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Abstract

Changing persistence in time series models means that a structural change from non-

stationarity to stationarity or vice versa occurs over time. Such a change has important

implications for forecasting, as negligence may lead to inaccurate model predictions.

This paper derives generally applicable recommendations, no matter whether a change

in persistence occurs or not. Seven different forecasting strategies based on a biased-

corrected estimator are compared by means of a large-scale Monte Carlo study. The

results for decreasing and increasing persistence are highly asymmetric and new to the

literature. Its good predictive ability and its balanced performance among different

settings strongly advocate the use of forecasting strategies based on the Bai-Perron

procedure.

Key Words: Forecasting; changing persistence; structural break; pre-testing; break-

point estimation; bias-correction.

1 Introduction

Recent research in time series econometrics has paid a lot of attention to structural

breaks in autoregressive time series models. Perron (2006) provides an excellent sur-

vey on structural change. This work is dedicated to changing persistence, which is
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defined as a change in the degree of integration of a time series. A simple example for

changing persistence is a first-order autoregressive (AR) model in which the AR pa-

rameter equals one during the pre-break period and less than unity in absolute value

during the post-break period, or vice versa. Such a break in persistence has direct

consequences for forecasting with AR models, see Pesaran and Timmermann (2005).

Following Clements and Hendry (1998), structural breaks are of great importance for

forecasting performance in general. Ignoring structural breaks in the parameters of

the forecasting model may result in poor and highly inaccurate forecasts.

As Perron (2006) points out, changing persistence has been an important feature of

economic time series. Among these are inflation (e.g., Barsky, 1987, Burdekin and

Siklos, 1999), interest rates (e.g., Mankiw et al., 1987), government budget deficits

(e.g., Hakkio and Rush, 1991) and real output (e.g., Delong and Summers, 1988). An

emerging strand of literature discusses mainly decreasing persistence with a special

emphasis on US and European inflation rates, see O’Reilly and Whelan (2005), Kang

et al. (2009), Kumar and Okimoto (2007) and Pivetta and Reis (2007), Halunga

et al. (2008), Noriega and Ramos-Francia (2009) and Kejriwal (2009). Forecasts of

these variables, and especially of inflation, are crucial to policy makers and they are

also relevant for financial markets.

This paper derives generally applicable recommendations, no matter whether a change

in persistence occurs or not. To this end, we investigate the behaviour of seven fore-

casting strategies under a variety of data generating processes (DGPs). We consider

forecasting strategies which allow for such breaks or ignore them. In more detail, we

analyze the forecasting performance of a stationary autoregressive model, the random

walk and a pre-testing strategy which is inspired by the work of Diebold and Kilian

(2000). These three approaches to forecast autoregressive time series assume a con-

stant degree of integration. On the contrary, we include a forecasting strategy which

assumes a decline in persistence to happen. A pre-test for constant versus changing

persistence based on Leybourne et al. (2007b) is conducted as well. Additionally,

we apply the popular procedure for testing and dating structural breaks suggested
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by Bai and Perron (1998, 2003) in order to assess its usefulness in the context of

forecasting time series with changing persistence. In order to cope with potential

small-sample bias of OLS, we use the Roy and Fuller (2001) estimator which proves

to be of empirical usefulness. Kim (2003) discusses its properties in the context of

forecasting without breaks and finds it to be important for empirical applications.

Beside simple processes with constant and changing persistence, we also consider sta-

ble shifts as a robustness check. These are defined as structural changes of the AR

parameter within the region of stationarity. Hence, they do not constitute a change

in persistence as the time series is stationary throughout the entire sample.

As a theoretical comparison of the seven forecasting strategies is not directly appli-

cable in samples of small and moderate size, we conduct an extensive Monte Carlo

study. The simulations allow us to quantify the precise gains and losses which arise

from the application of certain forecasting strategies in many different settings. The

numerical results highlight a significant asymmetry in the forecasting performance

under increasing and decreasing persistence. This result is new to the literature on

forecasting and structural change. In the case of decreasing persistence, forecast-

ers are advised to take this type of structural change into account. A promising

way to do so, is to apply forecasting strategies based on the Bai-Perron procedure.

Their accuracy is surprisingly close to the one which imposes a decline in persistence.

Pre-testing for changing persistence should be avoided. If persistence increases, the

random walk forecast is most precise in all settings. Hence, it is meaningful to ignore

the break and to work with a non-stationary forecasting model. Interestingly, the

loss in forecast precision obtained by using Bai-Perron-based forecasting strategies

instead is relatively low. Its good predictive ability and its balanced performance

(also for processes with constant persistence) strongly advocate the use of forecasting

strategies based on the Bai-Perron procedure.

This article is organized as follows: section 2 discusses the autoregressive time se-

ries model under changing persistence, related unit root tests and the Bai-Perron

technique. Section 3 covers a detailed description of all forecasting strategies, while
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bias-corrected estimation of the AR model is briefly reviewed in section 4. The Monte

Carlo setup and discussions of numerical results are given in section 5. Practical rec-

ommendations are summarized in section 6.

2 Changing persistence and related statistics

2.1 AR model with changing persistence

We consider the following first-order autoregressive model that is subject to a change

in persistence at some breakpoint TB = [τT ] with τ ∈ (0, 1):

yt = β1yt−1 + εt, for t = 1, ..., TB (1)

yt = β2yt−1 + εt, for t = TB + 1, ..., T . (2)

The innovation process εt is assumed to be a zero mean white noise process. In this

model, persistence is determined through autoregressive parameters |β1| ≤ 1 and

|β2| ≤ 1. As long as β1 6= β2, a structural change occurs at time TB. The special

case of this particular break in which |β1| = 1 and |β2| < 1 hold, is called a decline

in persistence because the AR model in equations (1)-(2) is non-stationary, that is

I(1), during time t = 1, . . . , TB and stationary, that is I(0), afterwards. Analogously,

an increase in persistence takes place if |β1| < 1 and |β2| = 1 hold, i.e. the process

switches from stationary to a unit root process. Chong (2001) shows that the OLS

estimator for β1 and β2 are consistent and asymptotically normally distributed. It

should be noted that stable shifts, i.e., β1 6= β2 with |β1| < 1 and |β2| < 1, do not

constitute a change in persistence as the process is stationary over the whole sample

period. Such changes are considered in this study as well.

The breakpoint TB is treated as unknown and is therefore estimated. Furthermore,

it may be beneficial to pre-test for constant versus changing persistence instead of

assuming one or the other. If no actually no break occurs, then useful information

for forecasting may be wasted when a change is assumed to happen. This can lead

to reduced forecast precision. On the contrary, ignoring a change in persistence can

be costly as well.
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2.2 Unit root test against a change in persistence

The literature on testing constant against changing persistence considers the null hy-

pothesis of a constant I(1) or constant I(0) process while the alternative is given by

a deterministic change from I(1) to I(0) over time, or vice versa (see Kim 2000, Kim

et al. 2002, Leybourne et al. 2003, Busetti and Taylor 2004, Harvey et al. 2006).

In principle, these tests can be carried out as one-sided tests with a known direction

of change or as two-sided tests with unknown direction. In this paper, we shall not

assume that the direction of change is known a priori and therefore, two-sided tests

are carried out.

One of the most recent contributions to this literature is the CUSUM of squares-based

test by Leybourne et al. (2007b). The authors solve an important problem that is

inherent in other tests for changing persistence: The asymptotic size equals one if

both, the null and the alternative hypotheses are wrong. This situation means for

a unit root test against changing persistence that the process is constantly I(0) and

for a stationarity test that it is constantly I(1). The construction of the CUSUM

of squares-based test by Leybourne et al. (2007b) results in a conservative test, i.e.

the asymptotic size is equal to zero. This property can be of use in a forecasting

context. The reason is that a spurious rejection of the null hypothesis (in the case

of yt ∼ I(0)) would imply an unnecessary waste of important data points for estima-

tion of the forecast model. Such spurious rejection do not occur when applying the

Leybourne et al. (2007b) test. Therefore, the focus is on this test here.

It builds upon the test statistic R which is given by

R =
infτ∈Λ Kf (τ)

infτ∈Λ Kr(τ)
,

where Kf (τ) and Kr(τ) are CUSUM of squares-based statistics based on the forward

and reversed residuals of the data generating process as given below. The relative

breakpoint τ ∈ Λ = [τ , τ ] = [0.15, 0.85] is assumed to be unknown and an estimator
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for τ is given below. In more detail, Kf (τ) and Kr(τ) are given by

Kf (τ) =
1

[τT ]2γ̂f
0 (τ)

[τT ]∑
t=1

v̂2
t,τ

and

Kr(τ) =
1

(T − [τT ])2γ̂r
0(τ)

T−[τT ]∑
t=1

ṽ2
t,τ .

Here, v̂t,τ are the residuals from the OLS regression of yt on a constant based on the

observations up to [τT ]. This is

v̂t,τ = yt − ȳ(τ)

with ȳ(τ) = [τT ]−1
∑[τT ]

t=1 yt. Similarly ṽt,τ is defined for the reversed series zt ≡
yT−t+1. In addition, γ̂f

0 (τ) and γ̂r
0(τ) are OLS variance estimators for ∆v̂t,τ and ∆ṽt,τ ,

respectively. The null hypothesis of a constant unit root process is rejected for small

or large values of R in favor of increasing or decreasing persistence, respectively.

Regarding the unknown breakpoint, Leybourne et al. (2007b) prove consistency of

two breakpoint estimators which are given by

τ̂f = arg inf
τ∈Λ

1

[τT ]2

[τT ]∑
t=1

v̂2
t,τ for yt ∼ I(0) → I(1)

τ̂r = arg inf
τ∈Λ

1

(T − [τT ])2

T−[τT ]∑
t=1

ṽ2
t,τ for yt ∼ I(1) → I(0).

Note, that 1
[τT ]2

∑[τT ]
t=1 v̂2

t,τ and 1
(T−[τT ])2

∑T−[τT ]
t=1 ṽ2

t,τ are equal to the unstandardized

(excluding the long-run variance estimator) forward and backward statistics Kf (τ)

and Kr(τ), respectively.

2.3 Bai-Perron approach for dating structural breaks

Bai and Perron (1998, 2003) suggested a technique for testing for structural breaks in

linear regression models. Their approach also allows consistent dating of breaks and

is widely applied in applied econometric research. In the following, we present the

Bai and Perron (1998, 2003) approach for the case of one break, although it is more

flexible in general. Given one structural break at TB, the linear regression model with
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a lagged dependent variable as a regressor is given by

yt = µ1 + β1yt−1 + εt t = 1, . . . , TB (3)

yt = µ2 + β2yt−1 + εt t = TB + 1, . . . , T . (4)

This model allows for a break in the mean through the parameters (µ1, µ2) and a break

in the autoregressive parameter through (β1, β2), while the testing approach outlined

in section 2.2 is more restrictive in the sense that it only permits restricted changes

in the autoregressive parameters by construction. Please note, that the model (3)-(4)

can be restricted so that breaks in the mean are ignored and only structural changes

in the AR parameter are considered. Imposing this restriction is not recommendable

in our setting.1

The Bai-Perron procedure allows consistent estimation of the breakpoint TB by apply-

ing a dynamic programming algorithm. We require to have at least a fraction of 0.15

data points in each data segment. The number breaks (zero or one) is selected with

the Bayesian information criterion (BIC) for the following reasons: Perron (1997)

simulates and discusses the properties of the BIC in comparison with the modified

Schwarz criterion (LWZ) proposed by Liu et al. (1997). In the presence of a lagged

dependent variable, as given here, the BIC and the LWZ show significantly different

performance. If no break occurs, the BIC tends to select a break much more often

than the LWZ, but only in the unit root case, see Tableau 3 in Perron (1997). If

breaks are present, the LWZ approach is of less use, especially for highly persistent

time series, as it underestimates the number of breaks dramatically (Tableaux 7A

and 7B in Perron 1997). Our simulation results in section 5 show that the BIC in-

deed selects a break too often if no change occurs (in around 19% of the cases for

a unit root and much less often for stationary AR processes). However, the effect
1We do not report results for the Bai-Perron procedure including this restriction in order to

save space. They are, however, available upon request from the author. The data generating

processes in the simulation study (section 5) do not contain deterministic terms. It turns out that

the forecasting strategies based on the restricted model are less precise in terms of out-of-sample

mean square forecast error (MSFE) than the ones using the unrestricted model for all considered

DGPs.
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Table 1: Forecasting strategies

No change in persistence

S1 Stationary AR(1) model, full sample

S2 Random walk model, full sample

S3 Pre-testing for unit root (choose between S1 and S2), full sample

Change in persistence

S4 Stationary AR(1) model, post-break sample

S5 Pre-testing for constant persistence (choose between S3 and S4)

General structural breaks

S6 Bai-Perron, pre-testing (choose between S3 and S4)

S7 Bai-Perron, stationary AR(1) model (choose between S1 and S4)

on forecasting performance is negligible. On the contrary, the strong ability of the

BIC to detect breaks if they are actually present proves to be very useful in terms of

forecasting, see section 5. Further details regarding the Bai-Perron approach can be

found in Bai and Perron (1998, 2003).

3 Forecasting strategies

We consider a variety of forecasting strategies which may be divided into two groups:

those accounting for structural breaks and ones permitting no breaks. Table 1 sum-

marizes different forecasting strategies. The next subsections are dedicated to a more

careful explanation of details regarding Strategies 1–7.

3.1 Constant parameters

Strategy 1 A standard forecasting model for many economic time series is the sta-

tionary AR(1) model including a constant. This model is given by yt = µ+βyt−1+εt,

with the imposed stationary condition |β| < 1. Instead of the OLS estimator we

consider an approximately median-unbiased estimator proposed by Roy and Fuller

(2001). This estimator is particularly useful for forecasting purposes in small and

moderate samples, see Kim (2003). This estimation technique is briefly described in

section 4.
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Strategy 2 The second considered forecasting model is the random walk without

drift,

yt = yt−1 + εt .

The h-step ahead forecast from this difference-stationary model is given by ŷS2
t+h|t = yt.

As the h-step ahead forecast is simply given by the yt and does not depend on any

estimated parameters, it does not matter whether we use the entire in-sample period

or just a fraction of it: the h-step forecast ahead forecast will be the same for all

h. The further consequences of this circumstance for our Monte Carlo setup will be

discussed in section 5.

Strategy 3 As intensively discussed in Diebold and Kilian (2000), pre-testing offers

often a significant improvement compared to S1 or S2 when a linear trend is included.

The authors, however, do not provide any results for the case where just a constant

is included in the stationary AR(1) model. Our conjecture is that the usefulness of

unit root pre-testing is not limited to the case of a linearly trending AR(1) model.

Hence, we include a similar pre-testing strategy under the assumption of constant

persistence in our study. We choose the powerful DF-GLS test as the pre-test which

has been used in a another study on pre-testing by Stock (1996) and which is also

analyzed in Diebold and Kilian (2000). In particular, we run the DF-GLS test with

a constant,

∆ỹt = φỹt−1 + ut .

The GLS-demeaned data is given by ỹt ≡ yt − ψ̂zt with zt = 1. Define (xγ
0 , x

γ
t ) ≡

(x0, (1 − γL)xt) for t = 1, . . . , T where γ = 1 + c̄/T . Eliott et al. (1996) suggest

to use the value c̄ = −7 in order to ensure the limiting power function lies close to

the local power envelope. ψ̂ is obtained by minimizing (yγ − ψzγ)′(yγ − ψzγ). If the

null hypothesis H0 : φ = 0 is rejected at some nominal significance level in favor of

H1 : φ < 0, then the stationary AR forecast model is selected, i.e., S1. Otherwise, S2

is applied.
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3.2 Change in persistence

Strategy 4 assumes that a change in persistence occurs. This means implicitly that

the size and power of the Leybourne et al. (2007b) pre-test is automatically one.

Moreover, the breakpoint τ is always estimated even if no break occurs. It is ex-

pected that this strategy shows a relatively good performance if the alternative is

true, i.e. a change in persistence takes place since the type II-error is zero. Under

validity of the null hypothesis of a constant I(1) process however, the accuracy may

be significantly worse than the one of the random walk model which serves as the

benchmark in this case. The effects are quantified in section 5. We only use the

breakpoint estimator τ̂r for decreasing persistence. This is motivated by the fact that

τ̂f is useless since increasing persistence means that the random walk model should

be used. As already discussed, this forecast depends only on the last observation

available but not on the number of observations. Hence, breakpoint estimation plays

no role in this particular case.

Strategy 5 A compromise between S1 to S4 is to pre-test for a unit root against

a change in persistence. In case of a rejection in favor of a decrease in persistence

from I(1) to I(0), τ̂r is used to select the post-break window of data points for

estimating the stationary AR(1) model. If the test rejects H0 in favor of an increase

in persistence, S2 is selected. The case of a non-rejection is a bit more complicated.

Due to the properties of the CUSUM of squares-based pre-test, a non-rejection can

be interpreted as evidence for constant persistence, but it is unclear whether the

non-rejection is caused by a constant I(0) or a constant I(1) process. Therefore, S3

(pre-testing under constant persistence) is applied in this case. Depending on the

outcome of the second pre-test, S1 or S2 is applied.

3.3 General structural breaks

Strategy 6 Another way of coping with potential structural breaks in the param-

eters of the AR(1) model is to apply the Bai-Perron approach. As a first step, the

optimal number of data segments is determined. In our study we allow for one or two
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segments which corresponds to no or one break, respectively. If a structural break

is found, the second segment of data points is used for estimation of the stationary

AR(1) model. Otherwise, S3 is applied in order to select an appropriate forecasting

model.

Strategy 7 A variant of S6 is to use the full sample and estimate the stationary

AR(1) model in case of a non-rejection instead of conducting a DF-GLS pre-test. S7

and S6 are equivalent in case of a rejection.

4 Bias-corrected estimation

It is a well known fact that the OLS estimator for the persistence parameter of the

AR(1) model is downward-biased in small samples. Due to the fact that we con-

sider a sample size of T = 150 in our simulation study it seems to be reasonable to

analyze the performance of forecasting strategies when a biased-corrected estimator

is applied. Therefore, we consider the median-unbiased Roy-Fuller estimator which

has been proven to be of empirical usefulness in Kim (2003) in a forecasting context

without breaks.

The Roy-Fuller (2001) estimator provides a simple modification to the OLS estimator

for the persistence parameter β. We briefly review some details of this estimator,

denoted as β̃. Let β̃ = min(β̆, 1), where

β̆ = β̂ + (Cp(λ̂1) + C−p(λ̂−1))σ̂1 .

Here, β̂ denotes the OLS estimator for β in ȳt = βȳt−1 +εt, where ȳt is the previously

de-meaned time series yt, i.e., ȳt ≡ yt − (1/T )
∑T

t=1 yt. Furthermore, σ̂1 denotes the

standard error of β̂ and λ̂1 = (β̂ − 1)/σ̂1 is the usual Dickey-Fuller (1979) unit root

test statistic, while λ̂−1 is a similar statistic for the unit root hypothesis H0 : β = −1.

Related to the asymptotic bias of the OLS estimator, the two functions Cp(λ̂1) and

C−p(λ̂−1) are constructed to make β̃ approximately median-unbiased at β = 1 and

β = −1, respectively. Further details can be found in Roy and Fuller (2001).
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5 Monte Carlo study

This section deals with the Monte Carlo simulation setup, the presentation and dis-

cussion of numerical results. The performance of forecasting strategies 1–7, see Table

1, is evaluated for a collection of different data generating processes. The forecast

horizon h takes values from 1 to 25. This choice corresponds to short- and medium-

term forecasting when having monthly and quarterly data in mind. The in-sample

size is T = 150 which is usual sample size in macroeconomics. Time series are gen-

erated with a total of 275 observations, where the first 100 data points are discarded

in order to reduce the impact of the initial condition. The remaining 175 observa-

tions are divided into an in-sample period of 150 and an out-of-sample period of 25

observations, respectively. If the data generating process contains a structural break,

then the breakpoint is drawn from a uniform distribution, i.e., τ ∼ U [0.3, 0.7]. The

mean and the lower and upper bound are usual choices in simulations with structural

breaks. The choice of drawing the true breakpoint from a uniform distribution allows

us to reduce the number of experiments and to summarize them into a single set of

experiments.2 The number of Monte Carlo repetitions is set equal to 5,000. All com-

putations and simulations are carried out in the open source language R (2009). The

following packages are used: bootpr developed by Kim (2009), dynlm and strucchange

(Zeileis et al. 2002 and Zeileis et al. 2003).

We consider 14 different experiments, see Table 2 for an overview. Among these are

a constant I(1) process (Exp 1), constant I(0) processes (Exps 2-4) and processes

with a pure change in persistence (Exps 5–10). Moreover, we consider another type

of structural changes which is related to the previous ones: experiments 11-14 con-

sider stable shifts. This means that the process yt is stationary throughout the entire

sample period, but the AR parameter changes within region where stationarity is
2If we would consider for example, three different breakpoints, say τ = {0.3, 0.5, 0.7}, then the

number of experiments are tripled. When using the uniform distribution we are able to consider

all breakpoints between 0.3 and 0.7 without increasing the number of experiments. The number

of Monte Carlo repetitions is set high enough in order to ensure that the whole range of possible

breakpoints are actually considered in the simulations.
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Table 2: Overview of experiments

Experiments β1 β2

Constant persistence

1: constant I(1) 1.0 1.0

2: constant I(0) 0.9 0.9

3: constant I(0) 0.7 0.7

4: constant I(0) 0.5 0.5

Change in persistence

5: I(1) to I(0) 1.0 0.9

6: I(1) to I(0) 1.0 0.7

7: I(1) to I(0) 1.0 0.5

8: I(0) to I(1) 0.9 1.0

9: I(0) to I(1) 0.7 1.0

10: I(0) to I(1) 0.5 1.0

Stable shifts

11: constant I(0) 0.9 0.7

12: constant I(0) 0.9 0.5

13: constant I(0) 0.7 0.9

14: constant I(0) 0.5 0.9
Notes: The data generating process is given byyt = β1yt−1 + εt for

t = 1, ..., TB and yt = β2yt−1 + εt for t = TB + 1, ..., T. Innovations

are standard normally distributed, εt ∼ N(0, 1).

ensured, i.e. |β1| < 1 and |β2| < 1. The exact parametrization can be found in

Table 2. Parameters are chosen to mimic typical behaviour of economic time series

which usually show a high degree of persistence. The data generating processes do

not contain deterministic terms.

The specified loss function is the mean squared forecast error (MSFE) and the bench-

mark is S1 or S2 depending on the true degree of integration of yt in the out-of-sample

period. This means that the random walk forecast is the benchmark in experiments

1 and 8-10, while the stationary AR(1) forecast using full sample information is the

benchmark in experiments 2-7 and 11-14. MSFEs relative to the benchmark are re-

ported in Figures 1–14 instead of tables for convenience. Whenever the relative MSFE

ratio is below (above) one, the benchmark is outperformed (not outperformed). The
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Table 3: Summary statistics for pre-tests and Bai-Perron pre-selection

Experiment DF-GLS CUSUM 5L CUSUM 5U BP

Constant persistence

1 0.135 0.046 0.041 0.188

2 0.904 0.000 0.000 0.052

3 0.999 0.000 0.000 0.020

4 1.000 0.000 0.000 0.010

Change in persistence

5 0.306 0.001 0.095 0.200

6 0.359 0.000 0.310 0.629

7 0.407 0.000 0.485 0.909

8 0.348 0.099 0.001 0.241

9 0.471 0.287 0.000 0.594

10 0.512 0.472 0.000 0.877

Stable shifts

11 0.843 0.000 0.027 0.378

12 0.886 0.000 0.087 0.730

13 0.993 0.002 0.000 0.453

14 0.934 0.076 0.000 0.652
Notes: For details on experiments, see Table 2. DF-GLS is the rejection frequency

of the unit root pre-test by Elliott et al. (1996) at a significance level of ten percent,

CUSUM 5L and CUSUM 5U are the rejection frequencies of the CUSUM unit root

pre-test by Leybourne et al. (2007b) at a five percent level in favor of an increase or

a decrease in persistence, respectively. BP is the frequency of selecting a break by

using the Bai-Perron procedure on the basis of the BIC.

nominal significance levels for both unit root pre-tests (DF-GLS and CUSUM of

squares-based) are set equal to ten percent. The CUSUM of squares-based unit root

test is conducted as a two-sided test with five percent mass of probability in each tail.

The simulation study is limited in several aspects. First, the lag length of the au-

toregressive forecasting model is assumed to be known and equal to one. Although

the choice of the lag length may have some effects on the forecasting performance,

we do not expect the main conclusions to be changed. Second, we set the number

of maximal changes in persistence equal to one. Reasons for this restrictions are

the following: the main strand of theoretical and empirical literature on changing

14



persistence deals with the possibility of a one-time change. Therefore, we follow this

line closely although the multiple changes in persistence may occur in practice. The

body of literature on multiple changes in persistence is growing but still small (see

Leybourne et al. 2007a and Kejriwal et al. 2009). Third, we restrict our analysis

to only one sample size (T = 150). This sample size is common for quarterly data

in empirical macroeconomics in general. Moreover, it is also relevant for European

monthly series starting in 1999 for exmaple. Given this relatively short sample, it

makes sense to restrict the attention to at most one structural change in persistence.

5.1 Constant I(1) and I(0)

Under an I(1) data generating process, we find that all forecasting strategies are per-

forming very similar, see Figure 1 for experiment 1. The benchmark is the random

walk forecast (red line). The relative MSFE ratios of other forecasting strategies are

slightly above but close to one. It can be observed that the performance of S4 is a

bit worse. The reasons are that this strategy assumes a stationary AR(1) process

and a decline in persistence to happen. Given that both assumptions are wrong, it

is convincing that this strategy performs less well. Table 3 provides some summary

statistics for the DF-GLS unit root pre-test, the CUSUM of squares-based pre-test for

changing persistence and the Bai-Perron procedure. It can be seen, that the pre-tests

are approximately correctly sized and that the Bai-Perron procedure selects a break

in 18.8% of the cases. Although this number is relatively large, it does not affect the

forecasting performance of S6 and S7 much.

The case of a highly persistent but stationary AR(1) model (experiment 2, Figure 2)

shows a similar picture except the worse performance of the random walk forecast S2.

Recall, that S1 is the benchmark. Table 3 shows that the DF-GLS test has decent

power, that the CUSUM of squares-based test is conservative and that the Bai-Perron

procedure selects a break only in 5.2% of the cases. For lower values of the AR(1)

coefficient, forecasting strategies get indistinguishable except the poor random walk

forecast. Its relative MSFE ratio is close to two, indicating that the loss is close to

100%.
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Figure 1: Constant I(1), β1 = β2 = 1 (Exp 1)
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Figure 2: Constant I(0), β1 = β2 = 0.9 (Exp 2)
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Figure 3: Constant I(0), β1 = β2 = 0.7 (Exp 3)
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Figure 4: Constant I(0), β1 = β2 = 0.5 (Exp 4)
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Figure 5: Change in persistence from I(1) to I(0), β1 = 1, β2 = 0.9 (Exp 5)

5.2 Change in persistence

5.2.1 Decreasing persistence

The case of decreasing persistence is covered in experiments 5–7 and results are shown

in Figures 5–7. As the true degree of integration is zero in the out-of-sample period,

S1 is the chosen as the benchmark. Firstly, results shown in Figure 5 are interpreted.

For short forecast horizons up to h = 5, it is difficult to provide a ranking of fore-

casting strategies, but for higher values of h, we observe that S4 is dominating. This

result is not surprising as this strategy assumes a decline in persistence to happen.

The gains increase with h, but they are relatively small. Table 3 shows that the pre-

test for a change in persistence has little chance to detect the change as opposed to

the Bai-Perron procedure which is able to detect the structural change in 20% of the

cases. This circumstances results in a relatively poor performance of strategy S5 (pre-

testing for a change in persistence). Its relative MSFE ratio is above one, indicating

that is performs worse then the benchmark which does not account for structural

changes. Although the Bai-Perron procedure is able to detect the break sometimes,
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Figure 6: Change in persistence from I(1) to I(0), β1 = 1, β2 = 0.7 (Exp 6)

5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

Forecast horizon

R
el

at
iv

e 
M

on
te

 C
ar

lo
 M

S
E

5 10 15 20 25

0.
25

0.
75

1.
25

1.
75

S1: Stat. AR(1), full sample
S2: Random walk
S3: Pre−testing, full sample
S4: Stat. AR(1), post−break sample
S5: Pre−testing for constant persistence
S6: Bai−Perron, pre−testing
S7: Bai−Perron, Stat. AR(1)

Figure 7: Change in persistence from I(1) to I(0), β1 = 1, β2 = 0.5 (Exp 7)

19



it is crucial whether S6 or S7 is applied. While the relative MSFE ratio of S6 is

below one, the one S7 is above one, making S6 preferable over S7. These strategies

differ when the Bai-Perron procedure does not select a break: S6 applies the DF-GLS

test, while S7 directly uses a stationary AR(1) forecasting model. Strategy S6 suf-

fers from the fact that the DF-GLS test gives mixed evidence (rejection rate is 30.6%).

When turning to experiment 6 (see Figure 6), where the change in persistence is

moderate (from 1.0 to 0.7), a clear ranking across the forecast horizon can be given.

S4 dominates other strategies from h = 1 to h = 25, followed by Bai-Perron-based

forecasting approaches S7 and S6. The pre-test for a change in persistence is bet-

ter performing than in the previous experiment as it is more powerful, but still not

as good performing as the Bai-Perron procedure. Results in Table 3 show that the

frequencies of a selected break for the Bai-Perron procedure are 31.0% and 62.9%, re-

spectively. Gains in forecast precision increase up to a short forecast horizon of h = 5

and become constant over h afterwards. Notably, the potential gain to be made is

larger than 25% if S4 is applied instead of S1. The pre-testing strategy performs

somewhat better but it is clearly dominated by S4, S6 and S7.

Finally, in experiment 7 (see Figure 7), we still observe the same ranking but S6 and

S7 are now as equally good as S4. Table 3 shows that the simulated frequency of

selecting a break is high (90.9%). The gains in forecast precision are around 35%.

The results for decreasing persistence show that negligence is very costly and that

the strategies S4 and S6 are able to provide relatively accurate forecasts.

5.2.2 Increasing persistence

When we consider the case of increasing persistence (experiments 8–10 and Figures

8–10), we find a striking asymmetry. As the results are not too distinct in the in-

dividual experiments 8–10, a more general analysis of the results is given here. The

random walk forecast serves as the benchmark in these experiments. As this fore-

cast does not depend on any parameter estimation, the choice of the sample (full or

post-break only) does not matter. Effectively, only the last observation is crucial.
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Figure 8: Change in persistence from I(0) to I(1), β1 = 0.9, β2 = 1 (Exp 8)
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Figure 9: Change in persistence from I(0) to I(1), β1 = 0.7, β2 = 1 (Exp 9)
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Figure 10: Change in persistence from I(0) to I(1), β1 = 0.5, β2 = 1 (Exp 10)

Even if the pre-tests would have hundred percent power against the alternative of

an increase in persistence, the performance of these strategies would only as good as

the random walk forecast, but not better. Therefore, it should not be surprising that

S2 is not outperformed in experiments 8–10. The results in Figures 8–10 show that

the random walk forecast is actually never outperformed by any of its competitors

for all forecast horizons. Moreover, all other strategies are performing similarly with

only minor differences among them. In addition, the relative MSFE ratios are more

or less constant over h.

It is important to note, that the losses in forecast accuracy are not as high as the

ones obtained for decreasing persistence. Even if the increase in persistence is large

(experiment 10, Figure 10) where the AR(1) coefficient changes from 0.5 to 1.0, the

loss of ignoring the structural break is relatively small (12.5%). Figure 10 shows

that strategies S6 and S7 are the relatively well performing. Table 3 shows that the

performance of pre-tests and the Bai-Perron procedure can be judged as symmetric,
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Figure 11: Stable shift constant I(0), β1 = 0.9, β2 = 0.7 (Exp 11)

when compared to the case of decreasing persistence. Summing up, the results for

increasing persistence show that negligence is better than accounting for it when a

unit root (S2) is imposed. On the contrary, not much forecast precision is lost when

any of the other six strategies is applied. This is in clear contrast to the results

obtained for the case of decreasing persistence.

5.3 Stable shifts

The last four experiments 11–14 cover the case of stable shifts which means that the

AR(1) coefficient is subject to a structural change which occurs within the parameter

region of stationarity. Therefore, the data generating process is I(0) throughout the

whole sample. In experiments 11 and 12, the AR(1) coefficient is decreasing, while the

opposite holds for experiments 13 and 14. The results for the former two experiments

are reported in Figures 11 and 12, respectively. They show a similar ranking as in

experiments 6 and 7, where S4 dominates and S6 and S7 follow closely. The pre-test

for a change in persistence is useless since it is not able to detect a change within
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Figure 12: Stable shift constant I(0), β1 = 0.9, β2 = 0.5 (Exp 12)
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Figure 13: Stable shift constant I(0), β1 = 0.7, β2 = 0.9 (Exp 13)
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Figure 14: Stable shift constant I(0), β1 = 0.5, β2 = 0.9 (Exp 14)

the region of stationarity, see Table 3. On the contrary, the Bai-Perron procedure

shows a good performance as it selects a break in many cases (37.8% and 73.0%).

Remarkable gains (around 25%) can be made in the case of β1 = 0.9 and β2 = 0.5,

see Figure 12.

The case of an increasing AR(1) coefficient is interesting to compare with the out-

comes of experiments 9 and 10. If the AR(1) coefficient changes mildly from 0.7

to 0.9, strategies S4, S6 and S7 are best performing monotonically over the forecast

horizon h. The random walk forecast S2 performs poorly. All other strategies show

a relative MSFE ratio around one for all h. If the size of the break increases (last

experiment 14, Figure 14), we observe that the benchmark (S1) cannot be outper-

formed. S4 and the simple pre-testing strategy S3 are, however, extremely close to

S1 in terms of forecast precision. The forecasting strategies based on the Bai-Perron

procedure perform slightly worse for large values of h.
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6 Conclusion

This paper considers out-of-sample forecasting of autoregressive time series in the

context of potentially changing persistence. A change in persistence means that the

time series process switches from stationarity to non-stationarity over time, or vice

versa. This type of structural change is of substantial empirical interest. Therefore,

we provide guidance for forecasting under uncertainty about the existence of a change

in persistence. Neglecting such changes can be very costly in terms of out-of-sample

MSFE. On the contrary, falsely imposing a change in persistence may lead to less

precise forecasts. To this end, we study the empirical performance of seven forecast-

ing strategies which cope with structural breaks in different ways or neglect them.

Among these are pre-tests for unit roots and changing persistence as well as the Bai-

Perron procedure for detecting and dating of structural breaks.

The outcomes of an extensive Monte Carlo study allow several important practical

recommendations. First of all, the cases of decreasing and increasing persistence

have to be treated separately. The striking asymmetry between the forecasting per-

formance under increasing and decreasing persistence differs from the established

literature on forecasting and structural change. If persistence decreases, forecasters

should account for it. Secondly, the application of forecasting strategies based on the

Bai-Perron procedure is promising: their accuracy is often very close to the one which

imposes a decline in persistence. Third, pre-testing for changing persistence should

be avoided. Fourth, if persistence increases, the random walk forecast produces most

accurate forecasts. It proves to be beneficial to neglect the break and to impose a

unit root prior to forecasting. However, the loss in forecast precision implied by Bai-

Perron-based forecasting strategies is relatively low, especially when compared to the

potential gains to be made under decreasing persistence.

Under constant persistence, modeled by a random walk or stationary autoregressive

models, we find that falsely imposing a change in persistence leads to losses. Again,

Bai-Perron-based forecasting strategies are highly recommendable. Finally, another

empirically relevant possibility of a so-called stable shift, a structural change of the
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autoregressive parameter within the region of stationarity, is considered. The fore-

casting strategies based on the Bai-Perron procedure prove to be of usefulness, too.

Future research may consider interval and density forecasts under changing persis-

tence. These are especially relevant for inflation series which are a leading empirical

example for changing persistence. Moreover, persistence may also be measured by

means of fractionally integrated processes instead of considering autoregressive roots.
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