SCHOOL OF ECONOMICS AND MANAGEMENT ‘“ C R EAT E S

FACULTY OF SOCIAL SCIENGES Center_fnr Research in Econometric
AARHUS UNIVERSITY Analysis of Time Series

CREATES Research Paper 2010-30

Non-linear DSGE Models and
The Central Difference Kalman Filter

Martin M. Andreasen

School of Economics and Management
Aarhus University
Bartholins Allé 10, Building 1322, DK-8000 Aarhus C
Denmark



Non-linear DSGE Models and

The Central Difference Kalman Filter*

Martin M. Andreasen'
Bank of England and CREATES

July 20, 2010

Abstract

This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen-
tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially
non-Gaussian shocks. We argue that this estimator can be expected to be consistent and as-
ymptotically normal for DSGE models solved up to third order. A Monte Carlo study shows
that this QML estimator is basically unbiased and normally distributed in finite samples for
DSGE models solved using a second order or a third order approximation. These results hold
even when structural shocks are Gaussian, Laplace distributed, or display stochastic volatility.

Keywords:  Non-linear filtering, Non-Gaussian shocks, Quasi Maximum Likelihood, Sto-
chastic volatility, Third order perturbation.

JEL: C13, C15, E10, E32

*This paper is an improved version of some sections in an earlier paper entitled: "Non-linear DSGE Models, the
Central Difference Kalman Filter, and the Mean Shifted Particle Filter".

T would like to thank Oreste Tristani, Bent Jesper Christensen, Tom Engsted, and participants at the workshop
"Modeling and Forecasting Economic and Financial Time Series with State Space models" at the Swedish Riksbank
Oct. 17-18 2008 for comments and discussions. Email: martin.andreasen@bankofengland.co.uk. Telephone number:
+44 207 601 3431. I greatly acknowledge financial support from the Danish Center for Scientific Computation
(DCSC). I appreciate financial support to Center for Research in Econometric Analysis of Time Series, CREATES,
funded by the Danish National Research Foundation. Finally, the views expressed herein are solely those of the
author and not necessarily those of Bank of England.



1 Introduction

Likelihood based inference has emerged as a standard approach to estimate linearized DSGE models
with unobserved state variables. The approach relies on the use of the Kalman Filter to evaluate the
log-likelihood function in closed form when shocks and potential measurement errors are Gaussian.
A similar closed form solution for the log-likelihood function does not exist when DSGE models
are solved with non-linear terms and/or have non-Gaussian shocks. The important contribution by
Fernéndez-Villaverde & Rubio-Ramirez (2007) addresses this problem by introducing a sequential
Monte Carlo method called particle filtering as a way to estimate the log-likelihood function for
non-linear DSGE modes with potentially non-Gaussian shocks. Throughout this paper we refer to
the particle filter used in Ferndndez-Villaverde & Rubio-Ramirez (2007) as the standard Particle
Filter (PF).

Although the idea of using particle filtering for likelihood inference is appealing, the method has
the disadvantage of being computationally very demanding. Even for models with just two or three
shocks, tens of thousands of particles are needed to get a reliable approximation to the log-likelihood
function, and this makes the estimation process very time consuming - if at all feasible - for larger
models. The numerical difficulties related to particle filtering imply that a relatively small number
of non-linear DSGE models have so far been estimated by likelihood inference compared to the
large number of estimated linearized DSGE models. Hence, more efficient filtering and estimation

methods would clearly be useful in relation to estimation of non-linear DSGE models.

As an alternative to particle filtering, Norgaard, Poulsen & Ravn (2000) have developed the
Central Difference Kalman Filter (CDKF) for state estimation in general non-linear and non-
Gaussian state space systems. Contrary to particle filters, the updating rule for the state vector
in the CDKF is restricted to have a linear functional form, and the recursive equations for the
state estimator and its covariance matrix are therefore only functions of first and second moments.
The CDKF approximates these moments up to at least second order accuracy by a deterministic
sampling approach based on multivariate Stirling interpolations. This approximation method is
computationally very fast and reasonably accurate. Like particle filtering, the CDKF frequently
outperforms the Extended Kalman Filter (EKF) which for many years has been the preferred filter

for non-linear and non-Gaussian systems (see for instance Jazwinski (1970)).



The contribution of this paper is to introduce a Quasi Maximum Likelihood (QML) method
using the CDKF to estimate non-linear DSGE models with potentially non-Gaussian shocks. We
focus on the case where the observed variables contain measurement errors, and we argue that
this QML estimator can be expected to be consistent and asymptotically normal for DSGE models
solved up to third order. These results hold both when Gaussian and non-Gaussian shocks are
driving the economy. The main advantage of the proposed QML estimator is that it is much faster
to compute than any particle filter and this greatly eases the estimation. Our QML estimator could

therefore be expected to facilitate an increase in the number of estimated non-linear DSGE models.

We test the performance of the CDKF and the suggested QML estimator in a Monte Carlo
study using a New Keynesian DSGE model approximated to first, second, and third order. The
key results from this Monte Carlo study are as follows. Firstly, the state vector is estimated more
precisely by the CDKF than the EKF and the standard PF (with 200,000 particles) when shocks
are Gaussian and Laplace distributed. This shows that a linear updating rule and the multivariate
Stirling interpolation used in the CDKF may lead to quite accurate approximations. However, the
standard PF performs better than the CDKF and the EKF when shocks display stochastic volatility.
Secondly, the quasi log-likelihood function derived from the CDKF is a better approximation to the
log-likelihood function in the standard PF than the quasi log-likelihood function based on the EKF.
For Gaussian shocks, the quasi log-likelihood function from the CDKF is either very close or within
the 95% confidence interval for the estimated log-likelihood function in the standard PF. The same
conclusion does not hold when shocks have a Laplace distribution or display stochastic volatility.
Thirdly, the suggested QML estimator is found to be normally distributed and basically unbiased
in finite samples for second and third order approximations to the considered DSGE model. These
results hold regardless of whether shocks to the economy are Gaussian, Laplace distributed, or
display stochastic volatility. Asymptotic standard errors can in all cases be computed based on the
Hessian matrix and the variance of the score function. Reliable inference is here greatly facilitated
by the property that only first order derivatives are needed to compute the Hessian matrix for this

quasi log-likelihood function.

Based on these findings, we therefore believe that the suggested QML approach is a useful new

tool for taking non-linear DSGE models to the data. Our QML estimator may be considered as an



alternative to the likelihood approach advocated by Ferndndez-Villaverde & Rubio-Ramirez (2007)
but also as a useful supplement. For instance, the Classical researcher may use the QML estimates
as good starting values for the maximization of the log-likelihood function from a particle filter
as this should make the optimization considerable easier. Also the Bayesian researcher may find
the QML estimator useful because i) the QML estimates can be used as good starting values for
the Markov chain, and ii) the Hessian matrix of the quasi log-likelihood function can be used to
specify the proposal distribution in the random walk Metropolis algorithm for the MCMC analysis.
Both features should help to ensure faster convergence of the Markov chain where the log-likelihood

function is estimated by a particle filter.

The rest of the paper is organized as follows. We present the state space representation of
DSGE models in section 2. Some theory related to filtering is discussed in section 3 where we also
present the EKF and the CDKF. We then introduce the QML approach based on the CDKF in
section 4. Section 5 describes a standard DSGE model which is calibrated to account for higher
order moments in the post-war US economy. The performance of the various filters and the QML
estimator are examined in a Monte Carlo study in section 6. Concluding comments are provided

in section 7.

2 The state space representation of DSGE models

We consider the class of DSGE models that can be represented in a dynamic state space system (see
Thomas F. Cooley (1995) and Schmitt-Grohé & Uribe (2004) for illustrations). The observables in
period t are denoted by the vector y; with dimension n, x 1, and these observables are a function
of the state vector x; with dimension n, x 1. Allowing for additive measurement errors v; in all

observables, we then get

Vi =8 (x¢;0) + vy, (1)

where v, ~ ZZD (0, Ry (t)) denotes independent and identically distributed measurement errors.
The function g (-) is determined by the structural parameters 8 € O in the economic model and

the model’s equilibrium conditions. We refer to (1) as the set of measurement equations.



For the state vector, we consider a standard first order Markovian law of motion

Xi41 = h (x4, wip130), (2)

where w1 ~ ZZD (0,Ryw (t +1)). The vector wyy; of structural innovations is assumed to be
uncorrelated at all leads and lags with v,. We refer to (2) as the set of transition equations. The
state vector is assumed to be unobserved, but observed state variables can be incorporated by

letting one or more elements in g (-) be identity mappings.

3 Filtering

The objective of filtering is to estimate the unobserved state vector x; as data on y; becomes
available. We start in section 3.1 by deriving recursive equations for the estimation of x; and its
covariance matrix based on a two-step procedure of prediction and updating. The updating rule for
the state vector is assumed to be linear in the observables because it leads to simple equations with
only first and second moments from the state space system in (1) and (2). The next two sections
show how these moments are approximated by linearization in the EKF and by multivariate Stirling

interpolations in the CDKF. The final section discusses prediction and smoothing in the CDKF.

3.1 A linear updating rule for the state vector

We use the standard notation where a bar denotes a priori estimates and a hat denotes posterior
estimates. For instance, X;y1 = Ey[xi4+1] and Xy11 = Epyq [Xe+1), where E; is the conditional
expectation given the observations y1.; = {y1,y2, ..., ¥¢}.!

The a priori state estimator follows directly from (2) and is given by

)_(t+1 = Et [h (Xt, Witls 0)] . (3)

'An alternative notation is X ;41)¢ = E¢ [X¢4+1] and Xyq 1041 = Ee41 [Xeq1] as in Hamilton (1994), for instance. We
choose X:41 and X:4+1 because this notation is more parsimonious.



The conditional error covariance matrix for this estimator is denoted by

Pyx (t+ 1) = By [(x¢41 — Req1) (Xe41 — Keq1)'] - (4)

The updating rule of the a priori state estimator is for tractability restricted to be linear in the

observables, i.e.

Xir1 = by + K1y, (5)

where by1 and Ky are determined below. If we choose byy; such that the a priori and the

posterior state estimators are unbiased, then it follows directly that

bip1 = X1 — Kep1¥i11, where §i01 = Ey [g (%4415 0)] (6)
This gives rise to the well-known updating rule
i1 = Xeyp1 + K1 (Yer1 — Feg1) - (7)

The value of the Kalman gain Ky, 1 is determined such that the conditional error covariance matrix

for X;41 is minimized. It is straightforward to show that this criterion implies (see Lewis (1986))

Kip1 =Puy (t+ 1) Pyy (t+1)71, (8)

where we have defined
Pyy (t+1) = By [(xe41 — Xe41) (Y1 — Fe41)'] 9)
Pyy (t+1) = By [(yi+1 — ¥e41) (ye41 — Fe1)'] - (10)

The conditional error covariance matrix for X;;1 can be expressed as
Pyx (t+1) = Pux (t+1) = Ky 1 Pyy (t + 1) K} 4. (11)

Thus, the filtering equations for the class of updating rules implied by (5) are given by (3), (4),



and (7) - (11).

Two remarks are in order. Firstly, if we are able to accurately evaluate the required first and
second moments, then the a priori and the posterior state estimators in (3) and (7) are unbiased
by construction. This result holds even though the state space system is non-linear and no distri-
butional assumptions are imposed on vy and w;. Secondly, the required first and second moments
can be evaluated exactly when g (-) and h(-) are linear functions, and this leads to the Kalman
Filter. Recall that the Kalman Filter has a linear updating rule for the posterior state vector, and
the filter can be derived without imposing distributional assumptions for v, and w; (see for in-
stance Tanizaki (1996)). However, the non-linearity in (1) and (2) imply that some approximation

is needed to calculate the required moments.

3.2 The Extended Kalman Filter

One way to proceed is to linearize the state space system such that

Yyt~ g ()_(t, 9) + Gx,t (Xt — )_(t) + V¢ (12)
X1 =~ h (f(t, 0) + Hx,t (Xt — f(t) + Hw,t (Wt+1 — V_VtJrl) (13)
where
g (x;0) Oh (x;0) oh (%¢, w; 0)
Gy = =227 H, = —27 Hy, = — 007 14
X 0x  |,—z, ot 0x  |,—z, ¥ ow W= i1 (14)

Using these approximations, the first and second moments in the filtering equations are given by

X1 = h (X, Wip1;6) Yi+1 =8 (Xi41;6) (15)
Pox (t +1) = Hy Poy (1) Hy , + Hy Ry (t + 1) Hy, (16)
Puy (t+1) = Pox (t +1) Gy 14 (17)

Pyy (t+1) = Gx1Pax (1 +1) Gi 1 + Ry (E 4 1) (18)



Applying these approximations lead to the Extended Kalman Filter (see for instance Jazwinski
(1970)). The approximations in (15) are only accurate up to first order and do not account for the
probability distribution of (X;, w;y1). This is because the linearizations in (15) are done around a
single point. The approximations in (16) - (18) are more precise as they are accurate up to second
order. However, it is possible to improve the accuracy of these approximations with no additional

computational costs as we will see in the next section.

3.3 The Central Difference Kalman Filter

The idea behind the CDKF is to approximate the non-linear expectations in (3), (4), and (7) -
(11) by second order multivariate Stirling interpolations.> We introduce some additional notation
to describe how this is done. First, let Sy (£), Sy (£), Sx (), and Sx (t) be squared and upper
triangular Cholesky factorizations of R (t), Ry (£), Pxx (t), and Py (t), respectively. That is,
Ry (1) = Sw () Sy ()" and so on. Lower case vectors denote elements in these matrices, for
. We next define

instance Sy (t + 1) = Swil Sw2 Sw.n

S,((l,z (t) = {(hi (Rt + h8xj, Wit1;0) — hy (R¢ — h8xj, Wii1;0)) /2h} (19)
(neXng)
S () = {(hi (R, Wer1 + hwj0) — hi (e, Wi g1 — hsw ;3 0)) /2h} (20)
(e XNaw)
SU (t) = {(gi (Re + hSx 1 0) — gi (R — hSx 1 0)) /2h} (21)
(nyxng)
!
where we use the notation h (-) = | hy (-) ha(-) ... hyp, (-) | and similarly for the function g (-).

The matrices in (19) - (21) contain the first order effects of the general non-linear functions and

this is denoted by the superscript (1). The corresponding matrices for the second order effects are:

Vvh?z -1
S§(2)2 (t) = {2h2 (hz (it + hng, Wt+1; 0) + hz ()A(t — h§x7]’, Wt+1; 0) — th ()A(t, Wt+1; 0))} (22)
(naXng)

vhZ -1
s& (1) = {%2 (hi (Re, W1 + hsw ;3 0) + hi (Re, Wit — hsw.j30) — 2h; (Re, W1 9))} (23)
(naXnw)

2Qur presentation of the CDKF is adapted to the state space system in (1) and (2).



Vh? —1 _ _ _ _ _
S§,2,2 (t) = {2h2 (9i (R¢ + h8x j,;0) + g; (X¢e — h5x 5, 0) — 29 (X; 0)) (24)
(ny xng)
Norgaard et al. (2000) recommend to determine the value of the scalar h based on the distribution

of the random variable subject to the multivariate Stirling interpolation. It is here optimal to let

h? equal the kurtosis of this distribution.

As shown by Norgaard et al. (2000), the a priori state estimator in the CDKF is
_ h,2 - le - nw N —
Xip1 = Th (Xt, Wti1;0) (25)
1 5 A - - A -
o 2pet (B (Re + h8xp, Wei1;0) + B (Re — hSxp, Wer136))

1 n N N
Ton2 >opet (W (X, Wep1 + hswp; 0) + D (Re, Wit — hswp; 0)) -

This approximation accounts for the distribution of the state vector X; and the distribution of the
structural innovations wyy; due to the second and third term in (25), respectively. The computation
in each of these terms is very similar to computing numerical derivatives of h (). The important
thing to notice is that the step size in (25) depends on the covariance matrix of the variable
subject to the approximation, whereas the step size is arbitrary small and mutually ortogonal when
numerical derivatives are computed. Norgaard et al. (2000) shows that the a priori estimator in
(25) is accurate up to second order. If the state distribution and the structural shocks are normally
distributed, then this estimator is even accurate up to third order.

The a priori covariance matrix of (25) is obtained by a QR decomposition of the matrix
sl (t) s ) s&@ s& ) |- (26)

We follow Norgaard et al. (2000) and use the Householder transformation ® (A) to perform the
QR decomposition of a rectangular matrix A. This transformation produces a squared and upper

triangular matrix S = ® (A) such that AA’=SS’. Hence,

S, (t+1)=® <[ sQ @) s& @ s s& @ D : (27)

To see how this approximation of S, (t+ 1) relates to the expression in the EKF, we use the



definition of the Householder transformation to get
P (t4+ 1) = S8 (1) SW (1) + S&) (1) S () + S\ () Sk (1) + S&o (1) S (1) . (28)

In comparison to the EKF, we thus have that S(l)( )S( )( t) + S(Q)( )S,(f,z (t)" corresponds to
Hy o Prx (1) Hl, and S& (1) Skw (1) + S (1) Sk (1)’ corresponds to Hy (R (¢ + 1) HY, . How-
ever, the approximations in (28) are in general more accurate than those in the EKF (Norgaard
et al. (2000)).

The a priori estimator for the vector of observables is given by

_ h2—n, _ 1 n B _ _ _
Yer1 = —5 8(Xer130) + o555 20,01 (8 (Rewr + MBxpi 0) + 8 (Rew1 — MBxpi0))  (29)

This estimator has the same structure and properties as the a priori state estimator in (25). The

covariance matrix of ¥,41 is calculated based on

Sy(t+1):q><[s<yl,2(t+1> Sy (t+1) s<y%2(t+1)]>, (30)
and the Kalman gain is given by
-1

Koy = Sx(t+1)SW (t+1) [Sy (t+1)Sy (t+1)]

Finally, the covariance matrix of the posterior state estimator follows from

Sx(t+1) =9 ({ Sy (t+1) — K SN (t+1) KipgSy (t+1) KSR (E+1) D (32)
An overview of the CDKF is given in appendix A.

We emphasize two properties in relation to the CDKF. Firstly, if the functions g (-) and h(-)
are linear in x; and wyy1, then the CDKF reduces to the Kalman Filter. Secondly, the number

of function evaluations of g(-) and h(:) in the CDKF are identical to the number of function

10



evaluations in the EKF when derivatives are approximated by double differences, i.e. by

of ()|  _f@+e—f(z—¢
ox _ 2 (33)

T=T

where € > 0 is a small number. Hence, the improved accuracy of the CDKF compared to the EKF

comes at no additional computational costs.

3.4 Prediction and smoothing in the CDKF

Prediction ofthe observables in the CDKF is obtained by iterating (25), (27), and (29) forward in
time. Sérkk# (2008) shows how to derive a Forward-Backward smoother for the Unscented Kalman
Filter, and Dunik & Simandl (2006) derive a square root implementation of this smoother.® These
smoothers are derived based on the additional assumption that the filtered and the smoothed
state distributions are multivariate normal. Given the results in Norgaard et al. (2000), it is
straightforward to set up the Forward-Backward smoother for the CDKF. This is done in appendix
B.

4 Quasi maximum likelihood estimation

This section presents our quasi log-likelihood estimator for the structural coefficients 8 in non-
linear DSGE models with potentially non-Gaussian shocks. We derive this estimator in section 4.1,
and its asymptotic properties are discussed in section 4.2. Section 4.3 shows how to estimate the

asymptotic distribution of our suggested estimator.

4.1 The quasi log-likelihood function

The EKF and the CDKF estimate the mean and the covariance matrix of the posterior state
distribution. These moments are in general insufficient to derive the likelihood function except in

the well-known case where all shocks are Gaussian and the functions g (x;;0) and h (x;, wiy1;0)

$The Unscented Kalman Filter (UKF) developed by Julier, Uhlmann & Durrant-Whyte (1995) is another derivative
free implementation of the filtering equations presented in the previous section Norgaard et al. (2000) show that the
CDKF has marginally higher theoretical accuracy than the UKF for normally distributed variables.

11



are linear in x; and (x¢, wy41), respectively. Hence, it is in general not possible to use the EKF or
the CDKF to estimate the structural parameters @ by maximum likelihood or Bayesian methods.
A commonly used assumption for non-linear state space systems is to approximate the condi-

tional density y¢+1|y1+ by a normal distribution, i.e.

Vir|yie ~ N (7141 (0) , Pyy (65t + 1)) (34)

for t =1,...,T. Given the higher accuracy of the CDKF compared to the EKF, it is natural to use
the CDKF to compute the moments in this distribution. If the initial state vector is uncorrelated
with v, and wy for all values of ¢, then a quasi log-likelihood function based on the CDKF and (34)

is given by

—n, T 1 _
LOPKT (0,y,7) =~ log(2m) — 5 S, log ([BPRT (0:0)) (3)

—% ST (e - 3EPKF () (PSPEF (05) ™ (v — yEPKT (0)) -

Here, §{'PX T () denotes the a priori estimate of the observables from the CDKF and P{PXF (6;t)
is the related covariance matrix. The quasi log-likelihood function based on the EKF, denoted
LFPEF (9,y,.r), is derived in a similar manner using the first and second moments from the EKF.

We then suggest to estimate the structural parameters @ by maximizing the quasi log-likelihood

function LEPKF (9, y,.1), that is

perrr = argmax LOPEE(0,y, ). (36)
6cO

We emphasize two convenient numerical properties in relation to this estimator. Firstly, the function
LECPEF (9 y, 1) is smooth in @, and this makes the optimization relative easy. For small models,
local optimization routines such as the Newton-Raphson method and its various extensions may
be used with different starting values. For larger models, global optimization routines such as
Simulated Annealing and evolutionary algorithms may be more effective (see Hansen, Miiller &

Koumoutsakos (2003) and Andreasen (20105)). In comparison, the estimated log-likelihood function

in particle filters do not in general display smoothness in 8 due to the resampling step and this

12



makes the optimization very challenging.*

Secondly, the numerical requirement for evaluating the quasi log-likelihood function in (35)
is minimal compared to any particle filter. To realize this, note first that the CDKF uses n,x
(142 (ng + ny)) function evaluations to compute X;1; and the matrices for its covariance matrix.
Additional n, (1 + 2n,) function evaluations are used to compute ¥;41 and the matrices for its
covariance matrix.’ In comparison, the standard PF used in Ferndndez-Villaverde & Rubio-Ramirez

6 As an

(2007) requires N (ng + n,) function evaluations where N is the number of particles.
illustration, consider the case with five observables (n, = 5), five shocks (n,, = 5), and ten state
variables (n, = 10). This implies 415 function evaluations in the CDKF in each time period. The
particle filter requires 15N function evaluations in each time period where N typically is between

20,000 and 60,000. It is therefore obvious that the CDKF is many times faster to compute than

the standard PF.

4.2 Asymptotic properties

The starting point for our asymptotic analysis is the work by Bollerslev & Wooldrigde (1992)
for dynamic models that jointly specify the conditional mean and the conditional covariance ma-
trix. They examine the asymptotic properties of estimating such models by maximizing a quasi
log-likelihood function which is derived from a Gaussian assumption although this distributional
assumption may be violated. Hence, their setup is similar to ours for 0" i (35) and (36). The

score function s (6), implied by (35) is:”

JC)m Voy“PrE (0),1 Fer1 (0) " u(8),, (37)

(1xne)

+%V¢9Ft+1 (0)/ Ft+1 (9)_1 (= Ft+1 (0>_1} vec [ut+1 (0) U+1 (9), — Ft+1 (9)]

where

w (0) =y, —y P (0) and Fy(0) = PIPRF (03t) (38)

1The particle filters by Pitt (2002) and Flury & Shephard (2009) are important exceptions where the estimated
log-likelihood function is smooth in 6.

®We abstract from the computational costs related to the QR decomposition in the CDKF and the simple matrix
multiplications used in the filter.

5The particle filter also uses a resampling step which we ignore for simplicity in our comparison of the two filters.

"The derivative of a matrix is defined as in Bollerslev & Wooldrigde (1992).

13



Here, s (0); has dimension 1 x ng where ny is the number of elements in 0. If the conditional mean

is correctly specified and the expectation y&'P5F (8) = E; [g (x441;0)] can be evaluated exactly,
then
E¢ [ug41 (60)] = 0, (39)

where 6y denotes the true value of 8. If the conditional covariance matrix is also correctly specified

at Oy and the expectation for this covariance matrix can be evaluated exactly, then

By [w41(80) uer1 (80)] = Fui1 (60) - (40)
As a result,
Ey [s(60);4] = 0. (41)

Bollerslev & Wooldrigde (1992) show that this implies consistency and normality of PR given

standard regularity conditions. Furthermore,

VT (éCDKF —60) 4 N (0,A5'BoAg "), (42)
where
BO =FE [S (00? yl:T) S (00, YI:T)/] (43)
82[’ (07 Y1:T>

A()EE

] (44)
=0,

~CDKF
Accordingly, the asymptotic properties of 6 for a correctly specified DSGE model depends on

0606’

the precision by which we are able to evaluate the first and second moments in LEPEF (0, y,.1).
This insight provides a strong theoretical argument in favour of a QML estimator based on the
CDKF compared to a QML estimator using the EKF, because the CDKF' delivers a higher level
of precision for first and second moments and should therefore have better asymptotic properties.
The possibly misspecified distribution for y;y1|y1.+ in (36) is not important for consistency and
normality of éCDKF, although 9CDKF will be more efficient the closer the true distribution of
Vi+1| Y1 is to the normal distribution. This observation also implies that the stated results for

~CDKF
0 hold even if shocks to the DSGE models are non-Gaussian. Hence, we only need to evaluate

14



whether the precision delivered by the CDKF for the first and second moments is sufficient to ensure

. . ~CDKF
consistency and normality of 6 .

The answer to this question depends on the chosen approximation order for the DSGE model.
We introduce our way of reasoning by starting with a linearized DSGE model. Here, first and
second moments are accurate up to first and second order, respectively, and the CDKF reduces to
the standard Kalman Filter which exactly captures the first and second moments to the desired
degree of precision. Thus, we recover the standard result that the QML estimator is consistent and
asymptotically normal for a linearized DSGE model (see for instance Hamilton (1994)).%

When the DSGE model is solved up to second order, then first and second moments in the
model are accurate up to second and third order, respectively.’ This implies that the precision
in the CDKF is sufficient for the first moment, but there are approximation errors in the second
moments because the CDKF does not match all third order terms. However, these approximation
errors are likely to be insignificant as the second moments of y;y1|yi1.+ are small in most cases.
Alternatively, if the state vector is (approximately) Gaussian, then all third order terms are zero
and the second moments in the CDKF are therefore accurate up to third order (Norgaard et al.
(2000)). Thus, when a DSGE model is solved up to second order, the precision delivered by the
CDKEF should in all realistic settings be sufficient and our suggested QML estimator can be expected
to be consistent and asymptotically normal.

For a DSGE model solved up to third order, it holds that first and second moments in the model
are accurate up to third and fourth order, respectively. Hence, the estimate of the first moment in
the CDKF induces approximation errors in the third order terms of this moment, unless the state
vector is (approximately) Gaussian and these third order terms are zero. Approximation errors are
also present in the second moments, where the CDKF does not match all third and fourth order
terms. For most DSGE models, these unmatched third and fourth order terms in the first and
second moments are likely to be small and our suggested QML estimator can therefore be expected
to be consistent and asymptotically normal.

Finally, when the DSGE model is solved beyond third order, it becomes harder to ensure

8Inference is here used in the sense that the approximated DSGE model is the true data generating process. The
paper by Fernandez-Villaverde, Rubio-Ramirez & Santos (2006) studies the case where the exact solution to the
DSGE model is considered as the true data generating process.

9This result is illustrated in the appendix.
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consistency and normality of the QML estimator. This is because the CDKF does not match any
of the extra terms induced by solving the model beyond third order, and reliable performance of

our QML estimator therefore requires that these higher order terms are insignificant.

4.3 The estimated asymptotic distribution

The variance of the score function By can be estimated in a standard fashion by first order numerical
derivatives of the quasi log-likelihood function evaluated at 9CDKF. As shown by Bollerslev &
Wooldrigde (1992), it is also possible to estimate the Hessian matrix Ay based on first order
derivatives. This is a convenient property of our estimator because it is often difficult to compute

reliable estimates of the Hessian matrix from double numerical derivatives. Using the notation in

Harvey (1989), the Hessian matrix may be estimated by

~ ~ /
Ay = 55 t; trace | Fy pRCTRT ¢ 89fDKF T t; aaCPRT | T aéfDKF (45)

for i,j = 1,2....,ng where all first order derivatives in (45) are computed numerically.

5 A New Keynesian DSGE model

This section presents a standard New Keynesian DSGE model following the work of Christiano,
Eichenbaum & Evans (2005) and Smets & Wouters (2007). We describe the model in section 5.1
and discuss how to approximate the model solution up to third order in section 5.2. The model is

then calibrated in section 5.3 to account for higher order moments in the post-war US economy.

5.1 The model

We emphasize two features in relation to our model. Firstly, stochastic and deterministic trends are
included to make the subsequent Monte Carlo study as realistic as possible because trends allow us
to work with growth rates. Secondly, we consider the case where potentially non-Gaussian shocks

drive the economy.
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The households: A representative household considers

_ 1—¢
Ct+l*bwt—1+l)1 %2 (1-— ht+l>¢2) L 1

o Al << e
Ut - Et Z 5 1—¢, 3
=0

(46)

where ¢; is consumption and h; is labor supply. The variable z; is a measure of technological
progress and determines the overall trend in consumption. The parameter b controls the degree of

external habit formation in the consumption good ¢; which is constructed from

1 n-1 n—1
= [/ Cit di] . (47)
0

The habit stock x; evolves as 411 = pyze + (1 — p,) ¢

The first constraint on the household is the law of motion for the capital stock k; given by

kiy1 = (1—06) k44 (1 — f(i—t ~ mﬁ) : (48)

20

where 4; is gross investment. The value of p, is determined such that there are no adjustment costs
along the economy’s balanced growth path.

The second constraint is the household’s real period-by-period budget constraint

h
1. X
EtDt’t+1CC?+1 +c + (6tTt) 1 1 = 77': + Tfkt + wtht + qbt. (49)
t

The left hand side of (49) is the household’s total expenditures in period ¢ which consists of i) state-

-1

contingent claims EtDt,t+1$?+17 ii) consumption ¢, and iii) investment (e;Y;)” "~ ¢;. Changes in ;T

are investment specific shocks, which follow an exogenous AR(1) process along a deterministic trend,

ie. MYy =InTy +1Inpy o and

Ines1 = pelnes + €ept1. (50)

We let €c 111 ~ZID (0, Var (eeit1))-

The right hand side of (49) is the household’s total wealth in period ¢. It consists of: i) pay-off
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from state-contingent assets purchased in the previous period z} /¢, ii) income from selling capital
services to the firms rfk‘t, iii) labor income w¢h;, and iv) dividends received from firms ¢,. Note

that 7; is the gross inflation rate.

The firms: Production is carried out by a continuum of firms. They supply a differentiable
good y;; to the goods market which is characterized by monopolistic competition. All firms have

access to the same technology

k'?,t (atzthi,t)l_e — ’QZJZt* if kf,t (atzthl-7t)1_0 - wz;; >0
Yit = (51)
0 else

where k;; and h;; denote capital and labor services, respectively. The variable a; represents sta-

tionary technology shocks, and we let
In At+1 = Pq In a; + Oa€a,t+1, (52)

where €411 ~ ZID (0,Var (€g4+1)). The variable z; in (51) denotes non-stationary technology

shocks. We let p, ; = 2¢/2—1 and assume

In Hzty1 = In Kz ss + €z,t4+15 (53)

where €, 111 ~ ZID (0, Var (€z4+1)). The shocks a; and p, , are mutually independent, and so are
all other shocks in the model. Following Altig, Christiano, Eichenbaum & Linde (2005), we define

zf = Y9/(1=0),. The fixed production costs 1 are set to ensure a steady state profit of zero.

All firms maximize the present value of their nominal dividend payments, denoted d; ;:
oo
di,t =F Z Dt,t+lPt+l¢i,t+l- (54)
1=0

Here, Dy ;4; is the nominal stochastic discount factor and the expression for real dividend payments
from the 4'th firm ¢, , is given below in (56). The firms face a number of constraints when maxi-

mizing d; ;. The first is related to the good produced by the 7’th firm. The total quantity of good
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1 is allocated to consumption and investment, which implies
e =t + (e o) i (55)
The second constraint is the budget restriction:
Gis = (Pit/P) yiy — 78 kiy — wihiy. (56)

The first term in (56) denotes the real revenue from sales of the i’th good. The next two terms in
(56) are the firm’s expenditures on capital services rfki,t and payments to workers wih; ;.

The third constraint introduces staggered price adjustments. We assume that in each period a
fraction a € [0, 1] of randomly selected firms are not allowed to set the optimal nominal price of the
good they produce. Instead, these firms set the current prices equal to the prices in the previous

period, i.e. P;; = P;;_1 for all ¢ € [0, 1].

The central bank: The central bank determines the gross one-period nominal interest rate

R; according to the rule

Rt Rt—l Tt Ut
In <Rss> = prln ( R ) + B In <7Tss> + B, In <M> + €Rt+1, (57)

where €r 41 ~ZZD (0,Var (ert41)).

Shock distributions: Three specifications for the shocks are considered. As a benchmark
case, we first let all shocks be Gaussian. In our second specification, we let shocks be generated
from the Laplace distribution which has thicker tails than the Gaussian distribution. The presence
of Laplace distributed shocks is interesting as it implies that large shocks occur more often than
with Gaussian shocks, and this allow us to test whether the CDKF is robust to state outliers.

Our final specification, considers another way to model non-Gaussian shocks by introducing
stochastic volatility into the model. We focus on the case where only the process for stationary

technology shocks displays stochastic volatility. Applying the specification in Justiniano & Primiceri
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(2008), the law of motion for a; in (52) is replaced by

Ina41 =p,Ina + o4 i+1€0,641, (58)

where the process for stochastic volatility o, 41 is given by

Inoati1 = Py, IN0at + €541 (59)

Here, €5, 111 ~ NID(0,Var (es,++1))-!° Non-stationary technology shocks z; and investment
specific shocks e; are assumed to be Gaussian in this final specification, and we do not consider
monetary policy shocks, i.e. Var(egs+1) = 0. The latter restriction is imposed for numerical
convenience as the presence of stochastic volatility in a; introduces o,; as an additional state
variable. Hence, by omitting monetary policy shocks, we are left with the same number of state
variables as in the two shock specifications without stochastic volatility. An overview of the three

specifications for the structural shocks is provided in Table 1.

< Table 1 about here >

5.2 Solving the model

We now present the state space representation of our DSGE model. As in section 2, let y; contain
the non-predetermined variables and let x; contain the predetermined state vector. Both variables
are expressed in deviation from the deterministic steady state. Denoting the structural innovations

by €:11, the exact solution to our model is then given by

yt =g (xt,0) (60)

Xi+1 = h(x4,0) + oneg (61)

90ther specifications of stochastic volatility in DSGE models are discussed in Andreasen (2010d).
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where o is the perturbation parameter. This is also the exact solution when stochastic volatility is

included in the model because the processes in (58)-(59) can be represented as

Inat = o4 Inwvy (62)
Oa,t
Invipr =p Inve + €441 (63)
Oa,t+1
In Oat+l = Po, In Oat + €5qt+1 (64)

The proof of this result is given in Andreasen (2010a). Hence, our specification of stochastic
volatility can be expressed as a combination of two AR(1) processes where the local persistency
coefficient in the auxiliary process Inwv; is modified by the term o4 +/04¢+1. The representation in
(62)-(64) is convenient because it shows that we only need to perturb the variables (a¢, vt, 04+) and
it implies only two state variables, (v, 04). In comparison, the representation in (58)-(59) requires
perturbing (at, 0qt, €4,t+1, €0 t+1) and has as a minimum three state variables, (a¢, 04t €q¢41). In
particular, the smaller number of state variables induced by the representation in (62)-(64) is
convenient as it reduces the computing time when DSGE models are solved numerically.

The functions g (-) and h (-) are unknown, and we therefore approximate them up to third order.
We apply the codes by Schmitt-Grohé & Uribe (2004) to compute all the first and second order
terms. The third order terms are computed using the codes derived in Andreasen (2010a) which
extends the results in Schmitt-Grohé & Uribe (2004) to third order. We finally apply the pruning
scheme to the approximated solution (see Kim, Kim, Schaumburg & Sims (2008) and Andreasen
(2010¢) for further details).

Five macro variables are chosen for the Monte Carlo study: i) the quarterly nominal interest
rate, ii) the quarterly inflation rate, and the quarterly real growth rates in iii) consumption, iv)

investment, and v) output. These series are placed in the vector yfbs . We allow for measurement

errors v in the series for y?** and assume v; ~ N'ZD (0, Ry) where Ry is a diagonal matrix. This

gives the following state space system

v = Mig (x¢,0,0) — Mag (x4-1,0,0) + v¢ (65)
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xi+1 = h (x4, 0) + oneyy (66)

where M; and My are selection matrices with appropriate dimensions. The presence of x;_1 in

(65) is due to the three growth rates in y¢%°.

5.3 Model calibration

The model is calibrated to US data from 1956Q4 to 2009Q2. We focus on matching i) mean values,
ii) standard deviations, iii) skewness, and iv) kurtosis for the five series in y?**.!' The calibrated
coeflicients are fairly standard and summarized in Table 2. We only note that the conditional
standard deviation in the volatility process \/Var (¢s,++1) has a relative large value of 0.3 which

is needed to get notable effects of stochastic volatility in the model.
< Table 2 about here >

The empirical and simulated moments are reported in Table 3 for a second order approximation.
Our model is successful at matching all mean values and standard deviations when shocks are
Gaussian. The model also generates sizeable deviations from normality in the nominal interest rate
and the inflation rate. This is evident from the values of skewness and kurtosis for these series which
differ from 0 and 3, respectively. Accordingly, our model has significant non-linearities and should
therefore be challenging for non-linear filters. The main difference when going from Gaussian to
Laplace distributed shocks is that the latter shocks increase the value of kurtosis. The presence of

stochastic volatility has the same effect, although the increase in kurtosis tends to be smaller.
< Table 3 about here >

The simulated moments using a third order approximation are reported in Table 4. Moving
from a second order to a third order approximation is seen to increase the values of skewness and
kurtosis for all variables. For the nominal interest rate and the inflation rate, the values of these

moments are even seen to be larger than the corresponding empirical moments. Another indicator

We use data from the Federal Reserve Bank of St. Louis. The quarterly interest rate is measured by the rate in
the secondary market (TB3MS). The quarterly inflation rate is for consumer prices. The growth rate in consumption
is calculated from real consumption expenditures (PCECC96). The series for real private fixed investment (FPIC96)
is used to calculate the growth rate in investment. The growth rate in output is calculated from real GDP (GDPC96).
All growth rates are expressed in quarterly terms and in per capita based on the total population in the US.
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of the strong non-linearities in the model is to note that the standard deviation for the nominal

interest rate and the inflation rate are somewhat higher at third order than at second order.

< Table 4 about here >

6 A Monte Carlo study

This section conducts a Monte Carlo study to evaluate the performance of the CDKF in the context
of DSGE models. We start in section 6.1 by examining how accurately the CDKF estimates the
unobserved state variables compared with the EKF and the standard PF. In section 6.2, the values
of the quasi log-likelihood function using the CDKF and the EKF are compared to the estimated
value of the log-likelihood function in the standard PF. Section 6.3 explores the finite sample
properties of our suggested QML estimator based on the CDKF and compares its performance

with a QML estimator that uses the EKF.

6.1 State estimation

This section studies the ability of the CDKF to estimate the unknown state variables. We simulate
20 sample paths of length T' = 200 for a given approximation order to the DSGE model in order to
generate 20 test economies. This is done for each of the three shock specifications. The accuracyof

all filters is measured by the root mean squared errors (RMSE)

T A 2
RMSE; =Y, \/Zt=1 (%j’f B fori=1.2,..90, (67)

where x4 is the true value of the j’th state variable in period ¢ and 2 is the estimated value. The
initial state xg is taken to be known and we let Pxx (t = 0) = 1076, The step size h in the CDKF
is always set equal to the optimal value for the Gaussian distribution (h = \/§) even though the
distribution subject to the multivariate Stirling interpolation may be non-Gaussian.'> We compare
the performance of the CDKF with the EKF and the standard PF using 200,000 particles. The

latter is included to represent a close approximation to the optimal state estimator.

12These assumptions are maintained throughout the Monte Carlo study.
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We start by considering the case where all shocks are Gaussian in Figure 1. The first chart in
this figure shows the RMSE for a first order approximation to the DSGE model, and the CDKF
(market with stars) therefore reduces to the Kalman Filter which is the optimal state estimator.
The performance of the standard PF is reported as a 95% confidence interval which we compute
from 100 repetitions of the filter on the same test economy. The standard PF is seen to give a
satisfying approximation to the optimal estimator as the confidence intervals either contain or are
very close to the optimal state estimates from the Kalman Filter.

For a second order approximation, we first note that the CDKF gives more precise state es-
timates than the EKF (market with squares). More surprisingly, the CDKF is doing just as well
as the standard PF and clearly outperforms this filter for some test economies. This finding indi-
cates that a linear updating rule and the multivariate Stirling interpolation used in the CDKF are
reasonable approximations for this class of test economies.

For a third order approximation, the CDKF still outperforms the EKF, and the CDKF also
does marginally better than the standard PF in this case. Given the strong non-linearities in our

DSGE model, we consider the latter as a very surprising result.
< Figure 1 about here >

For Laplace distributed shocks in Figure 2, we find more or less the same results as with
Gaussian shocks. That is, the CDKF clearly outperforms the EKF, and the CDKF is marginally
better than the standard PF. Hence, the good performance of the CDKF is found to be robust to
strong non-linearties and Laplace distributed shocks. Recall that these shocks are interesting to

consider because they generate state outliers more frequently than Gaussian shocks.

< Figure 2 about here >

The results for shocks displaying stochastic volatility are shown in Figure 3. Here, we do
not consider a first order approximation because it does not capture the presence of stochastic
volatility as emphasized by Fernandez-Villaverde & Rubio-Ramirez (2007). For a second and third
order approximation, the standard PF is seen to outperform the CDKF and the EKF as the 95%
confidence intervals from the particle filter are lower than the RMSE for the two other filters. An

inspection of the state distributions in the standard PF shows that many of these distributions

24



are highly skewed and non-Gaussian, and this may explain the benefit of tracking the entire state
distribution in the particle filter instead of just focusing on the first two moments as in the CDKF
and the EKF. These state distributions are on the other hand typically symmetric and bell-shaped
with Gaussian and Laplace distributed shocks although the DSGE model displays strong non-
linearities. Note finally, that the level of the RMSE is rather large with stochastic volatility in
the model in comparision to Gaussian and Laplace distributed shocks in Figure 1 and 2. This is

because the process for o, ; is very volatile and hence dominates the expression for the RMSE.
< Figure 3 about here >

The accuracy results for the three filters are summarized in Table 5 where we compute the
average RMSE across the 20 test economies for the various shock specifications and the different
approximations to the model. In line with our previous findings, we see that the CDKF outperforms
the EKF and the standard PF when shocks are Gaussian or Laplace distributed. This is indicated
by bold figures for the CDKF in Table 5. Hence, more than 200,000 particles are needed in the
standard PF if this filter is to outperform the CDKEF for the considered test economies. The benefit
of particle filtering is however evident with stochastic volatility where the RMSE is substantially
lower for the standard PF than for the CDKF and the EKF.

< Table 5 about here >

The performance of a given filter should also be evaluated in relation to the time it takes to
compute the filter. Table 6 therefore shows the average computing time for each of three filters.!?
The CDKF is seen to be very fast to compute. It only takes about 0.03 seconds for one evaluation
of this filter with a first order approximation, and this number only increases to 0.10 seconds and
0.50 seconds for a second order and a third order approximation, respectively. The corresponding
figures for the standard PF using 200,000 particles are 20.25 seconds for a first order approximation,
68.42 seconds for a second order approximation, and 299,41 seconds for a third order approximation.

Hence, the CDKF becomes a more attractive alternative to particle filtering when the approximation

order to the DSGE model is increased.

3Qur presentation and implementation of the CDKF propogates the square root of covariance matrices through
time to ensure that these matrices remain positive semi-definite. We therefore also use a square root implementation
of the EKF when comparing the execution time of the two filters. However, this implementation of the EKF is
marginally slower to compute compared with the version of the EKF given in section 3.2.
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< Table 6 about here >

6.2 The quasi log-likelihood function

Before we turn to the performance of the suggested QML estimator, it is interesting to see how close
the quasi log-likelihood function LEPKEF is to the estimated log-likelihood function in the standard
PF, LPF. Also the difference between the quasi log-likelihood function based on the CDKF and the
EKF, i.e. LEPKF versus LEKF  is interesting to examine because it shows the quantitative effect
of using different methods to estimate first and second moments in the two filters. We therefore

study the relationship between these three functions in the current section.

A natural metric when comparing these functions, is to express the quasi log-likelihood functions
in percentage deviation from the value of the log-likelihood function. The latter is in general not
available and we therefore use the estimated log-likelihood function from the standard PF. Hence,

for the j'th test economy we compute

J J
TPF
L;

5 -Lr) (68)

W} =100 (
for i = {CDKF,EKF} and j = 1,2, ...,20. Here, EfF =1/100 Z,{ffl Lif denotes the mean value of
the log-likelihood function in the standard PF from 100 evaluation of this filter on the j’th test econ-
omy. The normalizing constant in (68) is stochastic, and we therefore find it useful to also report
uncertainty bounds. This is done by computing the 95% confidence interval +1.96 x 100%,
where std (Lf F ) denotes the standard deviation of the estimated log-likelihood function. Ac]cord—
ingly, this confidence interval shows the variation in the estimated log-likelihood function (when

normalized by I/f F'y which is due to Monte Carlo variation.'*

The values of \Ifz with Gaussian shocks are shown in Figure 4. For a first order approximation,
the CDKF (and the EKF) reduces to the Kalman Filter which reports the exact value of the log-

likelihood function. We thus see from the first chart in Figure 4 that the particle filter gives a good

4¥We prefer this normalized metric in terms of EfF instead of simply reporting the level of LEPKFE  [EKF and

LFF because the latter would make the differences between the three functions hard to notice in the subsquent charts.
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approximation to the log-likelihood function because the exact value is either within or very close
to the 95% confidence interval for the standard PF.

We draw two conclusions from the middle chart of Figure 4 which is for a second order ap-
proximation. Firstly, the values of \llfD KF are closer to zero than \IJ;-EKF for most of the 20 test
economies. This means that the quasi log-likelihood function using the CDKF is a better approx-
imation to the log-likelihood function than the quasi log-likelihood function based on the EKF.
We therefore expect QML estimates from the CDKF to be more efficient than QML estimates
based on the EKF because the Maximum Likelihood (ML) estimator is asymptotically efficient.
Secondly, the quasi log-likelihood functions using the CDKF and the EKF are both very close to
the log-likelihood function from the standard PF. For the CDKF, we even note that in 13 out of the
20 test economies, the value of LEPEF lies within the 95% confidence interval. This implies that
the efficiency loss of using our suggested QML estimator instead of a fully efficient ML estimator
is likely to be small for these test economies.

For a third order approximation in the bottom chart of Figure 4, we again find that LEPEF ig
closer to the log-likelihood function than LZXF and both quasi log-likelihood functions are fairly
close to LYF. Given the strong non-linearities in our DSGE model, we consider the latter result as

a quite surprising.
< Figure 4 about here >

Results based on Laplace distributed shocks are shown in Figure 5. Regardless of the approx-
imation order to the DSGE model, we find that LEPKF and LEEF display fairly large deviations
from the estimated log-likelihood function. This means that our suggested QML estimator in this
case is likely to be somewhat less efficient than the ML estimator. For a second and third order

LCDKF

approximation, we also note that in general is closer to the log-likelihood function than

LEKF  The same two conclusions also hold when shocks display stochastic volatility as shown by

Figure 6.
< Figure 5 about here >

< Figure 6 about here >
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The results from Figure 4 - 6 are summarized in Table 7. The first two columns in this table
display the average distance between LTF and the quasi log-likelihood functions across the 20 test
economies. We see that the value of the quasi log-likelihood function using the CDKF on average
is closer to L¥F than the quasi log-likelihood function derived based on the EKF. This is a very
robust result as it holds for a second and a third order approximation and for the three considered
shock specifications. For Gaussian shocks, the average distance between LEPKF and LT is only
2.29 and is therefore very close to the Monte Carlo variation of 2.01 in the standard PF (column
three). The difference between LEPKF and LT is also seen to be small compared to the average
value of L which is slightly larger than 4000 (column four). In other words, the CDKF provides
a very good approximation to the log-likelihood function for these test economies when shocks are
Gaussian.

The same conclusion does not hold with Laplace distributed shocks where the quasi log-
likelihood functions differ substantially from the log-likelihood in the standard PF. Even larger
differences appear between the quasi log-likelihood functions and the estimated log-likelihood func-
tions when shocks display stochastic volatility. In particular the latter finding is interesting because
the state space representation of the DSGE model with stochastic volatility has the same structure
as when all shocks are Gaussian. The key difference between the two specifications stems from the
fact that the system with stochastic volatility has much larger second and third order terms than

the system without this feature.

< Table 7 about here >

6.3 QML estimates

This section examines the finite sample properties of the QML estimator for the structural para-
meters in our DSGE model. We only consider five of the parameters in the model to be unknown
as this makes the simulation study numerically feasible. The five unknown parameters are: i) the
preference parameter (¢;), ii) the degree of price stickiness («), iii) the central bank’s reaction to
deviations from the inflation rate target (53,.), iv) the degree of persistency in stationary technology
shocks (p,), and v) the standard deviation for non-stationary technology shocks (y/Var (e ¢41)).

The values of these and all the other parameters are given in Table 1.
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We start by examining the properties of the suggested QML estimator when shocks are Gaussian
in Table 8. For a second order approximation, the QML estimator based on the CDKF is basically
unbiased. We also note that the estimates of ¢, o, and 3, are closer to their desired level for the
QML estimator based on the CDKF than for the QML estimator using the EKF. The opposite is
marginally the case for p, whereas both QML estimators give unbiased estimates of \/m .
The true standard errors are smallest when using the CDKF, which is in line with the results from
the previous section where LEPEF was found to be closer to LT than LFEF. The asymptotic
standard errors provide more or less unbiased estimates of these standard errors for both QML
estimators. Finally, the Type I errors at a 5% significance level are in most cases closer to 5% for
the CDKF than for the EKF. This shows that the asymptotic normal distribution for 0¢PX¥ is a
reasonable approximation to its distribution for a finite sample.

Using a third order approximation, we find that the biases in the level of the structural para-
meters and their standard errors are quite small for both QML estimators. We also note that the
true standard errors for ¢;, o, and p, are smaller for a third order approximation than for a second
order approximation, and the true standard errors in a second order approximation are smaller than
for a first order approximation. Hence, a more accurate approximation to the model implies more
information about the parameters in the quasi log-likelihood function and therefore more efficient
estimates. An & Schorfheide (2007) document a similar result using Bayesian estimation methods

when going from a first order to a second order approximation.
< Table 8 about here >

The QML estimates for Laplace distributed shocks are shown in Table 9. For a second order and
third order approximation, we find that the QML estimates using the CDKF only have negligible
biases, and these biases are slightly smaller than those related to the EKF. The QML estimates
based on the CDKF are futher seen to have slightly smaller standard errors than the EKF. The
latter result is consistent with the finding in the previous section where LEPEF also with Laplace
distributed shocks was closer to LT than LEKF . The estimates of the standard errors are basically
unbiased for both QML estimators. However, the two estimators tend to produce too high Type I
errors, but so does the QML estimator for a first order approximation to the model. This suggests

that the high Type I errors are unrelated to the presence of non-linearities in the model and instead
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relates to the Laplace distributed shocks, which imply that a longer sample is needed for convergence
to the asymptotic normal distribution. Note also that for these shocks, a third order approximation

to the model in general give more efficient estimates when compared to the linearized model.
< Table 9 about here >

The results for shocks with stochastic volatility are reported in Table 10. Again, our suggested
QML estimator based on the CDKF results in negligible biases for a second and a third order
approximation, and the same conclusion holds for the estimated standard errors. We also observe
a tendency for the CDKF to do better than the EKF along these dimensions, although both
filters perform quite well. Note also that the standard errors for the QML estimates with the
CDKF in general are smaller than the standard errors for the EKF. As for the previous two shock
specifications, most estimates become more efficient when we increase the approximation order.

The good performance of our QML estimator with stochastic volatility is interesting because
section 6.1 found relatively large RMSE for the state estimates in the CDKF when compared to
the standard PF. Hence, the omitted higher order terms in the CDKF (and also in the EKF) seem
to be of less importance for the performance of the considered QML estimator even in a situation
with very strong non-linearities. This finding therefore supports the conjecture in section 4.2 that
the unmatched terms in the CDKF are unlikely to be significant for the performance of a QML

estimator based on the CDKF when DSGE models are approximated up to third order.

< Table 10 about here >

7 Conclusion

This paper suggests a QML estimator based on the CDKF to estimate non-linear DSGE models
with potentially non-Gaussian shocks. Focus is devoted to the case where measurement errors are
present in the observables, and we argue that this QML estimator can be expected to be consistent
and asymptotically normal for DSGE models solved up to third order. These results hold when
Gaussian and potentially non-Gaussian shocks are driving the economy. The main advantage of
this estimator is that it is much faster to implement compared with an estimator that relies on the

use of a particle filter.
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The performance of the CDKF and the suggested QML estimator is examined on a standard
New Keynesian DSGE model solved by first, second, and third order approximations. We find that
the CDKF' gives more precise state estimates than the EKF and the standard PF when shocks
are Gaussian and Laplace distributed. However, the standard PF performs better than the CDKF
and the EKF when shocks display stochastic volatility. We also show that the quasi log-likelihood
function derived from the CDKF is a better approximation to the log-likelihood function in the
standard PF than the quasi log-likelihood function based on the EKF. The distribution of the sug-
gested QML estimator is further found to be well approximated by its asymptotic distribution, and
the estimator is more or less unbiased in finite samples for a second and a third order approximation
to the considered DSGE model. We found a tendency for the QML estimator based on the CDKF
to be more efficient than a QML estimator based on the EKF which is consistent with LE¢PEF
being closer to LTF than L¥EF. We also found that a third order approximation to the DSGE

model in general gives more efficient QML estimates when compared to a first order approximation.
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A The algorithm for the Central Difference Kalman Filter
e Initialization: ¢t =0
Set %; and Sy (¢).

e Fort >1
Prediction step:

— Ry = hz*”f ADa—Nuh (Xy, Wiy1;0)
2h2 E p (W (Re + h8xp, Wiy150) +h (R — h8xp, Wis150))
h2 Enw (h( Wil + hsw P 0) +h (f{t, Witl — hSW,p§ 0))
)

-8+ = ([ s@ s§33v() s s@w )

Updating step:

_ 2_ _
_ Yt+1 — h h2’ﬂacg (Xt—f—l; 0)
+orz Yonmy (8 (Rer1 + hSxp; 0) + 8 (Ri1 — hSxp; 0))

~Sy ) =0 (| SR+ Sy @+1) SR+ )

K =Sx b+ 1)SW (t+ 1) [Sy (t+1)Sy (¢t +1)]

- S (t+1) =2 ([ Sx(t+1) —KeiSH (t+1) KepiSy(t+1) Kp1SE (t+1) D
Quasi log-likelihood function

° — Let Uil = Yit1 — Yit+1 and F;1 1 = S (t + 1) S (t + 1)/
— Lyp1 = Ly — % log (2m) — g log ([Fyia]) — 3uf Frhiue

B The smoother for the CDKF

The smoothed estimate of x; is denoted x;”. The covariance matrix of this estimate is denoted
P (t) = Er [(x¢ — x{™) (x¢ — x3™)']. It holds that

Xfm = )A(t + Kt+1 [Xffl — )_(tJrl]
P3 (1) = Proc (1) + Ki1 (P (64 1) — P (1 + 1) Kl
where the smoothing gain is given by

KtJrl — Ct+1]-5xx (t —|— 1)_1

and
Cip1=E; [(Xt — RXt) (X1 — >_<t+1)/] .

Based on the results in Norgaard et al. (2000), we have

Crt =S ()SE (t+1).
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The square root of the covariance matrix for the smoothed state estimate is given by

Sx(t)=2@ ([ Sx (t) — Kt+1S§<1>2 (1) KeaSP(t+1) Kt+1S>(<1x2/ (1) Kt+1S;(<2>2 (t) Kt+ls)(c2\1)s/ (t) D .

This smoothing recursion is started at the last time step, because it holds that x7" = Xr and
P37 (T') = Pyx (T)). Thus, the procedure is first to calculate the posterior estimates %; and Sy (t)
for t =1,2,...,7 by running the CDKF. Then, the smoothing recursion is started in time period
T and iterated back in time.

C Accuracy of first and second moments in approximated DSGE
models

For first moments it follows trivially that the accuracy of the approximation is given by the ap-
proximation order. The situation is different for the second order moments. We illustrate this by
considering the scalar case, i.e. x; and y; are scalars. Both variables are expressed in deviation
from the deterministic steady state. A sixth order approximation to y; = g (z¢) is given by

1
Yt = G2 Tt + 7'96.?1‘?

1 5
7'95333% + 6!

1 4
TR

1 3
*'93;3.%} + 41

1 2
91920t

2!

We denote moments of ; by m* = E [xl] for ¢ = 1,2,.... This implies

Var (yt) = gmm + (2,9235)2771 + (3!939&)37” + (4lg4z)4m + (519 x)s 104 (égﬁx)m m'2
v g2em® + glgxgsxm“ + 41. gxg4mm5 + 51|gxgsxm6 + g1 9296em”)

1 29093a:m + 21 4192wg4:cm + 2! 5!92mg5xm + 5 6192w96xm8)

] 3194mm + 3! 5lg3x95xm + 3}! 6!9319617719)

] 4m95$m +a 6lg4x96xm10

5xg6xm

,_.co\HRQ

+2 (5
+2 (3
+2 (g
+2 (g
+2 (5

e P s [ RS T
O’\'—‘U‘\'—'";\

We therefore have the following:
A second order approximation of Var (y;) is given by:
Var (5" = gim?

A third order approximation of Var (y;) is given by:
Var (y)*™" = g2m? + g,g2em®

A fourth order approximation of Var (y;) is given by:

4th 2
Var (y)*"" = g2m? + gugo.m® + (%92:)” m* + 2 gugsem®

A fifth order approximation of Var (y;) is given by:
2
Var (yo)™" = ¢2m? + gogosm® + (5920)" m* + 2 g2930m* + Z9094:m° + 2 & 920 g3,m®

Computing the variance in a DSGE model approximated up to first order:
Yt = Gzt

\

Var (5)"" = g2

which is accurate up to second order

Computing the variance in a DSGE model approximated up to second order:
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Yt = GaTt + %923633%

4

Var (yn)™ = g2m? + (4920)" m* + gagoam®

which is accurate up to third order and not fourth order because we are missing the term

2 4
319293z

Computing the variance in a DSGE model approximated up to third order:
Yt = gat + 3192207 + 3193273
\
2 2
Var (y))™ = ¢2m? + (§920) m* + (31932)” S + gogoem® + 2 gugsam® + % g20g3am®
which is accurate up to fourth order. Note that we are missing the term %gwg%mf’ to have
precision of fifth order.
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Table 1: Shock specifications

Specification Label €e,t11 €a,t+1 €2441  ERt+1
1 Gaussian shocks Gaussian Gaussian Gaussian  Gaussian
2 Laplace shocks Laplace Laplace Laplace Laplace
3 Stochastic volatility | Gaussian  Stochastic volatility ~ Gaussian None

Table 2: Calibration for the DSGE model

Label

Parameter

Value

Discount factor

Habit degree

Habit persistence
Preference

Preference

Adj costs for investments
Depreciation rate
Cobb-Douglas parameter
Price elasticity

Degree of price stickiness

Reaction to lagged interest rate

Reaction to inflation

Reaction to output

Inflation rate in steady state

Growth rate in technology shocks

Growth rate in investment shocks

Persistency in stationary technology shocks

Persistency in investment shocks

Persistency in the volatility process

std.

std.

std.

std.

std.

std.

of nonstationary technology shocks
of stationary technology shocks
of investment shocks

of shocks to interest rate rule
of shocks to volatility

of errors in the interest rate

std. of errors in inflation

std. of errors in the growth rate for consumption

std. of errors in the growth rate for investments

std. of errors in growth rate for output

Pe
Po,
VVar (e;14+1)
VVar (egt+41)
Var (€ct+1)
Var (€r+1)
Var (€s, t+1)
Var (vrt)
Var (vgz)
VVar (vact)
Var (vaiz)
Var (vay:)

0.9995
0.80
0.95

6
0.88
2.0
0.025
0.36
6
0.85
0.99
1.65
0.15

1.0070

1.0044

1.0007

0.9

0.9

0.9
0.008
0.012
0.030
0.001
0.300
0.001
0.001
0.002
0.002
0.002
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Table 3: Empirical and simulated moments: Second order approximation
All model moments are calculated based on a simulated time series of 1,000,000 observations.

Rt ¢ ACt A’Lt Ayt
Empirical moments
Mean 0.0131 0.0088 0.0055 0.0056  0.0048
Standard deviation 0.0070 0.0063 0.0071 0.0254 0.0092
Skewness 1.0787 0.9700 -0.6719 -1.1384 -0.4525
Kurtosis 4.8934 4.7352 4.9795 6.8528  4.5435
Model moments: Gaussian shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0088 0.0063 0.0084 0.0270 0.0118
Skewness 0.5664 1.1100 0.0337 -0.1646 0.0495
Kurtosis 3.9029 5.0441 3.0840 3.0413  3.0406
Model moments: Laplace shocks
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0088 0.0062 0.0084 0.0269 0.0118
Skewness 0.5969 1.1653 0.0217 -0.2488 0.0167
Kurtosis 4.1262 5.4804 4.4121 4.1642 3.7135
Model moments: Stochastic volatility
Mean 0.0134 0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0101 0.0071 0.0086 0.0289 0.0124
Skewness 0.4748 0.9541 0.0311 -0.1359 0.0385
Kurtosis 4.2746 5273  3.1045 3.1986  3.1465
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Table 4: Empirical and simulated moments: Third order approximation
All model moments are calculated based on a simulated time series of 1,000,000 observations.

R; e Acy Aty Ay
Empirical moments
Mean 0.0131 0.0088  0.0055 0.0056  0.0048
Standard deviation 0.0070  0.0063 0.0071 0.0254 0.0092
Skewness 1.0787  0.9700 -0.6719 -1.1384 -0.4525
Kurtosis 4.8934  4.7352 4.9795 6.8528 4.5435
Model moments: Gaussian shocks
Mean 0.0134  0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0130  0.0107 0.0079 0.0268 0.0116
Skewness 1.3251 1.6429  0.0286 -0.1688 0.0525
Kurtosis 9.4417 11.5575 3.0623 3.0731  3.0228
Model moments: Laplace shocks
Mean 0.0134  0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0131 0.0108 0.0079 0.0267 0.0115
Skewness 1.4602 1.7684  0.0149 -0.2590 0.0254
Kurtosis 11.7384 14.3213 4.4023 4.3128 3.6517
Model moments: Stochastic volatility
Mean 0.0134  0.0083 0.0048 0.0055 0.0048
Standard deviation 0.0173 0.0142 0.0084 0.0314 0.0135
Skewness 1.1484 1.4440  0.0270 -0.1780 0.0083
Kurtosis 9.8258 11.7128 3.2898  3.9907  3.7408

Table 5: Average RMSE of state estimates across the 20 test economies
Figures in bold indicate that the filter outperforms the other filters.

Standard PF  EKF CDKF
(200.000)

Gaussian shocks
First order 0.0466 0.0444 0.0444
Second order 0.0507 0.0566 0.0472
Third order 0.0517 0.0579 0.0491
Laplace shocks
First order 0.0490 0.0452 0.0452
Second order 0.0527 0.0554 0.0488
Third order 0.0551 0.0577 0.0513
Stochastic volatility
Second order 0.6854 1.0251  0.9439
Third order 0.6287 1.0049 0.9273
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Table 6: Average number of seconds
The results for the EKF and the CDKF are for a square root implementation of these filters on the 20 test

economies. All computations are done in Fortran 90 on Dell SC1435 compute-nodes, each with 2 dualcore
Opteron 2.6 GHz, 8 GB memory, and 250 GB disk.

First order Second order Third order
Standard PF (200.000) 20.25 68,42 299,41
EKF 0.02 0.10 0.47
CDKF 0.03 0.10 0.50

Table 7: The level of the quasi log-likelihood functions compared to L'F

The average distance is measured by \/% 25021 (L — E;’F)z for i = {EKF,CDKF}. LFF and std (LF'")
denote the mean and standard deviation, respectively, of the log-likelihood function for the j’th test
economy across 100 evaluations of the standard PF using 200,000 particles.

Average distance from LT for:
20 7 20
EKF CDKF 5 R LIP3 st (LEF)
Gaussian shocks
First order 2.02 2.02 4055.3 1.96
Second order 5.11 2.29 4054.0 2.01
Third order 5.66 2.39 4063.0 2.01
Laplace shocks
First order 30.77 30.77 4069.5 11.50
Second order 37.46 35.29 4078.3 10.76
Third order 35.86 33.82 4089.6 10.69
Stochastic volatility
Second order 60.87 38.73 4043.0 2.93
Third order 95.27 72.53 4026.5 3.74
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Table 8: The QML estimator: Gaussian shocks
The results are based on 1000 repetitions in the Monte Carlo study with a sample size of T=200. The true

standard errors are calculated as the standard deviation for these estimates. The Type I error is calculated
at a 5 percentage significance level. Using a first order approximation, both the EKF and the CDKF
reduce to the standard Kalman Filter. Figures in bold indicate that the filter outperforms the other filter.
The true values are: ¢; =6, a = 0.85, 5, = 1.65, p, = 0.90, and +/Var (¢,,) = 0.0080.

EKF CDKF
Bias in level True SE Bias in SE Type I Bias in level True SE Bias in SE Type I: 5%

First order
0N 0.0027  0.4184  -0.0029  0.0500
Q -0.0001  0.0071  -0.0002  0.0580
B same as for CDKF 0.0126 0.0901  -0.0008  0.0500
Pa -0.0008  0.0141  -0.0002  0.0490

Var () -0.0000  0.0004 -0.0000  0.0540
Second order
N 0.0476  0.4049 -0.0005 0.0460 | -0.0078 0.3970 0.0034 0.0500
Q -0.0006  0.0064 -0.0003 0.0700 | -0.0000 0.0063 -0.0003 0.0690
B 0.0172  0.0945 -0.0045 0.0590 | 0.0118 0.0910 -0.0020 0.0460
Pa 0.0009 0.0143 -0.0007 0.0700 | -0.0010 0.0142 -0.0004 0.0600

Var(e;¢) -0.0000 0.0004 -0.0000 0.0560 | -0.0000 0.0004 -0.0000 0.0580
Third order
o -0.0115 0.3802 0.0010 0.0460 | -0.0190 0.3802 -0.0021  0.0540
Q 0.0001 0.0060 -0.0005 0.0730 | -0.0002 0.0059 -0.0005 0.0700
Bx 0.0183  0.0963 -0.0033 0.0570 | 0.0118 0.0933 -0.0025 0.0490
Pa 0.0000 0.0127 -0.0004 0.0610 | -0.0005 0.0127 -0.0004  0.0630

Var(e;+) -0.0000  0.0004 -0.0000 0.0550 | -0.0000 0.0004 -0.0000 0.0570
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Table 9: The QML estimator: Laplace distributed shocks
The results are based on 1000 repetitions in the Monte Carlo study with a sample size of T=200. The true

standard errors are calculated as the standard deviation for these estimates. The Type I error is calculated
at a 5 percentage significance level. Using a first order approximation, both the EKF and the CDKF
reduce to the standard Kalman Filter. Figures in bold indicate that the filter outperforms the other filter.
The true values are: ¢; =6, a = 0.85, 5, = 1.65, p, = 0.90, and +/Var (¢,,) = 0.0080.

EKF CDKF
Bias in level True SE Bias in SE Type I Bias in level True SE Bias in SE Type I: 5%

First order
0N 0.0318  0.4239 -0.0076  0.0610
Q 0.0003  0.0077 -0.0006  0.0870
B same as for CDKF 0.0139  0.0955  -0.0083  0.0740
Pa -0.0003  0.0157 -0.0016  0.0780

Var () 0.0006  0.0006  -0.0001  0.1830
Second order
N 0.0981 0.4448 -0.0300 0.0750 | 0.0382 0.4406 -0.0289 0.0730
Q 0.0004 0.0072  -0.0007  0.0990 0.0008 0.0070 -0.0007 0.0970
B 0.0199 0.1023  -0.0110 0.0800 | 0.0165 0.0993 -0.0090 0.0800
Pu 0.0027  0.0151  -0.0018 0.0990 | 0.0010 0.0150 -0.0016 0.0840

Var(e;¢) 0.0006 0.0006  -0.0000 0.1810 0.0006  0.0006 -0.0000 0.1770
Third order
o 0.0068 0.4085 -0.0257 0.0690 | -0.0150 0.4094 -0.0283  0.0730
Q 0.0013 0.0063  -0.0006 0.1020 | 0.0008 0.0061 -0.0005 0.0880
Bx 0.0237  0.1031 -0.0081 0.0700 | 0.0167 0.1004 -0.0078 0.0720
Pa 0.0004 0.0132 -0.0013 0.0800 | 0.0000 0.0133 -0.0014 0.0840

Var (1) 0.0007  0.0006 -0.0001 0.1820 | 0.0006 0.0006 -0.0001 0.1770
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Table 10: The QML estimator: Stochastic volatility
The results are based on 1000 repetitions in the Monte Carlo study with a sample size of T=200. The true

standard errors are calculated as the standard deviation for these estimates. The Type I error is calculated
at a b percentage significance level. Using a first order approximation, both the EKF and the CDKF
reduce to the standard Kalman Filter. Figures in bold indicate that the filter outperforms the other filter.
The true values are: ¢; =6, a = 0.85, 5,. = 1.65, p, = 0.90, and /Var (e, ;) = 0.0080.

EKF CDKF
Bias in level True SE Bias in SE Type I Bias in level True SE Bias in SE Type I: 5%
Second order
1 0.0437 0.3862 -0.0024 0.0500 | -0.0067 0.3811 -0.0005 0.0550
Q -0.0006  0.0063 -0.0004 0.0700 | -0.0001 0.0062 -0.0004 0.0730
Bx 0.0167 0.0887 -0.0034 0.0600 | 0.0121 0.0853 -0.0009 0.0580
Pa 0.0010 0.0133 -0.0009 0.0780 | -0.0008 0.0132 -0.0007 0.0720
Var (e;) 0.0000  0.0005 -0.0000  0.0660 0.0000  0.0005 -0.0000 0.0620
Third order
o} -0.0151 0.3601 -0.0139 0.0580 | -0.0224 0.3597 -0.0168 0.0710
Q 0.0002  0.0058 -0.0004 0.0790 | -0.0001 0.0056 -0.0003 0.0630
B 0.0194 0.0904 -0.0018 0.0620 | 0.0124 0.0877 -0.0013 0.0700
Pa -0.0001 0.0118 -0.0006 0.0670 | -0.0007 0.0118 -0.0006  0.0680
Var (e;) 0.0000  0.0005 -0.0000  0.0690 0.0000  0.0005 -0.0000 0.0640
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Figure 1: RMSE for the state vector with Gaussian shocks
200,000 particles are used in the standard PF. The 95 pct. confidence intercal (CI) for the standard PF is
computed from 100 repetitions of the filter with different random numbers on the same test economy.
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Figure 2: RMSE for the state vector with Laplace distributed shocks
200,000 particles are used in the standard PF. The 95 pct. confidence intercal (CI) for the standard PF is
computed from 100 repetitions of the filter with different random numbers on the same test economy.
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Figure 3: RMSE for the state vector with stochastic volatility
200,000 particles are used in the standard PF. The 95 pct. confidence intercal (CI) for the standard PF is

computed from 100 repetitions of the filter with different random numbers on the same test economy.
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Figure 4: Quasi log-likelihood functions: Gaussian shocks
The value of the quasi log-likelihood function is expressed in percentage deviation from the estimated mean
value of the log-likelihood function in the standard PF using 200,000 particles. 100 repetitions of the
standard PF with different random numbers are used to compute the reported 95 percentage confidence
interval for each test economy.
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Figure 5: Quasi log-likelihood functions: Laplace distributed shocks
The value of the quasi log-likelihood function is expressed in percentage deviation from the estimated mean
value of the log-likelihood function in the standard PF using 200,000 particles. 100 repetitions of the
standard PF with different random numbers are used to compute the reported 95 percentage confidence
interval for each test economy.
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Figure 6: Quasi log-likelihood functions: Stochastic volatility
The value of the quasi log-likelihood function is expressed in percentage deviation from the estimated mean

value of the log-likelihood function in the standard PF using 200,000 particles. 100 repetitions of the
standard PF with different random numbers are used to compute the reported 95 percentage confidence
interval for each test economy.
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