SCHOOL OF ECONOMICS AND MANAGEMENT ‘“ C R EAT E S

FACULTY OF SOCIAL SCIENGES Center_fnr Research in Econometric
AARHUS UNIVERSITY Analysis of Time Series

CREATES Research Paper 2010-18

Modelling energy spot prices by Lévy
semistationary processes

Ole E. Barndorff-Nielsen, Fred Espen Benth
and Almut E. D. Veraart

School of Economics and Management
Aarhus University
Bartholins Allé 10, Building 1322, DK-8000 Aarhus C
Denmark



Modelling energy spot prices byélvy semistationary processes

Ole E. Barndorff—Nielsen
Thiele Center, Department of Mathematical Sciences
and

CREATES, School of Economics and Management

Aarhus University

Ny Munkegade 118

DK-8000 Aarhus C, Denmark
oebn@ nf . au. dk

Fred Espen Benth
Centre of Mathematics for Applications
University of Oslo
P.O. Box 1053, Blindern
N-0316 Oslo, Norway
and
Faculty of Economics
University of Agder
Serviceboks 422
N-4604 Kristiansand, Norway
fredb@mt h. ui 0. no

Almut E. D. Veraart
CREATES, School of Economics and Management
Aarhus University
DK-8000 Aarhus, C, Denmark
averaart @r eat es. au. dk

Abstract

This paper introduces a new modelling framework for enepgy prices based on Lévy semi-
stationary processes. Lévy semistationary processespa@al cases of the general class of
ambit processes. We provide a detailed analysis of the pilidic properties of such models
and we show how they are able to capture many of the stylisgd ¢dbserved in energy markets.
Furthermore, we derive forward prices based on our spoépniadel. As it turns out, many of
the classical spot models can be embedded into our novelllimgdeamework.
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1 INTRODUCTION

1 Introduction

This article introduces the concept of Lévy semistatigraocesses and, based on this, we define
a new class of energy spot price models. This class is acallytitractable and encompasses many
classical models such as those based on the Schwartz doe+feEan-reversion model, see Schwartz
(1997), and the wider class of continuous-time autoregresaoving-average processes. Our main
innovation lies in the fact that we model the spot price diyelby a stationary process, whereas the
traditional approach focuses on modelling the dynamichiefspot price. We will discuss in detail
the advantages of such a modelling approach. Furthermer&ilvshow that we can construct both
geometric and arithmetic spot models based on Lévy setimistay processes. We will also give a
detailed account of the theoretical properties of the ctddsévy semistationary processes, which
generalises that of Brownian semistationary processesu@nspecial types of ambit processes. This
framework enables us to model both the spot and the forwaed pwhich we compute based on our
new spot model) in a consistent way.

Our novel modelling framework is motivated, in particulby, the fact that it naturally incorpo-
rates many of the stylised facts observed in energy markdteough we aim at modelling energy
prices in general (including oil, gas, electricity and ¢pale will mainly focus on electricity prices in
this paper.

There is a clear economical justification farean-reversiorin commodity markets in general
and in power prices in particular. This is due to the fact thgiply and demand will determine the
spot price. It is natural to see a downward push in prices vthey tend to be large since demand
will naturally decrease, and vice-versa when prices araglecause consumption will most likely
increase. Such effects are usually modeled by applyingt@mbhlenbeck processes, where mean-
reversion means that up to an additive noise termstieedof the (log-)price at each moment is
proportional to the negative of the current (log-)price, {in a heuristic sense)
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for a noise procesd/. The speed of reversion is measuredbyn an integral form, this means that

¢
Yt:Yo—i-/ g(t — s)dNg,
0

whereg(z) = exp(—ax). A much weaker concept of ‘mean-reversion’ is to assstagionarity of
the log-price process. With the classical interpretatibmean-reversion, the prices will be physically
pushed back to some mean-level, whereas stationarityamalpush of prices back to a mean level
in a probabilistic sense. Starting out with this, we canxéele choice ofy above to a much wider
class of functions, still preserving stationarity and &imr modelling ‘mean-reversion’. This is one of
our modelling ideas for the spot.

Also, we believe that the price of the spot (and the forwaide)ris influenced by atochastic
volatility processv, see e.g. Hikspoors & Jaimungal (2008) and Benth (2009 hytiased on empir-
ical evidence, describes the volatility of the spot marleeaavhole. More precisely, we will assume
that the volatility of the spot depends on previous statdéketolatility.

Finally, we wish to account for the so-call&muelson effectee Samuelson (1965), which is
another stylised fact of electricity markets related tort#ationship between the volatility of the spot
and the volatility of forward prices. Usually the volatfliof the forward price is smaller than the
volatility of the spot and decreases with time to maturitheTSamuelson effect refers to the finding
that, when the time to maturity approaches zero, the vityatf the forward starts increasing and



2 LEVY SEMISTATIONARY PROCESSES

converges to the volatility of the spot eventually. We wilbsy how our new modelling framework
allows for such effects in a natural way.

The remaining part of the paper is structured as follows. Y&d ®y introducing the class of
Lévy semistationary processes in Section 2. Section 3lojgvéwo new types of spot price models
based on Lévy semistationary processes: a geometric arditametic model. Furthermore we
describe how our new models embed many of the traditionaletsagsed in the recent literature on
modelling electricity spot prices. We proceed by discugsiome of the probabilistic properties of
our new models in Section 4; and in Section 5, we derive thedad price dynamics of the models
and consider questions like affinity of the forward pricehaiéspect to the underlying spot. Finally,
Section 6 concludes and the appendix, see Section A, ceritarproofs of the main results.

2 Lévy semistationary processes

Throughout this paper, we suppose that we have given a ptityapace (2, 7, P) with a filtration
{Fi}1er satisfying the ‘natural conditions’, see Karatzas & Shr@@05).

Now we introduce the class of Lévy semistationary (from mow£SS) processes, which we will
use as a building block for our new models for electricity (nore generally, commodity) spot prices.
A LSS processy” = {Y;},p is given by

t t
Y, =pu+ / g(t — s)wsdLg + / q(t — s)asds, (@B

—0o0 —0o0
wherey is a constant is a Lévy processg and ¢ are nonnegative deterministic functions Rn
with g (t) = ¢q(t) = 0 fort < 0, andw anda are cadlag processes. Note that the name Lévy
semistationary processes has been derived from the fadhtharocesy” is stationary as soon as
anda are stationary. As an abbreviated version of the above flarma write

Y=p+gxweL+qgxaeLeb, (2

whereLeb denotes Lebesgue measure.

The stochastic integral in (1) could be defined in a weak sagskescribed in Rajput & Rosinski
(1989). However, in order to have more powerful tools forlgsiag such processes, we will work
with a general integration concept developed in Basse-nGpet al. (2010) which specialises to the
concept of Rajput & Rosinski (1989) for deterministic imagds and to Itd integration, see Protter
(2005), when we are in the semimartingale framework. Nod¢ tihe stochastic processes defined
in (1) are defined on the whole real line in contrast to thedsesh stochastic integrals which are
defined on compact time intervals. We summarise the mairtpofrthe general integration concept
in Section 4.

Clearly, the termy * w o L in Y is a special case of a volatility modulated Lévy-drivent¥ala
(VMVP) process, see Barndorff-Nielsen & Schmiegel (2008)ich has the form

/ " gt s dL, 3)

whereL is a Lévy process anglis a nonnegative real-valued measurable functioR&rsuch that the
integral with respect td. exists. Throughout the paper we shall also be concernedswith VMVP
processes.

Remark. A special type ofLSS processes is given by the class of Brownian semistatiorafyS]
processes, where the driving Lévy procéss- T, for a standard Brownian motiol’ = (W})er.

3



3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

Such processes have recently been introduced by Barrdigien & Schmiegel (2009) in the con-
text of modelling turbulence in physics. The problem of drayinference on the volatility — by
means of generalised realised multipower variations — @h ggeneral models has been studied in
Barndorff-Nielsen, Corcuera & Podolskij (2009, 2010).

Note that the class dfSS processes can be considered as the natural analogue fo¥) (s&m
tionary processes of Brownian semimartingal®s () , given by

t t
Y, = / wudBs + / a.ds.
0 0

The class ofLSS processes can be embedded into the class of ambit processels,are very
general tempo—spatial stochastic processes. |.& let{Y; ()} denote a stochastic field in space-
time X x Rand letr (§) = (z (0),t(0)) denote a curve itk x R. We define

Vitw) =u+ [

At(z)

o6 On(OUA ) + [ a6 s as(e)deds, @
t(x

where L denotes a Lévy basig, ¢ are deterministic kernel functions}; (z), D; (z) C X x Ry,

andw, a denote stochastivolatility fields. Clearly,X = (Xj) with Xy = Y, (z(0)) denotes a

stochastic process. We céll;(x)) anambit fieldand(X,) andambit processsee Barndorff-Nielsen

& Schmiegel (2007), Barndorff-Nielsen, Benth & Veraart ¢20.

When we consider the null-spatial case in the context of Bpnbcesses, i.e. when the spate
consists of a single point (or we just considerx) of (4) in its dependence arkeepingz fixed), the
concept of ambit processes specialises to that of Lévysiatitinary processes.

The direct link betwee£SS and ambit processes makes it possible to model both eigcspnt
and forward prices in a consistent framework. When we maqoled grices based oSS processes
and forward prices based on ambit fields, one can show, saad&®#rNielsen, Benth & Veraart
(2010), that these two models can be linked to each other @manatural way.

3 The new model for the electricity spot price

3.1 Model building

Based on the new class of Lévy semistationary processesamveow start developing a new class of
models for electricity spot prices.

First of all, we wish to point out why we think that the class&$S processes is particularly
suitable as a building block for modelling commodity masketVe choose a Lévy proceds =
(L¢)ier as the driving process of the electricity spot price to reflee fact that there are periods of
relative smooth prices followed by usually shorter perioflprice spikes and jumps. Moreover, as
already mentioned, we wish to allow for stochastic volgtiienoted byw = (w;)cr. This is done
by scaling of the driving Lévy process, i.e. we work with ac$tastic integral ofv with respect to
L. Furthermore, we multiply the stochastic volatility compat by a deterministic kernel functign
say, to get more flexibility in order to model the Samuelsdaatfin a realistic way. l.e. the building
block for the electricity spot pric& = (Y;).cr Will be a special case of ASS process, which is
given by

Y, = /t g(t — s)wsdLsg, (5)

for a damping functiory : R, — R, and a cadlag, positive, stationary processhich is indepen-
dent of the two—sided Lévy process In the definition ofY in (5), we could add a drift term, as in
(1). However, in order to keep matters as simple as possildeestrain from doing so.

4



3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

3.2 A geometric and an arithmetic model

After having presented the main building block of our new elpthe question is now how exactly
we wish to model the electricity spot price. Basically, wa éallow two paths: We can construct a
geometric or an arithmetic model.

3.2.1 Geometric model

In a geometric set up, we define the spot pSée= (S7):cr by
¢ = A(t)exp(Yy) . (6)

whereA : R, — R, denotes a bounded and measurable deterministic seasonabfu

In such a modelling framework, the deseasonalised, Idgaiit spot price is given by a driftless
LSS process. Special cases of such a model include the CARMAdbamdel and the classical
Schwartz model, as discussed later.

3.2.2 Arithmetic model

Alternatively, one can construct a spot price model whicbfigrithmetic type. Since we wish to
ensure that the prices can only take positive values (ajthalectricity prices can sometimes turn
negative, when the supply highly exceeds the demand), weulate the following condition which
is sufficient for price positivity.

Assumption (P): Let L be a Lévy subordinator and let the kernel functipim (5) be positive.
If assumption (P) is satisfied, we define the electricity gpimte S* = (S7):>0 by
St =AYy, ()

whereA : R, — R, again denotes a bounded and measurable deterministims¢asaction and”
is defined as in (5).

Note that a procesy defined by (5) and satisfying condition (P) generalises thgscof convo-
luted subordinators defined in Bender & Marquardt (2009)Itmefor stochastic volatility.

We remark that we do not assume that the dynamics of the spdeln§g or S starts at the
current spot price] or S§, respectively, as is customary in most spot price modelfifancial asset
prices in the literature. We rathassumehat the observed spot price today isabservationof the
random variable5] = A(0) exp(Yp) and S§ = A(0)Yy. The reason being that we in fact model a
deseasonalised price series which is in stationarity. Muglels for the spot price of commodities,
are modelled by stochastic processes which tend to stayigmacesses as tinte— oo. In fact, this
means that at every time instance, it will take some timereetfoe stochastic price dynamics are in
stationarity. Therefore it is in fact much more reasonablenbdel directly under stationarity than
using a model where we condition on the observation today.

3.3 Model discussion and further extensions

After having presented our new models we would like to givaadurther justification why we think
they are particularly suitable for modelling electricitgas prices and we will also indicate some
further extensions which can be easily included in our newlelimg framework.

There are several key features which make our new modelstbethetically interesting and
practically relevant compared to the traditional models.

5



3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

First and foremost, we model the deseasonalised, (logadjtspot priceY” directly, rather than
its stochastic dynamics. By doing so, we can introduce argékernel functiony, which adds much
more flexibility in modelling the mean-reversion of the griprocess. For instance, as we shall see
in the section on forward prices, we can achieve greaterbiléyiin modelling the shape of the
Samuelson effect observed in forward prices, includinghyy@erbolic one suggested by Bjerksund
et al. (2000) as a reasonable volatility feature in powerketar

Note that ourLSS—based models are able to produce various types of auttamnefunctions
depending on the choice of the kernel functigrsee Section 4.4 for more details.

Furthermore, we account for stochastic volatilitgince this is clearly an issue in energy markets,
see e.g. Hikspoors & Jaimungal (2008), Trolle & SchwartZ0@0 Benth (2009) and Benth & Vos
(2009). A very general model for the volatility process wbblke that we model it itself as a Lévy
\olterra process, i.es? = Z; and

t
Zy = / i(t,s)dUs, (8)
—0o0

wherei denotes a deterministic kernel function. In fact, if we wemensure that the volatility is
stationary, we can work with a kernel function of the foifn, s) = i*(¢t — s), for a deterministic
function * which is integrable w.r.tU. In order to haveZ positive, we assuméto be a positive
function andU a subordinator.

A straightforward extension of our model is to study a supsitipn of LSS processes for the
spot price dynamics. l.e. we could replace the pro¢esy a superposition of € N factors:

J

J
Zint(Z), wherewy,...,wy >0, Zwizl,
=1 1=1

and where aIYt(’) are defined as in (5) for independent Lévy procegs@sand independent stochastic
volatility processess(”, in both the geometric and the arithmetic model. Such moadelside the
Benth, Kallsen & Meyer-Brandis (2007) model as a speciaécas superposition of factory ()
opens for the separate modelling of spikes and other effEotsinstance, one could let the first factor
account for the spikes, using a Lévy process with big jumpeva frequency, while the functiog
forces the jumps back at a high speed. The next factor(sylcoabel the "normal” variations of the
market, where one observes a slower force of mean-reveohhigh frequent Brownian-like noise.
Note that all the results we derive in this paper based onrtbdaxtor model can be easily generalised
to accommodate for the multifactor framework. For notadiasimplicity, in the following, we focus
on the one-factor case.

Also, according to Burger et al. (2003, 2007) it might be sseey to allow for non-stationary
effects. Such effects can be easily modelled by a secondrfadtich is added to our spot model,
e.g. as a drifted Brownian motion say. However, such modetelly do not belong to the class of
Lévy semistationary models and thus we disregard themdiece the scope of this paper is to study
suitable models for the stationary part of the price pracess

Finally, note that an alternative model specification cdudbased on a stochastic time change
[t gt = s)dL 2+, wherew?* = [ w2du. However, since models based on (5) are more straight-
forward to generalise to a multivariate framework, we stickhe former class. Note that extensions
to a multivariate framework can be considered along theslofeBarndorff-Nielsen & Stelzer (2009,
2010).



3 THE NEW MODEL FOR THE ELECTRICITY SPOT PRICE

3.4 Traditional spot price models asCSS—based models

One of the main advantages of the new model class besidagésgenerality is that it nests most of
the standard models which have been used in the literatureanielling electricity prices in recent
years.

Thus our new model nests the stationary version of the clasene-factor Schwartz model,
see Schwartz (1997), studied for oil prices. In order to beg bne just has to choogé¢t — s) =
exp(—a(t — s)) for a positive constant, the volatility being a positive constaat and L a standard
Brownian motion. By lettingL be a Lévy process with the pure-jump part given as a compound
Poisson, Cartea & Figueroa (2005) succesfully fitted then@diz model to electricity spot prices in
the UK market. Benth &éaltyté Benth (2004) used a normal inverse Gaussian LeygepsL to
model UK spot gas and Brent crude oil spot prices.

Another example which is nested by the class of Lévy setiosiary processes is a model studied
in Benth (2009) in the context of gas markets, where the desedised logarithmic spot price dy-
namics is assumed to follow a one-factor Schwartz processsstochastic volatility. More precisely,
the functiong is chosen to bg(t — s) = exp(—a(t — s)), whereas the volatilityw? = Z; is defined

by .

Zy Z/ e M=) Uy, 9)
with U being a subordinator process to ensure positivityZof This model we recall as the BNS
stochastic volatility model, see Barndorff-Nielsen & Shapl (2002).

A more general class of models which we nest is the class cdbed CARMA-processes, which
has been successfully used in temperature modelling antherederivatives pricing, see Benth,
éaltyt'e Benth & Koekebakker (2007), Benth et al. (2009) bédez Cabrera & Hardle (2009), and
more recently for electricity prices by Bernhardt et al.2D A CARMA process is the continuous-
time analogue of an ARMA time series, see Brockwell (29B)Lfor definition and details. More
precisely, suppose that fpr> ¢

}/;f = b,Vt )

whereb € R? andV, is ap dimensional OU process of the form

th = Atht + edet, (10)
with
e [ 0 I
_ap _ap_l o e e — al

Here we use the notatiof), for the n x n-identity matrix, e, the pth coordinate vector antl’ =
[bo, b1, ...,bp—1] is the transpose d$, with b, = 1 andb; = 0 for ¢ < j < p. In Brockwell (2004),
it is shown that if all the eigenvalues df have negative real parts, th&h defined as

t
V, = / et=%e, dL(s),
is the (strictly) stationary solution of (10). Moreover,
t
Y, = bV, = / b'ett=%e, dL(s), (11)

is a CARMA(p, ¢) process. Hence, specifyingz) = b’exp(Ax)e, in (11), the log-spot price
dynamics will be aLSS-process (without stochastic volatility). Bernhardt et (@008) argue for

7



4 PROBABILISTIC PROPERTIES OF THE MODEL

CARMA(2,1) dynamics as an appropriate class of models ferdbseasonalised log-spot price at
the Singapore New Electricity Market. The innovation p&scé is chosen to be in the class of
stable processes. From Benﬁ;altyté Benth & Koekebakker (2007), CARMA(3,0) modelsraee
appropriate for modelling daily average temperatures, anedapplied for temperature derivatives
pricing, including forward price dynamics of various cauis. More recently, the dynamics of wind
speeds have been modelled by a CARMA(4,0) model, and apiednd derivatives pricing. See
Benth & Saltyte Benth (2009) for more details.

Finally note that the arithmetic model based on a supeliposif LSS processes nests the non—
Gaussian Ornstein—Uhlenbeck model which has recently pegrosed for modelling electricity spot
prices, see Benth, Kallsen & Meyer-Brandis (2007). In oresee that, we just have to choose
g9 (z) = exp(=AWz) for \& > 0andi = 1,...,J andJ € N, and, also, to specialise the
stochastic volatility processes® to positive, boundedjeterministicfunctions.

4 Probabilistic properties of the model

In this section we discuss the conditions under which thegssY; is well-defined and describe in
which sense the stochastic integration in (2) is to be uholeads

Furthermore, we study the second—order characteristiasC&iS process. In particular, the co-
variance function ot; is of practical importance since the empirical covariartogcture is a statisti-
cal measure applied to fix models. We provide analytical esgions for the autocovariance function
for Y; in many cases, and discuss other probabilistic propersieged.

4.1 Stochastic integration and integrability conditions

There are various ways in which the stochastic integral jrcéh be defined. One possibility would
be to use the weak integration concept with respect to a mmdeasure, which has been introduced
in Rajput & Rosinski (1989). However, such integrals havly treen studied for deterministic inte-
grands and, furthermore, we wish to have a stronger integrabncept, which specialises to classical
It6 integrals when we are in the semimartingale framework.

In this paper we use the stochastic integration conceptibesicin Basse-O’Connor et al. (2010)
where a stochastic integration theoryRnrather than on compact intervals as in the classical frame-
work, is presented. In the following, we briefly review thisngral integration theory. Recall, that
we work with a filtered probability spac@?, F, (F;):cr, P), where the filtration is assumed to be
right—continuous and complete. The aim is now to define nals@f the type

/R budlZ,, (12)

where¢ is a predictable stochastic process ahid a(F;);cr (increment) semimartingale, see Basse-
O’Connor et al. (2009). A special case of such an integraivisrgby

X~ [ 6z, (13)
R
for fixed ¢. In particular, for

br—s = g(t — S)WSH[O,OO)(t —5),

(13) specialises to ASS process.
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Note thatZ = (Z;):cr has{F;}—adapted increments if for adl < ¢ the differenceX; — X; is
Fi—measurable. We denote B¥the set of{ F; }—stopping times, see Basse-O’Connor et al. (2010),
which take at most finitely many values and Hythe ring onR x Q which is generated by the
stochastic interval§S, T'] for stopping timesS, T € 7 with S < T'. One can now define an additive
set function ond which is given by

mZ((S,t]) =Zr—Zg, forSSTeJ,5<T.

In a next step, Basse-O’Connor et al. (2010) introduce theepas the vector lattice of step functions
over A which is equipped the Schwartz topology, i.e. the inductiméorm topology corresponding
to uniform convergence on compact intervals. A simple ired; : V — L° can then be defined
for simple functionsgp € V with ¢ = > | ril(s, r,;, wheren € N, S;,T; € J,5; < T; and
r1,...,7n € R by

Iz(¢) = Y rilZr, — Zs,)-
=1

The general integral (12) is then defined based on the linsitople functions satisfying a dominated
convergence theorem.

Basse-O’Connor et al. (2010) formulate general integitgbdonditions which ensure that the
integral (12) is well defined. In the case off&S process, i.eY; = ffoo g(t — s)wsdLs those
integrability conditions specialise as follows. Lt o2, ¢) denote the Lévy triplet of. associated
with a truncation functiorh.

According to Basse-O’Connor et al. (2010), the proggsswv is integrable with respect té if
and only if the following conditions hold almost surely:

/t Gt — s)w?o? < oo, /_;/R (1 Alg(t — s)wsz]2> {(dz)ds < 0o

—0o0

(14)
ds < o0.

/ 'gu =9+ [ (gt =)o) — glt — )h() 1(d2)

—00

Example 1. In the case of a Gaussian Ornstein—Uhlenbeck process, iyt —s) = exp(—a(t —
s)) for o > 0 andw = 1, then the integrability conditions above are clearly steid, since we have

t
/ exp(—2a(t — 5))dso? = i0'2 < 0.
oo 2c
For many financial applications it is natural to restrict #ttention to models where the variance
is finite, and we focus therefore on Lévy procesEasith finite second moment. Note that the inte-
grability conditions above do not ensure square-integitalf Y;. But substitute the first condition
in (14) with the stronger condition

/t G2 (t — 5)E[w?]ds < oo, (15)

—0o0

thenffOO g(t — s)wsd(Ls — E(Ly)) is square integrable. Clearlg{w?] is constant in case of station-
arity.
For the Lebesgue integral part, we need

E [(/_; gt — s)ws ds> 2] <. (16)

9



4 PROBABILISTIC PROPERTIES OF THE MODEL

Appealing to the Cauchy—Schwarz inequality, we find

(/_too g(t — s)ws ds) 2] < /OOO g% () d /_too 2= (¢ — 5)E[w?] ds,

for a constant. € (0,1). Thus, a sufficient condition for (16) to hold is that therésexana € (0,1)
such that

E

00 t
/ g% (z) dx < oo, / g?1=I(t — $)E[w?] ds < 0. 17)
0 —o0

Given a model forw, andg, these conditions are simple to verify. Let us consider amgple.

Example 2. Recall that the Schwartz model specified the fungjies g(z) = exp(—ax) for a > 0.

In case of constant volatility, we find from a straightfordiaralculation that the conditions (14)
are satisfied. Next, suppose that is defined by the BNS stochastic volatility model, that is (9)
wherei(t, s) = exp(—A(t — s)) and U, a subordinator. Suppose now thét has cumulant function
o~ (exp(ifz) — 1) £y (dz) for a Levy measuréy supported on the positive real axis, abighas finite
expectation. In this case we have that

E[w?] =E[Z] = —/OOOMU(dz) < .

Thus, both (15) and (16) are satisfied (the latter seen aftargthe sufficient conditions), and we find
thatY; is a square-integrable stochastic process.

4.2 Wold—Karhunen representation of stationary processes

Using anL£SS process as a building block for the spot price is in fact a \gggeral modelling
choice. Indeed, due to the continuous time Wold-Karhuneomosition any second order stationary
stochastic process, possibly complex valued, of meamd continuous in quadratic mean can be
represented as

t
Ytz/ 6 (t — 5)d=, + Vi, (18)

where the deterministic functiafis an, in general complex, deterministic square integrlvietion,
the proces& has orthogonal increments wiR1{|dEt|2} = wdt for some constanty > 0 and the

process/ is nonregular (i.e. its future values can be predicted,éthsense, by linear operations on
past values without error). Under the further conditiort tharsp {Y; : s < ¢} = {0}, the function

¢ is real and uniquely determined up to a real constant of ptigmality; and the same is therefore
true of = (up to an additive constant). In particulardif, = wsdL,, with w and L as in (2) therE is

of the above type witho = E {w}}.

4.3 Absence of arbitrage

A natural question to ask is whether our model is prone taradge opportunities. Clearly, afiSS
process is in general not a semimartingale. Hence, at fiyist,9ine might think that this fact can give
rise to arbitrage opportunities. However, the standardirsanmingale assumption in mathematical
finance is only valid fortradeableassets in the sense of assets which can be held in a portfolio.
The electricity spot is naturally not storable, and thusncaide part of any financial portfolio. The
requirement of being a martingale under some equivalensune® is therefore not necessatry.

10



4 PROBABILISTIC PROPERTIES OF THE MODEL

Remark. In order to useLSS processes in other applications than the ones studiedsrpéer, it
will be necessary to derive appropriate semimartingalelitioms for LSS processes. Such conditions
can be derived along the lines of Barndorff-Nielsen & Sclgaig2009) and Barndorff-Nielsen &
Basse-O’Connor (2009) and will be studied in future regearc

Furthermore, we would like to stress that we work with statiegprocesses defined on the entire
real line. The standard theory of mathematical arbitrage, Belbaen & Schachermayer (2008), is
defined for stochastic processes starting from 0 and not fromas in our model. Our new modelling
framework makes it therefore necessary to define a more glecmncept of mathematical arbitrage
as it has traditionally been used.

If absence of arbitrage is defined in the classical set up, @ugasoni et al. (2008) have pointed
out that, while in frictionless markets martingale measynay a key role, this is not the case anymore
in the presence of market imperfections. In fact, in markeath transaction costg;onsistent price
systemss introduced in Schachermayer (2004) are essential. masgetup, even processes which
are not semimartingales can ensure that we mavéree lunch with vanishing risk the sense of
Delbaen & Schachermayer (1994). It turns out that if a caomtirs price process hasnditional
full support then it admits consistent price systems for arbitrarilyatnansaction costs, see Guasoni
et al. (2008). It has recently been shown by Pakkanen (2@id)under certain conditions, see below,
aBSS process has conditional full support. This means that suostegses can be used in financial
applications without giving rise to arbitrage opportugsti We briefly review the main result proved
in Pakkanen (2010). The distributional propertycohditional full supports defined (for continuous
processes) in the following way: We define for anyc R the set of functionsf € C([u,v]) for
u,v € R, u < v such thatf(u) = v, which we denote by’,([u,v]). The function spaces are
endowed with the uniform norm topology. For a fixed time honiZ’ € (0, cc), a continuous process
(Xt)iejo,r 1s said to haveonditional full suppor{CFS), if for everyr € [0,T) and a.ew € €,

supp(Law[(X¢) e[, 7] | F-)(w)) = Cx, (@) ([T, T1),

where supp denotes the support and where[L&W, |, || F-] denotes theF—conditional distribu-
tion of the C'([r, T])-random variableX|. 7. For theBSS processes, we get the following result,
see Pakkanen (2010, Theorem 1.3). Eet (Z;).c(o,r) be a continuous process, It ) c(—oo,7]
be cadlag satisWingupte(_m,T]E(wf) < oo andA({t € [0,7] : wy = 0}) = 0 a.s.. Also, let
(Wi)ie(—o0,) be @ Brownian motion and lgt: (0, c0) — R be a function satisfying € L*((0,0))
and there existe, C' > 0 such that

/ g*(s)ds — / g(t + s)g(s)ds < Ct*, forallt e [0,T],
0 0

and, furthermore/; [g(s)|ds > 0 for all e > 0. If (Z,w) is independent oB, then the process

t
U, =5, —i—/ g(t — s)wsdBs, te€[0,T],

—00

has conditional full support.

4.4 Second order structure of levy—driven semistationary models

We round off this section on the probabilistic propertied. &ty semistationary processes by focus-
ing on their second order structure. In fact, we will state tbsults for the more general volatility

11



4 PROBABILISTIC PROPERTIES OF THE MODEL

modulated Volterra proces$ = (Y)cr, Where
t
Y, :/ G(t, s)wsdLs, (29)
with a deterministic functiorz such that the integral in (19) exists. Clearly, f8(t,s) = g(t — s)
we get that’; = Y; with Y as defined in (5). Let; = E(L1) andky = Var(Ly).

Under the additional assumption that the stochastic Vityatr is independent of the driving Lévy
process, we can compute the conditional second order steyethich we do in the following.

Theorem 1. Let L andw be independent. The conditional second order structuté if given by
E(Y|w) = k1 /t G(t, s)wsds, Var(Y|w) = ko /t G(t, s)*w?ds,
and
Cov((Y4n, Yi)|w) = ko /t G(t+ h,s)G(t,s)w?ds.
Corollary 1. LetL andw be independent. The conditional second order structué @f given by
E(Yi|lw) = k1 /000 g(x)wi_pdx, Var(Yyw) = ks /000 g(x)*w? dz,
and
Conl(Yien Yolo) =z [~ g(o -+ hgla)ef oo

The unconditional second order structurerofs then given as follows.

Theorem 2. The second order structure ¥f for stationaryw is given by
t
E(Y,) = RlE(wo)/ G(t,s)ds
o T t ot
Var(Yy) = ko (w)) / G(t,s)%ds + I{%/ / G(t,s)G(t,u)y(|s — u|)dsdu,
t
Cov(Yyih,Y+) = ko (wi) / G(t + h,s)G(t,s)ds
t+h
+ K2 / / G(t+ h,s)G(t,u)y(|s — u|)dsdu,

wherevy(z) = Cov(wi+4, wy) denotes the autocovariance functiorn.of
The unconditional second order structuregrofs then given as follows.

Corollary 2. The second order structure bf for stationaryw is given by
E(Y;) = mE(wo)/ g(z)dz,
0
Var(Y;) = koE (w%) / Vida + K3 / / v(lz — y|)dzdy,
0

Cov(Yisn, Yr) = ko (w]) / g(x + h)g(z)dx + K7 / / (x 4+ h)g(y)v(|z — y|)dzdy,
0

12



5 PRICING OF FORWARD CONTRACTS

wherevy(z) = Cov(wi+4, wy) denotes the autocovariance functionofHence, we have

rolE (wg) fo~ g(a + h) (x)dx + K7 [o° fo°° z +h)g(y)y(|z —yl)dedy
R (wf) Jo~ 9(@)2da + 3 [5° [ 9(@)g(y)y (|2 — yl)dwdy '

Corollary 3. If kK, = 0 or if w has zero autocorrelation, then

COT(Yt+ha th) =

ac—l—h )g(x)dx
IS g(x)?da

The last Corollary shows that we get the same autocorraldtioction as in the35S model.
From the results above, we clearly see the influence of thergedamping functiorg on the corre-
lation structure. A particular choice gf which is interesting in the energy context is studied in the
next example.

COT(E—F}M }/;f) fo

Example 3. Consider the casg(z) = %, for o, > 0, which is motivated from the model of
Bjerksund et aI (2000) as we shall return to in the nextieaarhen we deal with forward pricing. We
have thatfO x)dr = 2 This ensures integrability af(t — s) over (—oo, t) with respect to any
square mtegrable martlngaleéh/y procesd.;. Furthermore, [ g(z + h)g(x) dz = "—: In(1+42).
Thus,

b h
Cor(Yezn, YVy) = 7 In (1 + 3) .

Observe that sincg can be written as

(x)_L_/deeri
=058 Jy o2 b

it follows that the proces¥ () = ffoo g(t — s) dBs is a semimartingale according to the Knight
condition, see Knight (1992) and also Basse (2008), Bassed&iRen (2009), Basse-O’Connor et al.
(2010).

5 Pricing of forward contracts

In this subsection we are concerned with the calculatiorhefforward priceF;(T) at timet for
contracts maturing at tim& > t. We denote by™* < oo a finite time horizon for the forward market,
meaning that all contracts of interest matbeforethis date.

Recall thatS = (S);cr denotes the electricity spot price, being either of arittiener geometric
kind as defined in (7) and (6), respectively. As in Section #d consider a general Lévy-driven
\olterra process

t
Y, = / G(t,s)wsdLsg,

with w4 being the stochastic volatility as defined in (19). We coessttie general case 6f(¢, s) rather
than the stationary situation witli(¢,s) = g(t — s) since this leads to some interesting modelling
issues in the forward market.

Let F;(T') denote the forward price at tinteof a contract delivering the underlying commodity
(electricity) at timeT > t. We use the conventional definition of a forward price in imgbete
markets, see Duffie (1992), ensuring the martingale promént — Fi(T'),

F(T) =Eq[Sr|Fl, (20)

13



5 PRICING OF FORWARD CONTRACTS

with @ being an equivalent probability t&. Here, we suppose tha&tr ¢ L'(Q), the space of
integrable random variables. In a moment we shall introcugficient conditions for this.

Usually in finance one talks of equivalent martingale meas@, meaning that the equivalent
probability @ should turn the discounted price dynamics of the underlgaget into a (local})-
martingale. However, as we have already discussed, thiict@s is not relevant in electricity mar-
kets since the spot is not tradeable. Thus, we may choosecaiyatent probabilityQ as pricing
measure. In practice, however, one restricts to a paranm@ass of equivalent probabilities, and the
standard choice seems to be given by the Esscher transfeerBegth et al. (2008), Shiryaev (1999).
The Esscher transform naturally extends the Girsanovfamgo Lévy processes.

To this end, conside€? defined as the Esscher transform lofor a parametef(t) being a
Borel measurable function. Following Shiryaev (1999) (enB et al. (2008), Barndorff-Nielsen &
Shiryaev (2010))Q9L is defined via the Radon-Nikodym density process

S| =en ([ o [ oueeas)

for 0(s) being integrable with respect to the Lévy procesg-enc, t] for everyt < T*, and¢r(z)
being the log-moment generating function/af.
A special choice is the ‘constant’ measure change, thattisg

(1) = 610,00 (0). (21)

In this case, ifL has characteristic tripled, b, 1), whered is the drift, b is the volatility of the
continuous martingale part arg, is the Lévy measure in the Lévy-Kintchine representatiese
Shiryaev (1999), a fairly straightforward calculation wisothat, see Shiryaev (1999) again, the Es-
scher transform preserves the Lévy propertylef ¢ > 0, and the characteristic triplet becomes
(dg,b,exp(0-) L1), where

dg =d+ b0 +/ A€ — 1) 0,(d2) .

|z|<1

This comes from the simple fact that the log-moment genagdtinction ofL; underQ% is

¢7.(x) = gr(z +0) — ¢L(0). (22)

Note that the choice df(¢) as in (21) forces us to choose a starting time since the fumetill not
be integrable with respect tb, on (—oc, t). Starting at zero is convenient sinfg = 0, however, it
is also practically reasonable since this can be consideséde current time. With such a choice we
do not introduce any risk premium for< 0. In the general case, with a time-dependent parameter
function 6(t), the characteristic triplet of; underQ% will become time-dependent, and hence the
Lévy process property is lost. Instedd,will be an independent increment process (sometimes called
an additive process). We remark that the choice (2B)a$o gives an independent increment process
L, when considered as a process over all timeéote that if . = B, a Brownian motion, the Esscher
transform is simply a Girsanov change of measure whéte= 6(t) dt + dW, for a Q%—Brownian
motion V.

Similarly, we do an Esscher transform ©f, the subordinator driving the stochastic volatility
model, see (8). We defin@/, having the Radon-Nikodym density process

%‘ft = exp </too n(s)dUs — /_too ou(n(s)) ds) ,

14



5 PRICING OF FORWARD CONTRACTS

for n(t) € R being some measurable function which is integrable withbegestoU on (—oo, t) for
all t < T, and¢y (x) being the log-moment generating functionlof. SinceU is a subordinator,
we can write the Lévy-Kintchine representation of it as

ou(z) = da +/ (€ —1) Ly(dz).

R

Choosing(t) = 11 (0,00)(t), with  a constant, an Esscher transform will give a charactetisgitet

(E, 0,exp(n-) fr), which thus preserves the subordinator property/gf¢t > 0, under@},. For
the general case, the procdsswill be a time-inhomogeneous subordinator (independecreiment
process with positive jumps). The log-moment generatimgtion is denoted/, ().

To ensure the existence of the Esscher transforms, we nesgl@nditions. We need that there
exists a constant > 0 such thatup |6(s)| < ¢, and wheref|z|>1 exp(cz)l(dz) < oo. (Similarly we
must have the same for the stochastic volatility). Also, we must require that exponential moments
of L; andU; exist. More precisely, we suppose that the Esscher trangbarameter functioné(t)
andr(t) are such that

T* T* o
/ / ef®)lz ¢ (dz) ds < o0, / / &)= g1 (dz) ds < . (23)
—oo Jz|>1 —o0 J1

The exponential integrability conditions of the Levy ma&s of L and U imply the existence of
exponential moments, and thus that the Esscher transf@%mmd@@ are well-defined.

We define the probabilitg)? 7 = Q‘z x @, as the class of pricing measures for deriving forward
prices. In this respect(t) may be referred to as the market price of risk, whergagis the market
price of volatility risk. We note that a choice > 0 will put more weight to the positive jumps in
the price dynamics, and less on the negative, increasingyihé for big upward movements in the
prices under?".

Let us denote by, the expectation operator with respect@”, and byE, the expectation
with respect ta};.

5.1 Geometric case
Suppose that the spot price is defined by the geometric model
S; = A(t)exp(Yy),

whereY is defined as in (19). In order to have the forward priG¢T’) well-defined, we need to
ensure that the spot price is integrable with respect to llesen pricing measur@’-7. We discuss
this issue in some more detail.

We know thatv; is positive and in general not bounded since it is defined sigoardinator. Thus,
G(t, s)ws + 0(s) is unbounded as well. Supposing tliahas exponential moments of all orders, we
can calculate as follows using iterated expectations timmiiig on the filtrationg; generated by the
paths ofw,, s < t:

Eq,, [St] = A(T)Eq,, [EM [eXp ( /_ : G(T, 5)ws dLS> | gTH

= A(T)E, [exp ( /_ i % (G(T, 5)ws) ds>] .

To have thatSy € L(Q%"), the last integral must be finite. This puts additional ietitms on the
choice ofn and the specifications d@f (¢, s) andi(¢,s). We note that when applying the Esscher
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5 PRICING OF FORWARD CONTRACTS

transform, we must require thathas exponential moments of all orders, a very strong résimnion
the possible class of driving Lévy processes.

We are now ready to price forwards under the Esscher transfiéor general volatility modulated
Volterra processes (without a ‘drift term’) it holds:

Proposition 1. Suppose thasr ¢ L'(Q%"). Then, the forward price is given as

Fi(T) = A(T) exp < /_ ; G(T, 5)ws dLs> E, [eXp ( /t G o) ds> ‘ ]-"t} .

As a special case, considér= B. In this case we apply the Girsanov transform rather than
Esscher, and it turns out that a rescaling of the transfonanpeter functiord(¢) by the volatility w;
is convenient for pricing of forwards. To this end, consitter Girsanov transform

o(t
dB; = dW, + % dt . (24)
t

Supposing that the Novikov condition

T p2 P
E [exp (%/_m Hw(g)ds>] < 00,

holds, we know thaiV; is a Brownian motion for < T* under a probabilit)Q% having density

process
dQY, B bg(s) 1 [t 6%(s)
e (- [ SR g [ TPw).

—0o0 S

Suppose that there exists a measurable fungtionsuch that

i(t, s)
i(0,s)’

T* 92(3)
/_OO 305) ds < 00.

Furthermore, suppose théarg2 has exponential moments up to a const@pt Then, for allf(t)

such thatf_T;‘O 6%(s)/j(s)ds/2 < Cy, the Novikov condition is satisfied, since by the subordinat
property ofU, (restricting our attention té > 0)

i) >

(25)

forall s <t < T*, with

t 0 0
w? :/ i(t,s)dU, 2/ i(t,s)dU, zj(t)/ i(0,8) dUs = j(t)w?,

—00 —00 — o0

and therefore

E

1 (T 92 1 (T 92
exp <§ /_OO w(;) ds)] <E [exp <§ /_OO j((;)) d8w52>] < 00.
Specifyingi(t, s) = exp(—A(t — s)), we have thai(¢, s)/i(0,s) = exp(—At) = j(t), and condi-
tion (25) holds with equality.
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A

We discuss the integrability & with respect toQ%" £ Q% x Q},. By double conditioning
with respect to the filtration generated by the pathsofve find

Ey, [S7] = exp ( /_ : G(T, 5)0(s) ds> Ey,, [EM [eXp ( /_ : (T, sy dWs> |QTH
— oxp ( /_ io G(T, $)6(s) ds> E, [exp (% /_ TOO G2(T, ) dsﬂ .

Collecting together the conditions @r, i, 8 andn for verifying all the steps above, we find that if
s — G(T,s)0(s) is integrable on(—co,T) ands — G2(T, s)i(s,v) is integrable or(v, T) for all
—00 < v < T, thenSy € L'(Q%") as long as

/_TOO /100 exp (Z {% /UT G*(T, s)i(s,v) ds +n(v)}> ly(dz)dv < oo. (26)

We assume these conditions to hold.
We state the forward price for the cabe= B and the Girsanov change of measure discussed
above.

Proposition 2. Suppose that. = B and thatQ? is defined by the Girsanov transform@4). Then,
fort <T <T%,

F(T) = A(T) exp </ G(T, s)ws dW5 + = / / G?(T,v)i(v, s) dv dU,

/ G(T, 5)0 ds+/T¢”< G2Tv)(us)dv> ds>.

Let us consider an example.

Example 4. In the BNS stochastic volatility model, we hayg s) = exp(—A(t — s)). Hence, from
Proposition 2

T T
/ G2(T7 ,U)e—)\(v—s) dv = e Mt—9) / G2(T7 ,U)e)\(t—v) dv
! t
which yields,
t T .
| [ caviwsad. =z [ ¢aoeta
—oo Jt ‘

This implies from Proposition 2 that the forward price is radfiin Z, the (square of the) stochastic
volatility. The stochastic volatility model studied in Be(2009) is recovered by choosidgt, s) =
g(t = s), g(x) = exp(—ax).

5.1.1 The case of constant volatility

Suppose for a moment that the stochastic volatility process identical to onei(e., that we do not
have any stochastic volatility in the model). In this casefttrward price becomes

F(T) = A(T)exp </_too G(T,s)dWs + /_TOO G(T,s)0(s) ds)
= A(T) exp </_too G(T,s)dBs + /tT G(T,s)0(s) ds> .
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Hence, the logarithmic forward (log-forward) price is

T
In F(T) = A(T) + /t g(T,s)0(s)ds + M(T),

with .
M,(T) = / o(T,5) dB,

for ¢ < T'. Note thatt — M, (T") for t > 0 is a P-martingale with the property
Mt(t) = Y;g =In St - hlA(t) .

In the classical Ornstein-Uhlenbeck case, wittY,s) = g(t — s), g(z) = exp(ax), we easily
compute that
My(T) = e Ty,

and the forward price is explicitly dependent on the cursgt price. In the general case, this does
not hold true. We have that/;-(7') = Y7, not unexpectedly, since the forward price converges to the
spot at maturity. However, apart from the special time poiat T', the forward price will in general
notbe a function of the current spot, but a function of the preddg(T"). Thus, at time, the forward
price will depend on

t
M(T) = / G(T,s)dBs,
whereas the spot is given by

t
Y, = / G(t,s)dB, .

Both Y; and M, (T') are generated by integrating over the same paths of a Brown@ion, since
the two stochastic integrals can be pathwise interpreteely (are both Wiener integrals since the
integrands are deterministic functions). However, thénpare scaled by two different functions
G(T,s) andG(t, s). This allows for an additional degree of flexibility when atiag forward curves
compared to affine structures.

In the classical Ornstein-Uhlenbeck case, the forwardeas a function of time to maturity
T — t will simply be a discounting of today’s spot price, discaeohby the speed of mean reversion
of the spot (in addition comes deterministic scaling by thassnality and market price of risk). To
highlight the additional flexibility in our modelling franaerk of semistationary processes, suppose
for the sake of illustration tha® (¢, s) = g1(¢)g2(s). Then

_9(T)

MU =05

Y;.

If furthermorelimy_, ¢1(T") := g1(c0) # 0, we are in a situation where the long-end (thatIis,
large) of the forward curve is not a constant. In fact, we find

~—

g1 (00
gi(t)

Sinceln S; is random, we will have a randomly fluctuating long end of tbenvard curve. In fact,
the long end will be distributed as the stationary distidnuiof the deseasonalized log-spot scaled by
g1(00)/g1(t). This is very different from the situation with a classicatam-reverting spot dynamics,
which implies a deterministic forward price in the long edégendent on the seasonality and market

T
lim <ln F(T) — gl(t)/t g2(s)0(s)ds — In A(T)> = (InS; —InA(t))

T—o0
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price of risk only). Various shapes of the forward cuve- F;(T') can also be modelled via different
specifications ofG. For instance, ifg;(7") is a decreasing function, we obtain the contango and
backwardation situations depending on the spot price teginge or below the mean. Tf — g1 (T")

has a hump, we will also observe a hump in the forward curveg€peral specifications ¢f we can
have a high degree of flexibility in matching desirable slsagfehe forward curve.

Observe that the time-dynamics of the forward price can beidered as correlated with the spot
rather than directly depending on the spot. In the Orndtiitenbeck situation, the log-forward price
can be considered as a linear regression on the current spef with time-dependent coefficients.
This is not the case for general specifications. However,ave that\/;(T") andY; are both normally
distributed random variables (recall that we are stillmeshg our attention tol. = B), and the
correlation between the two is

_ It G(T,8)G(t,s)ds
\/ffoo G2(T,s)ds ffoo G2(t, ) ds '

Obviously, forG(t,s) = g(t — s) = exp(—a(t — s)), the correlation is 1. In conclusion, we can
obtain a weaker stochastic dependency between the spabiavard price than in the classical mean-
reversion case by a different specification of the "mearmnigen” functionG.

Cor(M(T),Ys)

5.1.2 Affine structure of the forward price

In the discussion above we saw that the cha@i€e, s) = g1 (t)g2(s) yielded a forward price express-
ible in terms ofY;. In the next Proposition we prove that this is the only cha@t€ yielding an affine
structure. The result is slightly generalising the analggiCarverhill (2003).

Proposition 3. The forward price in Proposition 2 is affine i, and Z; if there exist functions
g1, 92,11 andig such thatG(t,s) = g¢1(t)g2(s) andi(t,s) = i1(t)i2(s). Opposite, if the forward
price is affine inY; and Z;, and G and: are strictly positive and continuously differentiable retfirst
argument, then there exists functiops g2, 71 andie such thatG(¢,s) = gi1(t)ga2(s) andi(t,s) =

il(t)ig(s).
Obviously, the choice off andi coming from OU-models,
G(tv 3) = g(t - 3) = exp(—a(t - 3)) ) ’L.(t> 8) = eXp(_/\(t - 8)) ’

satisfy the conditions in the Proposition above. In facpegding to similar arguments as in the
proof of Proposition 3 above, one can show that this isahlg choice (modulo multiplication by a
constant) which is stationary and gives an affine structaréné spot and volatility for the forward
price dynamics. In particular, the specificatigfx:) = o/(x + b) considered in Example 3 gives a
stationary spot price dynamics, but not an affine structutbe spot for the forward price.

5.1.3 Risk—neutral dynamics of the forward price

We next turn our attention to the risk-neutral dynamics efftirward price.

Proposition 4. The risk-neutral dynamics of the forward priég(7") in Proposition 2 is

dFy(T)
F,_(T)

1 [T .
= G(T,t)ws dW; + 3 / G2(T, s)i(s,t)ds dU]"
t
whereU,! = U; — L o7 (z)].=0 t, t > 0is aQ"-martingale.
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We observe that the dynamics will jump according to the chariigvolatility given by the process
U;. Thus, although the spot dynamics has continuous path&rtivard price will jump. As expected,
the integrand in the jump expression tends to zero wihient — 0, since the forward price must
converge to the spot when time to maturity goes to zero.

The forward dynamics will have a stochastic volatility givey G(7T', t)w;. Whenevetimr G(T',t)
exists, and=(7,T) = 1, we haveu.s.,

ltlTl}l G(T, t)ws = wr.

When passing to the limit, we have implicitly supposed thatwork with the version ofs; having
left-continuous paths with right-limits. By the definitiaf our integral inY;, where the integrand is
supposed predictable, this can be done. Thus, we find th&trthard volatility converges to the spot
volatility as time to maturity tends to zero, which is knowsthe Samuelson effect. Contrary to the
classical situation where this convergence goes expalgntive may have many different shapes of
the volatility term structure resulting from our generaldabing framework.

In Bjerksund et al. (2000), a forward price dynamics for &leity contracts is proposed to follow

dFt(T) . g
BT {a+T—t+b

} AWy, (27)

wherea, b ando are positive constants. They argue that in electricity mrkthe Samuelson effect
is stronger close to maturity than what is observed in otberrmodity markets, and they suggest to
capture this by letting it increase by the rat&7T" — ¢ + b) close to maturity of the contracts. This
is in contrast to the common choice of volatility beiagxp(—a(T — t)), resulting from using the
Schwartz model for the spot price dynamics. There is noeefar to any spot model in the Bjerksund
et al. (2000) model. The constamtomes from a non-stationary behaviour, which we have nettak
into account in our modelling framework. However, for= 0 we see that we can model the spot
price by theBSS process .
Yi— [ gt-ss.
— 0o
with -
9(x) = x+b’
Thus, after doing a Girsanov transform, we recover the msltral forward dynamics of Bjerksund
et al. (2000). The general case with+ 0 is easily included by adding an independent Brownian
motion term to the logarithmic spot price dynamics. It ienatsting to note that with this spot price
dynamics, the forward dynamics is not affine in the spot. ldetize Bjerksund et al. model is an
example of a non-affine forward dynamics. Wheneveg b, we do not have thaj(¢,¢) = 1, and
thus the Bjerksund model does not satisfy the Samuelsoct eficher.

5.1.4 Option pricing

We end this section with a discussion of option pricing. Leagsume that we have given an option
with exercise timer on a forward with maturity at tim& > 7. The option pays (F,(T")), and we
are interested in finding the price at time 7, denoted” (¢). From arbitrage theory, it holds that

C(t)=e "R [f(F-(T))| A , (28)

where( is the risk-neutral probability. Choosirfg as coming from the Esscher transform above, we
can derive option prices explicitly in terms of the chargste function of U by Fourier transform.
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5 PRICING OF FORWARD CONTRACTS

Moreover, we observe from Proposition 4 that we can statéotfneard price as

t

F.(T)=H(r,T)exp </_too G(T, s)ws dW +/

— 00

(T, s) dUs> :

for suitably defined function&l andh. Let nowp(x) = f(exp(x)), and suppose thatc L'(R) . By
applying the definitions of Fourier transforms and the isean Folland (1984), we have that

1

@) = 5= [ e dy.

with p(y) is the Fourier transform qf(x) defined by

Bly) = /R p(x)e di.

Hence, we find

1) = g [ A ey (iy ([ Grsmaws [ wrsav.)) an.
s R —00 — 0o
(29)
Next, by commuting integration and expectation using dateid convergence and applying double
conditioning and the stochastic Fubini theorem, it holds th

t

t
C, = _’"(T_t)zi / p(y) exp (iy <ln H(r,T) +/ G(T, s)ws dW +/
™ JR —00

— 00

h(T, s) dUs>>
< E, [exp (/j iyh(T, v) — %/UTi(s,v)Gz(T, 5) dstv> ]}“t} dy.

The last equality holds by the stochastic Fubini TheorenindgJthe independent increment property
of U, we reach

t

t
C, = e""(T_lt)Zi / p(y) exp <iy <ln H(r,T)+ / G(T, s)ws dW; —l—/
T JR —00

conn( [[ ot (im0 [ st monas) ) ar.

One can calculate option prices by applying the fast Four&rsform as long as the characteristic
function ofU, ¢y, is known. Ifp is not integrable (as is the case for a call option), one megduce
a damping function to regularize it, see Carr & Madan (19@8)xktails.

) )

5.2 Arithmetic case

Let us consider the arithmetic spot price model,
St — A(t)?t,

whereY is defined as in (19). We analyse the forward price for thig casd discuss the affinity. The
results and discussions are reasonably parallel to the gfeicroase, and we refrain from going into
details but focus on some main results.

Under a natural integrability condition of the spot pricehwiespect to the Esscher transform
measure)? ", we find the following forward price for the arithmetic model
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6 CONCLUSION

Proposition 5. Suppose tha$; € L'(Q%"). Then, the forward price is given as

Fi(T) = A(T) { /_ ; G(T, 8)ws dLLs + E[L1] /t L G, B s | F ds}

The price is reasonably explicit, except of the conditiaeglectation of the stochastic volatility
ws, Which in general is very hard to compute. By the same argtsraenin Proposition 3, the forward
price becomes affine in the spot (or¥n) if and only if G(¢, s) = g1(t)g2(s) for sufficiently regular
functionsg; andgs.

In the casel, = B, we can obtain an explicit forward price when using the Giesatransform
as in (24). We easily compute that the forward price becomes

F(T)=A(T) {/_too G(T, s)ws dWs + /_TOO G(T, s)0(s) ds} . (30)

We note that there is no explicit dependence of the spotiltglat; except indirectly in the stochastic
integral. This is in contrast to the Lévy case with Esschamgform. The dynamics of the forward
price becomes

It is interesting to notice that the volatility of the forvehprice in the arithmetic case depends on the
seasonality function directly. We refer to Benth et al. @0r a discussion of the seasonality effects
in the term structure of volatility.

If we furthermore letG(t, s) = gi1(t)g2(s) for some sufficiently regular functions andg,, we
find that
A(T)g1(T)
A(t)gi(t)
Hence, the forward curve moves stochastically as the spog,pwhereas the shape of the curve
is deterministically given byA(T")g1(T)/A(t)g1(t). This shape is scaled stochastically by the spot
price. In addition, there is a deterministic term which ishekl from the market price of risi.

We finally remark that also in the arithmetic case one mayvdezkpressions for the prices of
options which are computable by fast Fourier techniques.

T
F(T) = S, + A(T) / G(T, 5)0(s) ds. (32)

6 Conclusion

This paper has introduced a new class of models for energlypsjmes, which is based on Lévy
semistationary processes. We have discussed the pratialplioperties of such models such as suit-
able integrability conditions, absence of arbitrage amdsicond order structure. Due to their very
general structure, Lévy semistationary processes casuatfor most of the stylised facts observed
in energy prices, including mean-reversion, stationatiity presence of jumps and spikes, volatility
clusters and the Samuelson effect. Furthermore, our nesg cdamodels embeds most of the tradi-
tional models used in energy finance, such as the SchwartelnM@ARMA models and models based
on non—Gaussian Ornstein Uhlenbeck processes. We havedleriplicit formulae for the electricity
forward prices based on our new spot price models.

In future research it will be interesting to investigate hiv@ new models can be estimated and
how one can draw inference on the stochastic volatility essc INBSS models, the latter question
has been studied in Barndorff-Nielsen, Corcuera & Podp{gki09, 2010). Extending such results to
more generalSS processes is subject to future research.

Furthermore, we have mentioned in Section 4 that in ordensoire that there are no arbitrage
opportunities in a market with transaction costs, when semimartingales are used for modelling
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asset prices, a distributional property caltaxhditional full supportplays a key role in the context of
continuous stochastic process. So a natural questiondy stuwhat is the analogue of such a distri-
butional property for jump processes in general and foryléamistationary processes in particular?

A Proofs

Proof of Proposition 1.First, write

T ¢ T
/ G(T, s)wsdLs = / G(T,s)wsdLs + / G(T, s)ws dLs
—00 —00 t
and observe that the first integral on the right-hand sidg-measurable. The result follows by using

double conditioning, first with respect to thealgebraG; generated by the paths of,s < T and
Fi, and next with respect t&;. O

Proof of Proposition 2.By the Girsanov change of measure we have
T T T
/ G(T, 8\, dB, = / G(T, 5)0(s) ds + / G(T, 5\, AW, .
By following the argumentation in the proof of Propositioymie are led to calculate the expectation
1 T
E, {exp (5/ G*(T, s)w? ds> \ft] .
t
But, by the stochastic Fubini Theorem, see e.g. Barndadfsen & Basse-O’Connor (2009),
T s
/ G*(T, s)/ i(s,v)dU, ds
t —00
T rt T s
- / / G2(T, 8)i(s,v) dU, ds + / / G2(T, 8)i(s,v) dU, ds
t —00 t t
t T T T
= / / G*(T, 5)i(s,v) ds dU, —I—/ / G*(T, s)i(s,v)dsdU, .
—oco Jt t v

Using the adaptedness £ of the first integral and the independence fré@mof the second, we find
the desired result. O

Proof of Proposition 3.If G(¢, s) = g1(t)g2(s) it holds that

9 (T)
g1(t)

91(T)
g1(t)

T t
/ G(T, s)ws AW = / G(t,s)ws dW, = Y;.

Similarly, ofi(t, s) = i1(t)ia(s),
t

/_too/tTc;?(T,v)i(v,s)dvdUs21-1—1(15) /tTGZ(Tw)il(v)dv/ it 5) dU,

. —o0
i) /t G2(T, )iy (v) dv s,

and affinity holds in both the volatility and the spot price.
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Opposite, to have affinity if'; we must have that
t t
/ G(T, s)ws dWy = &(T, t) / G(t, s)ws dWs,

for some functior¢ (7', t), which means that the ratg(7',t) = G(T', s)/G(t, s) is independent of.
&(T,t) is differentiable inT" as long agy is. Furthermoreg(7,T) = 1 by definition. Thus, by first
differentiatingé with respect tdl” and next lettingl” = ¢, it holds that

GT(t, S) = fT(t, t)G(t, S) s

where we use the notatidi; = 0G /9T, the derivative with respect to the first argument. Hence, we
must have that

G(t,s) = G(s, s) exp ( / t Er(u, ) du> ,

and the separation property holds.
Likewise, to have affinity in the volatilityZ (¢), we must have thaftT G*(T,v)i(v,s) dv/i(t, s)
must be independent ef Denote the ratio b§ (7', ¢), and differentiate with respect 0 to obtain

T
G2(T. T)i(T, s) + 2 /t G(T, )G (T, v)i(v, 5) dv = (T, 1)i(t, s) .
Hence T
i(T, s) = _/t (T, v)i(v, 5) dv + J(T, 0)i(t, ),

for I(T,t) = 2G=%(T,T)G(T,v)G7(T,v) and J(T,t) = G=%(T,T)¢(T\,t). Differentiating with
respect tdl’, and next lettingl” = ¢ gives

Z.T(tv 3) = i(tv 3) (JT(t> t) - I(tv t)) .
Whence, .
i(t,s) =i(s,s)exp </ Jr(v,v) — I(v,v) dv> ,
and the separation property holds foiT he Proposition is proved. O

Proof of Proposition 4.Let

T
HT(t,s):/ G*(T,v)i(v,s)dv,

t

and from Proposition 2 we have that
t 1 t -
F(T)=0(t,T)exp </ G(T, s)ws dW, + 5/ Hr(t,s) dUg) ,
for some deterministic functio®(¢,7"). Note that the process

Mrp(t) = /t G(T, s)ws dWs

— 00

is a (local)Q?"-martingale fort < T'. Moreover, from the stochastic Fubini Theorem it holds that

/ HTtst"—/ HTSstT7 / / tst"du
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where we note that oH
a—tT(t’S) = —G*(T, t)i(t, s) .

Hence, the result follows by the 1t6 Formula for jump proes O

Proof of Proposition 5.0bserve that

T T
Eo.n [ / G(T, s)ws dLs Ift] = (‘D%Eem [exp (im / G(T, s)ws dLs> IJ-}} :
o —o0 =0
We then proceed as in the proof of Proposition 1, and finallyperdorm the differentiation and let
x = 0. .
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