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Abstract

This paper introduces a new modelling framework for energy spot prices based on Lévy semi-
stationary processes. Lévy semistationary processes arespecial cases of the general class of
ambit processes. We provide a detailed analysis of the probabilistic properties of such models
and we show how they are able to capture many of the stylised facts observed in energy markets.
Furthermore, we derive forward prices based on our spot price model. As it turns out, many of
the classical spot models can be embedded into our novel modelling framework.
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1 INTRODUCTION

1 Introduction

This article introduces the concept of Lévy semistationary processes and, based on this, we define
a new class of energy spot price models. This class is analytically tractable and encompasses many
classical models such as those based on the Schwartz one-factor mean-reversion model, see Schwartz
(1997), and the wider class of continuous-time autoregressive moving-average processes. Our main
innovation lies in the fact that we model the spot price directly by a stationary process, whereas the
traditional approach focuses on modelling the dynamics of the spot price. We will discuss in detail
the advantages of such a modelling approach. Furthermore, we will show that we can construct both
geometric and arithmetic spot models based on Lévy semistationary processes. We will also give a
detailed account of the theoretical properties of the classof Lévy semistationary processes, which
generalises that of Brownian semistationary processes andare special types of ambit processes. This
framework enables us to model both the spot and the forward price (which we compute based on our
new spot model) in a consistent way.

Our novel modelling framework is motivated, in particular,by the fact that it naturally incorpo-
rates many of the stylised facts observed in energy markets.Although we aim at modelling energy
prices in general (including oil, gas, electricity and coal), we will mainly focus on electricity prices in
this paper.

There is a clear economical justification formean-reversionin commodity markets in general
and in power prices in particular. This is due to the fact thatsupply and demand will determine the
spot price. It is natural to see a downward push in prices whenthey tend to be large since demand
will naturally decrease, and vice-versa when prices are cheap because consumption will most likely
increase. Such effects are usually modeled by applying Ornstein-Uhlenbeck processes, where mean-
reversion means that up to an additive noise term thespeedof the (log-)price at each moment is
proportional to the negative of the current (log-)price, i.e. (in a heuristic sense)

dYt

dt
= −αYt +

dNt

dt
,

for a noise processN . The speed of reversion is measured byα. In an integral form, this means that

Yt = Y0 +

∫ t

0
g(t − s) dNs ,

whereg(x) = exp(−αx). A much weaker concept of ‘mean-reversion’ is to assumestationarityof
the log-price process. With the classical interpretation of mean-reversion, the prices will be physically
pushed back to some mean–level, whereas stationarity implies a push of prices back to a mean level
in a probabilistic sense. Starting out with this, we can relax the choice ofg above to a much wider
class of functions, still preserving stationarity and thereby modelling ‘mean-reversion’. This is one of
our modelling ideas for the spot.

Also, we believe that the price of the spot (and the forward price) is influenced by astochastic
volatility processω, see e.g. Hikspoors & Jaimungal (2008) and Benth (2009), which, based on empir-
ical evidence, describes the volatility of the spot market as a whole. More precisely, we will assume
that the volatility of the spot depends on previous states ofthe volatility.

Finally, we wish to account for the so-calledSamuelson effect, see Samuelson (1965), which is
another stylised fact of electricity markets related to therelationship between the volatility of the spot
and the volatility of forward prices. Usually the volatility of the forward price is smaller than the
volatility of the spot and decreases with time to maturity. The Samuelson effect refers to the finding
that, when the time to maturity approaches zero, the volatility of the forward starts increasing and
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2 LÉVY SEMISTATIONARY PROCESSES

converges to the volatility of the spot eventually. We will show how our new modelling framework
allows for such effects in a natural way.

The remaining part of the paper is structured as follows. We start by introducing the class of
Lévy semistationary processes in Section 2. Section 3 develops two new types of spot price models
based on Lévy semistationary processes: a geometric and anarithmetic model. Furthermore we
describe how our new models embed many of the traditional models used in the recent literature on
modelling electricity spot prices. We proceed by discussing some of the probabilistic properties of
our new models in Section 4; and in Section 5, we derive the forward price dynamics of the models
and consider questions like affinity of the forward price with respect to the underlying spot. Finally,
Section 6 concludes and the appendix, see Section A, contains the proofs of the main results.

2 Lévy semistationary processes

Throughout this paper, we suppose that we have given a probability space(Ω,F , P ) with a filtration
{Ft}t∈R satisfying the ‘natural conditions’, see Karatzas & Shreve(2005).

Now we introduce the class of Lévy semistationary (from nowonLSS) processes, which we will
use as a building block for our new models for electricity (or, more generally, commodity) spot prices.
A LSS processY = {Yt}t∈R

is given by

Yt = µ +

∫ t

−∞
g(t − s)ωsdLs +

∫ t

−∞
q(t − s)asds, (1)

whereµ is a constant,L is a Lévy process,g andq are nonnegative deterministic functions onR,
with g (t) = q (t) = 0 for t ≤ 0, andω and a are càdlàg processes. Note that the name Lévy
semistationary processes has been derived from the fact that the processY is stationary as soon asω
anda are stationary. As an abbreviated version of the above formula we write

Y = µ + g ∗ ω • L + q ∗ a • Leb, (2)

whereLeb denotes Lebesgue measure.
The stochastic integral in (1) could be defined in a weak senseas described in Rajput & Rosinski

(1989). However, in order to have more powerful tools for analysing such processes, we will work
with a general integration concept developed in Basse-O’Connor et al. (2010) which specialises to the
concept of Rajput & Rosinski (1989) for deterministic integrands and to Itô integration, see Protter
(2005), when we are in the semimartingale framework. Note that the stochastic processes defined
in (1) are defined on the whole real line in contrast to the standard stochastic integrals which are
defined on compact time intervals. We summarise the main points of the general integration concept
in Section 4.

Clearly, the termg ∗ ω • L in Y is a special case of a volatility modulated Lévy-driven Volterra
(VMVP) process, see Barndorff-Nielsen & Schmiegel (2008),which has the form

∫ t

−∞
g(t, s)ωs dLs , (3)

whereL is a Lévy process andg is a nonnegative real-valued measurable function onR
2, such that the

integral with respect toL exists. Throughout the paper we shall also be concerned withsuch VMVP
processes.

Remark. A special type ofLSS processes is given by the class of Brownian semistationary (BSS)
processes, where the driving Lévy processL = W , for a standard Brownian motionW = (Wt)t∈R.
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3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

Such processes have recently been introduced by Barndorff-Nielsen & Schmiegel (2009) in the con-
text of modelling turbulence in physics. The problem of drawing inference on the volatility – by
means of generalised realised multipower variations – in such general models has been studied in
Barndorff-Nielsen, Corcuera & Podolskij (2009, 2010).

Note that the class ofBSS processes can be considered as the natural analogue for (semi-) sta-
tionary processes of Brownian semimartingales (BSM) , given by

Yt =

∫ t

0
ωsdBs +

∫ t

0
asds.

The class ofLSS processes can be embedded into the class of ambit processes,which are very
general tempo–spatial stochastic processes. I.e. letY = {Yt (x)} denote a stochastic field in space-
timeX × R and letτ (θ) = (x (θ) , t (θ)) denote a curve inX × R. We define

Yt(x) = µ +

∫

At(x)
g(ξ, s;x, t)ωs(ξ)L(dξ, ds) +

∫

Dt(x)
q(ξ, s;x, t)as(ξ)dξds, (4)

whereL denotes a Lévy basis,g, q are deterministic kernel functions,At (x) ,Dt (x) ⊂ X × Rt,
andω, a denote stochasticvolatility fields. Clearly,X = (Xθ) with Xθ = Yt(θ)(x(θ)) denotes a
stochastic process. We call(Yt(x)) anambit fieldand(Xθ) andambit process, see Barndorff-Nielsen
& Schmiegel (2007), Barndorff-Nielsen, Benth & Veraart (2009).

When we consider the null–spatial case in the context of ambit processes, i.e. when the spaceX
consists of a single point (or we just considerYt (x) of (4) in its dependence ont keepingx fixed), the
concept of ambit processes specialises to that of Lévy semistationary processes.

The direct link betweenLSS and ambit processes makes it possible to model both electricity spot
and forward prices in a consistent framework. When we model spot prices based onLSS processes
and forward prices based on ambit fields, one can show, see Barndorff-Nielsen, Benth & Veraart
(2010), that these two models can be linked to each other in a very natural way.

3 The new model for the electricity spot price

3.1 Model building

Based on the new class of Lévy semistationary processes, wecan now start developing a new class of
models for electricity spot prices.

First of all, we wish to point out why we think that the class ofLSS processes is particularly
suitable as a building block for modelling commodity markets. We choose a Lévy processL =
(Lt)t∈R as the driving process of the electricity spot price to reflect the fact that there are periods of
relative smooth prices followed by usually shorter periodsof price spikes and jumps. Moreover, as
already mentioned, we wish to allow for stochastic volatility denoted byω = (ωt)t∈R. This is done
by scaling of the driving Lévy process, i.e. we work with a stochastic integral ofω with respect to
L. Furthermore, we multiply the stochastic volatility component by a deterministic kernel functiong,
say, to get more flexibility in order to model the Samuelson effect in a realistic way. I.e. the building
block for the electricity spot priceY = (Yt)t∈R will be a special case of aLSS process, which is
given by

Yt =

∫ t

−∞
g(t − s)ωsdLs, (5)

for a damping functiong : R+ → R+, and a càdlàg, positive, stationary processω which is indepen-
dent of the two–sided Lévy processL. In the definition ofY in (5), we could add a drift term, as in
(1). However, in order to keep matters as simple as possible,we restrain from doing so.
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3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

3.2 A geometric and an arithmetic model

After having presented the main building block of our new model, the question is now how exactly
we wish to model the electricity spot price. Basically, we can follow two paths: We can construct a
geometric or an arithmetic model.

3.2.1 Geometric model

In a geometric set up, we define the spot priceSg = (Sg
t )t∈R by

Sg
t = Λ(t) exp(Yt) , (6)

whereΛ : R+ → R+ denotes a bounded and measurable deterministic seasonal function.
In such a modelling framework, the deseasonalised, logarithmic spot price is given by a driftless

LSS process. Special cases of such a model include the CARMA–based model and the classical
Schwartz model, as discussed later.

3.2.2 Arithmetic model

Alternatively, one can construct a spot price model which isof arithmetic type. Since we wish to
ensure that the prices can only take positive values (although electricity prices can sometimes turn
negative, when the supply highly exceeds the demand), we formulate the following condition which
is sufficient for price positivity.

Assumption (P): Let L be a Lévy subordinator and let the kernel functiong in (5) be positive.

If assumption (P) is satisfied, we define the electricity spotpriceSa = (Sa
t )t≥0 by

Sa
t = Λ(t)Yt, (7)

whereΛ : R+ → R+ again denotes a bounded and measurable deterministic seasonal function andY
is defined as in (5).

Note that a processY defined by (5) and satisfying condition (P) generalises the class of convo-
luted subordinators defined in Bender & Marquardt (2009) to allow for stochastic volatility.

We remark that we do not assume that the dynamics of the spot model Sg
t or Sa

t starts at the
current spot priceSg

0 or Sa
0 , respectively, as is customary in most spot price models forfinancial asset

prices in the literature. We ratherassumethat the observed spot price today is anobservationof the
random variableSg

0 = Λ(0) exp(Y0) andSa
0 = Λ(0)Y0. The reason being that we in fact model a

deseasonalised price series which is in stationarity. Mostmodels for the spot price of commodities,
are modelled by stochastic processes which tend to stationary processes as timet → ∞. In fact, this
means that at every time instance, it will take some time before the stochastic price dynamics are in
stationarity. Therefore it is in fact much more reasonable to model directly under stationarity than
using a model where we condition on the observation today.

3.3 Model discussion and further extensions

After having presented our new models we would like to give some further justification why we think
they are particularly suitable for modelling electricity spot prices and we will also indicate some
further extensions which can be easily included in our new modelling framework.

There are several key features which make our new models boththeoretically interesting and
practically relevant compared to the traditional models.
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3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

First and foremost, we model the deseasonalised, (logarithmic) spot priceY directly, rather than
its stochastic dynamics. By doing so, we can introduce a general kernel functiong, which adds much
more flexibility in modelling the mean-reversion of the price process. For instance, as we shall see
in the section on forward prices, we can achieve greater flexibility in modelling the shape of the
Samuelson effect observed in forward prices, including thehyperbolic one suggested by Bjerksund
et al. (2000) as a reasonable volatility feature in power markets.

Note that ourLSS–based models are able to produce various types of autocorrelation functions
depending on the choice of the kernel functiong, see Section 4.4 for more details.

Furthermore, we account for stochastic volatilityω since this is clearly an issue in energy markets,
see e.g. Hikspoors & Jaimungal (2008), Trolle & Schwartz (2009), Benth (2009) and Benth & Vos
(2009). A very general model for the volatility process would be that we model it itself as a Lévy
Volterra process, i.e.ω2

t = Zt and

Zt =

∫ t

−∞
i(t, s) dUs , (8)

wherei denotes a deterministic kernel function. In fact, if we wantto ensure that the volatilityZ is
stationary, we can work with a kernel function of the formi(t, s) = i∗(t − s), for a deterministic
function i∗ which is integrable w.r.t.U . In order to haveZ positive, we assumei to be a positive
function andU a subordinator.

A straightforward extension of our model is to study a superposition ofLSS processes for the
spot price dynamics. I.e. we could replace the processY by a superposition ofJ ∈ N factors:

J∑

i=1

wiY
(i)
t , wherew1, . . . , wJ ≥ 0,

J∑

i=1

wi = 1,

and where allY (i)
t are defined as in (5) for independent Lévy processesL(i) and independent stochastic

volatility processesω(i), in both the geometric and the arithmetic model. Such modelsinclude the
Benth, Kallsen & Meyer-Brandis (2007) model as a special case. A superposition of factorsY (i)

opens for the separate modelling of spikes and other effects. For instance, one could let the first factor
account for the spikes, using a Lévy process with big jumps at low frequency, while the functiong
forces the jumps back at a high speed. The next factor(s) could model the ”normal” variations of the
market, where one observes a slower force of mean-reversion, and high frequent Brownian-like noise.
Note that all the results we derive in this paper based on the one factor model can be easily generalised
to accommodate for the multifactor framework. For notational simplicity, in the following, we focus
on the one-factor case.

Also, according to Burger et al. (2003, 2007) it might be necessary to allow for non-stationary
effects. Such effects can be easily modelled by a second factor which is added to our spot model,
e.g. as a drifted Brownian motion say. However, such models generally do not belong to the class of
Lévy semistationary models and thus we disregard them heresince the scope of this paper is to study
suitable models for the stationary part of the price process.

Finally, note that an alternative model specification couldbe based on a stochastic time change∫ t

−∞ g(t − s)dLω2+
s

, whereω2+
s =

∫ t

0 ω2
udu. However, since models based on (5) are more straight-

forward to generalise to a multivariate framework, we stickto the former class. Note that extensions
to a multivariate framework can be considered along the lines of Barndorff-Nielsen & Stelzer (2009,
2010).
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3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

3.4 Traditional spot price models asLSS–based models

One of the main advantages of the new model class besides its great generality is that it nests most of
the standard models which have been used in the literature onmodelling electricity prices in recent
years.

Thus our new model nests the stationary version of the classical one-factor Schwartz model,
see Schwartz (1997), studied for oil prices. In order to see that, one just has to chooseg(t − s) =
exp(−α(t − s)) for a positive constantα, the volatility being a positive constantω, andL a standard
Brownian motion. By lettingL be a Lévy process with the pure-jump part given as a compound
Poisson, Cartea & Figueroa (2005) succesfully fitted the Schwartz model to electricity spot prices in
the UK market. Benth &Šaltytė Benth (2004) used a normal inverse Gaussian Lévy processL to
model UK spot gas and Brent crude oil spot prices.

Another example which is nested by the class of Lévy semistationary processes is a model studied
in Benth (2009) in the context of gas markets, where the deseasonalised logarithmic spot price dy-
namics is assumed to follow a one-factor Schwartz process with stochastic volatility. More precisely,
the functiong is chosen to beg(t − s) = exp(−α(t − s)), whereas the volatilityω2

t = Zt is defined
by

Zt =

∫ t

−∞
e−λ(t−s) dUλt , (9)

with U being a subordinator process to ensure positivity ofZ. This model we recall as the BNS
stochastic volatility model, see Barndorff-Nielsen & Shephard (2002).

A more general class of models which we nest is the class of so-called CARMA-processes, which
has been successfully used in temperature modelling and weather derivatives pricing, see Benth,
Šaltytė Benth & Koekebakker (2007), Benth et al. (2009) andLópez Cabrera & Härdle (2009), and
more recently for electricity prices by Bernhardt et al. (2008). A CARMA process is the continuous-
time analogue of an ARMA time series, see Brockwell (2001a,b) for definition and details. More
precisely, suppose that forp > q

Yt = b
′
Vt ,

whereb ∈ R
p andVt is ap dimensional OU process of the form

dVt = AVtdt + epdLt, (10)

with

A =

[
0 Ip−1

−αp −αp−1 · · · − α1

]
.

Here we use the notationIn for the n × n-identity matrix,ep the pth coordinate vector andb′ =
[b0, b1, . . . , bp−1] is the transpose ofb, with bq = 1 andbj = 0 for q < j < p. In Brockwell (2004),
it is shown that if all the eigenvalues ofA have negative real parts, thenVt defined as

Vt =

∫ t

−∞
eA(t−s)

ep dL(s) ,

is the (strictly) stationary solution of (10). Moreover,

Yt = b
′Vt =

∫ t

−∞
b
′eA(t−s)

ep dL(s) , (11)

is a CARMA(p, q) process. Hence, specifyingg(x) = b
′ exp(Ax)ep in (11), the log-spot price

dynamics will be aLSS-process (without stochastic volatility). Bernhardt et al. (2008) argue for
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4 PROBABILISTIC PROPERTIES OF THE MODEL

CARMA(2,1) dynamics as an appropriate class of models for the deseasonalised log-spot price at
the Singapore New Electricity Market. The innovation process L is chosen to be in the class of
stable processes. From Benth,Šaltytė Benth & Koekebakker (2007), CARMA(3,0) models seem
appropriate for modelling daily average temperatures, andare applied for temperature derivatives
pricing, including forward price dynamics of various contracts. More recently, the dynamics of wind
speeds have been modelled by a CARMA(4,0) model, and appliedto wind derivatives pricing. See
Benth &Šaltytė Benth (2009) for more details.

Finally note that the arithmetic model based on a superposition ofLSS processes nests the non–
Gaussian Ornstein–Uhlenbeck model which has recently beenproposed for modelling electricity spot
prices, see Benth, Kallsen & Meyer-Brandis (2007). In orderto see that, we just have to choose
g(i)(x) = exp(−λ(i)x) for λ(i) > 0 and i = 1, . . . , J and J ∈ N, and, also, to specialise the
stochastic volatility processesω(i) to positive, bounded,deterministicfunctions.

4 Probabilistic properties of the model

In this section we discuss the conditions under which the processYt is well-defined and describe in
which sense the stochastic integration in (2) is to be understood.

Furthermore, we study the second–order characteristics ofaLSS process. In particular, the co-
variance function ofYt is of practical importance since the empirical covariance structure is a statisti-
cal measure applied to fix models. We provide analytical expressions for the autocovariance function
for Yt in many cases, and discuss other probabilistic properties as well.

4.1 Stochastic integration and integrability conditions

There are various ways in which the stochastic integral in (2) can be defined. One possibility would
be to use the weak integration concept with respect to a random measure, which has been introduced
in Rajput & Rosinski (1989). However, such integrals have only been studied for deterministic inte-
grands and, furthermore, we wish to have a stronger integration concept, which specialises to classical
Itô integrals when we are in the semimartingale framework.

In this paper we use the stochastic integration concept described in Basse-O’Connor et al. (2010)
where a stochastic integration theory onR, rather than on compact intervals as in the classical frame-
work, is presented. In the following, we briefly review this general integration theory. Recall, that
we work with a filtered probability space(Ω,F , (Ft)t∈R, P), where the filtration is assumed to be
right–continuous and complete. The aim is now to define integrals of the type

∫

R

φsdZs, (12)

whereφ is a predictable stochastic process andZ is a(Ft)t∈R (increment) semimartingale, see Basse-
O’Connor et al. (2009). A special case of such an integral is given by

Xt =

∫

R

φt−sdZs, (13)

for fixed t. In particular, for

φt−s = g(t − s)ωsI[0,∞)(t − s),

(13) specialises to aLSS process.
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4 PROBABILISTIC PROPERTIES OF THE MODEL

Note thatZ = (Zt)t∈R has{Ft}–adapted increments if for alls ≤ t the differenceXt − Xs is
Ft–measurable. We denote byJ the set of{Ft}–stopping times, see Basse-O’Connor et al. (2010),
which take at most finitely many values and byA the ring onR × Ω which is generated by the
stochastic intervals(S, T ] for stopping timesS, T ∈ J with S ≤ T . One can now define an additive
set function onA which is given by

mZ((S, t]) = ZT − ZS , for S, T ∈ J , S ≤ T.

In a next step, Basse-O’Connor et al. (2010) introduce the spaceV as the vector lattice of step functions
overA which is equipped the Schwartz topology, i.e. the inductiveuniform topology corresponding
to uniform convergence on compact intervals. A simple integral IZ : V → L0 can then be defined
for simple functionsφ ∈ V with φ =

∑n
i=1 riI(Si,Ti], wheren ∈ N, Si, Ti ∈ J , Si ≤ Ti and

r1, . . . , rn ∈ R by

IZ(φ) =
n∑

i=1

ri(ZTi
− ZSi

).

The general integral (12) is then defined based on the limit ofsimple functions satisfying a dominated
convergence theorem.

Basse-O’Connor et al. (2010) formulate general integrability conditions which ensure that the
integral (12) is well defined. In the case of aLSS process, i.e.Yt =

∫ t

−∞ g(t − s)ωsdLs those
integrability conditions specialise as follows. Let(γ, σ2, ℓ) denote the Lévy triplet ofL associated
with a truncation functionh.

According to Basse-O’Connor et al. (2010), the processg ⋆ ω is integrable with respect toL if
and only if the following conditions hold almost surely:

∫ t

−∞
g2(t − s)ω2

sσ
2 < ∞,

∫ t

−∞

∫

R

(
1 ∧ |g(t − s)ωsz|

2
)

ℓ(dz)ds < ∞

∫ t

−∞

∣∣∣∣g(t − s)ωsγ +

∫

R

(h(zg(t − s)ωs) − g(t − s)ωsh(z)) ℓ(dz)

∣∣∣∣ ds < ∞.

(14)

Example 1. In the case of a Gaussian Ornstein–Uhlenbeck process, i.e. wheng(t−s) = exp(−α(t−
s)) for α > 0 andω ≡ 1, then the integrability conditions above are clearly satisfied, since we have

∫ t

−∞
exp(−2α(t − s))dsσ2 =

1

2α
σ2 < ∞.

For many financial applications it is natural to restrict theattention to models where the variance
is finite, and we focus therefore on Lévy processesL with finite second moment. Note that the inte-
grability conditions above do not ensure square-integrability of Yt. But substitute the first condition
in (14) with the stronger condition

∫ t

−∞
g2(t − s)E[ω2

s ] ds < ∞ , (15)

then
∫ t

−∞ g(t− s)ωsd(Ls −E(Ls)) is square integrable. Clearly,E[ω2
s ] is constant in case of station-

arity.
For the Lebesgue integral part, we need

E

[(∫ t

−∞
g(t − s)ωs ds

)2
]

< ∞ . (16)
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4 PROBABILISTIC PROPERTIES OF THE MODEL

Appealing to the Cauchy–Schwarz inequality, we find

E

[(∫ t

−∞
g(t − s)ωs ds

)2
]
≤

∫ ∞

0
g2a(x) dx

∫ t

−∞
g2(1−a)(t − s)E[ω2

s ] ds ,

for a constanta ∈ (0, 1). Thus, a sufficient condition for (16) to hold is that there exists ana ∈ (0, 1)
such that

∫ ∞

0
g2a(x) dx < ∞ ,

∫ t

−∞
g2(1−a)(t − s)E[ω2

s ] ds < ∞ . (17)

Given a model forωs andg, these conditions are simple to verify. Let us consider an example.

Example 2. Recall that the Schwartz model specified the functiong asg(x) = exp(−αx) for α > 0.
In case of constant volatility, we find from a straightforward calculation that the conditions (14)
are satisfied. Next, suppose thatωs is defined by the BNS stochastic volatility model, that is (9),
wherei(t, s) = exp(−λ(t − s)) andUs a subordinator. Suppose now thatUt has cumulant function∫∞
0 (exp(iθz)−1) ℓU (dz) for a Lévy measureℓU supported on the positive real axis, andUt has finite

expectation. In this case we have that

E
[
ω2

s

]
= E[Zs] =

1

λ

∫ ∞

0
z ℓU (dz) < ∞ .

Thus, both (15) and (16) are satisfied (the latter seen after using the sufficient conditions), and we find
thatYt is a square-integrable stochastic process.

4.2 Wold–Karhunen representation of stationary processes

Using anLSS process as a building block for the spot price is in fact a verygeneral modelling
choice. Indeed, due to the continuous time Wold-Karhunen decomposition any second order stationary
stochastic process, possibly complex valued, of mean0 and continuous in quadratic mean can be
represented as

Yt =

∫ t

−∞
φ (t − s) dΞs + Vt, (18)

where the deterministic functionφ is an, in general complex, deterministic square integrablefunction,

the processΞ has orthogonal increments withE
{
|dΞt|

2
}

= ̟dt for some constant̟ > 0 and the

processV is nonregular (i.e. its future values can be predicted, in theL2 sense, by linear operations on
past values without error). Under the further condition that ∩t∈Rsp {Ys : s ≤ t} = {0}, the function
φ is real and uniquely determined up to a real constant of proportionality; and the same is therefore
true ofΞ (up to an additive constant). In particular, ifdΞs = ωsdLs, with ω andL as in (2) thenΞ is
of the above type with̟ = E

{
ω2

0

}
.

4.3 Absence of arbitrage

A natural question to ask is whether our model is prone to arbitrage opportunities. Clearly, anLSS
process is in general not a semimartingale. Hence, at first sight, one might think that this fact can give
rise to arbitrage opportunities. However, the standard semimartingale assumption in mathematical
finance is only valid fortradeableassets in the sense of assets which can be held in a portfolio.
The electricity spot is naturally not storable, and thus cannot be part of any financial portfolio. The
requirement of being a martingale under some equivalent measureQ is therefore not necessary.

10



4 PROBABILISTIC PROPERTIES OF THE MODEL

Remark. In order to useLSS processes in other applications than the ones studied in this paper, it
will be necessary to derive appropriate semimartingale conditions forLSS processes. Such conditions
can be derived along the lines of Barndorff-Nielsen & Schmiegel (2009) and Barndorff-Nielsen &
Basse-O’Connor (2009) and will be studied in future research.

Furthermore, we would like to stress that we work with stochastic processes defined on the entire
real line. The standard theory of mathematical arbitrage, see Delbaen & Schachermayer (2008), is
defined for stochastic processes starting from 0 and not from−∞ as in our model. Our new modelling
framework makes it therefore necessary to define a more general concept of mathematical arbitrage
as it has traditionally been used.

If absence of arbitrage is defined in the classical set up, then Guasoni et al. (2008) have pointed
out that, while in frictionless markets martingale measures play a key role, this is not the case anymore
in the presence of market imperfections. In fact, in marketswith transaction costs,consistent price
systemsas introduced in Schachermayer (2004) are essential. In such a setup, even processes which
are not semimartingales can ensure that we haveno free lunch with vanishing riskin the sense of
Delbaen & Schachermayer (1994). It turns out that if a continuous price process hasconditional
full support, then it admits consistent price systems for arbitrarily small transaction costs, see Guasoni
et al. (2008). It has recently been shown by Pakkanen (2010),that under certain conditions, see below,
aBSS process has conditional full support. This means that such processes can be used in financial
applications without giving rise to arbitrage opportunities. We briefly review the main result proved
in Pakkanen (2010). The distributional property ofconditional full supportis defined (for continuous
processes) in the following way: We define for anyx ∈ R the set of functionsf ∈ C([u, v]) for
u, v ∈ R, u ≤ v such thatf(u) = v, which we denote byCx([u, v]). The function spaces are
endowed with the uniform norm topology. For a fixed time horizonT ∈ (0,∞), a continuous process
(Xt)t∈[0,T ] is said to haveconditional full support(CFS), if for everyτ ∈ [0, T ) and a.e.ω ∈ Ω,

supp(Law[(Xt)t∈[τ,T ]|Fτ ](ω)) = CXτ (ω)([τ, T ]),

where supp denotes the support and where Law[(Xt)t∈[τ,T ]|Fτ ] denotes theFτ –conditional distribu-
tion of theC([τ, T ])–random variableX|[τ,T ]. For theBSS processes, we get the following result,
see Pakkanen (2010, Theorem 1.3). LetΞ = (Ξt)t∈[0,T ] be a continuous process, let(ωt)t∈(−∞,T ]

be cádlág satisfyingsupt∈(−∞,T ] E(ω2
t ) < ∞ andλ({t ∈ [0, T ] : ωt = 0}) = 0 a.s.. Also, let

(Wt)t∈(−∞,T ] be a Brownian motion and letg : (0,∞) → R be a function satisfyingg ∈ L2((0,∞))
and there existsα,C > 0 such that

∫ ∞

0
g2(s)ds −

∫ ∞

0
g(t + s)g(s)ds ≤ Ctα, for all t ∈ [0, T ],

and, furthermore,
∫ ǫ

0 |g(s)|ds > 0 for all ǫ > 0. If (Ξ, ω) is independent ofB, then the process

Ψt = Ξt +

∫ t

−∞
g(t − s)ωsdBs, t ∈ [0, T ],

has conditional full support.

4.4 Second order structure of Ĺevy–driven semistationary models

We round off this section on the probabilistic properties ofLévy semistationary processes by focus-
ing on their second order structure. In fact, we will state the results for the more general volatility

11



4 PROBABILISTIC PROPERTIES OF THE MODEL

modulated Volterra processY = (Y t)t∈R, where

Y t =

∫ t

−∞
G(t, s)ωsdLs, (19)

with a deterministic functionG such that the integral in (19) exists. Clearly, forG(t, s) = g(t − s)
we get thatY t = Yt with Y as defined in (5). Letκ1 = E(L1) andκ2 = V ar(L1).

Under the additional assumption that the stochastic volatility ω is independent of the driving Lévy
process, we can compute the conditional second order structure, which we do in the following.

Theorem 1. LetL andω be independent. The conditional second order structure ofY is given by

E(Y t|ω) = κ1

∫ t

−∞
G(t, s)ωsds, V ar(Y t|ω) = κ2

∫ t

−∞
G(t, s)2ω2

sds,

and

Cov((Y t+h, Y t)|ω) = κ2

∫ t

−∞
G(t + h, s)G(t, s)ω2

sds.

Corollary 1. LetL andω be independent. The conditional second order structure ofY is given by

E(Yt|ω) = κ1

∫ ∞

0
g(x)ωt−xdx, V ar(Yt|ω) = κ2

∫ ∞

0
g(x)2ω2

t−xdx,

and

Cov((Yt+h, Yt)|ω) = κ2

∫ ∞

0
g(x + h)g(x)ω2

t−xdx.

The unconditional second order structure ofY is then given as follows.

Theorem 2. The second order structure ofY for stationaryω is given by

E(Y t) = κ1E(ω0)

∫ t

−∞
G(t, s)ds,

V ar(Y t) = κ2E
(
ω2

0

) ∫ t

−∞
G(t, s)2ds + κ2

1

∫ t

−∞

∫ t

−∞
G(t, s)G(t, u)γ(|s − u|)dsdu,

Cov(Y t+h, Y t) = κ2E
(
ω2

0

) ∫ t

−∞
G(t + h, s)G(t, s)ds

+ κ2
1

∫ t+h

−∞

∫ t

−∞
G(t + h, s)G(t, u)γ(|s − u|)dsdu,

whereγ(x) = Cov(ωt+x, ωt) denotes the autocovariance function ofω.

The unconditional second order structure ofY is then given as follows.

Corollary 2. The second order structure ofY for stationaryω is given by

E(Yt) = κ1E(ω0)

∫ ∞

0
g(x)dx,

V ar(Yt) = κ2E
(
ω2

0

) ∫ ∞

0
g(x)2dx + κ2

1

∫ ∞

0

∫ ∞

0
g(x)g(y)γ(|x − y|)dxdy,

Cov(Yt+h, Yt) = κ2E
(
ω2

0

) ∫ ∞

0
g(x + h)g(x)dx + κ2

1

∫ ∞

0

∫ ∞

0
g(x + h)g(y)γ(|x − y|)dxdy,

12



5 PRICING OF FORWARD CONTRACTS

whereγ(x) = Cov(ωt+x, ωt) denotes the autocovariance function ofω. Hence, we have

Cor(Yt+h, Yt) =
κ2E

(
ω2

0

) ∫∞
0 g(x + h)g(x)dx + κ2

1

∫∞
0

∫∞
0 g(x + h)g(y)γ(|x − y|)dxdy

κ2E
(
ω2

0

) ∫∞
0 g(x)2dx + κ2

1

∫∞
0

∫∞
0 g(x)g(y)γ(|x − y|)dxdy

.

Corollary 3. If κ1 = 0 or if ω has zero autocorrelation, then

Cor(Yt+h, Yt) =

∫∞
0 g(x + h)g(x)dx∫∞

0 g(x)2dx
.

The last Corollary shows that we get the same autocorrelation function as in theBSS model.
From the results above, we clearly see the influence of the general damping functiong on the corre-
lation structure. A particular choice ofg, which is interesting in the energy context is studied in the
next example.

Example 3. Consider the caseg(x) = σ
x+b

, for σ, b > 0, which is motivated from the model of
Bjerksund et al. (2000), as we shall return to in the next section when we deal with forward pricing. We
have that

∫∞
0 g2(x) dx = σ2

b
. This ensures integrability ofg(t − s) over(−∞, t) with respect to any

square integrable martingale Lévy processLt. Furthermore,
∫∞
0 g(x + h)g(x) dx = σ2

h
ln
(
1 + h

b

)
.

Thus,

Cor(Yt+h, Yt) =
b

h
ln

(
1 +

h

b

)
.

Observe that sinceg can be written as

g(x) =
σ

x + b
=

∫ x

0

−σ ds

(s + b)2
+

σ

b
,

it follows that the processY (t) =
∫ t

−∞ g(t − s) dBs is a semimartingale according to the Knight
condition, see Knight (1992) and also Basse (2008), Basse & Pedersen (2009), Basse-O’Connor et al.
(2010).

5 Pricing of forward contracts

In this subsection we are concerned with the calculation of the forward priceFt(T ) at time t for
contracts maturing at timeT ≥ t. We denote byT ∗ < ∞ a finite time horizon for the forward market,
meaning that all contracts of interest maturebeforethis date.

Recall thatS = (S)t∈R denotes the electricity spot price, being either of arithmetic or geometric
kind as defined in (7) and (6), respectively. As in Section 4.4, we consider a general Lévy-driven
Volterra process

Y t =

∫ t

−∞
G(t, s)ωs dLs ,

with ωs being the stochastic volatility as defined in (19). We consider the general case ofG(t, s) rather
than the stationary situation withG(t, s) = g(t − s) since this leads to some interesting modelling
issues in the forward market.

Let Ft(T ) denote the forward price at timet of a contract delivering the underlying commodity
(electricity) at timeT ≥ t. We use the conventional definition of a forward price in incomplete
markets, see Duffie (1992), ensuring the martingale property of t 7→ Ft(T ),

Ft(T ) = EQ [ST | Ft] , (20)

13



5 PRICING OF FORWARD CONTRACTS

with Q being an equivalent probability toP . Here, we suppose thatST ∈ L1(Q), the space of
integrable random variables. In a moment we shall introducesufficient conditions for this.

Usually in finance one talks of equivalent martingale measuresQ, meaning that the equivalent
probability Q should turn the discounted price dynamics of the underlyingasset into a (local)Q-
martingale. However, as we have already discussed, this restriction is not relevant in electricity mar-
kets since the spot is not tradeable. Thus, we may choose any equivalent probabilityQ as pricing
measure. In practice, however, one restricts to a parametric class of equivalent probabilities, and the
standard choice seems to be given by the Esscher transform, see Benth et al. (2008), Shiryaev (1999).
The Esscher transform naturally extends the Girsanov transform to Lévy processes.

To this end, considerQθ
L defined as the Esscher transform ofL for a parameterθ(t) being a

Borel measurable function. Following Shiryaev (1999) (or Benth et al. (2008), Barndorff-Nielsen &
Shiryaev (2010)),Qθ

L is defined via the Radon-Nikodym density process

dQθ
L

dP

∣∣∣
Ft

= exp

(∫ t

−∞
θ(s) dLs −

∫ t

−∞
φL(θ(s)) ds

)
,

for θ(s) being integrable with respect to the Lévy process on(−∞, t] for everyt ≤ T ∗, andφL(x)
being the log-moment generating function ofL1.

A special choice is the ‘constant’ measure change, that is, letting

θ(t) = θ1(0,∞)(t). (21)

In this case, ifL has characteristic triplet(d, b, ℓL), whered is the drift, b is the volatility of the
continuous martingale part andℓL is the Lévy measure in the Lévy-Kintchine representation, see
Shiryaev (1999), a fairly straightforward calculation shows that, see Shiryaev (1999) again, the Es-
scher transform preserves the Lévy property ofLt, t > 0, and the characteristic triplet becomes
(dθ, b, exp(θ ·) ℓL), where

dθ = d + bθ +

∫

|z|<1
z(eθz − 1) ℓL(dz) .

This comes from the simple fact that the log-moment generating function ofLt underQθ
L is

φθ
L(x) , φL(x + θ) − φL(θ) . (22)

Note that the choice ofθ(t) as in (21) forces us to choose a starting time since the function will not
be integrable with respect toLt on (−∞, t). Starting at zero is convenient sinceL0 = 0, however, it
is also practically reasonable since this can be consideredas the current time. With such a choice we
do not introduce any risk premium fort < 0. In the general case, with a time-dependent parameter
function θ(t), the characteristic triplet ofLt underQθ

L will become time-dependent, and hence the
Lévy process property is lost. Instead,Lt will be an independent increment process (sometimes called
an additive process). We remark that the choice (21) ofθ also gives an independent increment process
Lt when considered as a process over all timest. Note that ifL = B, a Brownian motion, the Esscher
transform is simply a Girsanov change of measure wheredBt = θ(t) dt + dWt for a Qθ

L-Brownian
motionW .

Similarly, we do an Esscher transform ofU , the subordinator driving the stochastic volatility
model, see (8). We defineQη

U having the Radon-Nikodym density process

dQη
U

dP

∣∣
Ft

= exp

(∫ t

−∞
η(s) dUs −

∫ t

−∞
φU (η(s)) ds

)
,

14



5 PRICING OF FORWARD CONTRACTS

for η(t) ∈ R being some measurable function which is integrable with respect toU on (−∞, t) for
all t ≤ T ∗, andφU (x) being the log-moment generating function ofU1. SinceU is a subordinator,
we can write the Lévy-Kintchine representation of it as

φU (x) = d̃x +

∫

R

(exz − 1) ℓU (dz) .

Choosingη(t) = η1(0,∞)(t), with η a constant, an Esscher transform will give a characteristictriplet

(d̃, 0, exp(η ·) ℓU ), which thus preserves the subordinator property ofUt, t > 0, underQη
U . For

the general case, the processU will be a time-inhomogeneous subordinator (independent increment
process with positive jumps). The log-moment generating function is denotedφη

U (x).
To ensure the existence of the Esscher transforms, we need some conditions. We need that there

exists a constantc > 0 such thatsup |θ(s)| ≤ c, and where
∫
|z|>1 exp(cz)ℓ(dz) < ∞. (Similarly we

must have the same for the stochastic volatility,ℓU ). Also, we must require that exponential moments
of L1 andU1 exist. More precisely, we suppose that the Esscher transform parameter functionsθ(t)
andη(t) are such that

∫ T ∗

−∞

∫

|z|>1
e|θ(s)|z ℓL(dz) ds < ∞ ,

∫ T ∗

−∞

∫ ∞

1
e|η(s)|z ℓU (dz) ds < ∞ . (23)

The exponential integrability conditions of the Lévy measures ofL and U imply the existence of
exponential moments, and thus that the Esscher transformsQθ

L andQη
U are well-defined.

We define the probabilityQθ,η , Qθ
L ×Qη

U as the class of pricing measures for deriving forward
prices. In this respect,θ(t) may be referred to as the market price of risk, whereasη(t) is the market
price of volatility risk. We note that a choiceθ > 0 will put more weight to the positive jumps in
the price dynamics, and less on the negative, increasing the”risk” for big upward movements in the
prices underQθ,η.

Let us denote byEθ,η the expectation operator with respect toQθ,η, and byEη the expectation
with respect toQη

U .

5.1 Geometric case

Suppose that the spot price is defined by the geometric model

St = Λ(t) exp(Y t) ,

whereY is defined as in (19). In order to have the forward priceFt(T ) well-defined, we need to
ensure that the spot price is integrable with respect to the chosen pricing measureQθ,η. We discuss
this issue in some more detail.

We know thatωt is positive and in general not bounded since it is defined via asubordinator. Thus,
G(t, s)ωs + θ(s) is unbounded as well. Supposing thatL has exponential moments of all orders, we
can calculate as follows using iterated expectations conditioning on the filtrationGt generated by the
paths ofωs, s ≤ t:

Eθ,η [ST ] = Λ(T )Eθ,η

[
Eθ,η

[
exp

(∫ T

−∞
G(T, s)ωs dLs

)
| GT

]]

= Λ(T )Eη

[
exp

(∫ T

−∞
φθ

L(G(T, s)ωs) ds

)]
.

To have thatST ∈ L1(Qθ,η), the last integral must be finite. This puts additional restrictions on the
choice ofη and the specifications ofG(t, s) and i(t, s). We note that when applying the Esscher
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5 PRICING OF FORWARD CONTRACTS

transform, we must require thatL has exponential moments of all orders, a very strong restriction on
the possible class of driving Lévy processes.

We are now ready to price forwards under the Esscher transform. For general volatility modulated
Volterra processes (without a ‘drift term’) it holds:

Proposition 1. Suppose thatST ∈ L1(Qθ,η). Then, the forward price is given as

Ft(T ) = Λ(T ) exp

(∫ t

−∞
G(T, s)ωs dLs

)
Eη

[
exp

(∫ T

t

φθ
L(G(T, s)ωs) ds

) ∣∣∣∣ Ft

]
.

As a special case, considerL = B. In this case we apply the Girsanov transform rather than
Esscher, and it turns out that a rescaling of the transform parameter functionθ(t) by the volatilityωt

is convenient for pricing of forwards. To this end, considerthe Girsanov transform

dBt = dWt +
θ(t)

ωt
dt . (24)

Supposing that the Novikov condition

E

[
exp

(
1

2

∫ T ∗

−∞

θ2(s)

ω2
s

ds

)]
< ∞ ,

holds, we know thatWt is a Brownian motion fort ≤ T ∗ under a probabilityQθ
B having density

process
dQθ

B

dP

∣∣
Ft

= exp

(
−

∫ t

−∞

θ(s)

ωs
dBs −

1

2

∫ t

−∞

θ2(s)

ω2
s

ds

)
.

Suppose that there exists a measurable functionj(t) such that

j(t) ≥
i(t, s)

i(0, s)
, (25)

for all s ≤ t ≤ T ∗, with ∫ T ∗

−∞

θ2(s)

j(s)
ds < ∞ .

Furthermore, suppose thatω−2
0 has exponential moments up to a constantCU . Then, for allθ(t)

such that
∫ T ∗

−∞ θ2(s)/j(s) ds/2 ≤ CU , the Novikov condition is satisfied, since by the subordinator
property ofUt (restricting our attention tot ≥ 0)

ω2
t =

∫ t

−∞
i(t, s) dUs ≥

∫ 0

−∞
i(t, s) dUs ≥ j(t)

∫ 0

−∞
i(0, s) dUs = j(t)w2

0 ,

and therefore

E

[
exp

(
1

2

∫ T ∗

−∞

θ2(s)

ω2
s

ds

)]
≤ E

[
exp

(
1

2

∫ T ∗

−∞

θ2(s)

j(s)
ds ω−2

0

)]
< ∞ .

Specifyingi(t, s) = exp(−λ(t − s)), we have thati(t, s)/i(0, s) = exp(−λt) = j(t), and condi-
tion (25) holds with equality.
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We discuss the integrability ofST with respect toQθ,η , Qθ
B × Qη

U . By double conditioning
with respect to the filtration generated by the paths ofωt, we find

Eθ,η [ST ] = exp

(∫ T

−∞
G(T, s)θ(s) ds

)
Eθ,η

[
Eθ,η

[
exp

(∫ T

−∞
G(T, s)ωs dWs

)
| GT

]]

= exp

(∫ T

−∞
G(T, s)θ(s) ds

)
Eη

[
exp

(
1

2

∫ T

−∞
G2(T, s)ω2

s ds

)]
.

Collecting together the conditions onG, i, θ andη for verifying all the steps above, we find that if
s 7→ G(T, s)θ(s) is integrable on(−∞, T ) ands 7→ G2(T, s)i(s, v) is integrable on(v, T ) for all
−∞ < v ≤ T , thenST ∈ L1(Qθ,η) as long as

∫ T

−∞

∫ ∞

1
exp

(
z

{
1

2

∫ T

v

G2(T, s)i(s, v) ds + η(v)

})
ℓU (dz) dv < ∞ . (26)

We assume these conditions to hold.
We state the forward price for the caseL = B and the Girsanov change of measure discussed

above.

Proposition 2. Suppose thatL = B and thatQθ is defined by the Girsanov transform in(24). Then,
for t ≤ T ≤ T ∗,

Ft(T ) = Λ(T ) exp

(∫ t

−∞
G(T, s)ωs dWs +

1

2

∫ t

−∞

∫ T

t

G2(T, v)i(v, s) dv dUs

+

∫ T

−∞
G(T, s)θ(s) ds +

∫ T

t

φη
U

(
1

2

∫ T

s

G2(T, v)i(v, s) dv

)
ds

)
.

Let us consider an example.

Example 4. In the BNS stochastic volatility model, we havei(t, s) = exp(−λ(t − s)). Hence, from
Proposition 2 ∫ T

t

G2(T, v)e−λ(v−s) dv = e−λ(t−s)

∫ T

t

G2(T, v)eλ(t−v) dv

which yields, ∫ t

−∞

∫ T

t

G2(T, v)i(v, s) dv dUs = Zt

∫ T

t

G2(T, v)eλ(t−v) dv .

This implies from Proposition 2 that the forward price is affine in Z, the (square of the) stochastic
volatility. The stochastic volatility model studied in Benth (2009) is recovered by choosingG(t, s) =
g(t − s), g(x) = exp(−αx).

5.1.1 The case of constant volatility

Suppose for a moment that the stochastic volatility processωt is identical to one (i.e., that we do not
have any stochastic volatility in the model). In this case the forward price becomes

Ft(T ) = Λ(T ) exp

(∫ t

−∞
G(T, s) dWs +

∫ T

−∞
G(T, s)θ(s) ds

)

= Λ(T ) exp

(∫ t

−∞
G(T, s) dBs +

∫ T

t

G(T, s)θ(s) ds

)
.

17



5 PRICING OF FORWARD CONTRACTS

Hence, the logarithmic forward (log-forward) price is

ln Ft(T ) = Λ(T ) +

∫ T

t

g(T, s)θ(s) ds + Mt(T ) ,

with

Mt(T ) =

∫ t

−∞
g(T, s) dBs ,

for t ≤ T . Note thatt 7→ Mt(T ) for t > 0 is aP -martingale with the property

Mt(t) = Yt = ln St − ln Λ(t) .

In the classical Ornstein-Uhlenbeck case, withG(t, s) = g(t − s), g(x) = exp(αx), we easily
compute that

Mt(T ) = e−α(T−t)Yt ,

and the forward price is explicitly dependent on the currentspot price. In the general case, this does
not hold true. We have thatMT (T ) = YT , not unexpectedly, since the forward price converges to the
spot at maturity. However, apart from the special time pointt = T , the forward price will in general
notbe a function of the current spot, but a function of the processMt(T ). Thus, at timet, the forward
price will depend on

Mt(T ) =

∫ t

−∞
G(T, s) dBs ,

whereas the spot is given by

Yt =

∫ t

−∞
G(t, s) dBs .

Both Yt andMt(T ) are generated by integrating over the same paths of a Brownian motion, since
the two stochastic integrals can be pathwise interpreted (they are both Wiener integrals since the
integrands are deterministic functions). However, the paths are scaled by two different functions
G(T, s) andG(t, s). This allows for an additional degree of flexibility when creating forward curves
compared to affine structures.

In the classical Ornstein-Uhlenbeck case, the forward curve as a function of time to maturity
T − t will simply be a discounting of today’s spot price, discounted by the speed of mean reversion
of the spot (in addition comes deterministic scaling by the seasonality and market price of risk). To
highlight the additional flexibility in our modelling framework of semistationary processes, suppose
for the sake of illustration thatG(t, s) = g1(t)g2(s). Then

Mt(T ) =
g1(T )

g1(t)
Yt .

If furthermorelimT→∞ g1(T ) := g1(∞) 6= 0, we are in a situation where the long-end (that is,T
large) of the forward curve is not a constant. In fact, we find

lim
T→∞

(
ln Ft(T ) − g1(t)

∫ T

t

g2(s)θ(s) ds − ln Λ(T )

)
= (ln St − ln Λ(t))

g1(∞)

g1(t)
.

Sinceln St is random, we will have a randomly fluctuating long end of the forward curve. In fact,
the long end will be distributed as the stationary distribution of the deseasonalized log-spot scaled by
g1(∞)/g1(t). This is very different from the situation with a classical mean-reverting spot dynamics,
which implies a deterministic forward price in the long end (dependent on the seasonality and market
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5 PRICING OF FORWARD CONTRACTS

price of risk only). Various shapes of the forward curveT 7→ Ft(T ) can also be modelled via different
specifications ofG. For instance, ifg1(T ) is a decreasing function, we obtain the contango and
backwardation situations depending on the spot price beingabove or below the mean. IfT 7→ g1(T )
has a hump, we will also observe a hump in the forward curve. For general specifications ofG we can
have a high degree of flexibility in matching desirable shapes of the forward curve.

Observe that the time-dynamics of the forward price can be considered as correlated with the spot
rather than directly depending on the spot. In the Ornstein-Uhlenbeck situation, the log-forward price
can be considered as a linear regression on the current spot price, with time-dependent coefficients.
This is not the case for general specifications. However, we have thatMt(T ) andYt are both normally
distributed random variables (recall that we are still restricting our attention toL = B), and the
correlation between the two is

Cor(Mt(T ), Ys) =

∫ t

−∞ G(T, s)G(t, s) ds
√∫ t

−∞ G2(T, s) ds
∫ t

−∞ G2(t, s) ds
.

Obviously, forG(t, s) = g(t − s) = exp(−α(t − s)), the correlation is 1. In conclusion, we can
obtain a weaker stochastic dependency between the spot and forward price than in the classical mean-
reversion case by a different specification of the ”mean-reversion” functionG.

5.1.2 Affine structure of the forward price

In the discussion above we saw that the choiceG(t, s) = g1(t)g2(s) yielded a forward price express-
ible in terms ofYt. In the next Proposition we prove that this is the only choiceof G yielding an affine
structure. The result is slightly generalising the analysis of Carverhill (2003).

Proposition 3. The forward price in Proposition 2 is affine inYt and Zt if there exist functions
g1, g2, i1 and i2 such thatG(t, s) = g1(t)g2(s) and i(t, s) = i1(t)i2(s). Opposite, if the forward
price is affine inYt andZt, andG andi are strictly positive and continuously differentiable in the first
argument, then there exists functionsg1, g2, i1 and i2 such thatG(t, s) = g1(t)g2(s) and i(t, s) =
i1(t)i2(s).

Obviously, the choice ofG andi coming from OU-models,

G(t, s) = g(t − s) = exp(−α(t − s)) , i(t, s) = exp(−λ(t − s)) ,

satisfy the conditions in the Proposition above. In fact, appealing to similar arguments as in the
proof of Proposition 3 above, one can show that this is theonly choice (modulo multiplication by a
constant) which is stationary and gives an affine structure in the spot and volatility for the forward
price dynamics. In particular, the specificationg(x) = σ/(x + b) considered in Example 3 gives a
stationary spot price dynamics, but not an affine structure in the spot for the forward price.

5.1.3 Risk–neutral dynamics of the forward price

We next turn our attention to the risk-neutral dynamics of the forward price.

Proposition 4. The risk-neutral dynamics of the forward priceFt(T ) in Proposition 2 is

dFt(T )

Ft−(T )
= G(T, t)ωt dWt +

1

2

∫ T

t

G2(T, s)i(s, t) ds dŨη
t ,

whereŨη
t = Ut −

d
dx

φη
U (x)|x=0 t, t > 0 is aQη-martingale.
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We observe that the dynamics will jump according to the changes in volatility given by the process
Ut. Thus, although the spot dynamics has continuous paths, theforward price will jump. As expected,
the integrand in the jump expression tends to zero whenT − t → 0, since the forward price must
converge to the spot when time to maturity goes to zero.

The forward dynamics will have a stochastic volatility given byG(T, t)ωt. Wheneverlimt↑T G(T, t)
exists, andG(T, T ) = 1, we havea.s.,

lim
t↑T

G(T, t)ωt = ωT .

When passing to the limit, we have implicitly supposed that we work with the version ofωt having
left-continuous paths with right-limits. By the definitionof our integral inY t, where the integrand is
supposed predictable, this can be done. Thus, we find that theforward volatility converges to the spot
volatility as time to maturity tends to zero, which is known as the Samuelson effect. Contrary to the
classical situation where this convergence goes exponentially, we may have many different shapes of
the volatility term structure resulting from our general modelling framework.

In Bjerksund et al. (2000), a forward price dynamics for electricity contracts is proposed to follow

dFt(T )

Ft(T )
=

{
a +

σ

T − t + b

}
dWt , (27)

wherea, b andσ are positive constants. They argue that in electricity markets, the Samuelson effect
is stronger close to maturity than what is observed in other commodity markets, and they suggest to
capture this by letting it increase by the rate1/(T − t + b) close to maturity of the contracts. This
is in contrast to the common choice of volatility beingσ exp(−α(T − t)), resulting from using the
Schwartz model for the spot price dynamics. There is no reference to any spot model in the Bjerksund
et al. (2000) model. The constanta comes from a non-stationary behaviour, which we have not taken
into account in our modelling framework. However, fora = 0 we see that we can model the spot
price by theBSS process

Yt =

∫ t

−∞
g(t − s) dBs

with
g(x) =

σ

x + b
.

Thus, after doing a Girsanov transform, we recover the risk-neutral forward dynamics of Bjerksund
et al. (2000). The general case witha 6= 0 is easily included by adding an independent Brownian
motion term to the logarithmic spot price dynamics. It is interesting to note that with this spot price
dynamics, the forward dynamics is not affine in the spot. Hence, the Bjerksund et al. model is an
example of a non-affine forward dynamics. Wheneverσ 6= b, we do not have thatg(t, t) = 1, and
thus the Bjerksund model does not satisfy the Samuelson effect, either.

5.1.4 Option pricing

We end this section with a discussion of option pricing. Let us assume that we have given an option
with exercise timeτ on a forward with maturity at timeT ≥ τ . The option paysf(Fτ (T )), and we
are interested in finding the price at timet ≤ τ , denotedC(t). From arbitrage theory, it holds that

C(t) = e−r(τ−t)
EQ [f(Fτ (T )) | Ft] , (28)

whereQ is the risk-neutral probability. ChoosingQ as coming from the Esscher transform above, we
can derive option prices explicitly in terms of the characteristic function ofU by Fourier transform.
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5 PRICING OF FORWARD CONTRACTS

Moreover, we observe from Proposition 4 that we can state theforward price as

Fτ (T ) = H(τ, T ) exp

(∫ t

−∞
G(T, s)ωs dWs +

∫ t

−∞
h(T, s) dUs

)
,

for suitably defined functionsH andh. Let nowp(x) = f(exp(x)), and suppose thatp ∈ L1(R) . By
applying the definitions of Fourier transforms and the inverse in Folland (1984), we have that

p(x) =
1

2π

∫

R

p̂(y)eixy dy ,

with p̂(y) is the Fourier transform ofp(x) defined by

p̂(y) =

∫

R

p(x)e−ixy dx .

Hence, we find

f(Fτ (T )) =
1

2π

∫

R

p̂(y)eiy ln H(τ,T ) exp

(
iy

(∫ τ

−∞
G(T, s)ωs dWs +

∫ τ

−∞
h(T, s) dUs

))
dy .

(29)
Next, by commuting integration and expectation using dominated convergence and applying double
conditioning and the stochastic Fubini theorem, it holds that

Ct = e−r(τ−t) 1

2π

∫

R

p̂(y) exp

(
iy

(
ln H(τ, T ) +

∫ t

−∞
G(T, s)ωs dWs +

∫ t

−∞
h(T, s) dUs

))

× Eη

[
exp

(∫ τ

t

iyh(T, v) −
1

2

∫ τ

v

i(s, v)G2(T, s) ds dUv

)
| Ft

]
dy .

The last equality holds by the stochastic Fubini Theorem. Using the independent increment property
of U , we reach

Ct = e−r(τ−t) 1

2π

∫

R

p̂(y) exp

(
iy

(
ln H(τ, T ) +

∫ t

−∞
G(T, s)ωs dWs +

∫ t

−∞
h(T, s) dUs

))

× exp

(∫ τ

t

φη
U

(
iyh(T, v) −

1

2

∫ τ

v

i(s, v)G2(T, s) ds

)
dv

)
dy .

One can calculate option prices by applying the fast Fouriertransform as long as the characteristic
function ofU , φU , is known. Ifp is not integrable (as is the case for a call option), one may introduce
a damping function to regularize it, see Carr & Madan (1998) for details.

5.2 Arithmetic case

Let us consider the arithmetic spot price model,

St = Λ(t)Y t ,

whereY is defined as in (19). We analyse the forward price for this case, and discuss the affinity. The
results and discussions are reasonably parallel to the geometric case, and we refrain from going into
details but focus on some main results.

Under a natural integrability condition of the spot price with respect to the Esscher transform
measureQθ,η, we find the following forward price for the arithmetic model:
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Proposition 5. Suppose thatST ∈ L1(Qθ,η). Then, the forward price is given as

Ft(T ) = Λ(T )

{∫ t

−∞
G(T, s)ωs dLs + Eθ[L1]

∫ T

t

G(T, s)Eη[ωs | Ft] ds

}

The price is reasonably explicit, except of the conditionalexpectation of the stochastic volatility
ωs, which in general is very hard to compute. By the same arguments as in Proposition 3, the forward
price becomes affine in the spot (or inY t) if and only if G(t, s) = g1(t)g2(s) for sufficiently regular
functionsg1 andg2.

In the caseL = B, we can obtain an explicit forward price when using the Girsanov transform
as in (24). We easily compute that the forward price becomes

Ft(T ) = Λ(T )

{∫ t

−∞
G(T, s)ωs dWs +

∫ T

−∞
G(T, s)θ(s) ds

}
. (30)

We note that there is no explicit dependence of the spot volatility ωs except indirectly in the stochastic
integral. This is in contrast to the Lévy case with Esscher transform. The dynamics of the forward
price becomes

dFt(T ) = Λ(T )G(T, t)ωt dWt . (31)

It is interesting to notice that the volatility of the forward price in the arithmetic case depends on the
seasonality function directly. We refer to Benth et al. (2008) for a discussion of the seasonality effects
in the term structure of volatility.

If we furthermore letG(t, s) = g1(t)g2(s) for some sufficiently regular functionsg1 andg2, we
find that

Ft(T ) =
Λ(T )g1(T )

Λ(t)g1(t)
St + Λ(T )

∫ T

t

G(T, s)θ(s) ds . (32)

Hence, the forward curve moves stochastically as the spot price, whereas the shape of the curve
is deterministically given byΛ(T )g1(T )/Λ(t)g1(t). This shape is scaled stochastically by the spot
price. In addition, there is a deterministic term which is derived from the market price of riskθ.

We finally remark that also in the arithmetic case one may derive expressions for the prices of
options which are computable by fast Fourier techniques.

6 Conclusion

This paper has introduced a new class of models for energy spot prices, which is based on Lévy
semistationary processes. We have discussed the probabilistic properties of such models such as suit-
able integrability conditions, absence of arbitrage and the second order structure. Due to their very
general structure, Lévy semistationary processes can account for most of the stylised facts observed
in energy prices, including mean–reversion, stationarity, the presence of jumps and spikes, volatility
clusters and the Samuelson effect. Furthermore, our new class of models embeds most of the tradi-
tional models used in energy finance, such as the Schwartz model, CARMA models and models based
on non–Gaussian Ornstein Uhlenbeck processes. We have derived explicit formulae for the electricity
forward prices based on our new spot price models.

In future research it will be interesting to investigate howthe new models can be estimated and
how one can draw inference on the stochastic volatility process. InBSS models, the latter question
has been studied in Barndorff-Nielsen, Corcuera & Podolskij (2009, 2010). Extending such results to
more generalLSS processes is subject to future research.

Furthermore, we have mentioned in Section 4 that in order to ensure that there are no arbitrage
opportunities in a market with transaction costs, when non–semimartingales are used for modelling
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asset prices, a distributional property calledconditional full supportplays a key role in the context of
continuous stochastic process. So a natural question to study is: what is the analogue of such a distri-
butional property for jump processes in general and for Lévy semistationary processes in particular?

A Proofs

Proof of Proposition 1.First, write

∫ T

−∞
G(T, s)ωs dLs =

∫ t

−∞
G(T, s)ωs dLs +

∫ T

t

G(T, s)ωs dLs

and observe that the first integral on the right-hand side isFt-measurable. The result follows by using
double conditioning, first with respect to theσ-algebraGT generated by the paths ofωs, s ≤ T and
Ft, and next with respect toFt.

Proof of Proposition 2.By the Girsanov change of measure we have

∫ T

−∞
G(T, s)ωs dBs =

∫ T

−∞
G(T, s)θ(s) ds +

∫ T

−∞
G(T, s)ωs dWs .

By following the argumentation in the proof of Proposition 1, we are led to calculate the expectation

Eη

[
exp

(
1

2

∫ T

t

G2(T, s)ω2
s ds

)
| Ft

]
.

But, by the stochastic Fubini Theorem, see e.g. Barndorff-Nielsen & Basse-O’Connor (2009),

∫ T

t

G2(T, s)

∫ s

−∞
i(s, v) dUv ds

=

∫ T

t

∫ t

−∞
G2(T, s)i(s, v) dUv ds +

∫ T

t

∫ s

t

G2(T, s)i(s, v) dUv ds

=

∫ t

−∞

∫ T

t

G2(T, s)i(s, v) ds dUv +

∫ T

t

∫ T

v

G2(T, s)i(s, v) ds dUv .

Using the adaptedness toFt of the first integral and the independence fromFt of the second, we find
the desired result.

Proof of Proposition 3.If G(t, s) = g1(t)g2(s) it holds that

∫ T

−∞
G(T, s)ωs dWs =

g1(T )

g1(t)

∫ t

−∞
G(t, s)ωs dWs =

g1(T )

g1(t)
Yt .

Similarly, of i(t, s) = i1(t)i2(s),

∫ t

−∞

∫ T

t

G2(T, v)i(v, s) dv dUs = i−1
1 (t)

∫ T

t

G2(T, v)i1(v) dv

∫ t

−∞
i(t, s) dUs

= i−1
1 (t)

∫ T

t

G2(T, v)i1(v) dvZt ,

and affinity holds in both the volatility and the spot price.
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Opposite, to have affinity inYt we must have that
∫ t

−∞
G(T, s)ωs dWs = ξ(T, t)

∫ t

−∞
G(t, s)ωs dWs ,

for some functionξ(T, t), which means that the ratioξ(T, t) = G(T, s)/G(t, s) is independent ofs.
ξ(T, t) is differentiable inT as long asg is. Furthermore,ξ(T, T ) = 1 by definition. Thus, by first
differentiatingξ with respect toT and next lettingT = t, it holds that

GT (t, s) = ξT (t, t)G(t, s) ,

where we use the notationGT = ∂G/∂T , the derivative with respect to the first argument. Hence, we
must have that

G(t, s) = G(s, s) exp

(∫ t

s

ξT (u, u) du

)
,

and the separation property holds.
Likewise, to have affinity in the volatilityZ(t), we must have that

∫ T

t
G2(T, v)i(v, s) dv/i(t, s)

must be independent ofs. Denote the ratio byξ(T, t), and differentiate with respect toT to obtain

G2(T, T )i(T, s) + 2

∫ T

t

G(T, v)GT (T, v)i(v, s) dv = ξT (T, t)i(t, s) .

Hence

i(T, s) = −

∫ T

t

I(T, v)i(v, s) dv + J(T, t)i(t, s) ,

for I(T, t) = 2G−2(T, T )G(T, v)GT (T, v) andJ(T, t) = G−2(T, T )ξ(T, t). Differentiating with
respect toT , and next lettingT = t gives

iT (t, s) = i(t, s) (JT (t, t) − I(t, t)) .

Whence,

i(t, s) = i(s, s) exp

(∫ t

s

JT (v, v) − I(v, v) dv

)
,

and the separation property holds fori. The Proposition is proved.

Proof of Proposition 4.Let

HT (t, s) =

∫ T

t

G2(T, v)i(v, s) dv ,

and from Proposition 2 we have that

Ft(T ) = Θ(t, T ) exp

(∫ t

−∞
G(T, s)ωs dWs +

1

2

∫ t

−∞
HT (t, s) dŨη

s

)
,

for some deterministic functionΘ(t, T ). Note that the process

MT (t) ,

∫ t

−∞
G(T, s)ωs dWs

is a (local)Qθ,η-martingale fort ≤ T . Moreover, from the stochastic Fubini Theorem it holds that
∫ t

−∞
HT (t, s) dŨη

s =

∫ t

−∞
HT (s, s) dŨη(s) +

∫ t

−∞

∫ u

−∞

∂HT

∂t
(t, s) dŨη

s du ,
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where we note that
∂HT

∂t
(t, s) = −G2(T, t)i(t, s) .

Hence, the result follows by the Itô Formula for jump processes.

Proof of Proposition 5.Observe that

Eθ,η

[∫ T

−∞
G(T, s)ωs dLs | Ft

]
= (−i)

d

dx
Eθ,η

[
exp

(
ix

∫ T

−∞
G(T, s)ωs dLs

)
| Ft

]

x=0

.

We then proceed as in the proof of Proposition 1, and finally weperform the differentiation and let
x = 0.
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