasize two properties in relation to the CDKF. Firstly, if the functions g (�) and h (�)

are linear in xt and wt+1, then the CDKF reduces to the Kalman Filter. Secondly, the number

of function evaluations of g (�) and h (�) in the CDKF are identical to the number of function
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evaluations in the EKF when derivatives are approximated by double di¤erences, i.e. by

@f (x)

@x

����
x=�x

=
f (�x+ �)� f (�x� �)

2
(33)

where � > 0 is a small number. Hence, the improved accuracy of the CDKF compared to the EKF

comes at no additional computational costs.

3.4 Prediction and smoothing in the CDKF

Prediction ofthe observables in the CDKF is obtained by iterating (25), (27), and (29) forward in

time. Särkkä (2008) shows how to derive a Forward-Backward smoother for the Unscented Kalman

Filter, and Dunik & Simandl (2006) derive a square root implementation of this smoother.3 These

smoothers are derived based on the additional assumption that the �ltered and the smoothed

state distributions are multivariate normal. Given the results in Norgaard et al. (2000), it is

straightforward to set up the Forward-Backward smoother for the CDKF. This is done in appendix

B.

4 Quasi maximum likelihood estimation

This section presents our quasi log-likelihood estimator for the structural coe¢ cients � in non-

linear DSGE models with potentially non-Gaussian shocks. We derive this estimator in section 4.1,

and its asymptotic properties are discussed in section 4.2. Section 4.3 shows how to estimate the

asymptotic distribution of our suggested estimator.

4.1 The quasi log-likelihood function

The EKF and the CDKF estimate the mean and the covariance matrix of the posterior state

distribution. These moments are in general insu¢ cient to derive the likelihood function except in

the well-known case where all shocks are Gaussian and the functions g (xt;�) and h (xt;wt+1;�)

3The Unscented Kalman Filter (UKF) developed by Julier, Uhlmann & Durrant-Whyte (1995) is another derivative
free implementation of the �ltering equations presented in the previous section Norgaard et al. (2000) show that the
CDKF has marginally higher theoretical accuracy than the UKF for normally distributed variables.
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are linear in xt and (xt;wt+1), respectively. Hence, it is in general not possible to use the EKF or

the CDKF to estimate the structural parameters � by maximum likelihood or Bayesian methods.

A commonly used assumption for non-linear state space systems is to approximate the condi-

tional density yt+1jy1:t by a normal distribution, i.e.

yt+1jy1:t
as N

�
�yt+1 (�) ; �Pyy (�;t+ 1)

�
(34)

for t = 1; :::; T . Given the higher accuracy of the CDKF compared to the EKF, it is natural to use

the CDKF to compute the moments in this distribution. If the initial state vector is uncorrelated

with vt and wt for all values of t, then a quasi log-likelihood function based on the CDKF and (34)

is given by

LCDKF (�;y1:T ) =
�nyT
2

log (2�)� 1
2

PT
t=1 log

����PCDKFyy (�;t)
��� (35)

�1
2

PT
t=1

�
yt � �yCDKFt (�)

�0 ��PCDKFyy (�;t)
��1 �

yt � �yCDKFt (�)
�
:

Here, �yCDKFt (�) denotes the a priori estimate of the observables from the CDKF and �PCDKFyy (�;t)

is the related covariance matrix. The quasi log-likelihood function based on the EKF, denoted

LEKF (�;y1:T ), is derived in a similar manner using the �rst and second moments from the EKF.

We then suggest to estimate the structural parameters � by maximizing the quasi log-likelihood

function LCDKF (�;y1:T ), that is

�̂
CDKF

= argmax
�2�

LCDKF (�;y1:T ) : (36)

We emphasize two convenient numerical properties in relation to this estimator. Firstly, the function

LCDKF (�;y1:T ) is smooth in �, and this makes the optimization relative easy. For small models,

local optimization routines such as the Newton-Raphson method and its various extensions may

be used with di¤erent starting values. For larger models, global optimization routines such as

Simulated Annealing and evolutionary algorithms may be more e¤ective (see Hansen, Müller &

Koumoutsakos (2003) and Andreasen (2010b)). In comparison, the estimated log-likelihood function

in particle �lters do not in general display smoothness in � due to the resampling step and this
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makes the optimization very challenging.4

Secondly, the numerical requirement for evaluating the quasi log-likelihood function in (35)

is minimal compared to any particle �lter. To realize this, note �rst that the CDKF uses nx�

(1 + 2 (nx + nw)) function evaluations to compute �xt+1 and the matrices for its covariance matrix.

Additional ny (1 + 2nx) function evaluations are used to compute �yt+1 and the matrices for its

covariance matrix.5 In comparison, the standard PF used in Fernández-Villaverde & Rubio-Ramírez

(2007) requires N (nx + ny) function evaluations where N is the number of particles.6 As an

illustration, consider the case with �ve observables (ny = 5), �ve shocks (nw = 5), and ten state

variables (nx = 10). This implies 415 function evaluations in the CDKF in each time period. The

particle �lter requires 15N function evaluations in each time period where N typically is between

20; 000 and 60; 000. It is therefore obvious that the CDKF is many times faster to compute than

the standard PF.

4.2 Asymptotic properties

The starting point for our asymptotic analysis is the work by Bollerslev & Wooldrigde (1992)

for dynamic models that jointly specify the conditional mean and the conditional covariance ma-

trix. They examine the asymptotic properties of estimating such models by maximizing a quasi

log-likelihood function which is derived from a Gaussian assumption although this distributional

assumption may be violated. Hence, their setup is similar to ours for �̂
CDKF

in (35) and (36). The

score function s (�)t implied by (35) is:
7

s (�)0t+1
(1�n�)

= r��yCDKF (�)0t+1Ft+1 (�)
�1 u (�)t+1 (37)

+
1

2
r�Ft+1 (�)0

h
Ft+1 (�)

�1 
 Ft+1 (�)�1
i
vec

�
ut+1 (�)ut+1 (�)

0 � Ft+1 (�)
�

where

ut (�) � yt � �yCDKFt (�) and Ft (�) � �PCDKFyy (�;t) (38)

4The particle �lters by Pitt (2002) and Flury & Shephard (2009) are important exceptions where the estimated
log-likelihood function is smooth in �.

5We abstract from the computational costs related to the QR decomposition in the CDKF and the simple matrix
multiplications used in the �lter.

6The particle �lter also uses a resampling step which we ignore for simplicity in our comparison of the two �lters.
7The derivative of a matrix is de�ned as in Bollerslev & Wooldrigde (1992).
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Here, s (�)0t has dimension 1�n� where n� is the number of elements in �. If the conditional mean

is correctly speci�ed and the expectation �yCDKFt (�) � Et [g (xt+1;�)] can be evaluated exactly,

then

Et [ut+1 (�0)] = 0; (39)

where �0 denotes the true value of �. If the conditional covariance matrix is also correctly speci�ed

at �0 and the expectation for this covariance matrix can be evaluated exactly, then

Et
�
ut+1 (�0)ut+1 (�0)

0� = Ft+1 (�0) : (40)

As a result,

Et
�
s (�0)

0
t+1

�
= 0: (41)

Bollerslev & Wooldrigde (1992) show that this implies consistency and normality of �̂
CDKF

given

standard regularity conditions. Furthermore,

p
T
�
�̂
CDKF � �0

�
d! N

�
0;A�10 B0A

�1
0

�
; (42)

where

B0 � E
�
s (�0;y1:T ) s (�0;y1:T )

0� (43)

A0 � E

"
@2L (�;y1:T )

@�@�0

����
�=�0

#
(44)

Accordingly, the asymptotic properties of �̂
CDKF

for a correctly speci�ed DSGE model depends on

the precision by which we are able to evaluate the �rst and second moments in LCDKF (�;y1:T ).

This insight provides a strong theoretical argument in favour of a QML estimator based on the

CDKF compared to a QML estimator using the EKF, because the CDKF delivers a higher level

of precision for �rst and second moments and should therefore have better asymptotic properties.

The possibly misspeci�ed distribution for yt+1jy1:t in (36) is not important for consistency and

normality of �̂
CDKF

, although �̂
CDKF

will be more e¢ cient the closer the true distribution of

yt+1jy1:t is to the normal distribution. This observation also implies that the stated results for

�̂
CDKF

hold even if shocks to the DSGE models are non-Gaussian. Hence, we only need to evaluate
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whether the precision delivered by the CDKF for the �rst and second moments is su¢ cient to ensure

consistency and normality of �̂
CDKF

.

The answer to this question depends on the chosen approximation order for the DSGE model.

We introduce our way of reasoning by starting with a linearized DSGE model. Here, �rst and

second moments are accurate up to �rst and second order, respectively, and the CDKF reduces to

the standard Kalman Filter which exactly captures the �rst and second moments to the desired

degree of precision. Thus, we recover the standard result that the QML estimator is consistent and

asymptotically normal for a linearized DSGE model (see for instance Hamilton (1994)).8

When the DSGE model is solved up to second order, then �rst and second moments in the

model are accurate up to second and third order, respectively.9 This implies that the precision

in the CDKF is su¢ cient for the �rst moment, but there are approximation errors in the second

moments because the CDKF does not match all third order terms. However, these approximation

errors are likely to be insigni�cant as the second moments of yt+1jy1:t are small in most cases.

Alternatively, if the state vector is (approximately) Gaussian, then all third order terms are zero

and the second moments in the CDKF are therefore accurate up to third order (Norgaard et al.

(2000)). Thus, when a DSGE model is solved up to second order, the precision delivered by the

CDKF should in all realistic settings be su¢ cient and our suggested QML estimator can be expected

to be consistent and asymptotically normal.

For a DSGE model solved up to third order, it holds that �rst and second moments in the model

are accurate up to third and fourth order, respectively. Hence, the estimate of the �rst moment in

the CDKF induces approximation errors in the third order terms of this moment, unless the state

vector is (approximately) Gaussian and these third order terms are zero. Approximation errors are

also present in the second moments, where the CDKF does not match all third and fourth order

terms. For most DSGE models, these unmatched third and fourth order terms in the �rst and

second moments are likely to be small and our suggested QML estimator can therefore be expected

to be consistent and asymptotically normal.

Finally, when the DSGE model is solved beyond third order, it becomes harder to ensure

8 Inference is here used in the sense that the approximated DSGE model is the true data generating process. The
paper by Fernandez-Villaverde, Rubio-Ramirez & Santos (2006) studies the case where the exact solution to the
DSGE model is considered as the true data generating process.

9This result is illustrated in the appendix.
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consistency and normality of the QML estimator. This is because the CDKF does not match any

of the extra terms induced by solving the model beyond third order, and reliable performance of

our QML estimator therefore requires that these higher order terms are insigni�cant.

4.3 The estimated asymptotic distribution

The variance of the score functionB0 can be estimated in a standard fashion by �rst order numerical

derivatives of the quasi log-likelihood function evaluated at �̂
CDKF

. As shown by Bollerslev &

Wooldrigde (1992), it is also possible to estimate the Hessian matrix A0 based on �rst order

derivatives. This is a convenient property of our estimator because it is often di¢ cult to compute

reliable estimates of the Hessian matrix from double numerical derivatives. Using the notation in

Harvey (1989), the Hessian matrix may be estimated by

Âij =
1

2T

TP
t=1

trace

0@F̂�1t @F̂t

@�̂
CDKF

i

F̂�1t
@F̂t

@�̂
CDKF

j

1A+ 1

T

TP
t=1

 
@ût

@�̂
CDKF

i

!0
F̂�1t

@ût

@�̂
CDKF

j

(45)

for i; j = 1; 2::::; n� where all �rst order derivatives in (45) are computed numerically.

5 A New Keynesian DSGE model

This section presents a standard New Keynesian DSGE model following the work of Christiano,

Eichenbaum & Evans (2005) and Smets & Wouters (2007). We describe the model in section 5.1

and discuss how to approximate the model solution up to third order in section 5.2. The model is

then calibrated in section 5.3 to account for higher order moments in the post-war US economy.

5.1 The model

We emphasize two features in relation to our model. Firstly, stochastic and deterministic trends are

included to make the subsequent Monte Carlo study as realistic as possible because trends allow us

to work with growth rates. Secondly, we consider the case where potentially non-Gaussian shocks

drive the economy.
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The households: A representative household considers

Ut = Et

1X
l=0

�l

��
ct+l�bxt�1+l

z�t+l

�1��2
(1� ht+l)�2

�1��1
� 1

1��1
; (46)

where ct is consumption and ht is labor supply. The variable z�t is a measure of technological

progress and determines the overall trend in consumption. The parameter b controls the degree of

external habit formation in the consumption good ct which is constructed from

ct =

�Z 1

0
c
��1
�

i;t di

� �
��1

: (47)

The habit stock xt evolves as xt+1 = �xxt + (1� �x) ct:

The �rst constraint on the household is the law of motion for the capital stock kt given by

kt+1 = (1� �) kt + it
�
1� �

2
(
it
it�1

� �i)2
�
: (48)

where it is gross investment. The value of �i is determined such that there are no adjustment costs

along the economy�s balanced growth path.

The second constraint is the household�s real period-by-period budget constraint

EtDt;t+1x
h
t+1 + ct + (et�t)

�1 it =
xht
�t
+ rkt kt + wtht + �t: (49)

The left hand side of (49) is the household�s total expenditures in period t which consists of i) state-

contingent claims EtDt;t+1xht+1, ii) consumption ct, and iii) investment (et�t)
�1 it. Changes in et�t

are investment speci�c shocks, which follow an exogenous AR(1) process along a deterministic trend,

i.e. ln�t+1 = ln�t + ln��;ss and

ln et+1 = �e ln et + �e;t+1: (50)

We let �e;t+1 s IID (0; V ar (�e;t+1)).

The right hand side of (49) is the household�s total wealth in period t. It consists of: i) pay-o¤
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from state-contingent assets purchased in the previous period xht =�t, ii) income from selling capital

services to the �rms rkt kt, iii) labor income wtht, and iv) dividends received from �rms �t. Note

that �t is the gross in�ation rate.

The �rms: Production is carried out by a continuum of �rms. They supply a di¤erentiable

good yi;t to the goods market which is characterized by monopolistic competition. All �rms have

access to the same technology

yi;t =

8><>: k�i;t (atzthi;t)
1�� �  z�t if k�i;t (atzthi;t)

1�� �  z�t > 0

0 else
(51)

where ki;t and hi;t denote capital and labor services, respectively. The variable at represents sta-

tionary technology shocks, and we let

ln at+1 = �a ln at + �a�a;t+1; (52)

where �a;t+1 s IID (0; V ar (�a;t+1)). The variable zt in (51) denotes non-stationary technology

shocks. We let �z;t � zt=zt�1 and assume

ln�z;t+1 = ln�z;ss + �z;t+1; (53)

where �z;t+1 s IID (0; V ar (�z;t+1)). The shocks at and �z;t are mutually independent, and so are

all other shocks in the model. Following Altig, Christiano, Eichenbaum & Linde (2005), we de�ne

z�t � ��=(1��)zt. The �xed production costs  are set to ensure a steady state pro�t of zero.

All �rms maximize the present value of their nominal dividend payments, denoted di;t:

di;t � Et

1X
l=0

Dt;t+lPt+l�i;t+l: (54)

Here, Dt;t+l is the nominal stochastic discount factor and the expression for real dividend payments

from the i�th �rm �i;t is given below in (56). The �rms face a number of constraints when maxi-

mizing di;t. The �rst is related to the good produced by the i�th �rm. The total quantity of good
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i is allocated to consumption and investment, which implies

yt = ct + (et�t)
�1 it: (55)

The second constraint is the budget restriction:

�i;t = (Pi;t=Pt) yi;t � rkt ki;t � wthi;t: (56)

The �rst term in (56) denotes the real revenue from sales of the i�th good. The next two terms in

(56) are the �rm�s expenditures on capital services rkt ki;t and payments to workers wthi;t.

The third constraint introduces staggered price adjustments. We assume that in each period a

fraction � 2 [0; 1[ of randomly selected �rms are not allowed to set the optimal nominal price of the

good they produce. Instead, these �rms set the current prices equal to the prices in the previous

period, i.e. Pi;t = Pi;t�1 for all i 2 [0; 1].

The central bank: The central bank determines the gross one-period nominal interest rate

Rt according to the rule

ln

�
Rt
Rss

�
= �R ln

�
Rt�1
Rss

�
+ �� ln

�
�t
�ss

�
+ �y ln

�
yt

yssz�t

�
+ �R;t+1; (57)

where �R;t+1 s IID (0; V ar (�R;t+1)).

Shock distributions: Three speci�cations for the shocks are considered. As a benchmark

case, we �rst let all shocks be Gaussian. In our second speci�cation, we let shocks be generated

from the Laplace distribution which has thicker tails than the Gaussian distribution. The presence

of Laplace distributed shocks is interesting as it implies that large shocks occur more often than

with Gaussian shocks, and this allow us to test whether the CDKF is robust to state outliers.

Our �nal speci�cation, considers another way to model non-Gaussian shocks by introducing

stochastic volatility into the model. We focus on the case where only the process for stationary

technology shocks displays stochastic volatility. Applying the speci�cation in Justiniano & Primiceri
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(2008), the law of motion for at in (52) is replaced by

ln at+1 = �a ln at + �a;t+1�a;t+1; (58)

where the process for stochastic volatility �a;t+1 is given by

ln�a;t+1 = ��a ln�a;t + ��a;t+1: (59)

Here, ��a;t+1 s NID (0; V ar (��a;t+1)).10 Non-stationary technology shocks zt and investment

speci�c shocks et are assumed to be Gaussian in this �nal speci�cation, and we do not consider

monetary policy shocks, i.e. V ar (�R;t+1) = 0. The latter restriction is imposed for numerical

convenience as the presence of stochastic volatility in at introduces �a;t as an additional state

variable. Hence, by omitting monetary policy shocks, we are left with the same number of state

variables as in the two shock speci�cations without stochastic volatility. An overview of the three

speci�cations for the structural shocks is provided in Table 1.

< Table 1 about here >

5.2 Solving the model

We now present the state space representation of our DSGE model. As in section 2, let yt contain

the non-predetermined variables and let xt contain the predetermined state vector. Both variables

are expressed in deviation from the deterministic steady state. Denoting the structural innovations

by �t+1, the exact solution to our model is then given by

yt = g (xt; �) (60)

xt+1 = h (xt; �) + ���t+1 (61)

10Other speci�cations of stochastic volatility in DSGE models are discussed in Andreasen (2010d).
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where � is the perturbation parameter. This is also the exact solution when stochastic volatility is

included in the model because the processes in (58)-(59) can be represented as

ln at = �a;t ln vt (62)

ln vt+1 = �
�a;t
�a;t+1

ln vt + �a;t+1 (63)

ln�a;t+1 = ��a ln�a;t + ��a;t+1 (64)

The proof of this result is given in Andreasen (2010a). Hence, our speci�cation of stochastic

volatility can be expressed as a combination of two AR(1) processes where the local persistency

coe¢ cient in the auxiliary process ln vt is modi�ed by the term �a;t=�a;t+1. The representation in

(62)-(64) is convenient because it shows that we only need to perturb the variables (at; vt; �a;t) and

it implies only two state variables, (vt; �a;t). In comparison, the representation in (58)-(59) requires

perturbing (at; �a;t; �a;t+1; ��;t+1) and has as a minimum three state variables, (at; �a;t; �a;t+1). In

particular, the smaller number of state variables induced by the representation in (62)-(64) is

convenient as it reduces the computing time when DSGE models are solved numerically.

The functions g (�) and h (�) are unknown, and we therefore approximate them up to third order.

We apply the codes by Schmitt-Grohé & Uribe (2004) to compute all the �rst and second order

terms. The third order terms are computed using the codes derived in Andreasen (2010a) which

extends the results in Schmitt-Grohé & Uribe (2004) to third order. We �nally apply the pruning

scheme to the approximated solution (see Kim, Kim, Schaumburg & Sims (2008) and Andreasen

(2010c) for further details).

Five macro variables are chosen for the Monte Carlo study: i) the quarterly nominal interest

rate, ii) the quarterly in�ation rate, and the quarterly real growth rates in iii) consumption, iv)

investment, and v) output. These series are placed in the vector yobst . We allow for measurement

errors vt in the series for yobst and assume vt s NID (0;Rv) where Rv is a diagonal matrix. This

gives the following state space system

yobst =M1g (xt; �;�)�M2g (xt�1; �;�) + vt (65)
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xt+1 = h (xt; �) + ���t+1 (66)

where M1 and M2 are selection matrices with appropriate dimensions. The presence of xt�1 in

(65) is due to the three growth rates in yobst .

5.3 Model calibration

The model is calibrated to US data from 1956Q4 to 2009Q2. We focus on matching i) mean values,

ii) standard deviations, iii) skewness, and iv) kurtosis for the �ve series in yobst .11 The calibrated

coe¢ cients are fairly standard and summarized in Table 2. We only note that the conditional

standard deviation in the volatility process
p
V ar (��a;t+1) has a relative large value of 0:3 which

is needed to get notable e¤ects of stochastic volatility in the model.

< Table 2 about here >

The empirical and simulated moments are reported in Table 3 for a second order approximation.

Our model is successful at matching all mean values and standard deviations when shocks are

Gaussian. The model also generates sizeable deviations from normality in the nominal interest rate

and the in�ation rate. This is evident from the values of skewness and kurtosis for these series which

di¤er from 0 and 3, respectively. Accordingly, our model has signi�cant non-linearities and should

therefore be challenging for non-linear �lters. The main di¤erence when going from Gaussian to

Laplace distributed shocks is that the latter shocks increase the value of kurtosis. The presence of

stochastic volatility has the same e¤ect, although the increase in kurtosis tends to be smaller.

< Table 3 about here >

The simulated moments using a third order approximation are reported in Table 4. Moving

from a second order to a third order approximation is seen to increase the values of skewness and

kurtosis for all variables. For the nominal interest rate and the in�ation rate, the values of these

moments are even seen to be larger than the corresponding empirical moments. Another indicator

11We use data from the Federal Reserve Bank of St. Louis. The quarterly interest rate is measured by the rate in
the secondary market (TB3MS). The quarterly in�ation rate is for consumer prices. The growth rate in consumption
is calculated from real consumption expenditures (PCECC96). The series for real private �xed investment (FPIC96)
is used to calculate the growth rate in investment. The growth rate in output is calculated from real GDP (GDPC96).
All growth rates are expressed in quarterly terms and in per capita based on the total population in the US.
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of the strong non-linearities in the model is to note that the standard deviation for the nominal

interest rate and the in�ation rate are somewhat higher at third order than at second order.

< Table 4 about here >

6 A Monte Carlo study

This section conducts a Monte Carlo study to evaluate the performance of the CDKF in the context

of DSGE models. We start in section 6.1 by examining how accurately the CDKF estimates the

unobserved state variables compared with the EKF and the standard PF. In section 6.2, the values

of the quasi log-likelihood function using the CDKF and the EKF are compared to the estimated

value of the log-likelihood function in the standard PF. Section 6.3 explores the �nite sample

properties of our suggested QML estimator based on the CDKF and compares its performance

with a QML estimator that uses the EKF.

6.1 State estimation

This section studies the ability of the CDKF to estimate the unknown state variables. We simulate

20 sample paths of length T = 200 for a given approximation order to the DSGE model in order to

generate 20 test economies. This is done for each of the three shock speci�cations. The accuracyof

all �lters is measured by the root mean squared errors (RMSE)

RMSEi =
Pnx
j=1

sPT
t=1 (xj;t � x̂j;t)

2

T
for i = 1; 2; :::; 20; (67)

where xj;t is the true value of the j�th state variable in period t and x̂j;t is the estimated value. The

initial state x0 is taken to be known and we let Pxx (t = 0) = 10�6. The step size h in the CDKF

is always set equal to the optimal value for the Gaussian distribution
�
h =

p
3
�
even though the

distribution subject to the multivariate Stirling interpolation may be non-Gaussian.12 We compare

the performance of the CDKF with the EKF and the standard PF using 200,000 particles. The

latter is included to represent a close approximation to the optimal state estimator.

12These assumptions are maintained throughout the Monte Carlo study.
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We start by considering the case where all shocks are Gaussian in Figure 1. The �rst chart in

this �gure shows the RMSE for a �rst order approximation to the DSGE model, and the CDKF

(market with stars) therefore reduces to the Kalman Filter which is the optimal state estimator.

The performance of the standard PF is reported as a 95% con�dence interval which we compute

from 100 repetitions of the �lter on the same test economy. The standard PF is seen to give a

satisfying approximation to the optimal estimator as the con�dence intervals either contain or are

very close to the optimal state estimates from the Kalman Filter.

For a second order approximation, we �rst note that the CDKF gives more precise state es-

timates than the EKF (market with squares). More surprisingly, the CDKF is doing just as well

as the standard PF and clearly outperforms this �lter for some test economies. This �nding indi-

cates that a linear updating rule and the multivariate Stirling interpolation used in the CDKF are

reasonable approximations for this class of test economies.

For a third order approximation, the CDKF still outperforms the EKF, and the CDKF also

does marginally better than the standard PF in this case. Given the strong non-linearities in our

DSGE model, we consider the latter as a very surprising result.

< Figure 1 about here >

For Laplace distributed shocks in Figure 2, we �nd more or less the same results as with

Gaussian shocks. That is, the CDKF clearly outperforms the EKF, and the CDKF is marginally

better than the standard PF. Hence, the good performance of the CDKF is found to be robust to

strong non-linearties and Laplace distributed shocks. Recall that these shocks are interesting to

consider because they generate state outliers more frequently than Gaussian shocks.

< Figure 2 about here >

The results for shocks displaying stochastic volatility are shown in Figure 3. Here, we do

not consider a �rst order approximation because it does not capture the presence of stochastic

volatility as emphasized by Fernández-Villaverde & Rubio-Ramírez (2007). For a second and third

order approximation, the standard PF is seen to outperform the CDKF and the EKF as the 95%

con�dence intervals from the particle �lter are lower than the RMSE for the two other �lters. An

inspection of the state distributions in the standard PF shows that many of these distributions
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are highly skewed and non-Gaussian, and this may explain the bene�t of tracking the entire state

distribution in the particle �lter instead of just focusing on the �rst two moments as in the CDKF

and the EKF. These state distributions are on the other hand typically symmetric and bell-shaped

with Gaussian and Laplace distributed shocks although the DSGE model displays strong non-

linearities. Note �nally, that the level of the RMSE is rather large with stochastic volatility in

the model in comparision to Gaussian and Laplace distributed shocks in Figure 1 and 2. This is

because the process for ��;t is very volatile and hence dominates the expression for the RMSE.

< Figure 3 about here >

The accuracy results for the three �lters are summarized in Table 5 where we compute the

average RMSE across the 20 test economies for the various shock speci�cations and the di¤erent

approximations to the model. In line with our previous �ndings, we see that the CDKF outperforms

the EKF and the standard PF when shocks are Gaussian or Laplace distributed. This is indicated

by bold �gures for the CDKF in Table 5. Hence, more than 200,000 particles are needed in the

standard PF if this �lter is to outperform the CDKF for the considered test economies. The bene�t

of particle �ltering is however evident with stochastic volatility where the RMSE is substantially

lower for the standard PF than for the CDKF and the EKF.

< Table 5 about here >

The performance of a given �lter should also be evaluated in relation to the time it takes to

compute the �lter. Table 6 therefore shows the average computing time for each of three �lters.13

The CDKF is seen to be very fast to compute. It only takes about 0.03 seconds for one evaluation

of this �lter with a �rst order approximation, and this number only increases to 0.10 seconds and

0.50 seconds for a second order and a third order approximation, respectively. The corresponding

�gures for the standard PF using 200,000 particles are 20.25 seconds for a �rst order approximation,

68.42 seconds for a second order approximation, and 299,41 seconds for a third order approximation.

Hence, the CDKF becomes a more attractive alternative to particle �ltering when the approximation

order to the DSGE model is increased.
13Our presentation and implementation of the CDKF propogates the square root of covariance matrices through

time to ensure that these matrices remain positive semi-de�nite. We therefore also use a square root implementation
of the EKF when comparing the execution time of the two �lters. However, this implementation of the EKF is
marginally slower to compute compared with the version of the EKF given in section 3.2.
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< Table 6 about here >

6.2 The quasi log-likelihood function

Before we turn to the performance of the suggested QML estimator, it is interesting to see how close

the quasi log-likelihood function LCDKF is to the estimated log-likelihood function in the standard

PF, LPF . Also the di¤erence between the quasi log-likelihood function based on the CDKF and the

EKF, i.e. LCDKF versus LEKF , is interesting to examine because it shows the quantitative e¤ect

of using di¤erent methods to estimate �rst and second moments in the two �lters. We therefore

study the relationship between these three functions in the current section.

A natural metric when comparing these functions, is to express the quasi log-likelihood functions

in percentage deviation from the value of the log-likelihood function. The latter is in general not

available and we therefore use the estimated log-likelihood function from the standard PF. Hence,

for the j0th test economy we compute

	ij = 100

�
Lij � �LPFj

�
�LPFj

(68)

for i = fCDKF,EKFg and j = 1; 2; :::; 20. Here, �LPFj = 1=100
P100
k=1 L

PF
k;j denotes the mean value of

the log-likelihood function in the standard PF from 100 evaluation of this �lter on the j�th test econ-

omy. The normalizing constant in (68) is stochastic, and we therefore �nd it useful to also report

uncertainty bounds. This is done by computing the 95% con�dence interval �1:96� 100 std(L
PF
j )

�LPFj
,

where std
�
LPFj

�
denotes the standard deviation of the estimated log-likelihood function. Accord-

ingly, this con�dence interval shows the variation in the estimated log-likelihood function (when

normalized by �LPFj ) which is due to Monte Carlo variation.14

The values of 	ij with Gaussian shocks are shown in Figure 4. For a �rst order approximation,

the CDKF (and the EKF) reduces to the Kalman Filter which reports the exact value of the log-

likelihood function. We thus see from the �rst chart in Figure 4 that the particle �lter gives a good

14We prefer this normalized metric in terms of �LPFj instead of simply reporting the level of LCDKF , LEKF , and
LPF because the latter would make the di¤erences between the three functions hard to notice in the subsquent charts.
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approximation to the log-likelihood function because the exact value is either within or very close

to the 95% con�dence interval for the standard PF.

We draw two conclusions from the middle chart of Figure 4 which is for a second order ap-

proximation. Firstly, the values of 	CDKFj are closer to zero than 	EKFj for most of the 20 test

economies. This means that the quasi log-likelihood function using the CDKF is a better approx-

imation to the log-likelihood function than the quasi log-likelihood function based on the EKF.

We therefore expect QML estimates from the CDKF to be more e¢ cient than QML estimates

based on the EKF because the Maximum Likelihood (ML) estimator is asymptotically e¢ cient.

Secondly, the quasi log-likelihood functions using the CDKF and the EKF are both very close to

the log-likelihood function from the standard PF. For the CDKF, we even note that in 13 out of the

20 test economies, the value of LCDKF lies within the 95% con�dence interval. This implies that

the e¢ ciency loss of using our suggested QML estimator instead of a fully e¢ cient ML estimator

is likely to be small for these test economies.

For a third order approximation in the bottom chart of Figure 4, we again �nd that LCDKF is

closer to the log-likelihood function than LEKF , and both quasi log-likelihood functions are fairly

close to LPF . Given the strong non-linearities in our DSGE model, we consider the latter result as

a quite surprising.

< Figure 4 about here >

Results based on Laplace distributed shocks are shown in Figure 5. Regardless of the approx-

imation order to the DSGE model, we �nd that LCDKF and LEKF display fairly large deviations

from the estimated log-likelihood function. This means that our suggested QML estimator in this

case is likely to be somewhat less e¢ cient than the ML estimator. For a second and third order

approximation, we also note that LCDKF in general is closer to the log-likelihood function than

LEKF . The same two conclusions also hold when shocks display stochastic volatility as shown by

Figure 6.

< Figure 5 about here >

< Figure 6 about here >
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The results from Figure 4 - 6 are summarized in Table 7. The �rst two columns in this table

display the average distance between LPF and the quasi log-likelihood functions across the 20 test

economies. We see that the value of the quasi log-likelihood function using the CDKF on average

is closer to LPF than the quasi log-likelihood function derived based on the EKF. This is a very

robust result as it holds for a second and a third order approximation and for the three considered

shock speci�cations. For Gaussian shocks, the average distance between LCDKF and LPF is only

2:29 and is therefore very close to the Monte Carlo variation of 2:01 in the standard PF (column

three). The di¤erence between LCDKF and LPF is also seen to be small compared to the average

value of LPF which is slightly larger than 4000 (column four). In other words, the CDKF provides

a very good approximation to the log-likelihood function for these test economies when shocks are

Gaussian.

The same conclusion does not hold with Laplace distributed shocks where the quasi log-

likelihood functions di¤er substantially from the log-likelihood in the standard PF. Even larger

di¤erences appear between the quasi log-likelihood functions and the estimated log-likelihood func-

tions when shocks display stochastic volatility. In particular the latter �nding is interesting because

the state space representation of the DSGE model with stochastic volatility has the same structure

as when all shocks are Gaussian. The key di¤erence between the two speci�cations stems from the

fact that the system with stochastic volatility has much larger second and third order terms than

the system without this feature.

< Table 7 about here >

6.3 QML estimates

This section examines the �nite sample properties of the QML estimator for the structural para-

meters in our DSGE model. We only consider �ve of the parameters in the model to be unknown

as this makes the simulation study numerically feasible. The �ve unknown parameters are: i) the

preference parameter (�1) ; ii) the degree of price stickiness (�), iii) the central bank�s reaction to

deviations from the in�ation rate target (��), iv) the degree of persistency in stationary technology

shocks (�a), and v) the standard deviation for non-stationary technology shocks
�p

V ar (�z;t+1)
�
.

The values of these and all the other parameters are given in Table 1.

28



We start by examining the properties of the suggested QML estimator when shocks are Gaussian

in Table 8. For a second order approximation, the QML estimator based on the CDKF is basically

unbiased. We also note that the estimates of �1, �, and �� are closer to their desired level for the

QML estimator based on the CDKF than for the QML estimator using the EKF. The opposite is

marginally the case for �a whereas both QML estimators give unbiased estimates of
p
V ar (�z;t+1).

The true standard errors are smallest when using the CDKF, which is in line with the results from

the previous section where LCDKF was found to be closer to LPF than LEKF . The asymptotic

standard errors provide more or less unbiased estimates of these standard errors for both QML

estimators. Finally, the Type I errors at a 5% signi�cance level are in most cases closer to 5% for

the CDKF than for the EKF. This shows that the asymptotic normal distribution for �CDKF is a

reasonable approximation to its distribution for a �nite sample.

Using a third order approximation, we �nd that the biases in the level of the structural para-

meters and their standard errors are quite small for both QML estimators. We also note that the

true standard errors for �1, �, and �a are smaller for a third order approximation than for a second

order approximation, and the true standard errors in a second order approximation are smaller than

for a �rst order approximation. Hence, a more accurate approximation to the model implies more

information about the parameters in the quasi log-likelihood function and therefore more e¢ cient

estimates. An & Schorfheide (2007) document a similar result using Bayesian estimation methods

when going from a �rst order to a second order approximation.

< Table 8 about here >

The QML estimates for Laplace distributed shocks are shown in Table 9. For a second order and

third order approximation, we �nd that the QML estimates using the CDKF only have negligible

biases, and these biases are slightly smaller than those related to the EKF. The QML estimates

based on the CDKF are futher seen to have slightly smaller standard errors than the EKF. The

latter result is consistent with the �nding in the previous section where LCDKF also with Laplace

distributed shocks was closer to LPF than LEKF . The estimates of the standard errors are basically

unbiased for both QML estimators. However, the two estimators tend to produce too high Type I

errors, but so does the QML estimator for a �rst order approximation to the model. This suggests

that the high Type I errors are unrelated to the presence of non-linearities in the model and instead
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relates to the Laplace distributed shocks, which imply that a longer sample is needed for convergence

to the asymptotic normal distribution. Note also that for these shocks, a third order approximation

to the model in general give more e¢ cient estimates when compared to the linearized model.

< Table 9 about here >

The results for shocks with stochastic volatility are reported in Table 10. Again, our suggested

QML estimator based on the CDKF results in negligible biases for a second and a third order

approximation, and the same conclusion holds for the estimated standard errors. We also observe

a tendency for the CDKF to do better than the EKF along these dimensions, although both

�lters perform quite well. Note also that the standard errors for the QML estimates with the

CDKF in general are smaller than the standard errors for the EKF. As for the previous two shock

speci�cations, most estimates become more e¢ cient when we increase the approximation order.

The good performance of our QML estimator with stochastic volatility is interesting because

section 6.1 found relatively large RMSE for the state estimates in the CDKF when compared to

the standard PF. Hence, the omitted higher order terms in the CDKF (and also in the EKF) seem

to be of less importance for the performance of the considered QML estimator even in a situation

with very strong non-linearities. This �nding therefore supports the conjecture in section 4.2 that

the unmatched terms in the CDKF are unlikely to be signi�cant for the performance of a QML

estimator based on the CDKF when DSGE models are approximated up to third order.

< Table 10 about here >

7 Conclusion

This paper suggests a QML estimator based on the CDKF to estimate non-linear DSGE models

with potentially non-Gaussian shocks. Focus is devoted to the case where measurement errors are

present in the observables, and we argue that this QML estimator can be expected to be consistent

and asymptotically normal for DSGE models solved up to third order. These results hold when

Gaussian and potentially non-Gaussian shocks are driving the economy. The main advantage of

this estimator is that it is much faster to implement compared with an estimator that relies on the

use of a particle �lter.
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The performance of the CDKF and the suggested QML estimator is examined on a standard

New Keynesian DSGE model solved by �rst, second, and third order approximations. We �nd that

the CDKF gives more precise state estimates than the EKF and the standard PF when shocks

are Gaussian and Laplace distributed. However, the standard PF performs better than the CDKF

and the EKF when shocks display stochastic volatility. We also show that the quasi log-likelihood

function derived from the CDKF is a better approximation to the log-likelihood function in the

standard PF than the quasi log-likelihood function based on the EKF. The distribution of the sug-

gested QML estimator is further found to be well approximated by its asymptotic distribution, and

the estimator is more or less unbiased in �nite samples for a second and a third order approximation

to the considered DSGE model. We found a tendency for the QML estimator based on the CDKF

to be more e¢ cient than a QML estimator based on the EKF which is consistent with LCDKF

being closer to LPF than LEKF . We also found that a third order approximation to the DSGE

model in general gives more e¢ cient QML estimates when compared to a �rst order approximation.
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A The algorithm for the Central Di¤erence Kalman Filter

� Initialization: t = 0
Set x̂t and Ŝx (t).

� For t > 1
Prediction step:

� �xt+1 = h2�nx�nw
h2

h (x̂t; �wt+1;�)

+ 1
2h2
Pnx
p=1 (h (x̂t + hŝx;p; �wt+1;�) + h (x̂t � hŝx;p; �wt+1;�))

+ 1
2h2
Pnw
p=1 (h (x̂t; �wt+1 + hsw;p;�) + h (x̂t; �wt+1 � hsw;p;�))

� �Sx (t+ 1) =
�h

S
(1)
xx (t) S

(1)
xw (t) S

(2)
xx (t) S

(2)
xw (t)

i�
Updating step:

� �yt+1 = h2�nx
h2

g (�xt+1;�)

+ 1
2h2
Pnx
p=1 (g (�xt+1 + h�sx;p;�) + g (�xt+1 � h�sx;p;�))

� �Sy (t+ 1) = �
�h

S
(1)
yx (t+ 1) Sv (t+ 1) S

(2)
yx (t+ 1)

i�
�Kt+1 = �Sx (t+ 1)S

(1)
yx (t+ 1)

0 ��Sy (t+ 1) �Sy (t+ 1)0��1
� Ŝx (t+ 1) = �

�h
�Sx (t+ 1)�Kt+1S

(1)
yx (t+ 1) Kt+1Sv (t+ 1) Kt+1S

(2)
yx (t+ 1)

i�
Quasi log-likelihood function

� � Let ut+1 � yt+1 � �yt+1 and Ft+1 = �Sy (t+ 1) �Sy (t+ 1)0

�Lt+1 = Lt � ny
2 log (2�)�

1
2 log (jFt+1j)�

1
2u

0
t+1F

�1
t+1ut+1

B The smoother for the CDKF

The smoothed estimate of xt is denoted xsmt . The covariance matrix of this estimate is denoted
Psmxx (t) � ET

�
(xt � xsmt ) (xt � xsmt )0

�
. It holds that

xsmt = x̂t +Kt+1

�
xsmt+1 � �xt+1

�
Psmxx (t) = P̂xx (t) +Kt+1

�
Psmxx (t+ 1)� �Pxx (t+ 1)

�
K0
t+1

where the smoothing gain is given by

Kt+1 = Ct+1�Pxx (t+ 1)
�1 :

and
Ct+1 = Et

�
(xt � x̂t) (xt+1 � �xt+1)0

�
:

Based on the results in Norgaard et al. (2000), we have

Ct+1 = Ŝx (t)S
(1)
xx (t+ 1)

0 :

32



The square root of the covariance matrix for the smoothed state estimate is given by

Ssx (t) = �
�h

Ŝx (t)�Kt+1S
(1)
xx (t) Kt+1S

sm
x (t+ 1) Kt+1S

(1)
xw (t) Kt+1S

(2)
xx (t) Kt+1S

(2)
xw (t)

i�
:

This smoothing recursion is started at the last time step, because it holds that xsmT = x̂T and
Psmxx (T ) = P̂xx (T ). Thus, the procedure is �rst to calculate the posterior estimates x̂t and Ŝx (t)
for t = 1; 2; :::; T by running the CDKF. Then, the smoothing recursion is started in time period
T and iterated back in time.

C Accuracy of �rst and second moments in approximated DSGE
models

For �rst moments it follows trivially that the accuracy of the approximation is given by the ap-
proximation order. The situation is di¤erent for the second order moments. We illustrate this by
considering the scalar case, i.e. xt and yt are scalars. Both variables are expressed in deviation
from the deterministic steady state. A sixth order approximation to yt = g (xt) is given by

yt = gxxt +
1

2!
g2xx

2
t +

1

3!
g3xx

3
t +

1

4!
g4xx

4
t +

1

5!
g5xx

5
t +

1

6!
g6xx

6
t

We denote moments of xt by mi = E
�
xi
�
for i = 1; 2; :::. This implies

V ar (yt) = g2xm
2 +

�
1
2!g2x

�2
m4 +

�
1
3!g3x

�3
m6 +

�
1
4!g4x

�4
m8 +

�
1
5!g5x

�5
m10 +

�
1
6!g6x

�12
m12

+2
�
1
2!gxg2xm

3 + 1
3!gxg3xm

4 + 1
4!gxg4xm

5 + 1
5!gxg5xm

6 + 1
6!gxg6xm

7
�

+2
�
1
2!
1
3!g2xg3xm

5 + 1
2!
1
4!g2xg4xm

6 + 1
2!
1
5!g2xg5xm

7 + 1
2!
1
6!g2xg6xm

8
�

+2
�
1
3!
1
4!g3xg4xm

7 + 1
3!
1
5!g3xg5xm

8 + 1
3!
1
6!g3xg6xm

9
�

+2
�
1
4!
1
5!g4xg5xm

9 + 1
4!
1
6!g4xg6xm

10
�

+2
�
1
5!
1
6!g5xg6xm

11
�

We therefore have the following:
A second order approximation of V ar (yt) is given by:
V ar (yt)

2nd = g2xm
2

A third order approximation of V ar (yt) is given by:
V ar (yt)

3th = g2xm
2 + gxg2xm

3

A fourth order approximation of V ar (yt) is given by:
V ar (yt)

4th = g2xm
2 + gxg2xm

3 +
�
1
2!g2x

�2
m4 + 2

3!gxg3xm
4

A �fth order approximation of V ar (yt) is given by:
V ar (yt)

5th = g2xm
2 + gxg2xm

3 +
�
1
2!g2x

�2
m4 + 2

3!gxg3xm
4 + 2

4!gxg4xm
5 + 2

2!
1
3!g2xg3xm

5

Computing the variance in a DSGE model approximated up to �rst order:
yt = gxxt
+
V ar (yt)

app = g2xm
2

which is accurate up to second order

Computing the variance in a DSGE model approximated up to second order:
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yt = gxxt +
1
2!g2xx

2
t

+
V ar (yt)

app = g2xm
2 +

�
1
2!g2x

�2
m4 + gxg2xm

3

which is accurate up to third order and not fourth order because we are missing the term
2
3!gxg3xm

4

Computing the variance in a DSGE model approximated up to third order:
yt = gxxt +

1
2!g2xx

2
t +

1
3!g3xx

3
t

+
V ar (yt)

app = g2xm
2 +

�
1
2!g2x

�2
m4 +

�
1
3!g3x

�2
m6 + gxg2xm

3 + 2
3!gxg3xm

4 + 1
3!g2xg3xm

5

which is accurate up to fourth order. Note that we are missing the term 2
4!gxg4xm

5 to have
precision of �fth order.
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Table 1: Shock speci�cations

Speci�cation Label �e;t+1 �a;t+1 �z;t+1 �R;t+1
1 Gaussian shocks Gaussian Gaussian Gaussian Gaussian

2 Laplace shocks Laplace Laplace Laplace Laplace

3 Stochastic volatility Gaussian Sto chastic volatility Gaussian None

Table 2: Calibration for the DSGE model

Label Parameter Value
Discount factor � 0:9995
Habit degree b 0:80
Habit p ersistence �x 0:95
Preference �1 6
Preference �2 0:88
Adj costs for investm ents � 2:0
Depreciation rate � 0:025
Cobb-Douglas param eter � 0:36
Price elastic ity � 6
Degree of price stick iness � 0:85
Reaction to lagged interest rate �R 0:99
Reaction to in�ation �� 1:65
Reaction to output �y 0:15

In�ation rate in steady state �ss 1:0070
Growth rate in technology sho cks �z;ss 1:0044

Growth rate in investm ent sho cks ��;ss 1:0007

Persistency in stationary technology sho cks �a 0:9
Persistency in investm ent sho cks �e 0:9
Persistency in the volatility pro cess ��a 0:9

std . of nonstationary technology sho cks

p
V ar (�z;t+1) 0:008

std . of stationary technology sho cks

p
V ar (�a;t+1) 0:012

std . of investm ent sho cks

p
V ar (�e;t+1) 0:030

std . of sho cks to interest rate ru le

p
V ar (�R;t+1) 0:001

std . of sho cks to volatility

p
V ar (��a;t+1) 0:300

std . of errors in the interest rate

p
V ar (vR;t) 0:001

std . of errors in in�ation

p
V ar (v�;t) 0:001

std . of errors in the grow th rate for consumption

p
V ar (v�c;t) 0:002

std . of errors in the grow th rate for investm ents

p
V ar (v�i;t) 0:002

std . of errors in grow th rate for output

p
V ar (v�y;t) 0:002
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Table 3: Empirical and simulated moments: Second order approximation
All model moments are calculated based on a simulated time series of 1,000,000 observations.

Rt �t �ct �it �yt
Empirical moments
Mean 0.0131 0.0088 0.0055 0.0056 0.0048
Standard deviation 0.0070 0.0063 0.0071 0.0254 0.0092
Skewness 1.0787 0.9700 -0.6719 -1.1384 -0.4525
Kurtosis 4.8934 4.7352 4.9795 6.8528 4.5435

Model moments: Gaussian shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0088 0.0063 0.0084 0.0270 0.0118
Skewness 0.5664 1.1100 0.0337 -0.1646 0.0495
Kurtosis 3.9029 5.0441 3.0840 3.0413 3.0406

Model moments: Laplace shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0088 0.0062 0.0084 0.0269 0.0118
Skewness 0.5969 1.1653 0.0217 -0.2488 0.0167
Kurtosis 4.1262 5.4804 4.4121 4.1642 3.7135

Model moments: Stochastic volatility
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0101 0.0071 0.0086 0.0289 0.0124
Skewness 0.4748 0.9541 0.0311 -0.1359 0.0385
Kurtosis 4.2746 5.273 3.1045 3.1986 3.1465
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Table 4: Empirical and simulated moments: Third order approximation
All model moments are calculated based on a simulated time series of 1,000,000 observations.

Rt �t �ct �it �yt
Empirical moments
Mean 0.0131 0.0088 0.0055 0.0056 0.0048
Standard deviation 0.0070 0.0063 0.0071 0.0254 0.0092
Skewness 1.0787 0.9700 -0.6719 -1.1384 -0.4525
Kurtosis 4.8934 4.7352 4.9795 6.8528 4.5435

Model moments: Gaussian shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0130 0.0107 0.0079 0.0268 0.0116
Skewness 1.3251 1.6429 0.0286 -0.1688 0.0525
Kurtosis 9.4417 11.5575 3.0623 3.0731 3.0228

Model moments: Laplace shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0131 0.0108 0.0079 0.0267 0.0115
Skewness 1.4602 1.7684 0.0149 -0.2590 0.0254
Kurtosis 11.7384 14.3213 4.4023 4.3128 3.6517

Model moments: Stochastic volatility
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0173 0.0142 0.0084 0.0314 0.0135
Skewness 1.1484 1.4440 0.0270 -0.1780 0.0083
Kurtosis 9.8258 11.7128 3.2898 3.9907 3.7408

Table 5: Average RMSE of state estimates across the 20 test economies
Figures in bold indicate that the �lter outperforms the other �lters.

Standard PF
(200.000)

EKF CDKF

Gaussian shocks
First order 0.0466 0.0444 0.0444
Second order 0.0507 0.0566 0.0472
Third order 0.0517 0.0579 0.0491

Laplace shocks
First order 0.0490 0.0452 0.0452
Second order 0.0527 0.0554 0.0488
Third order 0.0551 0.0577 0.0513

Stochastic volatility
Second order 0.6854 1.0251 0.9439
Third order 0.6287 1.0049 0.9273

37



Table 6: Average number of seconds
The results for the EKF and the CDKF are for a square root implementation of these �lters on the 20 test
economies. All computations are done in Fortran 90 on Dell SC1435 compute-nodes, each with 2 dualcore
Opteron 2.6 GHz, 8 GB memory, and 250 GB disk.

First order Second order Third order
Standard PF (200.000) 20.25 68,42 299,41
EKF 0.02 0.10 0.47
CDKF 0.03 0.10 0.50

Table 7: The level of the quasi log-likelihood functions compared to LPF

The average distance is measured by
q

1
20

P20
j=1

�
Lij � �LPFj

�2
for i = fEKF,CDKFg. �LPFj and std

�
LPFj

�
denote the mean and standard deviation, respectively, of the log-likelihood function for the j�th test
economy across 100 evaluations of the standard PF using 200,000 particles.

Average distance from LPF for:

EKF CDKF 1
20

P20
j=1

�LPFj
1
20

P20
j=1 std

�
LPFj

�
Gaussian shocks
First order 2.02 2.02 4055.3 1.96
Second order 5.11 2.29 4054.0 2.01
Third order 5.66 2.39 4063.0 2.01

Laplace shocks
First order 30.77 30.77 4069.5 11.50
Second order 37.46 35.29 4078.3 10.76
Third order 35.86 33.82 4089.6 10.69

Stochastic volatility
Second order 60.87 38.73 4043.0 2.93
Third order 95.27 72.53 4026.5 3.74
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Table 8: The QML estimator: Gaussian shocks
The results are based on 1000 repetitions in the Monte Carlo study with a sample size of T=200. The true
standard errors are calculated as the standard deviation for these estimates. The Type I error is calculated
at a 5 percentage signi�cance level. Using a �rst order approximation, both the EKF and the CDKF
reduce to the standard Kalman Filter. Figures in bold indicate that the �lter outperforms the other �lter.
The true values are: �1 = 6, � = 0:85, �� = 1:65, �a = 0:90, and

p
V ar (�z;t) = 0:0080.

EKF CDKF
Bias in level True SE B ias in SE Typ e I B ias in level True SE B ias in SE Typ e I: 5%

First order
�1 0.0027 0.4184 -0.0029 0.0500
� -0.0001 0.0071 -0.0002 0.0580
�� same as for CDKF 0.0126 0.0901 -0.0008 0.0500
�a -0.0008 0.0141 -0.0002 0.0490p
V ar (�z;t) -0.0000 0.0004 -0.0000 0.0540

Second order
�1 0.0476 0.4049 -0.0005 0.0460 -0.0078 0.3970 0.0034 0.0500
� -0.0006 0.0064 -0.0003 0.0700 -0.0000 0.0063 -0.0003 0.0690
�� 0.0172 0.0945 -0.0045 0.0590 0.0118 0.0910 -0.0020 0.0460
�a 0.0009 0.0143 -0.0007 0.0700 -0.0010 0.0142 -0.0004 0.0600p
V ar (�z;t) -0.0000 0.0004 -0.0000 0.0560 -0.0000 0.0004 -0.0000 0.0580

Third order
�1 -0.0115 0.3802 0.0010 0.0460 -0.0190 0.3802 -0.0021 0.0540
� 0.0001 0.0060 -0.0005 0.0730 -0.0002 0.0059 -0.0005 0.0700
�� 0.0183 0.0963 -0.0033 0.0570 0.0118 0.0933 -0.0025 0.0490
�a 0.0000 0.0127 -0.0004 0.0610 -0.0005 0.0127 -0.0004 0.0630p
V ar (�z;t) -0.0000 0.0004 -0.0000 0.0550 -0.0000 0.0004 -0.0000 0.0570
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Table 9: The QML estimator: Laplace distributed shocks
The results are based on 1000 repetitions in the Monte Carlo study with a sample size of T=200. The true
standard errors are calculated as the standard deviation for these estimates. The Type I error is calculated
at a 5 percentage signi�cance level. Using a �rst order approximation, both the EKF and the CDKF
reduce to the standard Kalman Filter. Figures in bold indicate that the �lter outperforms the other �lter.
The true values are: �1 = 6, � = 0:85, �� = 1:65, �a = 0:90, and

p
V ar (�z;t) = 0:0080.

EKF CDKF
Bias in level True SE B ias in SE Typ e I B ias in level True SE B ias in SE Typ e I: 5%

First order
�1 0.0318 0.4239 -0.0076 0.0610
� 0.0003 0.0077 -0.0006 0.0870
�� same as for CDKF 0.0139 0.0955 -0.0083 0.0740
�a -0.0003 0.0157 -0.0016 0.0780p
V ar (�z;t) 0.0006 0.0006 -0.0001 0.1830

Second order
�1 0.0981 0.4448 -0.0300 0.0750 0.0382 0.4406 -0.0289 0.0730
� 0.0004 0.0072 -0.0007 0.0990 0.0008 0.0070 -0.0007 0.0970
�� 0.0199 0.1023 -0.0110 0.0800 0.0165 0.0993 -0.0090 0.0800
�a 0.0027 0.0151 -0.0018 0.0990 0.0010 0.0150 -0.0016 0.0840p
V ar (�z;t) 0.0006 0.0006 -0.0000 0.1810 0.0006 0.0006 -0.0000 0.1770

Third order
�1 0.0068 0.4085 -0.0257 0.0690 -0.0150 0.4094 -0.0283 0.0730
� 0.0013 0.0063 -0.0006 0.1020 0.0008 0.0061 -0.0005 0.0880
�� 0.0237 0.1031 -0.0081 0.0700 0.0167 0.1004 -0.0078 0.0720
�a 0.0004 0.0132 -0.0013 0.0800 0.0000 0.0133 -0.0014 0.0840p
V ar (�z;t) 0.0007 0.0006 -0.0001 0.1820 0.0006 0.0006 -0.0001 0.1770
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Table 10: The QML estimator: Stochastic volatility
The results are based on 1000 repetitions in the Monte Carlo study with a sample size of T=200. The true
standard errors are calculated as the standard deviation for these estimates. The Type I error is calculated
at a 5 percentage signi�cance level. Using a �rst order approximation, both the EKF and the CDKF
reduce to the standard Kalman Filter. Figures in bold indicate that the �lter outperforms the other �lter.
The true values are: �1 = 6, � = 0:85, �� = 1:65, �a = 0:90, and

p
V ar (�z;t) = 0:0080.

EKF CDKF
Bias in level True SE B ias in SE Typ e I B ias in level True SE B ias in SE Typ e I: 5%

Second order
�1 0.0437 0.3862 -0.0024 0.0500 -0.0067 0.3811 -0.0005 0.0550
� -0.0006 0.0063 -0.0004 0.0700 -0.0001 0.0062 -0.0004 0.0730
�� 0.0167 0.0887 -0.0034 0.0600 0.0121 0.0853 -0.0009 0.0580
�a 0.0010 0.0133 -0.0009 0.0780 -0.0008 0.0132 -0.0007 0.0720p
V ar (�z;t) 0.0000 0.0005 -0.0000 0.0660 0.0000 0.0005 -0.0000 0.0620

Third order
�1 -0.0151 0.3601 -0.0139 0.0580 -0.0224 0.3597 -0.0168 0.0710
� 0.0002 0.0058 -0.0004 0.0790 -0.0001 0.0056 -0.0003 0.0630
�� 0.0194 0.0904 -0.0018 0.0620 0.0124 0.0877 -0.0013 0.0700
�a -0.0001 0.0118 -0.0006 0.0670 -0.0007 0.0118 -0.0006 0.0680p
V ar (�z;t) 0.0000 0.0005 -0.0000 0.0690 0.0000 0.0005 -0.0000 0.0640
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Figure 1: RMSE for the state vector with Gaussian shocks
200,000 particles are used in the standard PF. The 95 pct. con�dence intercal (CI) for the standard PF is
computed from 100 repetitions of the �lter with di¤erent random numbers on the same test economy.
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Figure 2: RMSE for the state vector with Laplace distributed shocks
200,000 particles are used in the standard PF. The 95 pct. con�dence intercal (CI) for the standard PF is
computed from 100 repetitions of the �lter with di¤erent random numbers on the same test economy.
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Figure 3: RMSE for the state vector with stochastic volatility
200,000 particles are used in the standard PF. The 95 pct. con�dence intercal (CI) for the standard PF is
computed from 100 repetitions of the �lter with di¤erent random numbers on the same test economy.
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Figure 4: Quasi log-likelihood functions: Gaussian shocks
The value of the quasi log-likelihood function is expressed in percentage deviation from the estimated mean
value of the log-likelihood function in the standard PF using 200,000 particles. 100 repetitions of the
standard PF with di¤erent random numbers are used to compute the reported 95 percentage con�dence
interval for each test economy.
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Figure 5: Quasi log-likelihood functions: Laplace distributed shocks
The value of the quasi log-likelihood function is expressed in percentage deviation from the estimated mean
value of the log-likelihood function in the standard PF using 200,000 particles. 100 repetitions of the
standard PF with di¤erent random numbers are used to compute the reported 95 percentage con�dence
interval for each test economy.
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Figure 6: Quasi log-likelihood functions: Stochastic volatility
The value of the quasi log-likelihood function is expressed in percentage deviation from the estimated mean
value of the log-likelihood function in the standard PF using 200,000 particles. 100 repetitions of the
standard PF with di¤erent random numbers are used to compute the reported 95 percentage con�dence
interval for each test economy.
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