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Abstract

This paper provides theory as well as empirical results for pre-averaging estimators
of the daily quadratic variation of asset prices. We derive jump robust inference for
pre-averaging estimators, corresponding feasible central limit theorems and an explicit
test on serial dependence in microstructure noise. Using transaction data of different
stocks traded at the NYSE, we analyze the estimators’ sensitivity to the choice of
the pre-averaging bandwidth and suggest an optimal interval length. Moreover, we
investigate the dependence of pre-averaging based inference on the sampling scheme,
the sampling frequency, microstructure noise properties as well as the occurrence of
jumps. As a result of a detailed empirical study we provide guidance for optimal
implementation of pre-averaging estimators and discuss potential pitfalls in practice.

Keywords: Quadratic Variation; Market Microstructure Noise; Pre-averaging; Sam-
pling Schemes; Jumps.
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1 Introduction

The availability of high-frequency data has significantly influenced research on volatility
estimation during the last decade. Inspired by the seminal papers by Andersen, Boller-
slev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002) the idea of
estimating daily volatility using realized measures relying on intraday data has stimulated
a new and active area of volatility modelling and estimation.1

∗Mark Podolskij acknowledges financial support from CREATES funded by the Danish National Re-
search Foundation.
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Humboldt-Universität zu Berlin as well as Quantitative Products Laboratory (QPL), Berlin, and Center
for Financial Studies (CFS), Frankfurt. Email: nikolaus.hautsch@wiwi.hu-berlin.de. Address: Spandauer
Str. 1, D-10178 Berlin, Germany. Email: nikolaus.hautsch@wiwi.hu-berlin.de.
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1For a recent survey on a wide range of literature, see, e.g., (Andersen, Bollerslev, and Diebold 2008).
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This paper provides new theory, implementation details as well as extensive and de-
tailed empirical results for the class of pre-averaging estimators originally introduced by
Jacod, Li, Mykland, Podolskij, and Vetter (2009). The paper’s aim is two-fold: First, as an
important theoretical contribution we extend existing theory by deriving jump robust in-
ference for pre-averaging estimators. In this context, we develop feasible central limit the-
orems as well as appropriate local estimators for underlying components of pre-averaging
estimators’ asymptotic variance. To address serial dependence in market microstructure
noise we suggest an explicit test. Second, we provide evidence on the widely unknown
properties of pre-averaging estimators in practice. We shed light on their empirical per-
formance and analyze the impact of implementation details, such as the optimal choice of
local pre-averaging windows, the role of sampling frequency, finite-sample adjustments as
well as the impact of the sampling scheme in dependence of noise properties and jumps.

The main difficulty in estimating the daily quadratic variation of asset prices using
noisy high-frequency data is how to optimally employ a maximum of information without
being affected by so-called market microstructure noise arising from market frictions, such
as the bid-ask bounce or the discreteness of prices, inducing a deviation of the price
process from a continuous semi-martingale process. As discussed, e.g., by Hansen and
Lunde (2006), among others, market microstructure noise can lead to severe biases and
inconsistency of the estimators when the sampling frequency tends to infinity. In order to
overcome these effects, sparse sampling, e.g., based on 20 minutes, has been proposed as an
ad hoc solution (see, e.g., Andersen, Bollerslev, Diebold, and Labys (2003)). The major
disadvantage of sparse sampling, however, is the enormous data loss and the resulting
inefficiency of the estimator. As a result, various methods for bias corrections and filtering
of noise effects have been proposed in the literature. The most prominent and general
approaches are the realized kernel estimator by Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008), the two-scale estimator by Zhang, Mykland, and Aı̈t-Sahalia (2005)
and the pre-averaging estimator by Jacod, Li, Mykland, Podolskij, and Vetter (2009).2

While the empirical performance and properties of kernel type estimators are analyzed in
Hansen and Lunde (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008),
the empirical properties of pre-averaging estimators are widely unknown and have not
been studied systematically yet. As also illustrated by Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2008), the estimators’ empirical (finite-sample) properties can significantly
deviate from theoretical (asymptotic) properties making finite-sample and data-specific
adjustments necessary and ultimately important in financial practice. In this context,
implementation details, such as the appropriate choice of plug-in estimators, the role of
data properties as well as the underlying sampling scheme play a crucial role.

This paper is motivated by the need for a better understanding of how pre-averaging
estimators and corresponding inference work in practice and how they should be optimally
implemented. Using transaction and quote data from different stocks traded at the New
York Stock Exchange we study the estimators’ dependence on the choice of the underlying
local pre-averaging interval, the role of the sampling scheme (i.e., calendar time sampling
vs. business time sampling, transaction price sampling vs. midquote price sampling) and
the impact of the sampling frequency. A new test on the serial dependence in microstruc-
ture noise yields deeper insights into the impact of noise properties on the estimator’s
performance. An important contribution of this paper is the development of jump robust
inference for pre-averaging estimators and corresponding feasible central limit theorems.
Empirical implementation using estimators of local variance components provide evidence

2See Andersen, Bollerslev, and Diebold (2008) for an overview of alternative approaches.
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on jump frequencies and the impact of jumps on estimation errors.

Employing pre-averaging based inference to transaction and quote data of a cross-
section of NYSE stocks covering different liquidity classes we gain insights into the sen-
sitivity of the estimators and tests for jumps as well as noise dynamics to the length of
the underlying local pre-averaging interval and find a data-driven MSE minimizing choice
to be empirically preferable. In this context, finite sample adjustments of the estimator
and the underlying sampling scheme are particularly important. Using an optimal pre-
averaging scheme we find jump proportions between 5% and 10% on average. Ignoring the
possibility of jumps in the price process leads to an under-estimation of 95% confidence
intervals of approximately 15% on average.

Moreover, our results suggest implementing pre-averaging estimators based on max-
imally high sampling frequencies. A reduction in sampling frequency tends to imply an
’oversmoothing’ of volatility resulting in negative biases. Finally, benchmarking the pre-
averaging estimators to realized kernels and sparsely sub-sampled realized variance esti-
mators we show that basic pre-averaging is most robust to the choice of the underlying
sampling scheme. As a result of this analysis we derive suggestions for optimal implemen-
tation of this class of estimators and tests in practice.

The remainder of the paper is organized as follows: In Section 2, we present the
basic case with underlying conditionally independent noise without jumps, discuss the
underlying theoretical framework and provide evidence on the optimal choice of the pre-
averaging interval. Section 3 considers pre-averaging estimators under the assumption of
continuous semimartingales with dependent noise and presents empirical evidence based on
an explicit test. In Section 4, we discuss the discontinuous case including the possibility
of jumps. Finally, in Section 5, the time series properties and the impact of sampling
frequencies and schemes are analyzed while Section 6 concludes.

2 Pre-Averaging Estimators for the Quadratic Variation:

The Continuous Case

2.1 The Basic Model

It is well-known in finance that, under the no-arbitrage assumption, price processes must
follow a semimartingale (see, e.g., Delbaen and Schachermayer (1994)). In this section,
we consider a continuous semimartingale (Xt)t≥0 of the form

Xt = X0 +

∫ t

0
asds+

∫ t

0
σsdWs. (2.1)

Here, W denotes a one-dimensional Brownian motion, (as)s≥0 is a càglàd drift process and
(σs)s≥0 is an adapted càdlàg volatility process. Moreover, t denotes (continuous) calendar
time.

However, due to various market frictions, such as price discreteness or bid-ask spreads,
the efficient price X is contaminated by noise. Thus, we can only observe a noisy version Z
of the process X. More precisely, we consider a filtered probability space (Ω,F, (Ft)t≥0,P)
on which we define the process Z, observed at n time points, indexed by i = 0, 1, . . . , n,
as

Zt = Xt + Ut , t ≥ 0 , (2.2)
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where Ut denotes the error term. In case of transaction time sampling (TRTS), i indexes
the (irregular) time points associated with each ∆n-th trade. Hence, n = [N/∆n] with
N denoting the number of trades until t. In case of calendar time sampling (CTS), i
indexes equal-spaced time intervals of length ∆n with n = [t/∆n]. Here, the price of
the most previous observation occurring before the end of the sampling interval is used
(previous tick sampling). For convenience, we show all theoretical relationships using the
CTS notation. However, all relationships also hold for TRTS with i, ∆n and n accordingly
defined.

We are in the framework of high frequency asymptotics or so-called ’in-fill’ asymptotics,
i.e. ∆n → 0. We assume that Ut’s are, conditionally on the efficient price X, centered and
independent, i.e.,

E(Ut|X) = 0 , Ut ⊥⊥ Us , t 6= s , conditionally on X. (2.3)

Furthermore, we assume that the conditional variance of the noise process U , defined as

α2
t = E(U2

t |X) , (2.4)

is càdlàg, and introduce the process

Nt(q) = E(|Ut|q|X) , (2.5)

which denotes the qth conditional absolute moment of the process U . The model (2.2)
has been originally introduced by Jacod, Li, Mykland, Podolskij, and Vetter (2009). In
particular, it allows for time-varying variances of the noise and dependence between the
efficient price X and the microstructure noise U . These features are important as they are
in accordance with the stylized facts observed for high frequency observations. To better
understand our framework, let us demonstrate some examples.

Example 2.1 (i) (Additive i.i.d. noise) Consider the discretely observed process

Zi∆n = Xi∆n + εi∆n ,

where (εi∆n)i≥0 is an i.i.d. noise with Eεi∆n = 0, Eε2i∆n
= α2, and X ⊥⊥ ε. Then,

condition (2.3) is obviously satisfied. The assumption of i.i.d. noise process is tra-
ditionally used in the first approaches dealing with microstructure effects in high
frequency finance (see, e.g., Zhang, Mykland, and Aı̈t-Sahalia (2005) and Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2008)).

(ii) (Additive i.i.d. noise + rounding) Consider the process of the form

Zi∆n = γ
[Xi∆n + εi∆n

γ

]
,

where γ > 0, (εi∆n)i≥0 is as in (i) and follows a U([0, γ]) distribution. Then,

α2
t = γ2

({Xt

γ

}
−
{Xt

γ

}2)

is càdlàg and condition (2.3) is fulfilled ({x} denotes the fractional part of x). This
example is rather interesting from two perspectives. First, the noise part has a time-
varying variance and is not independent fromX. But the more intriguing observation
is the following: it is well-known that after pure rounding at fixed level γ > 0, it
is, in general, impossible to estimate the quadratic variation of X. However, adding
noise process (with U([0, γ]) distribution) regularizes the problem and the quadratic
variation of X (and other quantities of interest) becomes feasible as we will see in
the following sections.
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2.2 The Pre-Averaging Method and Asymptotic Results

Our main goal is the estimation of the integrated variance (or quadratic variation) defined
as

IVt = [X]t =

∫ t

0
σ2
udu. (2.6)

The pre-averaging method as originally introduced by Podolskij and Vetter (2009) is based
on certain local moving averages that reduce the influence of the noise process U . Below,
we briefly review the asymptotic theory for the pre-averaging method as presented in
Jacod, Li, Mykland, Podolskij, and Vetter (2009).

To construct the estimator, we choose a sequence kn of integers, which satisfies

kn∆
1/2
n = θ + o(∆

1
4
n ) (2.7)

for some θ > 0, and a non-zero real-valued function g : [0, 1] → R, which is continuous,
piecewise continuously differentiable such that g′ is piecewise Lipschitz, and g(0) = g(1) =
0. Then, g is associated with the following real valued numbers:

ψ1 =

∫ 1

0
(g′(s))2ds , ψ2 =

∫ 1

0
(g(s))2 ds ,

φ1(s) =

∫ 1

s
g′(u)g′(u− s)du , φ2(s) =

∫ 1

s
g(u)g(u − s)du , s ∈ [0, 1] ,

Φij =

∫ 1

0
φi(s)φj(s)ds , i, j = 1, 2.

Example 2.2 A typical example of a function g : [0, 1] → R, which we use in the empirical
section, is given by g(x) = x ∧ (1 − x). In this case, the afore-mentioned constants are

ψ1 = 1, ψ2 =
1

12
, Φ11 =

1

6
, Φ12 =

1

96
, Φ22 =

151

80 640
.

The pre-averaged returns are given as

Z
n
i =

kn∑

j=1

g
( j
kn

)
∆n
i+jZ , ∆n

i Z = Zi∆n − Z(i−1)∆n
. (2.8)

Notice that the latter performs a weighted averaging of the increments ∆n
jZ in the local

window [i∆n, (i + kn)∆n]. It is intuitively clear that such an averaging diminishes the

influence of the noise to some extent. The window size kn is chosen to be of order ∆
−1/2
n

to find a balance between the two conflicting convergence rates that are due to the diffusive
part and the noise part. This choice will lead later to optimal convergence rates.

Our main statistical instruments are the realized variance

RV n
t =

[t/∆n]∑

i=0

|∆n
i Z|2 , (2.9)
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and the pre-averaging estimator

V (Z, 2)nt =

[t/∆n]−kn∑

i=0

|Zni |2 , (2.10)

which is a direct analogue of RV based on pre-averaged returns Z
n
i . We remark that RV n

t

is not an appropriate estimator of the integrated volatility in the noisy diffusion model
(2.2). More precisely, we have that

∆n

2
RV n

t
P−→
∫ t

0
α2
udu, (2.11)

i.e., a normalized version of RV n
t converges to the integrated conditional variance of the

noise process U (see, e.g., Jacod, Li, Mykland, Podolskij, and Vetter (2009)).

Denote a mixed normal distribution with expectation 0 and (conditional) variance V 2

by MN(0, V 2). Then, the main result of this subsection is the following theorem.

Theorem 2.3 Assume that the process Nt(2) is locally bounded. Then, we have
√

∆n

θψ2
V (Z, 2)nt

P−→
∫ t

0
σ2
udu+

ψ1

θ2ψ2

∫ t

0
α2
udu.

By (2.11) we obtain a consistent estimator of IVt by

Cnt :=

√
∆n

θψ2
V (Z, 2)nt − ψ1∆n

2θ2ψ2
RV n

t
P−→ IVt =

∫ t

0
σ2
udu. (2.12)

Furthermore, when the process Nt(8) is locally bounded, we deduce the associated central
limit theorem

∆−1/4
n (Cnt − IVt)

st−→MN(0,Γt) , (2.13)

where the convergence is stable in distribution (see Renyi (1963) for the definition of stable
convergence), Γt =

∫ t
0 γ

2
udu and γ2

u is defined by

γ2
u =

4

ψ2
2

(
Φ22θσ

4
u + 2Φ12

σ2
uα

2
u

θ
+ Φ11

α4
u

θ3

)
. (2.14)

Proof: See Theorem 3.1 in Jacod, Li, Mykland, Podolskij, and Vetter (2009). 2

We remark that the estimator Cnt has the convergence rate ∆
1/4
n , which is known to

be the best attainable (see Gloter and Jacod (2001)). In order to obtain a feasible version
of stable convergence in (2.13) we require a consistent estimator of the conditional variance
Γt, which is given in the following proposition.

Proposition 2.4 Assume that the process Nt(8) is locally bounded. Then, we have

Γnt =
4Φ22

3θψ4
2

[t/∆n]−kn∑

i=0

|Zni |4

+
4∆n

θ3

(Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) [t/∆n]−2kn∑

i=0

|Zni |2
i+2kn∑

j=i+kn+1

|∆n
jZ|2

+
∆n

θ3

(Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) [t/∆n]−2∑

i=1

|∆n
i Z|2|∆n

i+2Z|2
P−→ Γt.
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Proof: See Theorem 3.1 in Jacod, Li, Mykland, Podolskij, and Vetter (2009). 2

Now, by Proposition 2.4 and the properties of stable convergence, we deduce the con-
vergence in distribution

∆
−1/4
n (Cnt − IVt)√

Γnt

d−→ N(0, 1). (2.15)

From the latter we can obtain the confidence regions for IVt.

Remark 2.5 Clearly, we are also able to estimate other random quantities of similar form
as
∫ t
0 γ

2
udu. Consider a random variable of the type

Tt = a

∫ t

0
σ4
udu+ b

∫ t

0
σ2
uα

2
udu+ c

∫ t

0
α4
udu

for given constants a, b, c. Following the arguments of Remark 4 in Jacod, Li, Mykland,
Podolskij, and Vetter (2009) a consistent estimator of T is obtained by

T nt =
a

3θ2ψ2
2

[t/∆n]−kn∑

i=0

|Zni |4

+∆n
bθ2ψ2 − 2aψ1

2θ4ψ2
2

[t/∆n]−2kn∑

i=0

|Zni |2
i+2kn∑

j=i+kn+1

|∆n
jZ|2

+
∆n

4

(
c+

aψ2
1 − bθ2ψ1ψ2

θ4ψ2
2

) [t/∆n]−2∑

i=1

|∆n
i Z|2|∆n

i+2Z|2
P−→ Tt. (2.16)

For instance, when taking (a, b, c) = (1, 0, 0), we obtain a consistent estimator of the
integrated quarticity

∫ t
0 σ

4
udu.

2.3 Finite Sample Adjustments

To reduce the finite sample bias in case of too small sampling frequencies we need to
slightly modify our statistics. First, let us introduce the finite sample analogues of the
quantities ψ1, ψ2, Φij, φ1(s), φ2(s) as given by

ψkn
1 = kn

kn∑

j=1

(
g
(j + 1

kn

)
− g
( j
kn

))2
, ψkn

2 =
1

kn

kn−1∑

j=1

g2
( j
kn

)

φkn
1 (j) =

kn∑

i=j+1

(
g
( i− 1

kn

)
− g
( i

kn

))(
g
( i− j − 1

kn

)
− g
( i− j

kn

))
, φkn

2 (j) =

kn∑

i=j+1

g
( i

kn

)
g
( i− j

kn

)
,

Φkn
11 = kn

( kn−1∑

j=0

(φkn
1 (j))2 − 1

2
(φkn

1 (0))2
)
, Φkn

22 =
1

k3
n

( kn−1∑

j=0

(φkn
2 (j))2 − 1

2
(φkn

2 (0))2
)
,

Φkn
12 =

1

kn

( kn−1∑

j=0

φkn
1 (j)φkn

2 (j) − 1

2
φkn

1 (0)φkn
2 (0)

)
.
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Note that ψkn
i → ψi, Φkn

il → Φil and φkn
i (j) − φi(j/kn) → 0 (i, l = 1, 2), but the above

approximations are the ”correct” quantities (i.e., these are the quantities that really appear
in the proof). Now, we redefine our main statistics as follows:

Cnt,a =
(
1 − ψkn

1 ∆n

2θ2ψkn
2

)−1( [t/∆n]
√

∆n

([t/∆n] − kn + 2)θψkn
2

V (Z, 2)nt − ψkn
1 ∆n

2θ2ψkn
2

RV n
t

)

and

Γnt,a =
(
1 − ψkn

1 ∆n

2θ2ψkn
2

)−2( 4Φkn
22 [t/∆n]

3θ(ψkn
2 )4([t/∆n] − kn + 1)

[t/∆n]−kn∑

i=0

|Z̄ni |4

+
4∆n[t/∆n]

θ3([t/∆n] − kn + 1)

( Φkn
12

(ψkn
2 )3

− Φkn
22ψ

kn
1

(ψkn
2 )4

) [t/∆n]−kn∑

i=0

|Z̄ni |2
i+2kn∑

j=i+kn+1

|∆n
jZ|2

+
∆n[t/∆n]

θ3([t/∆n] − 2)

( Φkn
11

(ψkn
2 )2

− 2Φkn
12ψ

kn
1

(ψkn
2 )3

+
Φkn

22 (ψkn
1 )2

(ψkn
2 )4

) [t/∆n]−2∑

i=1

|∆n
i Z|2|∆n

i+2Z|2
)
,

where the subscript a stands for adjusted. Note that the finite-sample adjustments do not
influence the asymptotic results.

To explain the afore-mentioned modifications let us consider the statistic Cnt,a. First,
the factor [t/∆n]/([t/∆n] − kn + 1) in the definition of Cnt,a is an adjustment for the true
number of summands in V (Z, 2)nt . On the other hand, we have that

∆n

2
RV n

t ≈
∫ t

0
α2
udu+

∆n

2
IVt ,

where the error of this approximation is of order ∆n and has expectation 0. This means
that the original statistic Cnt actually estimates

(
1 − ψkn

1 ∆n

2θ2ψkn
2

)
IVt.

This explains the appearance of
(
1 − ψkn

1 ∆n

2θ2ψkn
2

)−1
in the definition of Cnt,a.

2.4 Choosing θ in Practice

To analyze the empirical properties of the pre-averaging estimators and their sensitivity
to the choice of θ we employ transaction and quote data of the stocks Exxon (XOM),
Citigroup (C), Homedepot (HD), Sonoco Products Co. (SON), Tektronik (TEK) and
Zale Corporation (ZLC) traded at the New York Stock Exchange (NYSE) between May
and August 2006 corresponding to 88 trading days. The sample represents an arbitrary
cross-sectional selection covering highly and less liquid stocks. We focus on four sampling
schemes:

(i) calendar time sampling (CTS) using transaction prices,

(ii) calendar time sampling (CTS) using mid-quotes,
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(iii) transaction time sampling (TRTS) using transaction prices,

(iv) tick change time sampling (TTS) using mid-quotes.

CTS is commonly used in the empirical literature (see, e.g., Andersen, Bollerslev,
Diebold, and Labys (2003)) and is a natural choice if the sampling frequency is moderate
(e.g., 10 minutes). However, it faces the problem of sampling mainly zero return intervals if
the sampling frequency is very high. In this case, TRTS is a more natural sampling scheme
since one samples only whenever a transaction has occurred avoiding sampling artificial
zero returns. However, even in this case, a high number of zero returns can be sampled
since many trades do not necessarily imply a price or quote change. As an alternative,
TTS ignores any zero returns and samples only whenever quotes have been changed. Table
1 gives descriptive statistics on the number of trades, quote arrivals and non-zero returns
for all stocks. On average, we observe between approximately 650 to 4, 400 trades and
6, 800 to 32, 000 quote arrivals per day. Thus the sample covers a substantial range of
different liquidity classes. The table gives also information on the magnitude of market
microstructure noise as represented by its variance α2

t =
∫ t
0 α

2
udu and estimated by

α̂
2
t =





− 1
N−1

∑N
i=2(∆

N
i Z)(∆N

i−1Z) if
∑N

i=2(∆
N
i Z)(∆N

i−1Z) < 0,
∑N

i=1
(∆N

i Z)
2

2N0
t

otherwise,
(2.17)

where ∆N
i Z denotes trade-to-trade returns and N0 is the number of all non-zero trade-

to-trade returns. Eq. (2.17) corresponds to the estimator proposed by Oomen (2006)
based on TRTS employing all transactions, i.e. n = N and ∆ = 1. As it provides only
positive variance estimates as long as the first-order autocorrelations of trade returns are

negative, we replace it by
∑N

i=1
(∆N

i Z)
2

2N0 whenever
∑N

i=2(∆
N
i Z)(∆N

i−1Z) ≥ 0. The latter
estimator is motivated by (2.11) in case of i.i.d. noise. As suggested by Oomen (2006),

ξ̂t := α̂
2
t/(ÎV t/N) gives the noise-to-signal ratio per trade, where ÎV t is computed as the

average of 10-min realized variance estimates based on 100 (equally-spaced) sub-grids over

the 10min interval (henceforth RV10).3 As shown in Table 1, α̂
2
t is varying substantially

across the different stocks, with ξ̂t being quite stable ranging between approximately 0.2
to 0.4. Moreover, we also report the first order empirical autocorrelation for trade-to-
trade price and mid-quote returns. We observe that the magnitude of serial correlation
substantially varies across the sample. The negative sign is well confirmed by the literature
and is pre-dominantly driven by the bid-ask bounce effect. Interestingly, we find even
higher negative autocorrelations based on mid-quote returns. This yields evidence for
significant reversals in quote processes. Hence, quote changes induced, e.g., by a trade or
a limit order arrival tend to be reversed quickly. Corresponding evidence is also confirmed
by Hautsch and Huang (2009) analyzing the quote impact of order arrivals based on blue
chip stocks. See also Hansen and Lunde (2006) for an extensive discussion of empirical
properties of market microstructure noise effects.

To gain insights into the performance of the proposed pre-averaging estimators we
benchmark them against the most common competing approaches employed in recent
literature. In particular, we use the sub-sampled 10min RV estimator (RV10) based on
trade prices, the maximum likelihood estimator proposed by Ait-Sahalia, Mykland, and
Zhang (2005) and the realized kernel (RK) estimator introduced by Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2008) based on the Tukey-Hanning2 kernel with optimal

3See in the Appendix for implementation details.
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bandwidth. For implementation details, see the Appendix. The pre-averaging estimators
and their asymptotic variances are computed as described in the previous subsection. As
the estimators are not necessarily positive in all cases we bound them from below by
zero. This happens, however, quite rarely and only in cases where either θ or ∆n are
chosen to be very large or in case of an insufficient number of intraday observations (as
sometimes occurring in cased of more illiquid stocks). Throughout the paper all quadratic
variation estimates are reported in terms of averaged annualized volatilities (i.e., standard
deviations) in percentages. Summary statistics of all estimators and statistics computed
in the sequel of the paper are given by Tables 5 to 10 in the Appendix.

Figures 1 and 2 show averaged estimates of Cnt and Cnt,a for different choices of θ based
on 3 secs CTS using transaction prices and mid-quote changes as well as TRTS and TTS.4

The estimators’ sensitivity to the choice of θ and thus the width of the local pre-averaging
window is highest if θ is small. This sensitivity is particularly strong in case of TRTS and
TTS inducing a strongly negative bias if θ is small. This bias is obviously induced by the
fact that in finite samples, the statistic Cnt estimates An · IVt with

An =
(
1 − ψkn

1 ∆n

2θ2ψkn
2

)
IVt

(see Section 2.3). For θ → 0, An is severely downward biased. This effect is strongest in
case of T(R)TS. For CTS, the bias is significantly smaller (or virtually not existing). In
these cases, the finite sample adjustments can be nearly neglected. Since 3 sec CTS and
T(R)TS employ essentially very similar underlying price or quote sampling information,
the different θ-sensitivity of both sampling schemes is only explained by a higher sampling
frequency ∆−1

n in case of CTS resulting in 7, 800 sampling intervals per day and scaling
up An toward one. Hence, CTS based on possibly high frequencies (i.e., ≤ 3 sec) is
suggested to remove finite sample biases. Conversely, as shown in Table 1, even for very
actively traded assets, T(R)TS does not induce sufficiently many sampling intervals to
ensure An ≈ 1. Hence, in case of T(R)TS, scaling by A−1

n as in Cnt,a is essential to
reduce the estimator’s negative bias and ensures stabilizing the estimates for small values
of θ. However, even after the finite-sample adjustment, we still observe a slightly negative
bias of the estimator in case of T(R)TS. This is obviously induced by a relatively strong
impact of the noise-induced component ψ1∆nRV

n
t /(2θ

2ψ2) driving down the estimator if
kn is small. In this case, the width of the local window is not sufficient to diminish the
influence of noise. For larger values of θ and thus kn, this effect vanishes and we observe
a stabilization of the estimator.

Second, for larger values of θ, the impact of the underlying sampling scheme diminishes
and the estimates stabilize and converge (on average) to the RV10 estimates. This is
particularly true for the blue chips while for the less liquid assets even for higher values of
θ still slight deviations are observed. In these cases, the pre-averaging estimators are below
those of the realized kernel. Conversely, both estimators are quite similar (on average)
for values of θ around 0.4 to 0.6. This choice of θ seems to widely resemble the optimal
bandwidth choice in the realized kernel according to Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2008). Overall, these results suggest choosing θ not too small but rather

4Note that in case of high values for θ, i.e., high values of kn, the pre-averaging estimators cannot
necessarily be computed when there are not sufficient intraday observations. This might occur particularly
for the less liquid assets. In this case, the corresponding figures are based on only those trading days for
which all estimators can be computed for all values of θ avoiding any sample selection effects. The range
of analyzed realizations of θ is chosen to guarantee using at least 90% of the overall sample.
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conservatively confirming the results by Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008) (for details see in the Appendix).

To illustrate the estimators’ sensitivity to the choice of θ for individual trading days,
Figures 3 and 4 show Cnt,a in dependence of θ for the first 12 days in the sample using TRTS
and CTS, respectively. Confirming the averaged results it turns out that the estimators’
sensitivity is highest for small values of θ whereas they tend to stabilize for larger pre-
averaging intervals. Nevertheless, we observe that the shapes can substantially vary from
day to day. This is induced by daily variations in trading frequencies, noise and specific
intraday price paths causing different sensitivity to pre-averaging. Based on the plots
of the corresponding price paths for the first 12 trading days in the sample (Figures 5
to 7), we find evidence for the estimator’s sensitivity to the choice of θ being highest if
the price path tends to be not sufficiently smooth over the course of the trading day.
In these situations, pre-averaging based on too large local windows seems to induce an
under-estimation of the quadratic variation. These results suggest that a universal choice
of θ is obviously sub-optimal and θ should be chosen rather day-specific.

To analyze the impact of the underlying sampling frequency, Figure 8 shows the θ-
sensitivity of Cnt and Cnt,a based on TRTS employing different sampling frequencies (∆n ∈
{1, 3, 5, 10, 20, 30, 50}). As expected, the finite-sample adjustment becomes even more
important when ∆n is large, i.e., the sampling frequency is small. Particularly if ∆n

exceeds approximately 5, the negative biases for small values of θ become substantial.
Nevertheless, the lower panel of Figure 8 shows that in these cases, the finite-sample
adjustment is very effective and significantly reduces the bias. Moreover, we observe a
slight downward bias of the estimator with increasing ∆n. Hence, pre-averaging based on
too large local windows seems to imply an ’over-smoothing’ of volatility.

Figures 9 and 10 depict the average values of the approximate standard deviations

of the pre-averaging estimates without and with finite-sample adjustments, ∆
1/4
n

√
Γt and

∆
1/4
n

√
Γt,a, respectively. The underlying sampling schemes are CTS based on 3 sec in-

tervals and T(R)TS employing all trades or price changes, respectively. For the liquid
assets, we observe that the standard deviation is monotonically increasing in θ regardless
of the finite-sample adjustment. Hence, using a larger pre-averaging window ultimately
increases the estimation error. Here, the effect of additional smoothing is obviously over-
compensated by a smaller number of observations (induced by larger local windows). For
the less liquid stocks, the corresponding plots reveal slight non-monotonicities with in-
creasing variances for small values of θ. These effects are, however, only visible in case of
finite-sample adjustments and T(R)TS.

The relationships revealed by Figures 1 to 9 indicate an obvious trade-off between bias
and efficiency. For small values of θ, the estimators are most efficient but tend to be biased
and most sensitive to the choice of θ. Conversely, larger values of θ induce a stabilization
and convergence of the estimator toward RV10 but a decline in efficiency.

To suggest a data-driven optimal choice of θ, we propose choosing θ as the minimizer
of the mean square error (MSE) evaluated against a benchmark IVt, i.e.,

θ∗ := arg minθMSE = arg minθ(C
n
t,a − IVt)

2 + Γnt,a.

An obviously critical choice is the benchmark IVt used to compute the bias. We choose IVt
as RV10 yielding a benchmark which tends to be unbiased, robust to market microstructure
noise and does not require pre-estimating plug-in parameters such as α2

t and
∫ t
0 σ

4
udu as,

e.g., in case of a realized kernel. Since no analytical solution for the MSE minimization is
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available we compute θ∗ using a grid search algorithm covering the range [0.05; 3]. Then,

having θ∗, we compute the optimal window size as k∗n = θ∗∆
−1/2
n .

Figures 11 and 12 show histograms of the resulting (daily) choices of θ∗ and k∗n based
on MSE minimization using highest frequency T(R)TS and 3 sec CTS. Corresponding
summary statistics are reported in Tables 5 to 10. With exception of ZLC, we observe
that the average values of θ∗ are relatively stable across stocks. Nevertheless, they differ
significantly in dependence of the underlying sampling scheme. While T(R)TS and CTS
based on price observations produce values of θ∗ ranging in most cases between 0.5 and
0.8 on average, CTS based on mid-quote observations yields values of θ∗ between 0.9 and
1.2. This induces optimal window sizes k∗n which increase with the underlying (average)
sampling frequency yielding values between 30 and 60 for T(R)TS and 60 to 120 for
3 sec CTS. Figures 13 and 14 show the corresponding distributions for lower sampling
frequencies, in particular T(R)TS with ∆n = 3 and CTS using 15 secs. We observe that
for the more liquid assets, θ∗ tends to become larger which is obviously driven by a larger
bias if the sampling frequency declines and θ is small (recall Figure 8). Conversely, for
the less liquid stocks, θ∗ slightly declines due to comparably higher variances. Hence, the
relationship between θ∗ and the underlying sampling frequency is non-monotonous and
depends also on the underlying trading frequency. Nevertheless, the dependence of k∗n and
the sampling frequency is more clear-cut. By comparing Figures 12 and 14, for all stocks
the window size k∗n becomes smaller if the underlying sampling frequency increases.

3 Continuous Semi-Martingales with Dependent Noise

3.1 Pre-Averaging with Dependent Noise

Model (2.2) implies that the noise process is uncorrelated, which is not realistic at very
high frequencies (see, e.g., Hansen and Lunde (2006)). In this section, we allow for serial
correlation in the noise process and derive the corresponding asymptotic results for the
pre-averaging method. We consider a model

Zi∆n = Xi∆n + Ui , (3.18)

where X and U are independent, and (Ui)i≥0 is a stationary q-dependent sequence (for
some known q > 0), i.e., Ui and Uj are independent for |i−j| > q. We define the covariance
function by

ρ(k) := cov(U1, U1+k).

Similarly to the first convergence in Theorem 2.3 (in the framework of (2.2)), we obtain
the following results.

Lemma 3.1 Assume that EU2
1 <∞. Then, we have

√
∆n

θψ2
V (Z, 2)nt

P−→
∫ t

0
σ2
udu+

ψ1t

θ2ψ2
ρ2

with

ρ2 = ρ(0) + 2

q∑

k=1

ρ(k). (3.19)
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Proof: A careful inspection of the proof of Theorem 3.1 in Jacod, Li, Mykland, Podolskij,
and Vetter (2009) shows that the first consistency result of Theorem 2.3 remains valid for
the q-dependent noise. Indeed, the main ingredient of the afore-mentioned proof is the
convergence in law

√
knU

n
i

d−→ N(0, ψ1ρ
2), 0 ≤ i ≤ [t/∆n] − kn,

and the independence of U
n
i , U

n
j for |i − j| > kn + q, which both follow from the q-

dependence of the noise process U . 2

Similarly to Theorem 2.3 we obtain a bias which has to be estimated from the data. The
estimation procedure is a bit more involved than in the previous section. We introduce a
class of estimators given by

γnt (k) = ∆n

[t/∆n]∑

i=0

∆n
i Z∆n

i+kZ, k = 0, . . . , q + 1. (3.20)

In the econometric literature such estimators are called realized autocovariances (see, e.g.,
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)). The following lemma describes
the asymptotic behaviour of γnt (k).

Lemma 3.2 Assume that EU2
1 <∞. Then, we obtain

γnt (0)
P−→ 2t(ρ(0) − ρ(1)) ,

γnt (k)
P−→ t(2ρ(k) − ρ(k − 1) − ρ(k + 1)) , k = 1, . . . , q − 1 ,

γnt (q)
P−→ t(2ρ(q) − ρ(q − 1)) ,

γnt (q + 1)
P−→ −tρ(q).

Proof: Observe that

γnt (k) = ∆n

( [t/∆n]∑

i=0

∆n
i U∆n

i+kU +

[t/∆n]∑

i=0

∆n
i X∆n

i+kX +

[t/∆n]∑

i=0

(∆n
i U∆n

i+kX + ∆n
i X∆n

i+kU)
)

= ∆n

[t/∆n]∑

i=0

∆n
i U∆n

i+kU +OP(∆n)

for all fixed k ≥ 0, because U and X are independent, and E[|∆n
i X|2] ≤ C∆n (uniformly

in i). The assertion of Lemma 3.2 follows now by the law of large numbers for q-dependent
random variables. 2

Notice that Lemma 3.2 provides estimates ρn(0), . . . , ρn(q) of ρ(0), . . . , ρ(q) that are ob-
tained by a simple recursion:

ρn(q) = −γ
n
t (q + 1)

t
,

ρn(q − 1) = −γ
n
t (q)

t
+ 2ρn(q) ,

ρn(q − 2) = −γ
n
t (q − 1)

t
+ 2ρn(q − 1) − ρn(q).



N. Hautsch and M. Podolskij (2010) 14

Thus, we deduce a ∆
−1/2
n –consistent estimator ρ2

n = ρn(0)+2
∑q

k=1 ρn(k) of ρ2 which can
be used for bias correcting the statistic V (Z, 2)nt . The asymptotic results are presented in
the following theorem.

Theorem 3.3 Assume that EU2
1 <∞. Then we have

Cnt (q) :=

√
∆n

θψ2
V (Z, 2)nt − ψ1t

θ2ψ2
ρ2
n

P−→ IVt. (3.21)

Furthermore, when EU8
1 <∞, we deduce the associated central limit theorem

∆1/4
n (Cnt (q) − IVt)

st−→MN(0,Γt(q)) , (3.22)

where Γt(q) =
∫ t
0 γ

2
u(q)du and γ2

u(q) is defined by

γ2
u(q) =

4

ψ2
2

(
Φ22θσ

4
u + 2Φ12

ρ2σ2
u

θ
+ Φ11

ρ4

θ3

)
. (3.23)

Proof: The results follow along the lines of the proof of Theorem 3.1 in Jacod, Li, Myk-
land, Podolskij, and Vetter (2009). The justification is exactly the same as in the proof of
Lemma 3.1. 2

As before, we need to estimate the conditional variance Γt(q) to obtain a feasible ver-
sion of (3.22). In fact, the estimation procedure is a bit easier than the one presented in
Section 2, because the quantity ρ2 is not time-varying.

Proposition 3.4 Assume that EU8
1 <∞. Then, we obtain

Γnt (q) =
4Φ22

3θψ4
2

[t/∆n]−kn∑

i=0

|Zni |4

+
8ρ2
n

√
∆n

θ2

(Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) [t/∆n]−2kn∑

i=0

|Zni |2

+
4ρ4
n

θ3

(Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

)
P−→ Γt(q) ,

and it holds that
∆

1/4
n (Cnt (q) − IVt)√

Γnt (q)

d−→ N(0, 1).

Proof: Applying Theorem 3.3 from Jacod, Podolskij, and Vetter (2009) for p=2,4 (which
is also valid for the q-dependent noise) we deduce that

∆1−p/4
n

[t/∆n]−kn∑

i=0

|Zni |p
P−→ mp

∫ t

0
(θψ2σ

2
u + θ−1ψ1ρ

2)p/2du,

where mp = E[|N(0, 1)|p]. Thus, the consistency result of Proposition 3.4 readily follows.

The properties of stable convergence together with Γnt (q)
P−→ Γt(q) imply the central limit

theorem. 2
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The corresponding finite-sample adjustments are obtained similarly as in Section 2.3
and are given by

Cnt,a(q) :=

(
1 − ψkn

1 ∆n

2θ2ψkn
2

)−1(
[t/∆n]

√
∆n

([t/∆n] − kn + 1)θψkn
2

V (Z, 2)nt − ψkn
1 t

θ2ψkn
2

ρ2
n

)
(3.24)

and

Γnt,a(q) =

(
1 − ψkn

1 ∆n

2θ2ψkn
2

)−2



4Φkn
22 [t/∆n]

3θ
(
ψkn

2

)4
([t/∆n] − kn + 1)

[t/∆n]−kn∑

i=0

|Zni |4

+
8ρ2
n

√
∆n[t/∆n]

θ2([t/∆n] − kn + 1)




Φkn
12(

ψkn
2

)3 − Φkn
22ψ1(
ψkn

2

)4




[t/∆n]−2kn∑

i=0

|Zni |2

+
4ρ4
n[t/∆n]

θ3([t/∆n] − kn + 1)




Φkn
11(

ψkn
2

)2 − 2
Φkn

12ψ
kn
1(

ψkn
2

)3 +
Φkn

22

(
ψkn

1

)2

(
ψkn

2

)4





 . (3.25)

Figures 15 and 16 show the average realizations of Cnt (1) and Cnt,a(1) in dependence
of θ. Comparing these plots with Figures 1 and 2 as discussed in the previous subsection
we observe that in case of CTS, the dependent-noise robust version of the pre-averaging
estimator provides similar values as the i.i.d.-noise version. Conversely, for TTS and TRTS
we find evidence for Cnt,a(1) > Cnt,a. Comparing the expressions for Cnt,a(q) and Cnt,a (and
standardizing t to one) this can only be induced by

∆nRV
n
t

2
> ρ2

n.

Obviously, if there is serial dependence in the noise process, the estimator
∆nRV n

t
2 is upward

(downward) biased if there is negative (positive) serial dependence in the noise process
{U}. As shown below, we indeed find evidence for significant serial correlations in the
noise process inducing an upward bias of the expression ∆nRV

n
t /2. These effects are most

distinct for TTS for which also the strongest serial dependence in the return process is
found (see Table 1). Similar but weaker effects are observable in case of TRTS. As shown
in Figure 16, the corresponding finite-sample adjustments seem to imply an over-correction
of the estimators’ negative biases inducing a slight upward bias of the estimator if θ is
small. This indicates that Cnt,a(1) tends to be more sensitive to the choice of θ than Cnt,a.

Figure 17 shows the empirical distributions of the percentage deviation between Cnt,a
and Cnt,a(1). Confirming our results above it turns out that the deviations are virtually
zero for CTS but are clearly higher (in magnitude) for TRTS and TTS. Tables 5 to 10 show
that for an optimal choice θ∗, the average percentage deviation is around −3% to −5%
for TRTS and between −5% and −10% for TTS. According to Figure 16 these differences
vanish if θ becomes larger. Based on these findings we can conclude that pre-averaging
based on CTS seems to yield estimates which are less sensitive to the choice of θ and
serial dependence in noise. The fact that in case of CTS Cnt,a and Cnt,a(1) are very similar
indicates that the i.i.d. noise version Cnt,a seems to be empirically (though not theoretically)
quite robust. Conversely, pre-averaging based on TRTS or TTS seems to be very sensitive
to adjustments for serially dependent noise. This indicates less robustness of the estimator
and/or the fact that microstructure noise is more dominant in this sampling scheme.
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3.2 A Test for Dependence

In the previous subsection we assumed that the number of non-vanishing covariances q
is known. In practice, however, we need a decision rule on the choice of q based on the
discrete observations of the price process. Formally speaking we require a test procedure
to decide whether ρ(k) = 0 for some k ≥ 1. To illustrate the underlying idea consider a
1-dependent noise model. In this case we would like to test whether ρ(1) = 0 (i.e., the
noise process is actually i.i.d.) or not. Thus, we obtain the following hypothesis:

H0 : ρ(1) = 0 , H1 : ρ(1) 6= 0.

By a standard central limit theorem for q-dependent variables we deduce that

∆−1/2
n

(
− γnt (2)

t
− ρ(1)

)
d−→ N

(
0,
τ2

t

)
,

where γnt (2) is defined by (3.20) and τ2 is given by

τ2 = τ(0) + 2
2∑

k=1

τ(k) , τ(k) = cov((U1 − U0)(U3 − U2), (U1+k − Uk)(U3+k − U2+k)).

Obviously, we require a consistent estimator of τ(k), 0 ≤ k ≤ 2, to construct a test
statistic. Set Hn

i = ∆n
i Z∆n

i+2Z. Then, by the weak law of large numbers q-dependent
variables we deduce that

τn(k) =
∆n
∑[t/∆n]

i=0

(
Hn
i H

n
i+k −Hn

i H
n
i+3

)

t

P−→ τ(k) , 0 ≤ k ≤ 2.

The latter implies that τ2
n = τn(0) + 2

∑2
k=1 τn(k) is a consistent estimator of τ2. Then,

the test statistic is given by

Sn =
−∆

−1/2
n γnt (2)√
tτ2
n

.

Observe that under H0 : ρ(1) = 0, we obtain that

Sn
d−→ N(0, 1).

We reject H0 : ρ(1) = 0 at level α when

|Sn| > c1−α
2
,

where c1−α
2

denotes the (1 − α
2 )-quantile of N(0, 1)-distribution. Notice that this test is

consistent against the alternative H1 : ρ(1) 6= 0.

Figure 18 shows the (time series) distribution of the test statistic Sn based on highest
frequency T(R)TS and 3 sec CTS. Corresponding summary statistics are found in Tables
5 to 10. We observe that in case of the liquid stocks, Sn takes highly negative values
supporting the evidence for significant negative serial dependence in the noise process
and confirming the results by Hansen and Lunde (2006). The strength of the serial de-
pendence is decreasing if the underlying trading frequency of the stock becomes smaller.
Correspondingly, the highest test statistics are found for XOM whereas for the less liquid
stocks TEK, SON and ZLC the time series distribution of the test statistic is virtually
symmetrically around zero. Moreover, the highest magnitudes are found for TTS using
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mid-quotes for which we also observe the strongest serial dependence in the underlying
return series. Conversely, 3 sec CTS yields significant lower test statistics (in absolute
terms). Hence, we can conclude that the serial dependence in underlying returns is mainly
driven by a serial dependence in the corresponding noise process. As reported by Table
1, these autocorrelations and thus the test statistic Sn are obviously strongly dependent
on the underlying sampling scheme. This is most evident for mid-quote based sampling.
Conversely, based on CTS, Sn is close to zero on average in most cases. This also explains
why Cnt,a and Cnt,a(1) perform very similar in case of CTS but not in case of T(R)TS.

4 Pre-Averaging Estimators for the Quadratic Variation:

The Discontinuous Case

In this section we present the asymptotic theory for the estimator Cnt defined in (2.12) for
the discontinuous case. We consider the process Z = X +U given by (2.2), where (Xt)t≥0

is a discontinuous semi-martingale of the form

X = X0 +

∫ t

0
audu+

∫ t

0
σudWu + (δ1{|δ|≤1}) ∗ (µt − νt) + (δ1{|δ|>1}) ∗ µt , (4.26)

where µ is a Poisson random measure on R+×R, ν is a predictable compensator of µ with
ν(ds, dx) = ds ⊗ F (dx) (where F is a σ-finite measure), f ∗ µt =

∫ t
0

∫
R
f(s, x)µ(ds, dx)

and the process δ is predictable and supx∈R |δ(s, x) ∧ 1|/γ(z) is locally bounded for some
bounded function γ in L

2(R, F ). The noise process U is assumed to satisfy the conditions
(2.3) and (2.4).

Below we present the asymptotic results for Cnt derived in Jacod, Podolskij, and Vetter
(2009).

Theorem 4.1 Assume that the process Nt(2) is locally bounded. Then, we have, for any
t > 0,

Cnt
P−→ [X]t =

∫ t

0
σ2
udu+

∑

u≤t

|∆Xu|2 , (4.27)

where ∆Xu = Xu − Xu−. If moreover Nt(8) is locally bounded, we obtain the stable
convergence in law

∆1/4
n (Cnt − [X]t)

st−→MN(0,Γt + Γt) , (4.28)

for any t > 0. The process Γt is given in Theorem 2.3 and Γt is defined as

Γt =
4

ψ2
2

∑

Tm≤t

|∆XTm |2
(
θΦ22(σ

2
Tm− + σ2

Tm
) +

Φ12

θ
(α2

Tm− + α2
Tm

)
)
, (4.29)

where (Tm)m≥1 are jump times of X, ∆Xs = Xs −Xs− and the quantities ψ2, Φ12, Φ22

are given in Section 2.2.

Proof: See Theorem 3.4 and Theorem 4.6 in Jacod, Podolskij, and Vetter (2009). 2

Observe that Cnt remains a ∆
−1/4
n –consistent estimator of [X]t in the discontinuous case.

In fact, the consistency result of Theorem 4.1 also holds true for non-equidistant observa-
tions.
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In contrast to the continuous case we obtain an additional term Γt in the conditional
variance of Cnt . In order to derive a feasible version of the stable convergence in (4.28), we
need to construct a consistent estimator of Γt. This turns out to be a complicated problem,
because we obviously require jump robust local estimators of σ2

u, α
2
u and the left limits

σ2
u−, α2

u−. The jump robust estimation methods are presented in the next subsection.

4.1 Jump Robust Estimation Methods

For various problems in finance it is extremely important to separate the diffusive part
from the jump part. In a noise-free framework, a well-known approach to obtain jump
robust estimators of (a functional of) volatility is the multipower variation (see, e.g.,
Barndorff-Nielsen, Shephard, and Winkel (2006)). The main idea of constructing jump
robust estimators for models with microstructure noise is combining the multipower vari-
ation approach with the pre-averaging method. A rigorous mathematical theory for pre-
averaged multipower variation has been derived in Podolskij and Vetter (2009). Below we
recall the consistency results as derived in the aforementioned paper.

We define the pre-averaged multipower variation as

V (Z, p1, . . . , pl)
n
t =

[t/∆n]−lkn+1∑

i=0

|Zni |p1 |Z
n
i+kn

|p2 · · · |Zni+(l−1)kn
|pl , (4.30)

and set p+ =
∑l

k=1 pk. The asymptotic behaviour of V (Z, p1, . . . , pl)
n
t is given in the

following theorem.

Theorem 4.2 Assume that Z = X+U , X satisfies (4.26) and Nt(2p
+) is locally bounded.

If max(p1, . . . , pl) < 2 then we deduce that

∆
1− p+

4
n V (Z, p1, . . . , pl)

n
t

P−→ mp1 · · ·mpl

∫ t

0
(θψ2σ

2
u +

1

θ
ψ1α

2
u)

p+

2 du , (4.31)

where mp = E[|N(0, 1)|p]. In particular, V (Z, p1, . . . , pl)
n
t is robust to the presence of

jumps when max(p1, . . . , pl) < 2.

Proof: See Theorem 2(ii) in Podolskij and Vetter (2009). 2

Note that V (Z, p1, . . . , pl)
n
t is a class of jump robust biased measures of

∫ t
0 |σu|p

+
du when

max(p1, . . . , pl) < 2. If p+ is an even number we are able to bias-correct our statistic to
obtain consistent estimators of

∫ t
0 |σu|p

+
du. In particular, we can estimate the quadratic

variation of the jump part and the quadratic variation of the continuous part separately.

Corollary 4.3 Assume that the conditions of Theorem 4.2 are satisfied. Then, we obtain
that

BT nt :=

√
∆n

θm2
1ψ2

V (Z, 1, 1)nt − ψ1∆n

2θ2ψ2
RV n

t
P−→ IVt ,

BTV n
t :=

√
∆n

θψ2
(V (Z, 2)nt −m−2

1 V (Z, 1, 1)nt )
P−→
∑

u≤t

|∆Xs|2.
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In finite samples it is again better to replace the constants ψ1, ψ2 by their empirical
counterparts ψkn

1 , ψkn
2 and to standardize the statistic V (Z, p1, . . . , pl)

n
t by [t/∆n]/([t/∆n]−

lkn + 2) to account for the true number of summands. This leads to the corresponding
estimators BT nt,a and BTV n

t,a.

Figure 19 shows the sensitivity of the estimated (averaged) jump proportionBTV n
t,a/C

n
t,a

to the choice of θ. In general, we observe that for moderate values of θ, the jump propor-
tion is quite insensitive to the choice of θ. Only in cases where θ becomes too small, the
ratio jumps up to unrealistically high values. For the liquid stocks, the jump proportion
tends to stabilize for values of θ around 0.4 to 0.6. For the less liquid stocks, we observe
a stabilization around 1.0. These values are quite similar to the optimal choices θ∗ con-
firming also the usefulness of the MSE minimization approach above. The fact that the
jump proportion strongly increases for small θ shows that the estimator BTV nt,a is upward
biased if the local pre-averaging window is chosen to small.

Figure 20 shows the time series distribution of the estimated jump proportions for
optimal choices of θ. It turns out that 3 sec CTS implies generally higher jump proportions.
This is particularly evident for the less liquid stocks yielding jump proportions of up to
25% on average (see Tables 5 to 10). Hence, this sampling scheme (at least based on
very high frequencies) seems to be particularly sensitive to jumps providing unrealistically
high values for BTV n

t,a. Conversely, TTS and TRTS yield fairly stable jump proportions
between 5% and 10% across the whole sample. Hence, event time sampling seems to be
more appropriate and more natural for estimating jump components.

4.2 Estimation of the Conditional Variance and a Feasible Central Limit

Theorem

The jump robust methods presented in the previous subsection open up a way to estimate
the conditional variance in (4.28). Recall that the main difficulty is the estimation of the
term

Γt =
4

ψ2
2

∑

Tm≤t

|∆XTm |2
(
θΦ22(σ

2
Tm− + σ2

Tm
) +

Φ12

θ
(α2

Tm− + α2
Tm

)
)
,

defined in (4.29).

We start with the local estimates of α2 and σ2, where we first concentrate on the
process α2. Consider a sequence of integers rn with rn → ∞ and rn∆n → 0. Define
Ji+ = {i+ 1, . . . , i+ rn}, Ji− = {i− rn + 1, . . . , i} and

α̂2
i∆n− =

1

2rn

∑

l∈Ji−

|∆n
l Z|2 , α̂2

i∆n+ =
1

2rn

∑

l∈Ji+

|∆n
l Z|2. (4.32)

Obviously, α̂2
i∆n−

and α̂2
i∆n+ are the local analogues of RV nt . Since the process α2 is

assumed to be càdlàg, α̂2
i∆n−

and α̂2
i∆n+ are obviously good estimates of α2

i∆n−
and α2

i∆n
,

respectively (this is justified by the local version of the convergence in (2.11)).

The construction of the local estimates for the process σ2 is more complicated and is
mainly based on the local version of Corollary 4.3. Consider a sequence of integers r̄n with
r̄n → ∞, r̄n

√
∆n → ∞ and r̄n∆n → 0. Define J̄i+, J̄i− as before (with rn replaced by r̄n)
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and set

σ̂2
i∆n− =

1

m2
1r̄n

∑

l∈J̄i−

(∆
−1/2
n

θψ2
|Z̄nl ||Z̄nl−kn

| − ψ1

θ2ψ2
α̂2
i∆n−

)
, (4.33)

σ̂2
i∆n+ =

1

m2
1r̄n

∑

l∈J̄i+

(∆
−1/2
n

θψ2
|Z̄nl ||Z̄nl+kn

| − ψ1

θ2ψ2
α̂2
i∆n+

)
. (4.34)

Note that σ̂2
i∆n−

and σ̂2
i∆n+ are local analogues of the statistic BT nt defined in Corollary

4.3. The numbers r̄n must be of higher order than ∆
−1/2
n , because otherwise all summands

in (4.33) (resp. (4.34)) are strongly correlated.

Our first consistency result is the following theorem.

Theorem 4.4 Assume that the process Nt(8) is locally bounded. Then, it holds

Λnt =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

|Z̄ni |2
(
θΦ22(σ̂

2
i∆n− + σ̂2

i∆n+) +
Φ12

θ
(α̂2

i∆n− + α̂2
i∆n+)

)

P−→
∑

Tm≤t

|∆XTm |2
(
θΦ22(σ

2
Tm− + σ2

Tm
) +

Φ12

θ
(α2

Tm− + α2
Tm

)
)

+
1

θψ2

∫ t

0

(
θψ2σ

2
u +

ψ1

θ
α2
u

)(
2θΦ22σ

2
u +

2Φ12

θ
α2
u

)
du.

Proof: Following the ideas of Theorem 3.1 in Jacod, Podolskij, and Vetter (2009) we
immediately deduce that

Λnt =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

|Z̄ni |2
(
θΦ22(σ

2
i∆n− + σ2

i∆n
) +

Φ12

θ
(α2

i∆n− + α2
i∆n

)
)

P−→
∑

Tm≤t

|∆XTm |2
(
θΦ22(σ

2
Tm− + σ2

Tm
) +

Φ12

θ
(α2

Tm− + α2
Tm

)
)

+
1

θψ2

∫ t

0

(
θψ2σ

2
u +

ψ1

θ
α2
u

)(
2θΦ22σ

2
u +

2Φ12

θ
α2
u

)
du,

since α2 and σ2 are càdlàg processes. The convergence readily follows, because

σ̂2
i∆n−−σ2

i∆n− = oP(1), σ̂2
i∆n+−σ2

i∆n
= oP(1), α̂2

i∆n−−α2
i∆n− = oP(1), α̂2

i∆n+−α2
i∆n

= oP(1)

uniformly in i. 2

The actual number of summands in the definition of Λnt depends on the particular choice
of the sequences rn and r̄n. Note that Λnt itself is not a consistent estimator of the con-
ditional variance in (4.28). However, a particular linear combination of Λnt and the three
summands in the definition of Γnt (see Proposition 2.4) yields a consistent estimator of
Γt + Γt. For the sake of simplicity we propose such an estimator only for our canonical
choice g(x) = x ∧ (1 − x).
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Proposition 4.5 Assume that g(x) = x∧(1−x) and the process Nt(8) is locally bounded.
Then, it holds

Γ̃nt = AΛnt +B
m4

m3
3/4

[t/∆n]−3kn∑

i=0

|Zni |4/3|Z
n
i+kn

|4/3|Zni+2kn
|4/3

+
C

m2
1

∆n

[t/∆n]−2kn∑

i=0

|Zni ||Z
n
i+kn

|
i+2kn∑

j=i+kn+1

|∆n
jZ|2

+D∆n

[t/∆n]−2∑

i=1

|∆n
i Z|2|∆n

i+2Z|2
P−→ Γt + Γt ,

with

A =
4

ψ2
2

, B = −4Φ22

3θψ4
2

, C =
4Φ22

(θψ2)3

( 1

ψ2
2

− ψ1

ψ2

)
,

D =
1

4

(4Φ11

θ3ψ2
2

− 2ψ1Φ12A

θ3ψ2
− 3ψ2

1B

θ2
− 2ψ1C

)
,

where the constants Φij, 1 ≤ i, j ≤ 2, are explicitly given in Example 2.2. In particular,
we deduce that

∆
1/4
n (Cnt − [X]t)√

Γ̃nt

d−→ N(0, 1).

Proof: The central limit theorem follows immediately by the properties of stable conver-
gence. To obtain the consistency of the estimator Γ̃nt we note that

∆n

[t/∆n]−2∑

i=1

|∆n
i Z|2|∆n

i+2Z|2
P−→ 4

∫ t

0
α4
udu, k−1

n

i+2kn∑

j=i+kn+1

|∆n
jZ|2 − 2α2

(i+kn)∆n
= oP(1)

uniformly in i. Now, the convergence Γ̃nt
P−→ Γt + Γt follows from Theorem 4.2 (with

p1 = p2 = p3 = 4/3 and q1 = q2 = 1) and Theorem 4.4. 2

The constants ψi, Φij should be replaced by their empirical analogues ψkn
i , Φkn

ij (see
Section 2.3) to achieve better finite sample performance.

Finally, note that the estimator Γ̃nt is not necessarily positive. The constant B, for
instance, is negative for any weight function g. However, we obtain a positive consistent
estimator of Γt + Γt by setting

Γ̂nt = max(Γ̃nt ,Γ
n
t ) ≥ 0 ,

where Γnt is a positive consistent estimator of Γt defined in Proposition 2.4. Since Γt+Γt ≥
Γt, Γ̂nt is a consistent estimator of Γt + Γt.

5 Time Series Properties and the Impact of Sampling Fre-

quencies and Sampling Schemes

Figures 21 to 24 show the averaged pre-averaging estimates for an optimal choice of θ
and different sampling frequencies ∆n using T(R)TS and CTS. As benchmarks we also
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report the realized variance estimator (RV), the 10 min sub-sampled RV estimator (RV10)
and the realized kernel (RK) estimator. We observe the well-known bias of the realized
variance estimator when the sampling frequency becomes high. Not surprisingly, this is
particularly evident in case of midquote change sampling for which the serial dependence
in underlying returns is comparably high. We can summarize the following main findings:
First, confirming the results above, the estimator tends to be downward biased if the sam-
pling frequency is too low. Second, the finite-sample adjustment is particularly important.
Without this adjustment the estimator becomes strongly negatively biased even for high
sampling frequencies. Third, CTS induces stronger negative biases for low sampling fre-
quencies than T(R)TS. This implication is also true for the realized kernel suffering from
significantly negative biases if ∆n becomes large. Fourth, we observe slightly less biases of
the pre-averaging estimator in case of mid-quote sampling than based on price sampling.
This is particularly true for event time sampling while in case of CTS, the estimates seem
to be less dependent on the price information. Fifth, as shown above, based on very high
sampling frequencies the pre-averaging estimator seems to be slightly less biased than the
realized kernel. Conversely, for lower sampling frequencies, the realized kernel estimator
tends to be more stable.

Figures 25 and 26 show the optimal choices of θ and kn based on MSE minimization in
dependence of the sampling frequency ∆n. Overall, θ∗ is higher if the underlying sampling
frequency is lower. Nevertheless, we observe a non-monotonous relationship between θ∗

and ∆n particularly if ∆n is small. This is quite distinct for the more liquid assets
yielding the smallest values of θ∗ for ∆n being approximately 10. However, overall, these
relationships imply a monotonously declining relationship between the resulting window
size k∗n and the sampling frequency ∆n.

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) suggest evaluating an estima-
tor’s performance based on its ability to produce similar daily quadratic variation esti-
mates irrespective of the employed underlying intraday price information. In particular,
an estimator is ’good’ if it produces the same estimate irrespective of whether transaction
prices or midquotes are used. They propose regressing the daily estimates of competing
estimators on each other and evaluating the distance of the resulting regression line to the
45 degree line. This motivates computing the Euclidean distance to unity as

Dt(IVt) =
√

(IV 1
t − ¯IV t)2 + (IV 2

t − ¯IV t)2, (5.35)

where IV 1
t and IV 2

t are competing estimators for the integrated variation and ¯IV t is
the average of both. Table 2 shows the average values of Dt(·) for the estimators Cnt ,
Cnt,a, C

n
t,a(1) and RK. Table 3 gives the corresponding relative measures relative to the

distances implied by Cnt,a, i.e. Dt(·)/Dt(C
n
t,a). The upper panels evaluate price-based

versus midquote-based estimators based on T(R)TS and 3 sec CTS. It turns out that
Cnt,a performs best based on T(R)TS whereas RK performs best in case of CTS. However,
the latter is only true for the more liquid stocks whereas for the less liquid assets the
realized kernel’s performance is significantly worse. The lower panels in both tables give
the corresponding statistics if 3 sec CTS is evaluated against T(R)TS. In this case, Cnt,a
outperforms all competing estimators in nearly all cases. The overall worst performance
is revealed by Cnt indicating again the importance of finite-sample adjustments. This is
particularly evident when the relative performance in relation to that of Cnt,a is analyzed
(see Table 3). Interestingly, the dependent-noise-robust estimator Cnt,a(1) is quite sensitive
to the choice of the underlying sampling scheme. This is particularly true in case T(R)TS
and is obviously induced by the highly negative serial correlation in midquote change
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returns. This confirms the results from the previous section and shows that Cnt,a is not
able to accommodate serial dependencies in the noise process very well and yields quite
different quadratic variation estimates in dependence of the underlying price information.
Interestingly, this is mostly evident in case of TTS or TRTS whereas in case of CTS, the
performance of Cnt,a and Cnt,a(1) is quite similar.

To obtain a universal comparison of the estimators based on all four sampling schemes
employed in this paper, we compute the corresponding Euclidean distance

D̃t(IVt) =

√√√√
4∑

j=1

(IV j
t − ¯IV t)2, (5.36)

where IV j
t , j = 1, . . . , 4, represent the corresponding estimators based on TRTS, TTS

and 3 sec price-based and midquote-based CTS. The corresponding (relative) averages are
reported by Table 4, whereas the empirical distributions are depicted by Figures 27 and
28. It is shown that on average Cnt,a outperforms all other estimators, and thus provides
the strongest robustness to the underlying sampling scheme. This is also confirmed by
Figures 27 and 28 showing that Cnt,a and RK reveal the lowest (time series) dispersion
and thus the greatest performance stability over time. Conversely, Cnt and Ct,a(1) reveal
significantly higher time series variations of D̃t(·). This indicates that these estimators are
quite sensitive to the underlying sampling scheme on specifically ’bad’ days. As revealed
by the relative Euclidean statistics (relative to those of Cnt,a), the relative discrepancies
become smaller for more illiquid stocks.

Figure 29 shows the time series variation of daily quadratic variation estimates for all
stocks computed based on Cnt,a using TRTS. As depicted by the corresponding (jump ro-
bust) 95% confidence intervals, estimation error is still not negligible in most cases. Figure
17 shows the distributions of the percentage deviations between Γnt,a and Γ̂nt,a reflecting
differences in estimation errors due to the inclusion of jumps. We observe standard de-
viations which are on average up to 10%-20% higher in case of jumps. This translates
back into 95% confidence intervals which are 14% wider on average. Figure 30 graphically
illustrates these differences for the first 20 trading days in the sample.

Analyzing major descriptive statistics of the analyzed estimators in Tables 5 to 10
we observe that all estimators are significantly serially autocorrelated with first order
autocorrelations around 0.4 to 0.6 for the liquid assets and around 0.2 to 0.3 for the
less liquid ones. In general, both the dynamic as well as the distributional properties
of the pre-averaging estimators are quite similar to that of the realized kernel. We find
the well-known result that the distribution of log volatilities is close to that of a normal
distribution with a kurtosis ranging around 3 in most cases. Only in case of the less liquid
stocks we observe evidence for significant over-kurtosis. For both type of estimators the
empirical properties are quite independent of the underlying sampling scheme. Only in
case of neglected finite-sample adjustments (i.e., Cnt and Cnt (1)) the estimators’ properties
are obviously quite sensitive to the sampling scheme. This is particularly evident for Cnt
in case of TTS.

Finally, Figures 31 and 32 show the time series variation of the jump proportion
BTV n

t,a/C
n
t,a and the test statistic Sn. We observe that both statistics can vary substan-

tially across days. While for the jump proportion no systematic daily serial dependence
over the cross-section of stocks can be reported, we observe a slight daily clustering of Sn
and thus of serial dependence in noise.
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6 Conclusions

In this paper, we discussed the class of pre-averaging estimators for quadratic variation in
asset prices and extended existing theory to explicitly test for serial dependence in noise
and to compute jump robust inference. In an extensive empirical study we analyzed the
empirical properties of different pre-averaging estimators in dependence of the choice of
the pre-averaging interval, the sampling scheme, the underlying sampling frequency and
the impact of noise. We can summarize the following major results:

First, the pre-averaging estimator is sensitive to the choice of the pre-averaging param-
eter θ. This sensitivity seems to be strongest on days where the underlying price path is
not sufficiently smooth. As a result, for too small and too large values of θ, the estimator
tends to be negatively biased on average.

Second, choosing θ by minimizing the MSE based on a sub-sampled 10 min realized
variance estimator seems to be a reasonable data-driven strategy and results in an estima-
tor with good empirical properties. In case of a data-independent choice of θ, we suggest
values between 0.4 to 0.8 as a good rule of thumb. In general, the choice of θ decreases
with the sampling frequency.

Third, finite sample adjustments of the estimator are particularly important in order
to reduce significant biases. This is particularly true if θ is chosen to be small and if the
sampling frequency is not sufficiently high. As a result, even for very liquid stocks, event
time sampling is not sufficiently frequent to reduce this bias. Conversely, high-frequency
CTS implies significantly less sensitivity due to finite-sample adjustments.

Fourth, ignoring the possibility of jumps in the price process leads to an under-
estimation of 95% confidence intervals of approximately 15% on average and thus un-
derstating estimation errors. Pre-averaging multi-power estimators are quite sensitive to
the underlying sampling scheme and the choice of θ. This is particularly true for CTS
inducing an over-estimation of the relative component of jumps in daily quadratic varia-
tions. For MSE minimal choices of θ, we find jump proportions between 5% and 10% on
average.

Fifth, it is strongly suggested to implement both pre-averaging and kernel estimators
based on a highest possible sampling frequency. Our empirical findings show that a re-
duction in sampling frequency tends to imply an ’oversmoothing’ of volatilities resulting
in negative biases.

Sixth, pre-averaging estimators are widely unaffected by the choice of the underlying
sampling scheme. Comparing the different estimators in terms of their ability to produce
similar estimates of the daily quadratic variation irrespective of the underlying sampling
scheme and the employed price information, we show that the standard version of the pre-
averaging estimator slightly outperforms all estimators in nearly all cases. In conclusion,
for this estimator, the choice between event time sampling and calendar time sampling
does not yield significantly different results (given that the ultimate sampling frequency
is similar and high). Conversely, the noise-dependent robust version of the pre-averaging
estimator turns out to be quite sensitive yielding different estimates in dependence of the
underlying price information and sampling scheme. Consequently, we conclude that the
specific adjustment for serially dependent noise tends to be rather unstable in practice.

Seventh, the quantification of serial dependence in noise strongly depends on the un-
derlying sampling scheme. Strong evidence for serially dependent noise processes is shown
based on mid-quote change sampling. Conversely, for the other sampling schemes, partic-
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ularly CTS, these effects are significantly weaker and virtually not significant.

7 Appendix

Data Cleaning

In line with Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) we perform the fol-
lowing data cleaning steps:

(i) Delete entries outside the 9:30pm and 4pm time window.

(ii) Delete entries with a quote or transaction price equal to be zero.

(iii) Delete all entries with negative prices or quotes.

(iv) Delete all entries with negative spreads.

(v) Delete entries whenever the price is outside the interval [bid− 2 · spread ; ask + 2 ·
spread].

(vi) Delete all entries with the spread greater or equal than 50 times the median spread
of that day.

(vii) Delete all entries with the price greater or equal than 5 times the median mid-quote
of that day.

(viii) Delete all entries with the mid-quote greater or equal than 10 times the mean abso-
lute deviation from the local median mid-quote.

(ix) Delete all entries with the price greater or equal than 10 times the mean absolute
deviation from the local median mid-quote.

Implementation Details for the Different Estimators

The realized kernel estimator (RK) proposed by Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008) is defined by

K(Z∆) = γ0(Z∆) +

H∑

h=1

k

(
h− 1

H

)
{γh(Z∆) + γ−h(Z∆)} ,

where γh(Z∆) denotes the h-th realized autocovariance given by

γh(Z∆) =

[t/∆n]∑

j=1

(Zi∆n − Z(i−1)∆n
)(Z(i−h)∆n

− Z(i−h−1)∆n
)

with h = −H, . . . ,−1, 0, 1, . . . ,H and k(·) denoting the kernel function to be chosen as
the Tukey-Hanning2 kernel with

k(x) = sin2{π/2(1 − x)2}.
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Moreover, define

ζ2
t = α2

t/

√

t

∫ t

0
σ4
udu.

Then, the optimal choice of the bandwidth, H, is given by

H = cζt
√

[t/∆]

with c = 5.74 for the Tukey-Hanning2 kernel.

To estimate
∫ t
0 σ

4
udu we use (2.16) with a = 1, b = c = 0. To estimate α2

t , Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2008) suggest

α̂
2

=
1

q

q∑

i=1

α̂
2
(i)

with

α̂
2
(i) =

RV n
(i)

2ñ(i)
, i = 1, . . . , q,

and RV n
(i), i = 1, . . . , q are realized variance estimators RV n

(i) =
∑n

j=i |∆n
i Z|2 sampling

every q = N/n-th trade using the first q trades per day as different starting points and
ñ(i) denoting the number of non-zero returns that were used to computeRV n

(i). To robustify
this estimator against serial dependence in the noise process, Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2008) propose using q such that every q-th observation is, on
average, 2 minutes apart. As discussed by the authors and also found in this study, this
estimator is likely to be upward biased and thus yields a relatively conservative choice of
the bandwidth.

Note that the realized kernel estimator is computed without accounting for end effects,
i.e., replacing the first and last observation by local averages to eliminate the corresponding
noise components (’jittering’ according to Barndorff-Nielsen, Hansen, Lunde, and Shep-
hard (2008)). Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) argue that these
effects are theoretically important however practically negligible, particularly for actively
traded assets.

The maximum likelihood estimator (MLRV) proposed by Ait-Sahalia, Mykland, and
Zhang, L. (2005) is given by

MLRV = Nδ̂2(1 + θ̂)2,

where N denotes the number of trades per day and (δ̂2, θ̂) are the maximum likelihood
estimates of an MA(1) model for observed trade-to-trade returns, Zi = εi + θεi−1, with εi
being white noise with variance δ2 and −1 < θ < 0. This model suggests an alternative
estimator of the market microstructure noise variance given by

α̂
2

= −θ̂δ̂2.

As a further benchmark estimator we use a sparsely sub-sampled realized variance
estimator (RV10) which is computed as the average of 100 realized variance estimators
using 10min returns starting at 100 different equi-distant start points across the first 10
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trading minutes. To account for the fact that the estimators use different starting points,
the daily estimates are accordingly scaled.

Hence, in case of aggregated sampling if N/n > 1 and being not an integer, the last
return per day is computed by aggregating over less than [N/n] observations. However,
both theoretically and empirically this effect can safely be ignored.

Finally, for all estimators, the daily quadratic variation is computed starting at the first
observation after 9:30 am. Hence, according to the timing of the first daily observation the
time span over which the quadratic variation is computed, can differ. Since this affects all
estimators similarly, this effect is not important in our study. In general, one can adjust
for it by scaling the daily variance estimate according to the (ignored) time span between
9:30 am and the timing of the first observation.
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Tables

Table 1: Summary statistics of the underlying data.

XOM C HD TEK SON ZLC

Avg. time between trades (in secs) 5.28 7.25 7.19 25.53 36.29 26.17
Avg. time between quote arrivals (in secs) 0.74 1.01 1.07 3.16 4.33 3.43
Avg. time betw. non-zero quote chgs. (in secs) 3.16 4.72 4.60 10.21 14.29 8.78
Avg. number of trades 4428 3227 3255 916 644 894
Avg. number of quotes 31758 23158 21964 7395 5405 6829
Avg. proportion of non-zero trade returns 0.73 0.58 0.60 0.63 0.62 0.67
Avg. proportion of non-zero MQ returns 0.23 0.21 0.23 0.31 0.30 0.39

Avg. α̂
2
· 1e7 0.10 0.03 0.08 0.99 0.91 1.30

Avg. ξ̂ 0.40 0.18 0.25 0.37 0.38 0.33
ACF(1) trade returns 0.03 -0.05 -0.09 0.00 -0.05 -0.07
ACF(1) MQ returns -0.20 -0.25 -0.22 -0.19 -0.20 -0.23
ACF(1) non-zero MQ returns -0.24 -0.35 -0.32 -0.25 -0.28 -0.30
ACF(1) 3 sec price returns 0.01 -0.10 -0.15 -0.03 -0.08 -0.10
ACF(1) 3 sec MQ returns -0.27 -0.40 -0.39 -0.32 -0.34 -0.32

Note. The table reports (daily) averages of the time between trades, quote arrivals and non-zero quote changes, the

number of trades and quotes, the proportions of non-zero trade (or mid-quote) returns, the (long-run) noise variance

α̂
2
, the (long-run) noise variance per trade ξ̂ and first-order autocorrelations of underlying sampled returns.

Table 2: Euclidean distance discrepancy measures Dt(·)
Cn

t Cn
t,a Cn

t,a(1) RK Cn
t Cn

a,t Cn
t,a(1) RK

TRTS PR vs. TTS MQ 3 sec CTS PR vs. 3 sec CTS MQ

XOM 1.86 0.33 1.18 0.29 0.32 0.25 0.24 0.17
C 1.04 0.22 0.77 0.26 0.43 0.32 0.32 0.22
HD 1.44 0.33 1.05 0.47 0.54 0.39 0.40 0.30
TEK 1.36 0.70 1.44 1.30 0.94 0.87 0.88 1.20
SON 1.13 0.65 1.54 1.06 0.79 0.68 0.69 1.57
ZLC 1.39 1.03 1.91 3.97 1.57 1.60 1.61 1.61

3 sec CTS PR vs. TRTS PR 3 sec CTS MQ vs. TTS MQ

XOM 1.54 0.29 0.89 0.44 0.96 0.39 1.10 0.47
C 1.01 0.21 0.37 0.42 0.59 0.34 0.68 0.40
HD 1.68 0.36 0.66 0.67 1.10 0.57 1.15 0.64
TEK 1.61 0.79 1.07 1.24 1.50 1.04 1.26 1.22
SON 1.25 0.71 0.99 1.85 1.49 0.98 1.29 1.67
ZLC 2.36 1.99 2.10 5.03 2.68 2.18 2.87 2.12
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Table 3: Relative Euclidean distance discrepancy measures Dt(·)/Dt(C
n
t,a).

Cn
t Cn

t,a Cn
t,a(1) RK Cn

t Cn
a,t Cn

t,a(1) RK

TRTS PR vs. TTS MQ 3 sec CTS PR vs. 3 sec CTS MQ

XOM 5.59 1.00 3.54 0.88 1.31 1.00 0.99 0.70
C 4.83 1.00 3.59 1.21 1.32 1.00 1.00 0.67
HD 4.37 1.00 3.17 1.44 1.39 1.00 1.04 0.77
TEK 1.95 1.00 2.06 1.86 1.08 1.00 1.01 1.38
SON 1.73 1.00 2.37 1.63 1.16 1.00 1.01 2.32
ZLC 1.35 1.00 1.85 3.85 0.98 1.00 1.01 1.01

3 sec CTS PR vs. TRTS PR 3 sec CTS MQ vs. TTS MQ

XOM 5.31 1.00 3.05 1.50 2.53 1.00 3.17 1.26
C 4.71 1.00 1.73 1.97 1.81 1.00 2.66 1.33
HD 4.64 1.00 1.81 1.84 1.78 1.00 1.96 0.97
TEK 2.04 1.00 1.36 1.58 1.62 1.00 1.18 1.20
SON 1.77 1.00 1.41 2.61 1.78 1.00 1.65 0.99
ZLC 1.18 1.00 1.05 2.52 1.24 1.00 1.24 0.46

Table 4: (Relative) Euclidean distance discrepancy measures D̃t and
D̃t(·)/D̃t(C

n
t,a) based on TRTS PR, TTS MQ, 3 sec CTS PR and 3 sec CTS

MQ.

D̃t D̃t(·)/D̃t(C
n
t,a)

Cn
t Cn

t,a Cn
t,a(1) RK Cn

t Cn
t,a Cn

t,a(1) RK

XOM 2.64 0.66 1.94 0.76 4.98 1.00 1.96 0.77
C 1.64 0.57 1.23 0.71 3.37 1.00 1.24 0.72
HD 2.70 0.92 1.83 1.11 3.78 1.00 1.85 1.13
TEK 2.87 1.75 2.38 2.53 2.09 1.00 2.41 2.56
SON 2.45 1.50 2.33 2.83 1.85 1.00 2.36 2.87
ZLC 5.21 4.39 5.32 6.26 1.44 1.00 5.38 6.33
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Table 5: Summary statistics of all estimators and statistics for XOM

Mean Median Std.Dev. ACF(1) ACF(5) ACF(10) Skew Kurt
Cn

t
TRTS 16.20 15.79 5.72 0.23 0.17 0.00 -0.49 2.78
TTS 17.12 16.96 5.50 0.25 0.35 0.03 -6.17 39.55
CTS PR 17.74 17.30 4.46 0.41 0.39 0.10 0.30 2.74
CTS MQ 17.67 17.40 4.52 0.40 0.39 0.10 0.15 2.65

Cn
t,a

TRTS 18.42 18.03 4.57 0.47 0.40 0.11 0.20 2.53
TTS 18.31 17.84 4.67 0.50 0.43 0.12 0.13 2.41
CTS PR 18.47 18.24 4.53 0.49 0.42 0.10 0.19 2.62
CTS MQ 18.50 18.12 4.51 0.53 0.42 0.09 0.12 2.50

Cn
t (1)

TRTS 17.38 16.67 4.82 0.38 0.31 0.06 0.00 2.90
TTS 18.84 17.99 4.55 0.58 0.39 0.02 0.17 2.61
CTS PR 18.01 17.95 4.49 0.45 0.40 0.09 0.22 2.65
CTS MQ 18.03 17.94 4.50 0.47 0.40 0.09 0.12 2.56

Cn
t,a(1)

TRTS 19.45 18.71 5.01 0.49 0.39 0.10 0.05 2.29
TTS 19.94 19.42 5.12 0.62 0.39 0.11 0.04 2.32
CTS PR 18.78 18.28 4.68 0.52 0.41 0.07 0.13 2.50
CTS MQ 18.91 18.38 4.62 0.57 0.43 0.08 0.08 2.40

RV 10
TRTS 18.57 18.38 4.77 0.45 0.39 0.10 0.23 2.50
TTS 18.54 18.26 4.79 0.46 0.39 0.10 0.24 2.48
CTS PR 18.57 18.38 4.77 0.45 0.39 0.10 0.23 2.50
CTS MQ 18.54 18.26 4.79 0.46 0.39 0.10 0.24 2.48

MLRV
TRTS 17.87 16.82 4.34 0.67 0.49 0.07 -0.10 3.02
TTS 16.19 15.25 4.30 0.72 0.56 0.18 -0.08 2.60
CTS PR 17.87 16.82 4.34 0.67 0.49 0.07 -0.10 3.02
CTS MQ 16.19 15.25 4.30 0.72 0.56 0.18 -0.08 2.60

KRV
TRTS 19.44 18.78 4.57 0.56 0.47 0.16 -0.09 2.70
TTS 19.52 18.90 4.71 0.56 0.42 0.12 0.01 2.68
CTS PR 19.41 19.02 4.54 0.58 0.49 0.17 -0.08 2.67
CTS MQ 19.30 18.69 4.53 0.57 0.48 0.17 -0.06 2.63

n−1/4
√

Γn
t,a

TRTS 1.43 1.17 0.85 0.57 0.42 0.20 0.94 3.25
TTS 1.34 1.04 0.81 0.32 0.47 0.28 1.10 3.31
CTS PR 1.28 1.09 0.85 0.35 0.33 0.31 1.69 6.62
CTS MQ 1.20 0.90 0.86 0.23 0.20 0.17 1.97 7.78

n−1/4
√

Γn
t,a(1)

TRTS 1.44 1.18 0.85 0.57 0.42 0.20 0.93 3.22
TTS 1.35 1.04 0.81 0.34 0.47 0.28 1.08 3.26
CTS PR 1.28 1.09 0.85 0.35 0.34 0.31 1.69 6.62
CTS MQ 1.21 0.90 0.85 0.23 0.20 0.17 1.97 7.80

n−1/4

√
Γ̂n

t

TRTS 1.60 1.22 1.00 0.47 0.30 0.10 1.05 3.56
TTS 1.38 1.05 0.85 0.30 0.43 0.23 1.14 3.47
CTS PR 1.47 1.16 1.08 0.31 0.27 0.22 1.72 6.37
CTS MQ 1.36 1.00 1.01 0.19 0.20 0.09 1.82 6.96

θ∗

TRTS 0.52 0.15 0.74 -0.04 -0.06 0.13 1.79 5.01
TTS 0.30 0.15 0.42 0.06 0.09 -0.02 3.06 12.25
CTS PR 0.60 0.19 0.83 0.08 0.06 0.11 1.59 4.12
CTS MQ 0.45 0.19 0.57 0.05 0.00 -0.08 1.47 3.74

k
TRTS 35.99 11.00 52.17 -0.05 -0.07 0.14 1.88 5.44
TTS 24.80 13.00 36.74 0.03 0.13 -0.01 3.27 13.78
CTS PR 53.18 17.00 73.30 0.08 0.06 0.11 1.59 4.12
CTS MQ 39.64 17.00 50.12 0.05 0.00 -0.08 1.47 3.74

BTV n
t,a/Cn

t,a

TRTS 0.09 0.08 0.07 0.23 -0.04 -0.08 0.30 1.98
TTS 0.17 0.14 0.13 0.03 0.04 0.01 1.48 5.75
CTS PR 0.11 0.08 0.11 0.16 0.05 0.03 1.03 2.76
CTS MQ 0.14 0.10 0.13 -0.01 0.01 0.00 0.74 2.24

Sn

TRTS -4.87 -4.76 2.19 0.15 -0.10 -0.12 -1.41 7.40
TTS -11.59 -11.87 3.38 0.44 0.33 0.22 -0.28 3.88
CTS PR -3.67 -3.82 2.00 0.36 0.09 -0.43 0.21 2.45
CTS MQ -4.29 -3.92 1.92 0.25 0.14 -0.19 -0.26 3.07

100 · (Cn
t,a − Cn

t,a(1))/Cn
t,a

TRTS -5.60 -1.03 9.71 0.11 -0.02 -0.05 -1.70 4.23
TTS -10.05 -2.44 19.09 0.04 0.18 0.06 -2.69 10.04
CTS PR -1.58 -0.22 2.77 0.23 0.00 -0.02 -1.71 4.47
CTS MQ -2.22 -0.33 3.29 -0.03 0.07 -0.13 -1.30 3.29

100 · (Γ̃n
t,a − Γn

t,a)/Γn
t,a

TRTS 8.77 2.97 10.51 0.05 0.08 0.04 0.85 2.39
TTS 2.56 0.00 5.93 0.09 0.11 0.00 3.01 13.19
CTS PR 9.84 8.54 10.39 -0.07 0.08 0.10 0.75 2.58
CTS MQ 8.99 5.97 9.41 -0.20 0.06 -0.15 0.69 2.33

Note: In case of volatility estimators, skewness and kurtosis are computed for logarithmic values. T(R)TS

based on highest frequency sampling. CTS based on 3 secs.
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Table 6: Summary statistics of all estimators and statistics for C

Mean Median Std.Dev. ACF(1) ACF(5) ACF(10) Skew Kurt
Cn

t
TRTS 12.22 12.19 4.39 0.22 0.14 0.19 -0.82 3.74
TTS 12.88 12.81 3.89 0.22 0.11 0.00 -9.00 82.97
CTS PR 13.24 13.00 3.58 0.33 0.29 0.18 -0.13 3.06
CTS MQ 13.11 12.94 3.64 0.36 0.27 0.19 -0.12 2.82

Cn
t,a

TRTS 13.59 13.26 3.66 0.33 0.27 0.16 -0.24 2.98
TTS 13.40 13.20 3.62 0.35 0.25 0.15 -0.30 3.09
CTS PR 13.66 13.28 3.59 0.34 0.23 0.15 -0.28 3.14
CTS MQ 13.57 13.31 3.60 0.36 0.27 0.18 -0.19 2.83

Cn
t (1)

TRTS 12.76 12.33 3.91 0.32 0.22 0.20 -0.28 2.97
TTS 14.04 13.94 3.57 0.38 0.29 0.25 -0.11 2.59
CTS PR 13.26 13.16 3.60 0.33 0.28 0.17 -0.15 2.99
CTS MQ 13.25 13.15 3.63 0.37 0.27 0.18 -0.17 2.81

Cn
t,a(1)

TRTS 14.02 13.31 3.83 0.33 0.24 0.13 -0.31 2.85
TTS 14.50 14.51 3.94 0.37 0.29 0.30 0.05 2.80
CTS PR 13.69 13.28 3.64 0.35 0.22 0.14 -0.27 3.03
CTS MQ 13.73 13.34 3.64 0.36 0.26 0.15 -0.24 2.77

RV 10
TRTS 13.58 13.12 3.77 0.30 0.23 0.14 -0.17 3.11
TTS 13.51 13.10 3.78 0.31 0.23 0.15 -0.21 3.11
CTS PR 13.58 13.12 3.77 0.30 0.23 0.14 -0.17 3.11
CTS MQ 13.51 13.10 3.78 0.31 0.23 0.15 -0.21 3.11

MLRV
TRTS 13.53 13.64 3.36 0.44 0.36 0.24 -0.36 2.40
TTS 11.46 11.52 2.95 0.49 0.35 0.25 -0.38 2.44
CTS PR 13.53 13.64 3.36 0.44 0.36 0.24 -0.36 2.40
CTS MQ 11.46 11.52 2.95 0.49 0.35 0.25 -0.38 2.44

KRV
TRTS 14.22 14.04 3.54 0.35 0.30 0.16 -0.24 2.79
TTS 14.26 14.30 3.50 0.39 0.31 0.18 -0.30 2.68
CTS PR 14.16 14.17 3.43 0.37 0.30 0.18 -0.25 2.62
CTS MQ 14.01 14.04 3.42 0.38 0.31 0.21 -0.31 2.61

n−1/4
√

Γn
t,a

TRTS 0.94 0.70 0.73 -0.03 0.15 0.20 1.99 7.41
TTS 0.80 0.56 0.69 0.03 0.19 0.18 2.30 8.65
CTS PR 0.92 0.67 0.73 0.02 0.26 0.22 1.99 7.70
CTS MQ 0.84 0.62 0.69 0.03 0.14 0.15 2.29 8.95

n−1/4
√

Γn
t,a(1)

TRTS 0.95 0.71 0.73 -0.02 0.15 0.20 1.98 7.37
TTS 0.81 0.58 0.69 0.03 0.19 0.18 2.31 8.71
CTS PR 0.92 0.67 0.73 0.01 0.26 0.22 1.99 7.71
CTS MQ 0.84 0.63 0.69 0.03 0.14 0.15 2.30 8.98

n−1/4

√
Γ̂n

t

TRTS 1.10 0.79 0.85 -0.04 0.17 0.25 1.77 5.96
TTS 0.93 0.69 0.80 0.02 0.20 0.17 2.33 8.62
CTS PR 1.08 0.73 0.93 -0.01 0.25 0.26 1.94 7.01
CTS MQ 0.98 0.68 0.91 -0.01 0.14 0.17 2.33 8.76

θ∗

TRTS 0.61 0.29 0.66 -0.12 0.13 -0.08 1.16 3.27
TTS 0.45 0.20 0.62 0.03 0.21 0.09 2.43 8.59
CTS PR 0.88 0.50 0.87 -0.01 -0.03 0.16 0.81 2.36
CTS MQ 0.67 0.34 0.67 -0.04 0.10 -0.16 0.67 1.78

k
TRTS 37.14 16.00 40.77 -0.10 0.11 -0.06 1.22 3.49
TTS 31.95 14.00 46.64 0.05 0.24 0.06 2.61 9.63
CTS PR 77.66 44.00 77.25 -0.01 -0.03 0.16 0.81 2.36
CTS MQ 58.86 30.00 59.34 -0.04 0.10 -0.16 0.67 1.78

BTV n
t,a/Cn

t,a

TRTS 0.08 0.05 0.07 0.08 -0.02 -0.03 1.29 5.13
TTS 0.09 0.08 0.10 0.02 0.06 -0.02 3.83 24.72
CTS PR 0.13 0.09 0.14 0.20 -0.16 0.06 1.31 4.01
CTS MQ 0.16 0.11 0.15 0.03 0.02 -0.17 0.83 2.61

Sn

TRTS -2.46 -2.37 1.82 0.36 -0.08 0.02 0.01 2.58
TTS -12.89 -13.23 2.93 0.18 0.01 0.00 0.64 4.41
CTS PR -0.46 -0.40 1.81 0.31 -0.04 0.13 -0.13 2.28
CTS MQ -2.08 -2.03 1.78 0.30 0.21 0.03 -0.02 3.71

100 · (Cn
t,a − Cn

t,a(1))/Cn
t,a

TRTS -3.20 -0.16 6.47 -0.03 -0.16 0.07 -2.10 6.19
TTS -9.34 -4.16 16.44 0.02 -0.07 -0.02 -4.42 27.97
CTS PR -0.11 0.00 1.53 0.06 0.08 0.24 -0.60 10.46
CTS MQ -1.20 -0.02 2.54 0.21 0.03 -0.08 -1.98 5.87

100 · (Γ̃n
t,a − Γn

t,a)/Γn
t,a

TRTS 13.43 14.78 10.74 -0.06 0.05 -0.05 0.14 1.88
TTS 14.46 14.58 10.72 0.13 -0.01 -0.03 0.05 1.80
CTS PR 10.70 9.10 10.52 0.06 -0.06 -0.06 0.50 1.95
CTS MQ 9.32 5.26 10.18 -0.06 0.14 -0.03 0.61 1.91

Note: In case of volatility estimators, skewness and kurtosis are computed for logarithmic values. T(R)TS

based on highest frequency sampling. CTS based on 3 secs.
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Table 7: Summary statistics of all estimators and statistics for HD

Mean Median Std.Dev. ACF(1) ACF(5) ACF(10) Skew Kurt
Cn

t
TRTS 16.47 16.17 5.32 0.16 0.06 -0.01 -0.91 4.11
TTS 17.28 17.09 5.52 0.38 0.08 -0.06 -6.25 40.55
CTS PR 18.16 18.04 4.78 0.46 0.16 -0.14 -0.25 2.93
CTS MQ 18.29 18.06 4.84 0.48 0.15 -0.20 -0.09 2.48

Cn
t,a

TRTS 18.46 18.00 5.03 0.47 0.12 -0.18 -0.13 2.48
TTS 18.17 17.77 4.98 0.48 0.12 -0.15 -0.25 2.85
CTS PR 18.62 18.50 5.04 0.48 0.12 -0.17 -0.24 2.71
CTS MQ 18.67 18.38 4.94 0.49 0.14 -0.21 -0.13 2.44

Cn
t (1)

TRTS 17.27 16.53 4.79 0.35 0.13 -0.10 -0.33 2.83
TTS 19.13 18.59 4.76 0.41 0.09 -0.20 0.01 2.61
CTS PR 18.13 18.04 4.77 0.45 0.17 -0.13 -0.24 2.92
CTS MQ 18.32 18.01 4.86 0.48 0.15 -0.21 -0.09 2.45

Cn
t,a(1)

TRTS 19.09 18.39 5.70 0.47 0.08 -0.21 0.00 2.60
TTS 19.96 19.03 5.34 0.33 0.08 -0.19 0.14 2.75
CTS PR 18.59 18.50 5.03 0.48 0.13 -0.17 -0.24 2.70
CTS MQ 18.71 18.38 4.99 0.49 0.14 -0.22 -0.12 2.42

RV 10
TRTS 18.48 18.23 5.15 0.45 0.11 -0.14 -0.20 2.72
TTS 18.39 18.12 5.19 0.45 0.11 -0.14 -0.22 2.76
CTS PR 18.48 18.23 5.15 0.45 0.11 -0.14 -0.20 2.72
CTS MQ 18.39 18.12 5.19 0.45 0.11 -0.14 -0.22 2.76

MLRV
TRTS 18.75 18.29 4.35 0.57 0.22 -0.21 0.04 2.49
TTS 16.72 16.44 4.17 0.55 0.22 -0.24 0.01 2.53
CTS PR 18.75 18.29 4.35 0.57 0.22 -0.21 0.04 2.49
CTS MQ 16.72 16.44 4.17 0.55 0.22 -0.24 0.01 2.53

KRV
TRTS 19.66 19.24 4.98 0.46 0.12 -0.23 -0.02 2.33
TTS 19.75 19.35 5.02 0.46 0.12 -0.27 0.05 2.44
CTS PR 19.55 18.95 4.66 0.46 0.10 -0.23 -0.07 2.52
CTS MQ 19.36 19.16 4.81 0.45 0.11 -0.25 -0.09 2.49

n−1/4
√

Γn
t,a

TRTS 1.82 1.57 1.28 0.16 0.05 -0.07 3.12 17.23
TTS 1.63 1.32 1.23 0.11 0.10 -0.07 3.13 17.70
CTS PR 1.74 1.52 1.14 0.01 0.16 -0.08 3.09 18.07
CTS MQ 1.74 1.40 1.27 0.10 0.05 -0.05 3.21 18.32

n−1/4
√

Γn
t,a(1)

TRTS 1.84 1.57 1.28 0.16 0.05 -0.07 3.09 17.01
TTS 1.66 1.35 1.23 0.11 0.10 -0.07 3.13 17.64
CTS PR 1.74 1.52 1.14 0.01 0.16 -0.08 3.08 18.06
CTS MQ 1.74 1.42 1.27 0.10 0.06 -0.05 3.21 18.35

n−1/4

√
Γ̂n

t

TRTS 2.08 1.77 1.37 0.19 0.11 -0.03 2.52 12.30
TTS 1.86 1.54 1.31 0.14 0.13 -0.06 2.48 12.78
CTS PR 1.98 1.69 1.28 -0.02 0.20 -0.07 2.30 11.29
CTS MQ 1.98 1.58 1.48 0.16 0.06 -0.08 2.49 11.32

θ∗

TRTS 0.67 0.39 0.71 0.23 0.03 0.18 1.30 4.01
TTS 0.61 0.20 0.77 0.12 -0.06 0.07 1.62 4.57
CTS PR 0.95 0.69 0.89 0.17 0.05 0.09 0.83 2.46
CTS MQ 0.77 0.59 0.63 0.15 0.01 0.01 0.47 1.73

k
TRTS 38.66 24.00 39.83 0.20 0.02 0.16 1.25 3.89
TTS 42.57 14.00 53.33 0.11 -0.04 0.06 1.54 4.16
CTS PR 83.79 61.00 78.44 0.17 0.05 0.09 0.83 2.46
CTS MQ 68.38 52.00 55.84 0.15 0.01 0.01 0.47 1.73

BTV n
t,a/Cn

t,a

TRTS 0.07 0.06 0.07 0.01 -0.13 0.09 0.86 3.03
TTS 0.12 0.10 0.13 0.03 -0.11 0.32 3.70 20.01
CTS PR 0.11 0.08 0.10 -0.06 0.07 0.05 1.06 3.54
CTS MQ 0.12 0.09 0.11 0.22 0.09 0.02 1.21 4.02

Sn

TRTS -1.95 -1.63 2.84 0.06 -0.02 -0.10 -5.84 47.07
TTS -9.93 -9.60 2.75 0.16 0.05 -0.09 -0.31 2.98
CTS PR 0.78 0.81 1.40 0.50 0.21 0.03 0.17 2.28
CTS MQ -0.59 -0.56 1.51 0.26 0.02 -0.19 -0.16 2.53

100 · (Cn
t,a − Cn

t,a(1))/Cn
t,a

TRTS -3.01 -0.07 6.85 0.12 -0.13 -0.06 -2.76 9.87
TTS -12.13 -3.17 24.36 0.12 -0.02 0.28 -3.79 20.15
CTS PR 0.14 0.00 1.00 0.04 0.03 -0.03 2.38 23.01
CTS MQ -0.15 0.00 0.89 0.00 0.01 -0.13 -2.62 16.78

100 · (Γ̃n
t,a − Γn

t,a)/Γn
t,a

TRTS 12.38 11.26 10.42 0.17 -0.01 -0.03 0.42 1.97
TTS 12.17 10.12 10.20 0.14 -0.08 -0.09 0.40 1.89
CTS PR 10.54 10.15 10.01 0.02 0.16 0.08 0.63 2.50
CTS MQ 9.56 8.40 9.18 0.34 -0.14 0.02 0.56 2.12

Note: In case of volatility estimators, skewness and kurtosis are computed for logarithmic values. T(R)TS

based on highest frequency sampling. CTS based on 3 secs.



N. Hautsch and M. Podolskij (2010) 34

Table 8: Summary statistics of all estimators and statistics for TEK

Mean Median Std.Dev. ACF(1) ACF(5) ACF(10) Skew Kurt
Cn

t
TRTS 22.72 21.55 8.81 0.23 -0.03 -0.05 0.71 8.63
TTS 22.92 22.21 9.15 0.16 0.04 -0.05 -8.94 81.97
CTS PR 24.19 23.53 8.80 0.23 0.02 -0.05 0.67 8.37
CTS MQ 23.91 22.89 8.72 0.22 0.02 -0.04 0.96 8.50

Cn
t,a

TRTS 24.31 23.65 9.01 0.25 0.02 -0.05 0.50 8.08
TTS 23.89 23.07 8.88 0.21 0.02 -0.05 0.80 8.39
CTS PR 24.63 24.03 8.91 0.23 0.02 -0.06 0.63 8.22
CTS MQ 24.38 23.61 8.80 0.23 0.03 -0.05 0.89 8.43

Cn
t (1)

TRTS 23.33 22.69 8.83 0.24 -0.01 -0.06 0.61 8.39
TTS 24.34 23.81 9.15 0.21 0.02 -0.05 0.58 7.29
CTS PR 24.23 23.59 8.81 0.23 0.02 -0.05 0.65 8.31
CTS MQ 23.92 22.86 8.73 0.22 0.02 -0.04 0.96 8.50

Cn
t,a(1)

TRTS 24.91 23.92 9.34 0.24 0.04 -0.05 0.45 6.97
TTS 25.28 24.44 10.04 0.20 0.03 -0.05 0.84 7.31
CTS PR 24.68 24.03 8.93 0.23 0.02 -0.06 0.62 8.12
CTS MQ 24.39 23.51 8.81 0.22 0.04 -0.04 0.88 8.41

RV 10
TRTS 24.75 23.91 9.59 0.18 0.01 -0.06 0.71 8.54
TTS 24.26 23.21 9.67 0.19 0.02 -0.05 0.85 8.87
CTS PR 24.75 23.91 9.59 0.18 0.01 -0.06 0.71 8.54
CTS MQ 24.26 23.21 9.67 0.19 0.02 -0.05 0.85 8.87

MLRV
TRTS 24.60 23.73 7.63 0.36 -0.02 -0.07 0.07 5.31
TTS 21.33 20.66 6.85 0.25 0.05 -0.03 0.85 6.96
CTS PR 24.60 23.73 7.63 0.36 -0.02 -0.07 0.07 5.31
CTS MQ 21.33 20.66 6.85 0.25 0.05 -0.03 0.85 6.96

KRV
TRTS 27.23 26.26 8.96 0.25 0.00 -0.09 0.31 5.01
TTS 26.37 24.99 8.40 0.27 0.03 -0.08 0.61 5.30
CTS PR 26.81 26.11 8.45 0.26 0.04 -0.09 0.38 5.74
CTS MQ 25.91 24.86 8.77 0.25 0.08 -0.05 0.88 6.12

n−1/4
√

Γn
t,a

TRTS 4.88 3.72 9.17 0.04 -0.04 -0.03 8.40 75.38
TTS 4.12 2.87 8.79 0.02 -0.03 -0.03 8.28 73.68
CTS PR 4.42 3.42 8.61 0.03 -0.03 -0.03 8.48 76.47
CTS MQ 3.96 2.71 8.11 0.05 -0.03 -0.04 8.35 74.70

n−1/4
√

Γn
t,a(1)

TRTS 4.94 3.73 9.17 0.04 -0.03 -0.03 8.40 75.35
TTS 4.14 2.84 8.77 0.02 -0.03 -0.03 8.32 74.22
CTS PR 4.43 3.43 8.61 0.03 -0.03 -0.03 8.49 76.48
CTS MQ 3.97 2.74 8.11 0.05 -0.03 -0.04 8.35 74.70

n−1/4

√
Γ̂n

t

TRTS 6.37 4.54 15.16 0.02 -0.03 -0.02 8.66 78.54
TTS 5.47 3.59 15.35 0.01 -0.02 -0.02 8.70 78.94
CTS PR 5.58 3.68 14.87 0.01 -0.03 -0.02 8.68 78.80
CTS MQ 4.77 2.84 13.86 0.03 -0.03 -0.03 8.70 79.01

θ∗

TRTS 0.63 0.41 0.54 0.05 0.02 0.15 1.30 4.21
TTS 0.62 0.39 0.68 -0.05 0.02 0.20 2.01 6.48
CTS PR 1.16 0.69 1.06 0.10 0.11 -0.02 0.62 1.91
CTS MQ 0.69 0.37 0.66 -0.03 0.15 -0.05 0.73 1.88

k
TRTS 19.35 12.00 17.46 0.07 -0.02 0.13 1.49 4.95
TTS 28.51 17.00 31.50 -0.07 -0.01 0.19 2.13 7.21
CTS PR 102.27 61.00 93.44 0.10 0.11 -0.02 0.62 1.91
CTS MQ 60.72 32.50 58.46 -0.03 0.15 -0.05 0.73 1.88

BTV n
t,a/Cn

t,a

TRTS 0.06 0.05 0.06 -0.09 0.00 -0.08 0.80 2.76
TTS 0.08 0.06 0.13 0.00 0.12 -0.15 4.37 29.78
CTS PR 0.25 0.17 0.23 0.03 -0.02 0.04 0.83 2.39
CTS MQ 0.27 0.26 0.18 -0.15 0.05 0.09 0.26 1.89

Sn

TRTS -1.12 -0.88 1.49 0.04 -0.05 -0.03 -1.31 5.94
TTS -3.39 -3.06 1.73 -0.13 -0.09 0.03 -0.23 2.29
CTS PR -0.62 -0.61 1.24 -0.06 -0.10 -0.09 -0.09 2.17
CTS MQ 0.00 0.01 2.09 0.05 0.30 0.06 3.51 23.19

100 · (Cn
t,a − Cn

t,a(1))/Cn
t,a

TRTS -2.23 -0.22 4.73 -0.10 0.03 0.08 -2.43 9.00
TTS -6.66 -1.16 28.70 0.02 0.10 -0.04 -8.50 76.55
CTS PR -0.16 0.00 0.54 -0.10 0.04 -0.09 -4.58 26.97
CTS MQ -0.06 0.00 1.37 -0.04 -0.18 0.01 1.56 26.25

100 · (Γ̃n
t,a − Γn

t,a)/Γn
t,a

TRTS 17.29 19.53 11.36 -0.20 -0.09 0.13 -0.19 1.88
TTS 17.16 19.31 11.94 0.00 -0.03 -0.10 -0.02 1.98
CTS PR 9.15 0.00 12.28 -0.03 0.02 0.00 1.03 2.65
CTS MQ 5.02 0.00 8.51 -0.10 0.04 -0.04 1.84 6.17

Note: In case of volatility estimators, skewness and kurtosis are computed for logarithmic values. T(R)TS

based on highest frequency sampling. CTS based on 3 secs.
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Table 9: Summary statistics of all estimators and statistics for SON

Mean Median Std.Dev. ACF(1) ACF(5) ACF(10) Skew Kurt
Cn

t
TRTS 18.34 17.37 6.30 0.40 0.03 -0.11 0.66 4.21
TTS 17.98 17.40 6.46 0.39 0.08 -0.10 -8.94 81.96
CTS PR 19.50 18.38 6.01 0.44 0.02 -0.13 0.43 3.25
CTS MQ 19.10 18.25 6.13 0.49 0.04 -0.15 0.45 3.84

Cn
t,a

TRTS 19.61 18.66 6.40 0.47 0.02 -0.13 0.55 3.74
TTS 19.05 18.29 6.38 0.49 0.03 -0.12 0.52 4.01
CTS PR 19.82 18.79 6.13 0.46 0.04 -0.13 0.40 3.19
CTS MQ 19.46 18.44 6.22 0.49 0.04 -0.14 0.44 3.69

Cn
t (1)

TRTS 18.37 17.20 6.36 0.46 0.02 -0.13 0.63 3.96
TTS 19.58 18.20 6.99 0.46 0.02 -0.12 0.48 4.18
CTS PR 19.52 18.51 6.02 0.45 0.03 -0.13 0.41 3.23
CTS MQ 19.08 18.25 6.11 0.50 0.05 -0.14 0.43 3.88

Cn
t,a(1)

TRTS 19.66 18.38 6.65 0.48 0.00 -0.14 0.47 3.41
TTS 20.55 19.59 7.42 0.47 -0.02 -0.12 0.42 4.13
CTS PR 19.85 18.78 6.15 0.46 0.05 -0.13 0.40 3.15
CTS MQ 19.44 18.43 6.21 0.50 0.05 -0.14 0.43 3.69

RV 10
TRTS 19.79 18.90 6.27 0.44 0.03 -0.12 0.49 3.49
TTS 19.17 18.56 6.26 0.48 0.04 -0.13 0.42 3.41
CTS PR 19.79 18.90 6.27 0.44 0.03 -0.12 0.49 3.49
CTS MQ 19.17 18.56 6.26 0.48 0.04 -0.13 0.42 3.41

MLRV
TRTS 20.67 19.90 6.12 0.30 0.02 -0.11 0.59 4.81
TTS 18.71 18.21 5.47 0.32 0.02 -0.22 0.48 4.76
CTS PR 20.67 19.90 6.12 0.30 0.02 -0.11 0.59 4.81
CTS MQ 18.71 18.21 5.47 0.32 0.02 -0.22 0.48 4.76

KRV
TRTS 20.88 20.47 6.74 0.46 0.01 -0.07 0.30 3.39
TTS 20.37 20.14 6.18 0.43 0.01 -0.16 0.48 4.10
CTS PR 21.71 20.93 6.03 0.38 0.01 -0.12 0.82 4.99
CTS MQ 20.06 19.21 6.05 0.42 0.02 -0.13 0.58 4.02

n−1/4
√

Γn
t,a

TRTS 3.08 2.53 2.19 0.34 -0.05 -0.06 3.12 16.27
TTS 2.38 1.97 1.70 0.42 0.00 -0.11 3.44 17.75
CTS PR 2.90 2.13 2.95 0.34 -0.07 -0.07 5.34 37.94
CTS MQ 2.27 1.85 1.82 0.42 -0.06 -0.09 3.54 18.10

n−1/4
√

Γn
t,a(1)

TRTS 3.11 2.57 2.20 0.34 -0.05 -0.07 3.07 15.97
TTS 2.43 2.04 1.76 0.43 0.00 -0.10 3.57 18.55
CTS PR 2.91 2.13 2.95 0.34 -0.07 -0.07 5.34 37.93
CTS MQ 2.28 1.85 1.82 0.42 -0.06 -0.09 3.53 18.07

n−1/4

√
Γ̂n

t

TRTS 3.78 3.16 2.63 0.30 -0.04 -0.09 3.47 18.82
TTS 2.92 2.42 2.00 0.38 0.00 -0.07 3.44 19.19
CTS PR 3.27 2.26 4.28 0.24 -0.08 -0.04 6.92 57.09
CTS MQ 2.35 1.86 1.88 0.38 -0.06 -0.10 3.38 16.76

θ∗

TRTS 0.51 0.40 0.39 -0.09 0.18 0.06 1.94 7.34
TTS 0.64 0.30 0.68 0.05 -0.06 -0.14 1.68 5.18
CTS PR 1.25 1.00 1.02 0.11 -0.12 -0.09 0.41 1.69
CTS MQ 0.69 0.34 0.67 -0.06 0.01 -0.16 0.80 1.88

k
TRTS 12.93 10.00 9.61 -0.09 0.19 0.08 1.54 5.05
TTS 24.94 13.00 27.32 0.05 -0.06 -0.13 1.83 5.59
CTS PR 110.05 88.00 89.96 0.11 -0.12 -0.09 0.41 1.69
CTS MQ 60.56 30.00 59.61 -0.06 0.01 -0.16 0.80 1.88

BTV n
t,a/Cn

t,a

TRTS 0.08 0.08 0.08 -0.01 -0.06 -0.23 0.83 3.26
TTS 0.11 0.09 0.10 0.19 -0.12 -0.19 1.15 4.46
CTS PR 0.27 0.18 0.24 0.14 -0.05 -0.03 0.88 2.52
CTS MQ 0.31 0.30 0.19 0.07 0.08 -0.26 0.33 2.08

Sn

TRTS 0.23 0.13 1.43 0.14 0.00 0.02 0.87 4.73
TTS -2.91 -3.16 1.56 0.14 -0.02 -0.07 1.80 10.90
CTS PR -0.23 -0.40 1.12 0.12 -0.05 -0.12 0.13 1.93
CTS MQ 0.57 0.57 1.15 0.06 -0.12 -0.15 -0.11 2.81

100 · (Cn
t,a − Cn

t,a(1))/Cn
t,a

TRTS -0.03 0.05 7.08 0.06 -0.22 -0.13 -2.64 16.20
TTS -7.87 -2.59 13.45 0.01 -0.02 -0.14 -2.69 10.66
CTS PR -0.14 0.00 1.14 0.01 -0.01 -0.01 -7.77 66.91
CTS MQ 0.09 0.01 1.16 0.05 -0.05 0.00 -0.39 16.98

100 · (Γ̃n
t,a − Γn

t,a)/Γn
t,a

TRTS 18.91 19.05 12.78 -0.02 0.07 0.04 0.30 2.56
TTS 17.78 18.12 12.30 0.20 -0.16 -0.08 -0.12 1.87
CTS PR 7.66 0.00 11.22 0.10 -0.20 0.20 1.06 2.51
CTS MQ 2.97 0.00 6.55 -0.07 0.02 -0.08 2.22 6.83

Note: In case of volatility estimators, skewness and kurtosis are computed for logarithmic values. T(R)TS

based on highest frequency sampling. CTS based on 3 secs.
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Table 10: Summary statistics of all estimators and statistics for ZLC

Mean Median Std.Dev. ACF(1) ACF(5) ACF(10) Skew Kurt
Cn

t
TRTS 30.03 28.20 14.99 0.22 0.05 0.05 1.43 8.66
TTS 29.73 27.00 15.89 0.21 0.04 0.03 -8.89 80.94
CTS PR 30.88 28.99 15.23 0.18 0.03 0.04 1.48 9.75
CTS MQ 32.22 28.86 17.45 0.17 0.02 0.04 1.88 11.09

Cn
t,a

TRTS 31.03 29.18 15.26 0.20 0.04 0.05 1.46 9.16
TTS 31.09 28.70 15.79 0.20 0.02 0.08 1.51 9.23
CTS PR 31.42 29.26 16.01 0.17 0.03 0.03 1.58 9.93
CTS MQ 32.52 29.04 17.61 0.17 0.02 0.04 1.89 11.10

Cn
t (1)

TRTS 29.92 28.14 15.04 0.22 0.04 0.05 1.36 8.43
TTS 31.18 28.70 15.74 0.18 0.01 0.10 1.28 8.04
CTS PR 30.81 28.99 15.00 0.18 0.03 0.04 1.44 9.75
CTS MQ 32.22 28.85 17.45 0.17 0.02 0.04 1.88 11.09

Cn
t,a(1)

TRTS 30.92 29.18 15.32 0.20 0.03 0.05 1.41 8.95
TTS 32.46 29.55 16.66 0.14 -0.01 0.11 1.24 7.08
CTS PR 31.34 29.26 15.70 0.18 0.03 0.03 1.53 9.85
CTS MQ 32.51 29.03 17.61 0.17 0.02 0.04 1.88 11.10

RV 10
TRTS 31.39 28.98 16.69 0.16 0.02 0.02 1.75 10.85
TTS 30.83 28.06 16.62 0.17 0.02 0.05 1.83 10.70
CTS PR 31.39 28.98 16.69 0.16 0.02 0.02 1.75 10.85
CTS MQ 30.83 28.06 16.62 0.17 0.02 0.05 1.83 10.70

MLRV
TRTS 38.77 35.70 18.04 0.17 0.10 -0.03 1.27 8.44
TTS 39.60 36.91 16.67 0.24 0.16 -0.01 1.47 8.72
CTS PR 38.77 35.70 18.04 0.17 0.10 -0.03 1.27 8.44
CTS MQ 39.60 36.91 16.67 0.24 0.16 -0.01 1.47 8.72

KRV
TRTS 33.81 30.46 19.18 0.18 0.01 0.03 1.49 9.23
TTS 39.10 36.14 18.88 0.18 0.05 0.02 1.60 9.36
CTS PR 39.02 35.77 18.29 0.13 0.04 -0.02 1.76 10.13
CTS MQ 37.54 33.75 18.85 0.17 0.03 0.02 1.74 9.86

n−1/4
√

Γn
t,a

TRTS 13.89 6.59 53.04 0.00 -0.01 -0.01 8.61 77.49
TTS 14.12 6.81 52.81 0.00 -0.02 -0.01 8.56 76.77
CTS PR 13.65 6.26 56.32 0.00 -0.01 0.00 8.76 79.46
CTS MQ 15.09 6.18 69.00 0.00 -0.02 0.00 8.77 79.50

n−1/4
√

Γn
t,a(1)

TRTS 13.92 6.60 53.04 0.00 -0.01 -0.01 8.61 77.46
TTS 14.12 6.81 52.81 0.00 -0.02 -0.01 8.56 76.78
CTS PR 13.70 6.26 56.35 0.00 -0.01 0.00 8.75 79.27
CTS MQ 15.09 6.18 69.00 0.00 -0.02 0.00 8.77 79.50

n−1/4

√
Γ̂n

t

TRTS 15.77 8.64 52.89 0.01 -0.02 0.00 8.58 77.14
TTS 16.60 8.52 52.93 0.01 -0.02 -0.01 8.38 74.53
CTS PR 15.36 7.54 56.20 0.00 -0.01 0.01 8.73 79.09
CTS MQ 16.27 7.13 68.90 0.00 -0.02 0.00 8.76 79.35

θ∗

TRTS 0.86 0.78 0.51 0.07 0.07 0.01 1.72 8.17
TTS 1.87 1.98 0.91 0.06 -0.20 -0.02 -0.53 2.31
CTS PR 2.06 2.20 0.76 0.33 0.00 -0.01 -0.81 2.94
CTS MQ 1.60 1.79 0.38 0.17 -0.19 0.15 -2.12 6.47

k
TRTS 26.65 23.00 19.27 0.22 0.10 -0.01 2.79 16.31
TTS 95.94 95.00 51.38 0.25 -0.08 -0.06 0.01 2.82
CTS PR 181.96 194.00 67.28 0.33 0.00 -0.01 -0.81 2.94
CTS MQ 141.54 158.00 33.90 0.17 -0.19 0.15 -2.12 6.47

BTV n
t,a/Cn

t,a

TRTS 0.06 0.02 0.08 -0.10 -0.07 -0.07 2.12 9.15
TTS 0.07 0.00 0.14 -0.18 -0.03 0.03 2.82 12.67
CTS PR 0.10 0.04 0.15 0.08 0.01 -0.07 2.39 8.70
CTS MQ 0.08 0.04 0.11 0.01 0.02 -0.01 2.56 12.62

Sn

TRTS 0.47 0.32 1.11 0.10 -0.05 0.00 0.34 2.78
TTS -3.43 -3.40 1.59 0.12 0.02 0.23 -0.24 2.79
CTS PR 0.31 0.35 1.12 0.00 0.16 -0.07 -0.07 2.51
CTS MQ 0.40 0.42 0.96 -0.11 -0.05 -0.03 -0.05 2.75

100 · (Cn
t,a − Cn

t,a(1))/Cn
t,a

TRTS 0.45 0.10 2.15 0.08 0.02 -0.07 2.66 16.09
TTS -4.53 -0.09 16.76 -0.07 -0.07 -0.05 -4.59 25.62
CTS PR 0.09 0.00 0.75 0.05 -0.02 -0.02 8.83 80.29
CTS MQ 0.00 0.00 0.01 0.06 -0.06 -0.01 4.34 25.12

100 · (Γ̃n
t,a − Γn

t,a)/Γn
t,a

TRTS 20.19 22.02 11.31 -0.03 0.00 0.02 -0.44 2.08
TTS 20.81 22.27 12.76 -0.10 0.03 0.00 -0.34 2.05
CTS PR 17.74 19.35 11.32 0.01 0.03 -0.11 -0.25 1.91
CTS MQ 13.21 14.24 10.45 0.07 0.00 -0.18 0.01 1.50

Note: In case of volatility estimators, skewness and kurtosis are computed for logarithmic values. T(R)TS

based on highest frequency sampling. CTS based on 3 secs.
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Figures

Figure 1: Averages of 100
√

252Cnt in dependence of θ. Based on T(R)TS and 3 sec CTS
using prices and mid-quotes. Benchmarks: RV10, MLRV and RK using prices.

Figure 2: Averages of 100
√

252Cnt,a in dependence of θ. Based on T(R)TS and 3 sec CTS
using prices and mid-quotes. Benchmarks: RV10, MLRV and RK using prices.
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Figure 3: Realizations of 100
√

252Cnt,a for different values of θ using highest frequency
TRTS for the first 12 trading days in the sample.

Figure 4: Realizations of 100
√

252Cnt,a for different values of θ using 3 sec CTS based on
prices for the first 12 trading days in the sample.
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Figure 5: Time series of prices for XOM for the first 12 trading days in the sample.

Figure 6: Time series of prices for C for the first 12 trading days in the sample.
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Figure 7: Time series of prices for HD for the first 12 trading days in the sample.

Figure 8: Averages of 100
√

252Cnt (top panel) and 100
√

252Cnt,a (bottom panel) for dif-
ferent values of θ and ∆n using TRTS.
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Figure 9: Averages of n
−1/4
t

√
Γt (multiplied by 1000) for different choices of θ. Based on

highest frequency T(R)TS and 3 sec CTS using prices and mid-quotes.

Figure 10: Averages of n
−1/4
t

√
Γt,a (multiplied by 1000) for different choices of θ. Based

on highest frequency T(R)TS and 3sec CTS using prices and mid-quotes.
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Figure 11: Histogram of daily values of θ∗ based on MSE minimization. Based on highest
frequency T(R)TS and 3 sec CTS using prices and mid-quotes.

Figure 12: Histogram of daily values of k∗n based on MSE minimization. Based on highest
frequency T(R)TS and 3 sec CTS using prices and mid-quotes.
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Figure 13: Histogram of daily optimal values of θ∗ based on MSE minimization. Based
on T(R)TS with ∆n = 3 and 15 sec CTS using prices and mid-quotes.

Figure 14: Histogram of daily optimal values of k∗n based on MSE minimization. Based
on T(R)TS with ∆n = 3 and 15 sec CTS using prices and mid-quotes.
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Figure 15: Averages of 100
√

252Cnt (1) for different values of θ. Based on highest frequency
T(R)TS and 3 sec CTS using prices and mid-quotes. Benchmarks: RV10, MLRV and RK
implemented based on trade prices.

Figure 16: Averages of 100
√

252Cnt,a(1) for different values of θ. Based on highest fre-

quency T(R)TS and 3 sec CTS using prices and mid-quotes. Benchmarks: RV10, MLRV
and RK implemented based on trade prices.



N. Hautsch and M. Podolskij (2010) 45

Figure 17: Histogram of 100 · (Cnt,a − Cnt,a(1))/C
n
t,a. Based on highest frequency T(R)TS

and 3 sec CTS.

Figure 18: Histogram of AR(1) test statistic Sn. Based on highest frequency T(R)TS and
3 sec CTS.
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Figure 19: Averaged jump ratio BTV n
t,a/C

n
t,a for different values of θ. Based on highest

frequency T(R)TS and 3 sec CTS using prices and mid-quotes.

Figure 20: Histogram of BTV n
t,a/C

n
t,a. Based on highest frequency T(R)TS and 3 sec CTS.
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Figure 21: Averages of 100
√

252Yt with Yt ∈ {Cnt , Cnt,a, RV,RV 10, RK} for different values
of ∆n using T(R)TS. Cnt and Cnt,a based on an optimal choice of θ.
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Figure 22: Averages of 100
√

252Yt with Yt ∈ {Cnt (1), Cnt,a(1), RV,RV 10, RK} for different
values of ∆n using T(R)TS. Cnt (1) and Cnt,a(1) based on an optimal choice of θ.

Figure 23: Averages of 100
√

252Yt with Yt ∈ {Cnt , Cnt,a, RV,RV 10, RK} for different values
of ∆n using CTS. Cnt and Cnt,a based on an optimal choice of θ.
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Figure 24: Averages of 100
√

252Yt with Yt ∈ {Cnt (1), Cnt,a(1), RV,RV 10, RK} for different
values of ∆n using CTS. Cnt (1) and Cnt,a(1) based on an optimal choice of θ.

Figure 25: Average θ∗ in dependence of ∆n using T(R)TS.
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Figure 26: Average k∗n in dependence of ∆n using T(R)TS.

Figure 27: Discrepancy measures D̃t based on Euclidean distances between TRTS PR,
TTS MQ, 3 sec CTS PR and 3 sec CTS MQ.
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Figure 28: Relative discrepancy measures D̃t(·)/D̃t(C
n
t,a) based on Euclidean distances

between TRTS PR, TTS MQ, 3 sec CTS PR and 3 sec CTS MQ.

Figure 29: Time series plot of 100
√

252Cnt,a with 95% jump robust confidence intervals.
Based on TRTS.
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Figure 30: Time series plot of 100
√

252Cnt,a with 95% confidence intervals computed based

Γ̂nt,a and Γnt,a. Based on TRTS.

Figure 31: Time series plot of BT/Cnt,a. Based on highest frequency T(R)TS and 3 sec
CTS.
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Figure 32: Time series plot of AR(1) test statistic Sn. Based on highest frequency T(R)TS
and 3 sec CTS.



Research Papers 
2010 

 
 

 
  

2010-15: Nektarios Aslanidis and Charlotte Christiansen: Smooth Transition 
Patterns in the Realized Stock Bond Correlation 

2010-16: Tim Bollerslev and Viktor Todorov: Estimation of Jump Tails 

2010-17: Ole E. Barndorff–Nielsen, Fred Espen Benth and Almut E. D. Veraart: 
Ambit processes and stochastic partial differential equations 

2010-18: Ole E. Barndorff–Nielsen, Fred Espen Benth and Almut E. D. Veraart: 
Modelling energy spot prices by Lévy semistationary processes 

2010-19: Jeroen V.K. Rombouts and Lars Stentoft: Multivariate Option Pricing 
with Time Varying Volatility and Correlations 

2010-20: Charlotte Christiansen: Intertemporal Risk-Return Trade-off in 

2010-21: Marco Aiolfi, Carlos Capistrán and Allan Timmermann : Forecast 
Combinations 

2010-22: Ivan Nourdin, Giovanni Peccati and Mark Podolskij: Quantitative 
Breuer-Major Theorems 

2010-23: Matias D. Cattaneo, Richard K. Crump and Michael Jansson: 
Bootstrapping Density-Weighted Average Derivatives 

2010-24: Søren Johansen and Morten Ørregaard Nielsen: Likelihood inference 
for a fractionally cointegrated vector autoregressive model 

2010-25: Tom Engsted and Bent Nielsen: Testing for rational bubbles in a co-
explosive vector autoregression 

2010-26: Robinson Kruse: On European monetary integration and the 
persistence of real effective exchange rates 

 

2010-27: Sanne Hiller and Robinson Kruse: Milestones of European Integration: 
Which matters most for Export Openness? 

 

2010-28: Robinson Kruse: Forecasting autoregressive time series under 
changing persistence 

 

2010-29: Nikolaus Hautsch and Mark Podolskij: Pre-Averaging Based Estimation 
of Quadratic Variation in the Presence of Noise and Jumps: Theory, 
Implementation, and Empirical Evidence 

 

 


	Introduction
	Pre-Averaging Estimators for the Quadratic Variation: The Continuous Case
	The Basic Model
	The Pre-Averaging Method and Asymptotic Results
	Finite Sample Adjustments
	Choosing  in Practice

	Continuous Semi-Martingales with Dependent Noise
	Pre-Averaging with Dependent Noise
	A Test for Dependence

	Pre-Averaging Estimators for the Quadratic Variation: The Discontinuous Case
	Jump Robust Estimation Methods
	Estimation of the Conditional Variance and a Feasible Central Limit Theorem

	Time Series Properties and the Impact of Sampling Frequencies and Sampling Schemes 
	Conclusions
	Appendix

