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Abstract

Ambit processes are general stochastic processes based on stochastic integrals with respect to
Lévy bases. Due to their flexible structure, they have greatpotential for providing realistic models
for various applications such as in turbulence and finance. This papers studies the connection
between ambit processes and solutions to stochastic partial differential equations. We investigate
this relationship from two angles: from the Walsh theory of martingale measures and from the
viewpoint of the Lévy noise analysis.

Keywords: Ambit processes, stochastic partial differential equations, Lévy bases, Lévy noise, Walsh
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1 INTRODUCTION

1 Introduction

In physics, partial differential equations (PDEs) give a dynamic way to describe how phenomena
in nature evolve over time and space. For instance, the classical heat equation of Einstein gives a
dynamic model for how heat diffuses in a medium. Stochastic partial differential equations (SPDEs)
add randomness to such evolution equations, where the noisesource may come from uncertainties in
measurements, non–explainable effects and turbulent phenomena. The noise is usually modelled as a
random field in time and space, also called white noise or, more generally, Lévy noise. We shall be
mostly concerned with parabolic PDEs in this paper.

Ambit processes have been proposed and introduced by Barndorff–Nielsen & Schmiegel and have
thereafter been applied in various areas such as turbulencemodelling (see e.g. [6; 13]), in medical
context in form of describing tumor growth ([12]), and more recently for modelling energy markets
([4; 5]).

The solution of a parabolic differential equation is often represented as an integral over a Green’s
function (the fundamental solution of the PDE) convoluted with some initial condition. Such rep-
resentations look very similar to the definition of stationary ambit processes of [13]. The Green’s
function representation is an explicit solution as long as the Green’s function is known, where the
deterministic space–time dynamics of the phenomena in question is encapsulated in the form of this
function. It is closely linked to density functions of stochastic diffusion processes.

Introducing noise leads to complications of interpreting in what sense we have a solution. This
requires a theory for stochastic integration in time and space, such as proposed in Walsh [46]. It
turns out, that solutions of parabolic equations with an additive source of noise can be represented as
the stochastic convolution of the Green’s function and the initial value, where the integration is with
respect to the random field. We present the theory of Walsh [46] and link it to ambit processes.

When having a stochastic source term, one may have solutionsbeing singular. This is the starting
point for applying white noise analysis (WNA) or, more generally, Lévy noise analysis (LNA) to
analyse SPDEs. We discuss the theory of LNA and link it to ambit processes. Here we will also
include discussions of SPDEs and how they are related to ambit processes.

Note that ambit processes may provide a statistical approach to model physical processes in nature
far simpler than SPDEs, since they provide a way to specify directly the model based on a probabilistic
understanding of the phenomena in question. They also give aframework for extending the solutions
of SPDEs. In order to have a solution in the sense of Walsh, often strong integrability conditions
are imposed. The ambit processes are well–defined under veryweak conditions of integrability, and
thereby we may extend the solutions of certain equations to include far more general initial conditions,
say, or more general types of noise.

The main issue of this paper is to relate the use of the building stone in ambit processes, Lévy
bases, to the language of Walsh and the theory of LNA. The latter talks about processes being the
derivatives of Levy processes, while Walsh talks about random measures and their derivatives.

The outline for the remaining part of the paper is as follows.In Section 2 the concepts of ambit
fields and processes are outlined, and the important specialcase of spatial dimension 0 is treated in
some detail; in that case the ambit processes are referred toas Lévy semistationary (LSS) processes
or, in the Gaussian case, as Brownian semistationary (BSS) processes. In particular, an indication of
the theory and use of multipower variations for inference onthe volatility process is given. Section
2 concludes by a brief discussion of some applications to turbulence and energy markets. Section 3
connects the idea of Lévy bases to the theory of random fieldsdue to Walsh. We show how, subject to
anL2 restriction and based on the theory of Hilbert space random fields, it is possible to define Lévy
noise for Lévy bases, and the associated integration theory is discussed. Finally, some applications to
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2 AMBIT PROCESSES

SPDEs and their relation to ambit processes are considered.Section 4 links the theory of Lévy noise
analysis for Lévy processes, as developed in Holden, Øksendal, Ubøe and Zhang [31], to that of Lévy
bases and ambit processes, and discusses SPDEs in that context. The concluding Section 5 briefly
brings the various strands together.

2 Ambit processes

2.1 Background

The general background setting for the concept of ambit processes consists of a stochastic fieldY =
{Yt (x)} in space–timeX × R, a curveτ (θ) = (x (θ) , t (θ)) in X × R, and the valuesXθ =
Yt(θ) (x (θ)) of the field along the curve, the focus being on the dynamic properties of the stochastic
processX = {Xθ}. Here the spaceX is often, but not necessarily, taken asR

d for d = 1, 2 or 3. The
stochastic field is supposed to be generated by innovations in space–time and the valuesYt (x) are
assumed to depend only on innovations that occur prior to or at time t. More precisely, at each point
(x, t) only the innovations in some subsetAt (x) of X × Rt (whereRt = (−∞, t]) are influencing
the value ofYt (x), and we refer toAt (x) as theambit set, associated to(x, t), and toY andX as an
ambit fieldand anambit process, respectively; see Figure 1 for an illustration.

(x(θ), t(θ))Xθ

At(θ)(x(θ))

@

�
�

�

x

Figure 1: Example of an ambit processXθ along the curve(x(θ), t(θ)), where the ambit set is given
byAt(θ)(x(θ)).

Obviously, without further structure nothing interestingcan be said about the fieldY and the
processX, and we shall specify such structure in mathematical detailin a moment. But in verbal
terms,Yt (x) will be defined in the form of a stochastic integral plus a smooth term, and the integrand
in the stochastic integral will consist of a deterministic kernel times a positive random variate which is
taken to embody thevolatility or intermittencyof the fieldY . We shall mostly consider specifications
under whichYt (x) is stationary in time for each fixedx.
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2 AMBIT PROCESSES

The volatility field, denoted byσ, is given also as an ambit field, and a central issue is what can
be learned aboutσ from observation ofY orX.

Note that, in general, ambit processes are not semimartingales. Many of the standard tools from
semimartingale theory are therefore not applicable and alternative methods are required.

The more precise mathematical specification of what is meantgenerally by ambit fields and pro-
cesses is given in Section 2.2. In Sections 2.3, 2.4 and 2.5 wefocus on the null–spatial case, i.e.
whereX consists of a single point. There the concept of ambit processes specialises to that of Lévy
and Brownian semistationary processes (LSS andBSS processes). Already in that setting there are
many interesting questions of a nonstandard character. These have important analogues in the gen-
uinely tempo–spatial case.

As for semimartingales, the questions of existence and properties of quadratic variations, and more
generally multipower variations, are of central importance in the study of ambit fields and processes,
in particular as these objects relate to the volatility/intermittency. We will review the main results in
that context in Section 2.6 and refer to [17], [8] and [9] for more details.

Section 2.7 contains some applications of ambit processes to turbulence (Section 2.7.1) and energy
finance (Section 2.7.2), respectively.

2.2 Ambit fields and processes

Generally we think of ambit fields as being of the form

Yt (x) = µ +

∫

At(x)
g (ξ, s;x, t) σs (ξ)L (dξ,ds) +

∫

Dt(x)
q (ξ, s;x, t) as (ξ) dξds. (1)

whereAt (x), andDt (x) are ambit sets,g andq are deterministic function,σ ≥ 0 is a stochastic field
referred to as theintermittencyor volatility, andL is aLévy basis, defined as follows (see [20], [36]):
LetB(Rk) be the Borel sets ofRk and denoteBb(S) the bounded Borel sets ofS ∈ B(Rk).

Definition 1. A family{Λ(A) : A ∈ Bb(S)} of random vectors inRd is called anR
d–valued Ĺevy

basis onS if the following three properties are satisfied:

1. The law ofΛ(A) is infinitely divisible for allA ∈ Bb(S).

2. If A1, . . . , An are disjoint subsets inBb(S), thenΛ(A1), . . . ,Λ(An) are independent.

3. If A1, A2, . . . are disjoint subsets inBb(S) with
⋃∞
i=1Ai ∈ Bb(S), then

Λ

(
∞⋃

i=1

Ai

)
=

∞∑

i=1

Λ(Ai) , a.s.,

where the convergence on the right hand side isa.s..

Conditions (2) and (3) define an independently scattered random measure. Note that we useΛ
when we refer to a general Lévy basis, and when we have separated out time as one dimension, we
talk of Lévy bases defined onS = X × R and we indicate integration with respect to such bases by
L(dξ,ds).

Inference on the volatility/intermittency fieldσ is a focal point for the study of ambit processes
and fields. Often the volatility field (or the logarithmic volatility field) will itself be defined as an
ambit field through
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2 AMBIT PROCESSES

σ2
t (x) =

∫

Ct(x)
h (ξ, s;x, t)L (dξ,ds) , (2)

with h a positive function,Ct (x) some ambit set and whereL is a nonnegative non–Gaussian Lévy
basis.

At the present level of generality we take the integrals in (1) to be defined in the sense of inde-
pendently scattered random measures, cf. [38], assuming thatg, σ, q anda are sufficiently regular for
the integrals to exist. However, in more concrete cases it isoften of interest to establish whether the
definition of the integrals can be sharpened to a more dynamical version, for instance in the sense of
Itô–type integrals. We return to this question later, see in particular Sections 3.4 and 4.

Of particular interest are ambit processes that are stationary in time and nonanticipative. More
specifically, they may be derived from ambit fieldsY of the form

Yt (x) = µ +

∫

At(x)
g (ξ, t− s;x)σs (ξ)L (dξ,ds) +

∫

Dt(x)
q (ξ, t− s;x) as (ξ) dξds. (3)

Here the ambit setsAt (x), andDt (x) are taken to behomogeneousandnonanticipative, i.e. At (x)
is of the formAt (x) = A+ (x, t) whereA only involves negative time coordinates, and similarly for
Dt (x). Further, we assume thatg(ξ, τ ;x) = 0 andq(ξ, τ ;x) = 0 for all τ < 0.

Remark Recall from [12; 36] that every Lévy basisL exhibits a Lévy–Itô decomposition. LetN de-
note the Poisson basis associated with the Levy basisL through such a decomposition and letν denote
the intensity measure ofN . Clearly, we haveE(N(dx; dξ, ds)) = ν(dx; dξ, ds). In the following, we
are interested inhomogeneousLévy bases, i.e. Lévy bases which satisfyν(dx; dξ, ds) = ν̃(dx; dξ)ds
for a measurẽν.

Remark Many prominent tempo–spatial models are constructed from an ordinary, partial or frac-
tional differential equation by adding a noise term, for instance in the form of white noise, to the
equation. The solution to the equation then being often representable as an integral with respect to the
noise of the Green’s function of the original deterministicdifferential equation (see [3; 24]). Thus the
solution is taking the form of an ambit process. For some examples with discussion, see Sections 3.5
and 4.2.

Note that, in general, ambit processes involve time varyingambit sets and allow for a stochastic
volatility factor. Such stochastic volatility is important in many areas in science, not only in the
contexts of turbulence and finance which are in focus in this paper.

For understanding the nature of ambit processesXθ = Yt(θ) (x (θ)), and as a step towards handling
questions of inference onσ, it is useful to discuss the cores ofY andX. With the ambit field given
by (1), thecoresY◦ andX◦ of Y andX are defined, respectively, by

Y◦t (x) =

∫

At(x)
g (ξ, s;x, t)L (dξ,ds) ,

and

X◦θ =

∫

A(θ)
g (ξ, s; τ (θ))L (dξ,ds) ,

where, as above,τ (θ) = (x (θ) , t (θ)) and where we have usedA (θ) as a shorthand forAt(θ) (x (θ)).
In case the Lévy basisL is the Wiener basisW we speak of aGaussian core.
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2 AMBIT PROCESSES

Remark A class of processes having some properties common with one–dimensional ambit pro-
cesses is studied in [44] under the namemixed moving averages. More precisely the authors study
processesX = (Xt)t∈R of the form

Xt =

∫

X×R

f(x, t− s)Λ(dx, ds), (4)

whereX is a non–empty set andΛ is a symmetricα–stable (SαS) random measure onX × R with
Lévy measureν× leb, whereleb is the Lebesgue measure andν is aσ–finite measure onX . Note that
such processes are always stationary. In the SαS non–Gaussian case, they show that this is the smallest
class containing all superpositions and weak limits of ordinary SαS moving averages. Furthermore,
Rosinski [39] has obtained a Wold–Karhunen type decomposition of stationary SαS non–Gaussian
processes in which mixed moving averages play a role similarto ordinary moving averages in the
Gaussian case. And in [40] this type of result is extended to abroad range of non–Gaussian infinitely
divisible processes.

2.3 Null–spatial case: Ĺevy Semistationary Processes (LSS)

When the spaceX consists of a single point (or we just considerYt (x) of (1) in its dependence ont
keepingx fixed) the concept of ambit processes specialises to that ofLévy Semistationary Processes
(LSS), introduced in [5], which are processesY = {Yt}t∈R

of the form

Yt = µ+

∫ t

−∞
g(t− s)σsdLs +

∫ t

−∞
q(t− s)asds, (5)

whereµ is a constant,L is a Lévy process,g andq are nonnegative deterministic functions onR, with
g (t) = q (t) = 0 for t ≤ 0, andσ anda are càdlàg processes. Whenσ anda are stationary, as we will
require henceforth, then so isY . Hence the name Lévy semistationary processes. It is convenient to
indicate the formula forY as

Y = µ+ g ∗ σ • L+ q ∗ a • leb, (6)

whereleb denotes Lebesgue measure.
Generally we have taken the stochastic integrals as defined in the sense of [38]. However, in the

present case, ofLSS processes, one may define the integrals in the Itô sense, relative to the filtration
FL generated by the incrementsLt − Ls, −∞ < s ≤ t < ∞. Here we adopt the latter definition,
noting that the two versions agree with respect to all finite dimensional distributions.

WhenL = B in formula (5) for a standard Brownian motionB, thenY specialises to aBrownian
Semistationary Process(BSS), introduced in [17]. The Gaussian core of aBSS process is

Y◦t =

∫ t

−∞
g(t− s)dBs. (7)

We consider theBSS processes to be the natural analogue, for stationarity related processes, of
the classBSM of Brownian semimartingales

Yt =

∫ t

0
σsdBs +

∫ t

0
asds.

Already in this null–spatial case the question of drawing inference onσ2 is highly nontrivial. The
main tool is multipower variation, see [8] and [9].
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2 AMBIT PROCESSES

2.4 Key example for aBSS process

An example of particular interest in the context ofBSS processes is where

g (t) = tν−1e−λt, for t ∈ (0,∞) , (8)

for someλ > 0 and withν > 1
2 . The latter condition is needed to ensure the existence of the stochastic

integral in (7).

Remark For the key example (8) the derivativeg′ of g is not square integrable if12 < ν < 1 or
1 < ν ≤ 3

2 ; hence, in these casesY is not a semimartingale. For12 < ν < 1 we haveg (0+) = ∞
while g (0+) = 0 when1 < ν ≤ 3

2 . These two cases are radically different in nature. Of course,
for ν = 1 the processY =

∫ ·
−∞ g(· − s)σsB(ds) is simply a modulated version of the Gaussian

Ornstein–Uhlenbeck process, and in particular, a semimartingale. Note also that whenν > 3
2 then

Y is of finite variation and hence, trivially, a semimartingale. To summarise, the nonsemimartingale
cases areν ∈

(
1
2 , 1) ∪ (1, 3

2

]
.

2.5 Generality ofBSS
As a modelling framework for continuous time stationary processes the specification (6) is quite gen-
eral. In fact, the continuous time Wold–Karhunen decomposition says that any second order stationary
stochastic process, possibly complex valued, of mean0 and continuous in quadratic mean can be rep-
resented as

Zt =

∫ t

−∞
φ (t− s) dΞs + Vt, (9)

where the deterministic functionφ is an in general complex, deterministic square integrable function,

the processΞ has orthogonal increments withE
{
|dΞt|2

}
= ̟dt for some constant̟ > 0 and the

processV is nonregular (i.e. its future values can be predicted, in theL2 sense, by linear operations
on past values without error).

Under the further condition that∩t∈Rsp {Zs : s ≤ t} = {0}, the functionφ is real and uniquely
determined up to a real constant of proportionality; and thesame is therefore true ofΞ (up to an
additive constant).

In particular, ifdΞs = σsdBs with σ andB as in (6), thenΞ is of the above type with̟ =
E
{
σ2

0

}
.

2.6 Multipower variations

One of the interesting aspects in the context ofBSS models is the question on how to estimate the
stochastic volatilityσ and how to make inference on it. A key tool for tackling this question is a
statistic calledrealised varianceand, more generally,realised multipower variation.

A realised multipower variation of a stochastic processX is an object of the type

[nt]−k+1∑

i=1

k∏

j=1

|∆n
i+j−1X|pj , (10)

where∆n
i X = X i

n
−X i−1

n
andp1, . . . , pk ≥ 0. I.e. it is assumed that the processX = (Xt)t≥0 is

observed at timesiδ, whereδ = 1
n and i = 0, 1, . . . , [nt]. These concepts have been developed in
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2 AMBIT PROCESSES

the context of financial times series, see e.g. [10; 11; 18; 19; 21] for results in a framework based on
Brownian semimartingales. In the presence of jumps, these quantities have been studied by [32; 33]
and [45]. A detailed survey on this aspect is also given by [2]. However, in the non–semimartingale
set up the underlying theory is much more involved. We just sketch the main results here briefly and
refer to [17], [8] and [9] for more details.

Consider a filtered probability space(Ω,F , (Ft)t≥0, P ), assuming the existence thereon of aBSS
processY defined as in (5), whereL = B is a standard Brownian motion. LetG denote the Gaussian
core ofY as defined in (7), i.e.

Gt = Y◦t =

∫ t

−∞
g(t− s)dBs,

and letG be theσ–algebra generated byG. The correlation function of the increments ofG is given
by

rn(j) = cov

(
∆n

1G

τn
,
∆n

1+jG

τn

)
=
R̄( j+1

n ) − 2R̄( jn) + R̄( j−1
n )

2τ2
n

.

Next, we introduce a class of measures that is crucial for establishing an asymptotic theory for
realised multipower variations. We define

πδ(A) =

∫
A(g(x − δ) − g(x))2dx∫∞
0 (g(x − δ) − g(x))2dx

, y ≥ 0,

and we further setπδ(x) = πδ({y : y > x}). Note thatπδ is a probability measure onR+.
We are interested in the asymptotic behaviour of thenormalised multipower variations

V̄ (Y, p1, . . . , pk)
n
t =

1

nτ
p+
n

[nt]−k+1∑

i=1

k∏

j=1

|∆n
i+j−1Y |pj ,

wherep+ =
∑k

j=1 pj andτ2
n = R̄(1/n) with R̄(t) = E[|Gs+t −Gs|2], t ≥ 0.

In order to establish a weak law of large numbers, one needs the following assumption.
(LLN): There exists a sequencer(j) with

r2n(j) ≤ r(j) ,
1

n

n−1∑

j=1

r(j) → 0.

Moreover, it holds that
lim
n→∞

πδ(ε) = 0,

for anyε > 0.
Then the law of large numbers is given by the following proposition.

Proposition 1. Assume that the condition(LLN) holds forY = g ∗ σ •W + q ∗ a • leb. Define

ρ(n)
p1,...,pk

= E

[∣∣∣∣
∆n

1G

τn

∣∣∣∣
p1

· · ·
∣∣∣∣
∆n
kG

τn

∣∣∣∣
pk
]
.

Then we have

V̄ (Y, p1, . . . , pk)
n
t − ρ(n)

p1,...,pk

∫ t

0
|σs|p+ds

ucp−→ 0,

where the convergence is uniform on compacts in probability(ucp).
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2 AMBIT PROCESSES

Furthermore, for a central limit theorem, one needs the following assumption.
(CLT): Assumption(LLN) holds, and

rn(j) → ρ(j) , j ≥ 0,

whereρ(j) is the correlation function of some stationary centered discrete time Gaussian process
(Qi)i≥1 with E[Q2

i ] = 1 (as before). Moreover, for anyj, n ≥ 1, there exists a sequencer(j) with

r2n(j) ≤ r(j) ,

∞∑

j=1

r(j) <∞.

Finally, the tail mass functionπn is assumed to satisfy an additional mild condition.
Now, we can formulate a joint central limit theorem for a family

(V̄ (Y, pj1, . . . , p
j
k)
n
t )1≤j≤d of multipower variations as follows.

Proposition 2. Assume that the processσ is G–measurable and the condition(CLT) holds. Then
we obtain the stable convergence

√
n
(
V̄ (Y, pj1, . . . , p

j
k)
n
t − ρ

(n)

pj
1
,...,pj

k

∫ t

0
|σs|p

j
+ds

)
1≤j≤d

G−st−→
∫ t

0
Z1/2
s dBs,

whereB is ad–dimensional Brownian motion that is defined on an extensionof the filtered probability
space(Ω,F , (Ft)t≥0, P ) and is independent ofF , andZ is ad× d–dimensional process given by

Zijs = βij |σs|p
i
+

+pj
+ , 1 ≤ i, j ≤ d ,

where thed× d matrixβ is defined as in [8].

Note that in order to obtain an asymptotic limit theory for a wide range of multipower variations,
one is forced to consider also multipower variations of second order differences. (For Brownian
semimartingales passing to second order differences wouldmake no essential change in the limit
theory.) Multipower variations based on second order differences are quantities having the same
form as (10) but using

3
n
jX = Xjδ − 2X(j−1)δ +X(j−2)δ,

instead of∆n
jX. However, we shall not dwell on this aspect here, but refer to[7; 9] for discussions,

detailed results and applications.

2.7 Applications to turbulence and finance

After having introduced the concept of ambit fields and ambitprocesses, we turn our attention to
applications of such processes in turbulence and in finance.

2.7.1 Tempo–spatial settings in turbulence

The idea of ambit processes arose out of a project aimed at establishing realistic stochastic models
of the velocity fields in stationary turbulent regimes (cf. [6; 12] and also [13–17]). In turbulence the
basic notion ofintermittencyrefers to the fact that the energy in a turbulent field is unevenly distributed
in space and time, and the paper [12] introduced stochastic models for turbulent intermittency (also

9



2 AMBIT PROCESSES

referred to asenergy dissipation) fields, in the form of ambit fields. The later paper [13] proposed a
class of ambit processes for the description of the velocityfield, in the form

Yt (x) = µ+

∫

At(x)
g (ξ − x, t− s)σs (ξ)W (dξ,ds)

+

∫

Dt(x)
q (ξ − x, t− s)σ2

s (ξ) dξds, (11)

for a Gaussian Lévy basisW with associated intermittency (or energy–dissipation) field

σ2
t (x) =

∫

Ct(x)
h (ξ − x, t− s)L (dξ,ds) , (12)

whereL is a nonnegative Lévy basis. An alternative way of modelling σ is by defininglog σ2 as

log σ2
t (x) =

∫

Ct(x)
h (ξ − x, t− s)L (dξ,ds) . (13)

This latter specification has the advantage of allowing coupling to cascade theories in turbulence, see
[43].

Clearly, the choice of the ambit setsAt(x),Dt(x), Ct(x) influences the behaviour of an ambit
process. Therefore, it is important to investigate what shape of the ambit set reflects the empirical
facts best.

In order to illustrate how such ambit sets may look, we provide a plot of a particular type of ambit
set, the shape of which is rooted in turbulence (see [12]).

t

t′

•

•

x x′ -

6

Figure 2: Example of the choice of an ambit setAt(x) for turbulence modelling, see [12].

Note that the mathematics of turbulence is inherently linked to stochastic partial differential equa-
tions (see [24]), as will be discussed in Sections 3 and 4.

2.7.2 Modelling energy markets by ambit fields

Following the success in describing turbulence, it transpires that ambit fields have also great potential
in financial applications. In particular, recent research,see [4; 5], has focused on using ambit fields

10



2 AMBIT PROCESSES

for modelling energy markets. Due to the general structure of ambit fields, these new models are able
to capture many stylised facts of energy markets in general,and electricity prices in particular. Special
features of those markets are e.g. strong seasonal patterns, very pronounced volatility clusters, high
spikes/jumps, the existence of the so called Samuelson effect, i.e. the fact that the volatilities of the
forward price are generally smaller than the ones of the underlying spot price and converge, when
time to maturity tends to zero, to the volatilities of the spot at a fast rate. Furthermore, there are strong
correlations between forward contracts which are close in maturity. In the following we will describe
how the structure of ambit processes can be exploited to account for these stylised facts.

2.7.3 Spot price

We start with the the question of how to model the electricityspot price. A natural choice of processes
taken from the ambit world is the class ofLSS processes as previously described. In [5], we propose
to model the electricity spot priceS = (St)t∈R by

St = Λ(t) exp(Yt) , (14)

whereΛ : R → R+ denotes a deterministic seasonal function and

Yt =

∫ t

−∞
g(t− s)ωsdLs, (15)

for a deterministic damping functiong : R → R+ with g(t) = 0 for t < 0 and a càdlàg, positive,
stationary processω = (ωt)t∈R which is independent of the two–sided Lévy processL = (Lt)t∈R.

There are several key features which make a model for the electricity spot price which is based
on aLSS process both theoretically interesting and practically relevant compared to the traditional
models. First and foremost, the deseasonalised, logarithmic spot priceY is modelleddirectly rather
than its stochastic dynamics. By doing so, one can introducea general damping functiong, which
adds much more flexibility in modelling the mean–reversion of the price process and in accounting
for the well–known Samuelson effect ([41]).

Furthermore, we account for stochastic volatilityω since this is clearly an issue in energy mar-
kets (see e.g. Hikspoors and Jaimungal [30] and Benth [23]).A very general model for the volatil-
ity process would be that we model it itself as a Lévy Volterra process, i.e.ω2

t = Zt andZt =∫ t
−∞ h(t, s) dL̃s , whereL̃ = (L̃)t∈R is another Lévy process. The functionh is assumed to satisfy

the same conditions asg.
For further details onLSS–based models for electricity spot prices we refer to [5] andturn our

attention now to models for electricity forward contracts based on ambit fields. In the context of
forward modelling, we do not stick to the zero spatial case ofambit fields, but rather allow for both
a temporal and a spatial component to reflect the fact that theforward price does not only depend on
the current time, but also on the time to maturity.

2.7.4 Forward price

In [4], we propose to use an ambit field given by

ft(x) =

∫

At(x)
k(ξ, t− s;x)σs(ξ)L(dξ, ds), (16)

for modelling the forward price of electricity. Here,t ≥ 0 denotes the current time,T > 0 denotes
the time of maturity of the forward contract andx = T − t the corresponding time to maturity.

11



3 LÉVY BASES AND THE THEORY OF WALSH

Clearly, in order to specify the model completely, we have tospecify the ambit setAt(x), the
damping or weight functionk and the stochastic volatility fieldσs(ξ). It is important to note that in
modelling terms we can vary the choice of the ambit set, the weight functionh and the volatility fieldσ
and can still achieve the particular dependence structure we are aiming for. As such there is generally
not a unique choice of the ambit set or the weight function or the volatility field to achieve a particular
type of dependence structure and the choice will be based on market intuition and considerations of
mathematical/statistical tractability.

We assume that the volatilityσs (ξ) > 0 is a stochastic field onR+ × R, which is stationary in
the time domain, i.e. with respect tos, and which expresses the volatility on the forwards market as
a whole, andL is a Lévy basis (integration in the sense of [38]) andk is a damping function. For
analytical tractability, we assume thatσ is independent ofL, and in order to ensure thatft(x) is
stationary in timet, we take the ambit sets to be of the formAt(x) = A0(x) + (0, t). Regarding the
choice of ambit sets, we just illustrate, in Figure 3, two possibilities of interest.

b T=x+t

b t

ξ

s

b t
b

x0

b T=x+t

b t

ξ

s

b t
b

x0

Figure 3: Two relevant choices of the ambit setAt(x) in the context of modelling electricity forward
prices.

Furthermore, we suggest to model the volatility field by

σ2
t (x) =

∫

Ct(x)
q(ξ, t− s;x)L̃(dξ, ds),

for a nonnegative Lévy basis̃L, a deterministic damping functionq (with q(ξ, τ ;x) = 0 for τ < 0)
and an ambit setCt(x) = C0(x) + (0, t). In order to have that forward contracts close in maturity
dates are strongly correlated with each other (as indicatedby empirical studies), we could choose the
Lévy kernelq such that

Cor(σ2
t (x), σ

2
t (x̄))

is high for values ofx andx̄ which are close to 0 (i.e. closeness to maturity).

3 Lévy bases and the theory of Walsh

In this section we connect the notion of a Lévy basis to the theory of white noiserandom fields of
Walsh [46]. Further, we show how to define thenoiseof sufficiently regular Lévy bases based on the
theory of Hilbert space random fields. We summarise the stochastic integration theory of Walsh [46]
and present some applications to stochastic partial differential equations in view of ambit processes.

12



3 LÉVY BASES AND THE THEORY OF WALSH

3.1 Brief account on the stochastic integration theory of Walsh

In this subsection we briefly present the approach of Walsh [46] to define stochastic integration with
respect to random fields. We keep the discussion on a heuristic level, focusing on the ideas only, since
we in any case will introduce the concepts of Walsh in detail below.

The purpose of Walsh [46] is to study stochastic partial differential equations rigorously. The
equations are of parabolic type, meaning that the solutionsare functions of time and space where their
derivative in time is equal to some elliptic operator in space. The partial differential equations are
perturbed by random fields, that is, stochastic processes inboth time and space (or rather, derivatives
of such, called the noise), and in order to make sense out of such equations, one must have available
a theory for stochastic integration with respect to such processes.

The key question is how to make sense out of stochastic integrals of the form

∫ t

0

∫

B
X(s, x)M(dx, ds) ,

whereB is some measurable subset ofR
d, andX is some random field in space and time. TheM inte-

grator comes from the ”noise” driving the stochastic partial differential equation, and heuristically we
may think of this as the time–space derivative of a random field, that is,M(dx, ds) = Ṁ(s, x) ds dx.
However, as is the case for classical Itô integration with respect to a Brownian motion, the time–
derivative may not be well–defined.

In the setting of Walsh [46], the approach is to separate the role of time and space, and introduce
a class of so–calledmartingale measuresMt(A) for A being a suitable class of measurable subsets
of R

d. The martingale measures are so that for each timet ≥ 0, Mt is a measure–valued square–
integrable random variable, and for each setA, the processt 7→ Mt(A) is a martingale (with respect
to a given filtration). In addition, thecovariance functional

Qt(A,B) =< M(A),M(B) >t

plays a crucial role in the construction. Under some technical assumptions onQ, Walsh [46] constructs
the stochastic integral following the scheme of Itô. He shows that for elementary integrands, the
stochastic integral is a martingale measure, and by limiting procedures, the definition can be extended
to predictable integrandsX satisfying some quadratic integrability condition (yielding an extension
of the Itô isometry). In fact, the stochastic integral willbecome a martingale measure.

As it turns out, when studying the relation between Lévy bases and the Walsh theory, so–called
orthogonalmartingale measures are the crucial objects. A martingale measure is called orthogonal if,
for two disjoint setsA andB, the processesMt(A) andMt(B) are orthogonal. Orthogonal martingale
measures satisfy the additional assumptions on the covariance functional, and it is moreover sufficient
to study thecovariance measure

Q([0, t] ×A) =< M(A) >t ,

instead when defining the stochastic integral. In fact, the integrands will be predictable and square
integrable with respect toQ. Noteworthy is that the measureQ is closely linked to the control measure
of a Lévy basis.

We now go on with a rigorous study of Lévy bases, white noise and stochastic integration in the
sense of Walsh, where many of the above concepts will be introduced and discussed in mathematical
detail.

13



3 LÉVY BASES AND THE THEORY OF WALSH

3.2 Lévy bases and white noise

In order to relate Lévy basesΛ to the white noise random fields introduced by Walsh [46], it is
convenient to slightly reformulate the definition of a Lévybasis given in Definition 1.

We first show that a Lévy basisΛ is countably additive since its law is infinitely divisible:

Lemma 1. A Lévy basisΛ is countably additive, that is, for a sequence of sets{An} ⊂ Bb(S) where
An ↓ ∅ it holds that

lim
n→∞

P (|Λ(An)| ≥ ε) = 0 , (17)

for everyε > 0.

Proof. From the general theory of infinitely divisible laws, there exists a characteristic triplet such that
the law ofΛ(A) has the triplet(ΣA, γA, νA). One can show (see Pedersen [36, p. 3]) thatA 7→ γiA,Σ

ij
A

are signed measures fori 6= j, andA 7→ νA(B),Σii
A are measures for everyi andB ∈ B(Rd). Hence,

if An ↓ ∅ is a sequence of bounded Borel sets, then by standard properties of measures it holds that
(ΣAn , γAn , νAn) → (0, 0, 0), and thus the law ofΛ(An) converges toδ0. Hence, in probability and
a.s. it holds thatΛ(An) converges to zero. The countable additivity in (17) follows.

The following Lemma follows from countable additivity ofΛ:

Lemma 2. Condition (3) in Definition 1 is equivalent to the condition:For each pair of disjoint sets
A andB, it holdsa.s. that

Λ(A ∪B) = Λ(A) + Λ(B) .

Proof. ConsiderCN =
⋃N
i=1Ai andDN =

⋃∞
i=N+1Ai, and use thatCN andDN are disjoint to find

that

Λ

(
∞⋃

i=1

Ai

)
=

N∑

i=1

Λ(Ai) + Λ(DN ).

SinceDN ↓ ∅, and by the countable additivity ofΛ, we can use Chebyshev’s inequality to find

P

(∣∣∣∣∣Λ
(

∞⋃

i=1

Ai

)
−

N∑

i=1

Λ(Ai)

∣∣∣∣∣ ≥ ε

)
= P (|Λ(DN )| ≥ ε) ≤ 1

ε2
E[Λ(DN )2],

and the right hand side tends to zero by countable additivity. This gives us convergence in probability
of the series

∑N
i=1 Λ(Ai) whenN → ∞. But since theΛ(Ai)’s are independent random variables,

we get convergenceP–a.s. by the Itô–Nisio Theorem.

Recall Condition (2) of independence for Lévy basesΛ in Definition 1. We note that it is equiva-
lent to assume this condition forn = 2 only. To see this, letA1, A2, . . . , An ben disjoint subsets in
Bb(S). Then,Λ(Ai) andΛ(Aj) are independent for any combinationi 6= j, i, j = 1, . . . , n. But then
Λ(A1), . . . ,Λ(An) are independent.

We may give an equivalent definition of a Lévy basisΛ as follows:

Definition 2. A family{Λ(A) : A ∈ Bb(S)} of random vectors inRd is called anR
d–valued Ĺevy

basis onS if the following three properties are satisfied:

1. The law ofΛ(A) is infinitely divisible for allA ∈ Bb(S).

2. If A andB are disjoint subsets inBb(S), thenΛ(A) andΛ(B) are independent.

14
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3. If A andB are disjoint subsets inBb(S), then

Λ(A ∪B) = Λ(A) + Λ(B) , a.s..

The above definition of a Lévy basis provides a natural generalisation of the object defined as
white noisein Walsh [46]. A white noise is a random set functionW on aσ–finite space(E, E , ν)
defined as follows:

Definition 3. A white noiseW is a random set function onEb, the setsA ∈ E whereν(A) <∞, such
that

1. W (A) is normally distributed with zero mean and varianceν(A);

2. W (A) andW (B) are independent as long asA andB are disjoint;

3. W (A ∪B) = W (A) +W (B) as long asA andB are disjoint.

We observe that in the caseE = R
d, this white noise concept is a very particular example of a

homogeneous Lévy basis (and the definition of Lévy bases, as given in the Appendix, could easily
be extended to more general spacesE). Hence, homogeneous Lévy bases provide a generalisationof
white noise toLévy noise.

As a note in passing, Walsh [46] concentrates on random measures which have finite variance,
in the sense that for eachA ∈ Bb(S), Λ(A) ∈ L2(P ). Further, the following stronger countable
additivity condition is introduced:Λ is said to becountably additiveif for a sequence of sets{An} ⊂
Bb(S) whereAn ↓ ∅ it holds that

lim
n→∞

E[Λ(An)
2] = 0 . (18)

This is stronger than the condition (17), which only holds inprobability and does not require any
finite variance of the random measure. However, the strong condition of Walsh [46] is suitable when
defining a theory of stochastic integration which we will consider in Section 3.4.

Walsh [46] also introduces a concept ofσ–finiteness of the random measuresΛ. To this end,
suppose there exists an increasing sequence of sets{Sn}n ⊂ B(S) such that∪∞

n=1Sn = S, and for all
n, it holds thatB(S)|Sn ⊂ Bb(S) and

sup
A∈B(S)|Sn

E[Λ(A)2] <∞ .

If this is true, we say thatΛ is σ–finite. If Λ is σ–finite, thenΛ is countably additive onB(S)|Sn if
and only if for any sequence of setsAn ↓ ∅ with An ∈ B(S)|Sn we havelimn→∞ E[Λ(An)

2] = 0.
Walsh [46] makes this extension since for suchΛ one may extend their domain of definition to include
some new setsA ∈ B(S): If A ∈ B(S), we define

Λ(A) := lim
n→∞

Λ(A ∩ Sn) ,

if the limit exists inL2(P ), and considerΛ(A) undefined otherwise. This leavesΛ unchanged on each
B(S)|Sn, but may change its value for setsA ∈ B(S) which are not in anyB(S)|Sn. In Walsh [46],
Λ extended in this way is called aσ–finiteL2–valued random measure. Note that we can make this
extension for all Lévy basesΛ trivially wheneverS is bounded. ForS unbounded, theσ–finiteness
follows wheneverΛ has mean zero. To see this, we make the following computation:

E[Λ2(Sn)] = E[Λ2(Sn \ A)] + 2E[Λ(A)]E[Λ(Sn \A)] + E[Λ2(A)]

≥ E[Λ2(A)] .

Thus, the variance ofΛ(A) is bounded by the variance ofΛ(Sn), which is finite, andσ–finiteness
follows.
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3.3 Lévy bases and random variables in a Hilbert space

For certain types of Lévy basesΛ, we introduce the mappingx 7→ Λ̇(x) for x ∈ S, being thenoiseof
Λ. For this purpose, it will be convenient to interpret the Lévy bases in terms of Hilbert space valued
random variables.

To this end, letS be a bounded Borel set inRk, and introduce the measure space(S,S, leb), with
leb being the Lebesgue measure andS the Borel sets onS. Assume thatS is such thatL2(S,S, leb)
is separable and denote by{ek}k∈IN a complete orthonormal system in the Hilbert spaceH =
L2(S,S, leb). We suppose in addition that for allA ∈ S with leb(A) = 0 we haveΛ(A) = 0
a.s.. Finally, we assume thatΛ hasnuclear covariance1, that is,

∞∑

k=1

E

[(∫

S
ek(x)Λ(dx)

)2
]
<∞ , (19)

where the integration ofek with respect toΛ(dx) is understood in the sense of Rajput and Rosinski
as reviewed in Section A.3. We note that in Walsh [46], it is supposed that the integrals with respect
to Λ(dx) is in the sense of Bochner ([25] and also Chapter III in [27]),which is a stronger concept
defined by convergence in variance.

The nuclear covariance condition (19) implies thatΛ(A) has finite variance, as the following
Lemma shows.

Lemma 3. For everyA ∈ S, Λ(A) ∈ L2(P ).

Proof. LetA ∈ S. Since obviously1A(x) ∈ L2(S, leb), we have that

1A(x) =
∞∑

k=1

∫

A
ek(y)dy ek(x),

and therefore

Λ(A) =

∫

A
Λ(dx) =

∞∑

k=1

∫

A
ek(y) dy

∫

S
ek(x)Λ(dx) .

But by the Cauchy–Schwarz inequality for sums, we find

E[Λ(A)2] ≤
∞∑

k=1

(∫

A
ek(y) dy

)2

×
∞∑

k=1

E

[(∫

S
ek(x)Λ(dx)

)2
]

= |1A|22
∞∑

k=1

E

[(∫

S
ek(x)Λ(dx)

)2
]
<∞ .

For everyφ ∈ L2(S,S, leb), let us introduce the following functional onL2(S,S, leb):

φ 7→ Λ(φ) :=

∫

S
φ(x)Λ(dx) . (20)

Lemma 4. The mappingφ 7→ Λ(φ) defined in(20) is a linear functional onL2(S,S, leb).
1This is in accordance with the definition of Walsh [46, p. 288].
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Proof. We show that the operator is bounded. We have thatφ =
∑∞

k=1 φkek and thus

∫

S
φ(x)Λ(dx) =

∞∑

k=1

φk

∫

S
ek(x)Λ(dx) .

The Cauchy–Schwarz inequality for sums now yields

E

[∣∣∣∣
∫

S
φ(x)Λ(dx)

∣∣∣∣
2
]
≤

∞∑

k=1

φ2
k ×

∞∑

k=1

E

[∫

S
ek(x)Λ(dx)2

]
<∞ ,

and hence, the integral is finitea.s.. Obviously,φ 7→ Λ(φ) is linear, and it therefore defines a linear
functional onL2(S,S, leb).

We are now ready to show thatΛ has a Radon–Nikodym derivative with respect to the Lebesgue
measure.

Proposition 3. There exists a functioṅΛ ∈ L2(S,S, leb) such that

Λ(φ) =

∫

S
Λ̇(x)φ(x)dx . (21)

ThusΛ̇ is the Radon–Nikodym derivative ofΛ with respect to the Lebesgue measure on(S,S).

Proof. Since any linear functional on a Hilbert space may be represented via the inner product with
some element of the Hilbert space, we are ensured the existence of a functionΛ̇ ∈ L2(S,S, leb) such
that (21) holds. Note that since1A(x) is a function inL2(S,S, leb) for all A ∈ S, we have

Λ(A) =

∫

A
Λ̇(x)dx . (22)

Moreover,

Λ(A)Λ(B) =

∫

A×B
Λ̇(x)Λ̇(y)dxdy . (23)

Note that

Λ̇(x) =

∞∑

k=1

∫

S
ek(y)Λ(dy) ek(x) .

Introduce
Q(A×B) = E [Λ(A)Λ(B)] . (24)

Then we have that

Q(A×B) =

∫

A×B
E

[
Λ̇(x)Λ̇(y)

]
dx dy.

We call the signed measureQ thecovariance measureof the Lévy basis.
Define now the linear operator̃Q as

Q̃f(x) =

∫

S
q(x, y)f(y) dy , (25)

with q(x, y) = E[Λ̇(x)Λ̇(y)]. We prove that̃Q is a non–negative, nuclear operator fromL2(S,S, leb)
into itself.
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Proposition 4. The linear operatorQ̃ defined in(25) mapsL2(S,S, leb) into itself. The operator is
non–negative and nuclear.

Proof. By the Minkowski and Cauchy–Schwarz inequalities, we have
∣∣∣∣
∫

S
q(·, y)f(y)dy

∣∣∣∣
2

≤
∫

S
|q(·, y)f(y)|2dy

=

∫

S

(∫

S
q2(x, y)dx

)1/2

|f(y)|dy

≤
(∫

S

∫

S
q2(x, y)dxdy

)1/2

|f |2

=

(∫

S

∫

S
E[Λ̇(x)Λ̇(y)]2dxdy

)1/2

|f |2

≤
(∫

S

∫

S
E[Λ̇2(x)]E[Λ̇2(y)]dxdy

)1/2

|f |2

= E

[∣∣∣Λ̇
∣∣∣
2

2

]
|f |2 .

However, by Parseval’s identity and the nuclear covariancecondition (19), we have that

E

[∣∣∣Λ̇
∣∣∣
2

2

]
=

∞∑

k=1

E

[(∫

S
ek(x)Λ(dx)

)2
]
<∞ ,

and hencẽQf is inL2(S,S, leb). Furthermore, we have that the operator is non–negative in the sense
that(Q̃f, f)2 ≥ 0 for all f ∈ L2(S, leb). This follows since

(Q̃f, f)2 = E

[(
f, Λ̇

)2

2

]
≥ 0 .

We check whether the operator is nuclear. By using the seriesrepresentation oḟΛ(y), we find

Q̃f(x) =

∫

S
q(x, y)f(y) dy

=
∞∑

k=1

∫

S
E

[
Λ̇(x)

∫

S
ek(z)Λ(dz)

]
ek(y)f(y) dy

=
∞∑

k=1

(ek, f)2E

[
Λ̇(x)

∫

S
ek(y)Λ(dy)

]
.

This is the representation in Definition A.1 in Peszat and Zabczyk [37] of nuclear operators, where
we identifyak(x) = ek(x) and
bk(x) = E[Λ̇(x)

∫
S ek(y)Λ(dy)]. Now, Q̃ is nuclear if

∑∞
k=1 |ak|2|bk|2 < ∞. But this is equivalent

to
∞∑

k=1

∫

S

(
E

[
Λ̇(x)

∫

S
ek(y)Λ(dy)

])2

dx <∞,
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sinceek is an orthonormal basis. But, by the Cauchy–Schwarz inequality, we find

∞∑

k=1

∫

S

(
E

[
Λ̇(x)

∫

S
ek(y)Λ(dy)

])2

dx

≤
∞∑

k=1

∫

S
E

[
Λ̇2(x)

]
dxE

[(∫

S
ek(y)Λ(dy)

)2
]

= E

[∣∣∣Λ̇
∣∣∣
2

2

] ∞∑

k=1

E

[(∫

S
ek(y)Λ(dy)

)2
]
.

And this is finite by the nuclear covariance condition (19).

We conclude that̃Q is a covariance operator in the sense of Peszat and Zabczyk [37, p. 30], where
it is defined for Gaussian random variables with values in a Hilbert space. This links the Lévy bases
to the theory of square–integrable Hilbert space valued random variables. We note that the nuclear
covariance condition (19) makes the Lévy basis sufficiently regular to create random fields with values
in a Hilbert space, where we can define covariance operators as the crucial object to understand the
covariance structure. Tracing back, we see that the covariance measure of the Lévy basisΛ can be
represented by the covariance operator ofΛ̇ as

Q(A×B) = (Q̃1A, 1B)2 . (26)

Thus, the covariance measure is representable via an integral kernel.

3.4 Extension of the stochastic integration theory of Walsh

Let us consider a Lévy basisΛ on [0, T ]×S ∈ B(Rk+1), that is, a Lévy basis where we have separated
out the first variable to denote time.

We introduce the following measure–valued process

Mt(A) := Λ((0, t] ×A) , (27)

for anyA ∈ Bb(S). The following properties are inherited from the Lévy basis for a fixed setA ∈
Bb(S):

Proposition 5. The measure valued processMt(A) for A ∈ Bb(S) defined in(27) is an additive
process2, i.e. it satisfies the following properties:

1. The law ofMt(A) is infinitely divisible for eacht.

2. The increments ofMt(A) are independent.

3. The processMt(A) is stochastically continuous.

4. The processMt(A) is right–continuous, withM0(A) = 0, a.s..

2More precisely, we have thatMt(A) is anadditive process in law, see Definition 1.6 in Sato [42].
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Proof. The first property follows from the fact that the Lévy basisΛ is infinitely divisible. To see the
second property, we observe from the additivity ofΛ that

Λ((0, t] ×A) = Λ({(0, s] ×A} ∪ {(s, t] ×A}) = Λ((0, s] ×A) + Λ((s, t] ×A) .

From the independence property ofΛ, it holds thatΛ((s, t] ×A) is independent ofΛ((0, τ ] ×A) for
all sets(0, τ ]×A whereτ ≤ s. Hence,Mt(A)−Ms(A) is independent ofMs(A). We continue with
proving property (3). Observe that

P (|Mt(A) −Ms(A)| > ε) = P (|Λ((s, t] ×A)| > ε),

and whent ↓ s we have that(s, t]×A ↓ ∅. Hence, from the countable additivity in probability, which
holds for Lévy bases, it follows that

lim
t↓s

P (|Mt(A) −Ms(A)| > ε) = 0 .

This proves property (3). In particular, we find

lim
t↓0

P (|Mt(A)| > ε) = 0,

and thereforeMt(A) converges in probability to zero, which implies convergence in law toδ0. This
gives thatlimt↓0Mt(A) = 0, a.s., and we have thatM0(A) = limt↓0 Mt(A) = 0, a.s.. Moreover,
following the same argument as above, we see that fors > t, (using independence ofΛ)

Λ((0, s] ×A) = Λ((0, t] ×A) + Λ((t, s] ×A) .

The countable additivity ofΛ yields that

Λ((t, s] ×A) → 0 ,

in probability whens ↓ t since(t, s] × A ↓ ∅, and thereforeΛ((t, s] × A) converges in law toδ0.
Hence,

Λ((0, s] ×A) → Λ((0, t] ×A) ,

and it follows thatMt(A) is right–continuous. Hence, we have shown the last property.

Remark To obtain a Lévy process, we would need to have stationarityof increments, i.e. the law of
the incrementMs+t(A) −Ms(A), s, t > 0 should be independent ofs. But

Ms+t(A) −Ms(A) = Λ((s, s + t] ×A),

and the characteristic triplet for the law is thus(Σ(s,s+t]×A, γ(s,s+t]×A, ν(s,s+t]×A). If there exist

measures̃ΣA andν̃A, and a signed measurẽγA such thatΣτ×A = leb(τ)Σ̃A, γτ×A = leb(τ)γ̃A and
ντ×A = leb(τ)ν̃A, for τ a bounded Borel subset of the positive real line, we would have stationarity.
Such a separation property of the characteristic triplet would imply thatMt(A) is a Lévy process.

We want to useMt(A) as integrators like in Walsh [46], where the Itô integration approach is
used. We conveniently suppose that for eachA, Mt(A) ∈ L2(Ω,F , P ). Furthermore, we define the
filtration Ft byFt = ∩∞

n=1F0
t+1/n, where

F0
t = σ{Ms(A) : A ∈ Bb(S), 0 < s ≤ t} ∨ N ,
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3 LÉVY BASES AND THE THEORY OF WALSH

and whereN denotes theP–null sets ofF . Then,Ft is right–continuous by construction. Finally, we
suppose that the expected value of the Lévy basisΛ is equal to zero, that is,E[Mt(A)] = 0. If this is
not the case, we can always redefine the Lévy basis by subtracting its mean value in order to obtain a
mean–zero process.

It turns out thatMt(A) is a square–integrable martingale satisfying an orthogonality property:

Proposition 6. Under the assumption of square–integrability and mean zeroofMt(A), the following
two properties hold

1. For eachA, t 7→Mt(A) is a (square–integrable) martingale with respect to the filtration Ft.

2. If A andB are two disjoint sets inBb(S), thenMt(A) andMt(B) are independent.

Proof. The second property holds trivially from the independence property of the Lévy basis. To see
the first property, lets ≤ t. We have by the independence property of the Lévy basis that

Λ((0, t] ×A) = Λ((0, s] ×A ∪ (s, t] ×A) = Λ((0, s] ×A) + Λ((s, t] ×A),

and therefore
Mt(A) = Ms(A) + Λ((s, t] ×A) .

Furthermore, we have thatΛ((s, t]×A) is independent ofFs since any sets[0, si]×B will be disjoint
with (s, t] ×A as long assi ≤ s. Therefore

E[Mt(A) | Fs] = E[Ms(A) | Fs] + E[Λ((s, t] ×A)] = Ms(A) .

The last equality is obtained by the zero–mean assumption onthe Lévy basis and the measurability of
Ms(A) toFs.

These two properties together with the fact thatM0(A) = 0 a.s., are essentially defining what is
called anorthogonal martingale measurein Walsh [46]. Walsh [46] adds a further regularity condition
onA 7→ Mt(A) which he callsσ–finiteness to make up the definition of an orthogonal martingale
measure. As we have seen earlier,σ–finiteness follows for Lévy bases with mean zero, which is what
is supposed here.

As is shown in Walsh [46] (see also [34] for a survey), for orthogonal martingale measures we
may introduce acovariance measureQ as

Q([0, t] ×A) =< M(A) >t , (28)

for A ∈ Bb(S). The covariance measureQ is positive, and is used as the control measure in the
Walsh sense when defining stochastic integration with respect toM . We now describe the integration
procedure followed by Walsh [46], which is essentially the Itô approach to stochastic integration. To
make matters slightly simpler, we suppose thatS is a bounded Borel set, and we recall the notation
S for the Borel subsets ofS. Furthermore, we treat only integration up to a finite timeT . Note that
extensions to unboundedS and infinite time interval follow by standard arguments (see[46, p. 289]).

First, we say that a random fieldf(s, x) is elementaryif it has the form

f(s, x, ω) = X(ω)1(a,b](s)1A(x) , (29)

where0 ≤ a < t, X is bounded andFa–measurable andA ∈ S. For elementary functions we can
define stochastic integration as

∫ t

0

∫

B
f(s, x)M(dx, ds) := X (Mt∧a(A ∩B) −Mt∧b(A ∩B)) , (30)
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3 LÉVY BASES AND THE THEORY OF WALSH

for everyB ∈ S. In fact, the stochastic integral becomes a martingale measure as discussed earlier.
The extension of stochastic integration to finite linear combinations of elementary random fields is
obvious. A finite linear combinations of elementary random fields is called asimplerandom field, and
the set of simple random fields is denotedT . Thepredictableσ–algebraP is theσ–algebra generated
by T , and a random field is calledpredictableas long as it isP–measurable. A norm‖ · ‖M is defined
on the predictable random fieldsf by

‖f‖2
M := E

[∫

[0,T ]×S
f2(s, x)Q(dx, ds)

]
, (31)

which determines the Hilbert spacePM := L2(Ω × [0, T ] × S,P, Q). In Walsh [46] it is proved
that T is dense inPM . To define the stochastic integral off ∈ PM , we choose an approximating
sequence{fn}n ⊂ T such that‖f − fn‖M → 0 asn → ∞. It is easy to see that for eachA ∈ S,∫
[0,t]×A fn(s, x)M(dxds) is a Cauchy sequence inL2(Ω,F , P ), and thus there exists a limit which

we define as the stochastic integral off . It turns out that this stochastic integral is again a martingale
measure, and that the “Itô isometry” holds;

E



(∫

[0,t]×A
f(s, x)M(dx, ds)

)2

 = ‖f‖2

M . (32)

See Walsh [46], Theorem 2.5 for the complete result and proof.3

The weak integration of Rajput and Rosinski ([38]) extends this definition of stochastic integration
in the following sense. For any sequence{fn}n ⊂ T of deterministic functions converging tof in
PM , there exists a subsequence{fn′}n′ ⊂ T converging tof Q–a.e., and for this sequence the
stochastic integrals converge in probability since they converge in variance by definition. Hence, for
f ∈ PM , the definition of weak integration according to Rajput and Rosinski presented in Section
A.3 in the Appendix extends that of Walsh as long as the control measureλ of the Lévy basisΛ
is absolutely continuous with respect toQ. (See Section A.2 in the Appendix). However, as the
following computation shows,Q andλ are equivalent: Since we have assumed that the Lévy basisΛ
has zero mean, it follows from the characteristic exponent in formula (48) of the Appendix that

Q([0, t] ×A) =

∫

[0,t]×A

(
σ2(x, s) +

∫

R

z2 ρ(x, s, dz)

)
λ(dx, ds) .

Therefore we conclude that the weak integration concept of Rajput and Rosinski is a true generalisa-
tion of that due to Walsh as long as deterministic integrandsare considered. We remark in passing
that the integration theory of Rajput and Rosinski is not restricted to square–integrable Lévy bases, as
is the Walsh integration concept we have presented here.

Remark Note that we do not know if we have disintegration with the theory of Walsh. However, we
know that the integral is a martingale process in time, whichadds important dynamics which gives
us a big advantage compared to the weaker form of integrationavailable from Rajput and Rosinski
([38]).

3Note that in Walsh [46], the argument is made for so–calledworthymartingale measures. As argued in Walsh [46], an
orthogonal martingale measure is worthy, and moreover thecontrol measureused to define stochastic integrals sits in this
case on the diagonal ofS × S. We have chosen to present that particular case.

22



3 LÉVY BASES AND THE THEORY OF WALSH

Note also that in the definition of weak integration in the appendix only deterministic integrands
are used. The general definition of ambit processes involvesstochastic integrands. This can be accom-
modated by further extension of the Walsh theory. Such extension is currently under development in
collaboration with Andreas Basse–O’Connor, Svend Erik Graversen and Jan Pedersen, see e.g. [22].

3.5 Stochastic partial differential equations and ambit processes

In this subsection we consider a class of parabolic stochastic partial differential equations (SPDE)
analysed in detail by Walsh [46]. The motivation with our presentation here is to relate the solutions
of such SPDEs to ambit processes, and discuss possible extensions based on these.

LettingẆ be a white noise in the sense of Walsh, we introduce the following non–linear parabolic
SPDE 




∂v
∂t = ∂2v

∂x2 − v + f(t, v)Ẇ , t > 0, 0 < x < K,
∂v
∂x(t, 0) = ∂v

∂x(t,K) = 0, t > 0,
v(0, x) = v0(x) , 0 < x < K ,

(33)

whereK > 0 is some constant andf is a Lipschitz continuous function inx of at most linear growth.
Furthermore, it is supposed thatv0 is F0–measurable andE[v2

0(x)] is bounded. Since white noise is
too rough to expect smooth solutions of the parabolic SPDE, Walsh [46] introduces aweak solution
concept. We say thatv is aweak solutionof (33) if for everyφ ∈ C∞([0,K]) with φ′(0) = φ′(K) = 0
it holds that

∫ K

0
(v(t, x) − v0(x))φ(x) dx =

∫ t

0

∫ K

0
v(s, x)(φ′′(x) − φ(x)) dxds

+

∫ t

0

∫ K

0
f(s, v(s, x))φ(x)W (dx, ds) . (34)

In Walsh [46], Theorem 3.2, it is proved that there exists a weak solutionv to (33) which is bounded
in variance on[0,K] × [0, T ] for eachT > 0. The proof goes by application of the Green’s function
and Picard iterations.

To see the connection to (33) note that formal differentiation of (34) with respect tot gives

∫ K

0
vt(t, x)φ(x)dx =

∫ K

0
v(t, x)

(
φ′′(x) − φ(x)

)
dx +

∫ K

0
f(t, v(t, x))φ(x)W (dx, dt) .

An integration–by–parts applied formally to the first integral on the right hand side and application of
the initial conditions essentially leads to (33).

The homogeneous form of (33) is known as thecable equation, and Walsh [46] presents the
Green’s function of this as

Gt(x, y) =
e−t√
4πt

∞∑

n=−∞

exp

(
−(y − x− 2nK)2

4t

)
+ exp

(
−(y + x− 2nK)2

4t

)
.

A solution to the casef = 1 can be represented as

v(t, x) =

∫ K

0
Gt(x, y)v0(y) dy +

∫ t

0

∫ K

0
Gt−s(x, y)W (dy, ds) . (35)

Note that if the last integral was computed over(−∞, t] rather than over[0, t], the Wold–Karhunen
representation with respect to a Brownian motion could be used in principle.
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The solution in (35) represents the solution to an SPDE whichcan be related to physical processes.
Walsh [46] interprets the problem (33) to description of thenervous system, and another interpretation
is diffusion of heat. These physical systems may be described directly through an ambit process rather
than via an SPDE. As such, we could model the phenomena using ageneral Lévy basisΛ instead of
the particular white noiseW . Thus, a generalisation ofv in (35) is to consider

v(t, x) =

∫ K

0
Gt(x, y)v0(y) dy +

∫ t

0

∫ K

0
Gt−s(x, y)L(dy, ds) . (36)

One may also take this further, and consider “stochastic intermittency” described by a random field
σ(t, x). Thus,

v(t, x) =

∫ K

0
Gt(x, y)v0(y) dy +

∫ t

0

∫ K

0
Gt−s(x, y)σ(s, y)L(dy, ds) . (37)

The intermittency fieldσ may be defined as an ambit field, and as such, we have thatv(t, x) is an
ambit field over the ambit setAt(x) = [0, t]× [0,K] under appropriate regularity conditions ensuring
the existence of the integrals in (37). In fact, we have thatv(t, x) in (37) is by definition amild solution
of the parabolic problem





∂v
∂t = ∂2v

∂x2 − v + σ(t, x)Λ̇ , t > 0, 0 < x < K,
∂v
∂x(t, 0) = ∂v

∂x(t,K) = 0, t > 0,
v(x, 0) = v0(x) , 0 < x < K .

(38)

Here,Λ̇ is a suggestive notation for the noise of the Lévy basisL (see Section 4 for a mathematical
formulation of this). The definition of a mild solution of a parabolic stochastic partial differential
equation is introduced in Da Prato and Zabczyk [26, p. 152] and is in general weaker than a weak
solution. By Theorem 6.5 in Da Prato and Zabczyk [26], we havethat the mild solutionv(t, x) in (37)
is a weak solution under natural integrability conditions on σ andv0.

It is important to notice that we can generalise the solutionv(t, x) in (37) to hold for very general
specifications ofσ, in fact, by going to the general integration concept of Rajput and Rosinski [38],
we can make sense ofv(t, x) as an ambit field. By weakening the integration, we can still interpret
v as a mild solution to the parabolic problem. A further generalisation is of course to allow for more
general ambit setsAt(x), leaving the specificationAt(x) = [0, t]× [0,K]. This will allow for a great
deal of flexibility in modelling the physical phenomena in question, in particular how the dependency
structure in time and space evolves.

4 Lévy noise analysis

The white noise analysis introduced by Hida in the 80ties hasbecome a popular tool for analysing
SPDEs which are singular in the sense of not admitting regular solutions. Hida proposed an analysis
based on white noise, that is, the time–derivative of Brownian motion, with applications from quantum
mechanics and Feynman path integrals in mind. In Hida, Kuo, Potthoff and Streit [29] one can find
a detailed account of the so–calledwhite noise analysisand its applications to physics. In this paper
we are concerned with SPDEs, and will base our further discussion on the Lévy noise analysis for
Lévy processes introduced in Holden, Øksendal, Ubøe and Zhang [31]. In particular, we link Lévy
bases and ambit processes with the Lévy noise analysis framework, and finally discuss SPDEs in this
context.
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4 LÉVY NOISE ANALYSIS

4.1 Lévy bases and Ĺevy noise

Let S(Rd) be the Schwartz space of rapidly decreasing functions onR
d, and defineΩ = S ′(Rd)

whereS ′(Rd) is its dual. Denote byF the Borelσ–algebra onΩ, and letℓ be a Lévy measure on
R\ {0} satisfying the condition of square–integrability

C :=

∫

R\{0}
z2 ℓ(dz) <∞ . (39)

By the Bochner–Minlos Theorem (see Definition 5.4.1 in [31])there exists a probability measure
P on (Ω,F) such that

∫

Ω
ei〈ω,φ〉 dP (ω)

= exp

(
−1

2
σ2|φ|22 +

∫

Rd

∫

R\{0}

{
eiφ(y)z − 1 − iφ(y)z

}
ℓ(dz) dy

)
, (40)

where〈ω, φ〉 := ω(φ), that is, the action ofω ∈ S ′(Rd) on φ ∈ S(Rd), and | · |2 is the norm in
L2(Rd). The probability space(Ω,F , P ) is called thed–parameterLévy noise probability spaceby
Holdenet al. [31]4. This probability space will support ad–parameter Lévy process and is the basis
for defining its derivative, theLévy noise5.

Introduce the cylindrical random variablesNφ by

Nφ(ω) = 〈ω, φ〉 , (41)

for φ ∈ S(Rd). Observe, that since (40) gives an explicit form of the characteristic function ofNφ in
terms of the Lévy measure, we easily find that

E[Nφ] = 0 ,

and

Var[Nφ] = (σ2 + C)

∫

Rd

φ2(y) dy .

We can extend these random variables toφ ∈ L2(Rd) by a standard limit argument choosing a se-
quence{φn} ⊂ S(Rd) converging inL2(Rd) to φ. The limit of Nφn

exists inL2(P ) and will be
denotedNφ. The limit is independent of the choice of approximating sequence. In particular, we can
defineNA := N1A

for bounded Borel setsA ⊂ R
d. We make the following definition.

Definition 4. For every bounded Borel subsetA of R
d, define the random measure

Λ(A) = NA .

We show thatΛ defines a Lévy basis (see Proposition 7) and that it is homogeneous (see Proposi-
tion 8).

4We note that in Holdenet al. [31] one constructs this probability space for Brownian motion and a pure–jump Lévy
process separately. We merge this into a more general Lévy process with both jumps and continuous martingale part. Further
note that the representation result (40) was originally introduced in [28]. See also [1] for related work.

5Note that Holdenet al. [31] call such noiseLévy coloured noise.
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Proposition 7. The random measureΛ is a Lévy basis, with mean zero and variance(σ2+C)·leb(A),
whereleb(A) is the Lebesgue measure ofA, and the associated control measure ofΛ is

λ(A) = σ2leb(A) +

∫

R

min(1, z2) ℓ(dz)leb(A) .

Proof. The random measureΛ(A) has mean zero and variance equal toM leb(A), whereleb(A) is
the Lebesgue measure of the setA. We show thatΛ has the additivity and independence properties.

Let A andB be two disjoint bounded Borel sets, and letφn → 1A andψn → 1B in L2(Rd).
Since obviously1A∪B = 1A + 1B andφn + ξn converges to1A + 1B in L2(Rd), φn + ξn converges
to 1A∪B in L2(Rd). Hence, by independence of the approximating sequence, we find that thatNφ+ξn

converges inL2(P ) to Λ(A ∪B), and since

Nφ+ξn(ω) = 〈ω, φn + ψn〉 = 〈ω, φn〉 + 〈ω,ψn〉 = Nφn
(ω) +Nψn

(ω) ,

it holds that
Λ(A ∪B) = Λ(A) + Λ(B) .

This proves the additivity. To prove independence, we have to show that for two disjoint bounded
setsA andB, Λ(A) is independent ofΛ(B), or equivalently,NA is independent ofNB . To this end,
choose two approximating sequencesφn andξn in S(Rd) converging to1A and1B , respectively, in
L2(Rd). Use the characteristic function ofNφn

andNξx to find

ln E

[
eiθNφn eiηNξn

]
= ln E

[
ei〈·,θφn+ηξn〉

]

= −1

2
σ2|θφn + ηξn|22

+

∫

Rd

∫

R\{0}
{ei(θφn(y)+ηξn(y))z − 1 − i(θφn(y) + ηξn(y))z} ℓ(dz) dy .

We can write theL2(Rd)–norm as follows,

|θφn + ηξn|22 = θ2

∫

suppφn\suppξn
φ2
n(y) dy

+

∫

suppφn∩suppξn
(θφn(y) + ηξn(y))

2 dy + η2

∫

suppξn\suppφn

ξ2n(y) dy .

The set suppφn ∩ suppξn must go to a set of Lebesgue measure zero sinceA ∩B = ∅; otherwise the
two sequences will not converge to their respective indicator functions inL2(Rd). Hence, passing to
the limit, we find that

lim
n→∞

|θφn + ηξn|22 = θ2leb(A) + η2leb(B) .

A similar argument shows that

lim
n→∞

∫

Rd

∫

R\{0}
{ei(θφn(y)+ηξn(y))z − 1 − i(θφn(y) + ηξn(y))z} ℓ(dz) dy

= leb(A)

∫

R\{0}
{eiθz − 1 − iθz} ℓ(dz) + leb(B)

∫

R\{0}
{eiθz − 1 − iθz} ℓ(dz) .
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Thus, after taking limits, we find

E

[
eiθΛ(A)eiηΛ(B)

]
= E

[
eiθΛ(A)

]
× E

[
eiηΛ(B)

]
.

This proves independence.
In fact, the above limit argument shows that the (log-)characteristic function ofΛ(A) is

ln E[eiθΛ(A)] =

(
−1

2
θ2σ2 +

∫

R\{0}
{eiθz − 1 − iθz} ℓ(dz)

)
leb(A) ,

This is the Lévy–Kintchine formula where we can read off thecontrol measure for the Lévy basis as
being

λ(A) = σ2leb(A) +

∫

R

min(1, z2)ℓ(dz)leb(A) ,

(see Appendix A for the definition of the control measure for aLévy basis).

By letting ℓ(dz) = 0 andσ = 1, we recover the case of white noise and the setting for the white
noise analysis. Note that here we consider only Lévy bases with no drift and being square integrable.

The Lévy basis has a stationarity property, as shown in the next Proposition.

Proposition 8. For eachx ∈ R
d, Λ(·) andΛ(·+x) has the same distribution, i.e.Λ is homogeneous.

Proof. Give φ ∈ S(Rd), we prove thatNφ andNφx
have the same distribution, whereφx(y) =

φ(y − x). It follows from the translation invariance of the Lebesguemeasure that
∫

Rd

∫

R\{0}
{eiφ(y−x)z − 1 − iφ(y − x)z} ℓ(dz) dy =

∫

Rd

∫

R\{0}
{eiφ(y)z − 1 − iφ(y)z} ℓ(dz) dy .

Similarly we have that|φ|2 = |φx|2. Hence, the characteristic function ofNφ and ofNφx
is the

same. By a limit argument, it follows thatNA andNA+x has the same characteristic function as well,
implying that their distributions are coinciding. The Proposition is proved.

In Lévy noise analysis, one is interested in the noise process of the smoothed random variables
Nφ. Introduce the objecṫNx for x ∈ R

d by

Ṅx(ω) = 〈ω, δx〉 , (42)

whereδx is the Diracδ–function. Obviously,δx is not an element ofL2(Rd) (and definitely not a
Schwartz function), however, it is a tempered distribution. The notation〈ω, δx〉 is just suggestive,
since it only makes sense in an operator context as we now discuss. By conveniently introducing
spaces ofsmoothrandom variables as certain subspaces ofL2(P ) one can look at their duals and in
fact manage to embeḋNx into one of these. Thus, ifX is a smooth random variable, theṅNx makes
sense as a linear functional on this (we refer to [31] for details). As a simple example, we have that
Nφ is a smooth random variable, and in this case

〈〈Ṅx, Nφ〉〉 = 〈δx, φ〉 = φ(x) .

From this we can do the following: Interpreting the integralin the sense of Pettis or Bochner, we can
define forφ ∈ S(Rd) ∫

Rd

φ(x)Ṅx dx , (43)
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as an integral with values in a suitable space of linear functionals on smooth random variables. How-
ever, as it turns out, this integral will coincide with a smoothed white noise,

∫

Rd

φ(x)Ṅx dx = Nφ .

But then we can interpreṫNx as the noise ofΛ, since we can write by limit arguments

Λ(A) =

∫

A
Ṅx dx .

So,Ṅ is an extension of the previously introduced objectΛ̇. Note that there is no nuclear condition
given here in order to introducėNx. Indeed, we have that

∫

Rd

φ(x)Λ(dx) =

∫

Rd

φ(x)Ṅx dx = Nφ,

for a functionφ ∈ L2(R), and thus,

∞∑

k=1

E

[(∫

Rd

ek(x)Λ(dx)

)2
]

=
∞∑

k=1

E[N2
ek

] =
∞∑

k=1

|ek|22 =
∞∑

k=1

1 = ∞ .

Here,{ek} is a complete orthonormal system inL2(Rd). Hence, we have that the nuclear covariance
condition does not hold. This means that we have a Lévy basiswhich has finite variance, but is not
sufficiently smooth to admit a Hilbert space valued Radon–Nikodym derivateṄx. This links Lévy
bases to the Lévy noise analysis.

4.2 Stochastic partial differential equations and Ĺevy noise analysis

Consider the stochastic Poisson equation

∆u(x) = −Ṅx , x ∈ D

u(x) = 0 , x ∈ ∂D ,

whereD ⊂ R
d is a bounded domain with regular boundary and∆ is the Laplace operator inRd. In

order to make sense out of this equation, Holdenet al. [31] introduce the space of Hida distributions
(S)∗, which plays much the same role for stochastic processes as the space of tempered Schwartz
distributions plays for functions. The space of Hida distributions, is the dual of the space of Hida test
functions(S), which is the space of smooth random variables. This space consists of square integrable
random variables for which the terms in the chaos expansion decays rapidly in variance. A precise
definition of(S) and(S)∗ is found in Holdenet al. [31], but important to notice is that(S)∗ consists
of linear operators on the space(S), and as such can not be understood as random variables (i.e.,if
X ∈ (S)∗,X(ω) does not make sense in general forω ∈ Ω). A prominent example iṡNx ∈ (S)∗. As
is well–known, the noise of a Lévy process can not be regarded as a classical random variable.

The Poisson equation is interpreted as an SPDE in(S)∗. More precisely, we say thatu is a
generalised solution of the stochastic Poisson equation ifu : D 7→ (S)∗ is twice differentiable,
satisfies the boundary conditions and the SPDE. By differentiability of a (S)∗–valued mapping from
D we mean that the limit(u(x+ h) − u(x))/h exists in(S)∗.
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LettingG(x, y) be the Green’s function of∆ onD with zero boundary conditions, Løkka, Øksendal
and Proske [35] shows that the unique solution is

u(x) =

∫

D
G(x, y)Ṅy dy . (44)

Note that the integral is interpreted as a Pettis integral, that is, defining an operator on the space of
smooth random variables(S). If d ≤ 3, it is shown in Løkkaet al. [35] thatu ∈ L2(P ), but in general
dimensions we have to interpret the solution in a weak sense.

Since ford ≤ 3 the solutionu is square–integrable, we may write the solution as

u(x) =

∫

D
G(x, y)Λ(dy) . (45)

Therefore,u is in fact an ambit process, with the ambit set being the domain D. The reason for
u losing its square–integrability when going beyond dimension 3 lies in the fact thatG(x, y) has a
singularity atx = y of order|x − y|2−d for d ≥ 3. By using ambit processes, we may define more
general expressions

ũ(x) =

∫

Dx

G(x, y)σ(y)Λ(dy) , (46)

for general random fieldsσ(x) sufficiently regular to make the stochastic integral well–defined. The
setDx denotes some ambit set which can be defined to incorporate complex spatial dependency
structures. In fact, such a specificationũ(x) may go beyond what can be linked to a stochastic partial
differential equation, and still make sense as a random field(in particular, a real–valued random field).

Note that the theory of white noise permits the study of SPDEsdriven by noise in both time
and space, and provide a theory for defining the noise of Lévyprocesses (or, in our context, Lévy
bases). Hence, one can interpret the SPDEs in a strong sense,with the price that the solutions must be
understood as operators rather than random fields. This is incontrast to the theory of Walsh presented
above, where the solution is formulated in terms of an integral equation moving all derivatives to test
functions. Ambit processes appear as a natural object in thetheory of Lévy noise, as well.

5 Conclusions

We have considered ambit processes and their building blocks, Lévy bases, in view of two classical
theories for studying stochastic partial differential equations: the Walsh theory of martingale measures
and the Lévy noise analysis. Lévy bases can be naturally connected to both theories by introducing
concepts of noise of Lévy bases and processes. We show that the solutions of some stochastic partial
differential equations can be represented by integrals of random fields with respect to Lévy bases,
naturally relating to ambit processes. In this respect, ambit processes provide a class of random fields
which generalise the solutions of these physical dynamicalsystems and provide new and interesting
models that include the additional elements of volatility fields and time dependent ambit sets. A
further key point is that the extended integration theory allows the handling of objects such as the
main term in (3) by means of integration w.r.t. martingale measures.

A L évy bases and integration

This section reviews the integration theory of [38] (for a survey, see also [40]), since this concept of
integration is used for defining stochastic integrals in thecontext of ambit fields.
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A.1 Introduction

Throughout the text, letS denote a non–empty set and letA denote aσ–finite δ–ring onS, i.e.A
is a family of subsets ofS such that for every pair of sets inA, the union, the intersection and the
set difference is inA (henceA is a ring) and if(An)n≥1 ⊆ A then∩An ∈ A; also, there exists a
sequence(A∗

n)n≥1 ⊆ A such that∪A∗
n = S.

Note that we call a real stochastic processΛ = {Λ(A) : A ∈ A} on some probability space
(Ω,F ,P) anindependently scattered random measure, if for every sequence of disjoint sets,(An)n≥1

say, the random variablesΛ(An) are independent, forn = 1, 2, . . . , and if∪nAn ∈ S, thenΛ(∪nAn) =∑
n Λ(An) almost surely.

A.2 Representation of the characteristic function of a Ĺevy basis

If Λ(A) is infinitely divisible for everyA ∈ A, we call it aLévy basis. Its characteristic function for
A ∈ A is then given by

E (exp(itΛ(A)))

= exp

(
itν0(A) − 1

2
t2ν1(A) +

∫

R

(
eitx − 1 − itτ(x)

)
FA(dx)

)
, (47)

whereν0 : S → R is a signed measure,ν1 : A → [0,∞) is a measure andFA is a Lévy measure on
R for everyA ∈ A whileA 7→ FA(B) ∈ [0,∞) is a measure for everyB ∈ B(R), whenever0 6∈ B.
Also, the centering functionτ is defined byτ(x) = x if ||x|| ≤ 1 and byτ(x) = x/||x||, if ||x|| > 1.

Further, let

λ(A) = |ν0|(A) + ν1(A) +

∫

R

min(1, x2)FA(dx), A ∈ A.

It can be shown thatλ : A → [0,∞) is a measure onA such that if, for every(An)n≥1 ⊂ A,
λ(An) → 0, thenΛ(An) → 0 in probability. Also, if, for every sequence(A′

n)n≥1 ⊂ A with
A′
n ⊂ An ∈ A, we haveΛ(A′

n) → 0 in probability, thenλ(An) → 0.
Note that the measureλ satisfiesλ(A∗

n) < ∞ for n = 1, 2, . . . . Hence, it can be extended to a
σ–finite measure on(S, σ(A)). This measure is then called thecontrol measureof Λ.

It turns out, that the characteristic function of an infinitely divisible random measure has also an
alternative representation than the one given above.

In order to state it, we need a preliminary result first (see [38, Lemma 2.3]). LetF· be as above.
Then there exists a uniqueσ–finite measureF onσ(A)×B(R) such thatF (A×B) = FA(B) for all
A ∈ A, B ∈ B(R). Furthermore, there exists a functionρ : S × B(R) → [0,∞] such that

1. ρ(s, ·) is a Lévy measure onB(R), for everys ∈ S,

2. ρ(·, B) is a Borel measurable function, for everyB ∈ B(R),

3.
∫
S×R

h(s, x)F (ds, dx) =
∫
S

(∫
R
h(s, x)ρ(s, dx)

)
λ(ds), for everyσ(A) × B(R)–measurable

function h : S × R → [0,∞]. Under some restrictions regarding the behaviour at±∞, this
equality can be extended to real and complex–valued functionsh.

Using the above notation, we can now rewrite the characteristic function ofΛ(A) (see [38, Propo-
sition 2.4]):

E (exp (itΛ(A))) = exp

(∫

A
K(t, s)λ(ds)

)
, t ∈ R, A ∈ A, (48)
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where

K(t, s) = ita(s) − 1

2
t2σ2(s) +

∫

R

(
eitx − 1 − itτ(x)

)
ρ(s, dx),

wherea(s) = dν0
dλ (s), σ2(s) = dν1

dλ (s) andρ is defined as above. Furthermore,

|a(s)| + σ2(s) +

∫

R

min(1, x2)ρ(s, dx) = 1, λ− a.e..

A.3 Integration with respect to a Lévy basis

Next, we review the definition of a stochastic integral with respect to an infinitely divisible random
measureΛ as defined in [38].

First, we define integration of a real simple function onS, which is given byf =
∑n

j=1 xj1Aj
for

disjointAj ∈ A. Then, for everyA ∈ σ(A), the stochastic integral with respect toΛ is defined by

∫

A
fdΛ =

n∑

j=1

xjΛ(A ∩Aj).

The generalisation to general functions works as follows. We call a measurable functionf : (S, σ(A)) →
(R,B(R)) Λ–integrable, if there exists a sequence of simple functions, (fn)n≥1 such thatfn → f λ–
a.e. and for everyA ∈ σ(A), the sequence

(∫
A fndΛ

)
n≥1

converges in probability asn→ ∞. In that
case, we define

∫

A
fdΛ = P − lim

n→∞

∫

A
fndΛ.

The above integral is well defined in the sense that it does notdepend on the approximating sequence
(fn)n≥1.

A.4 Criteria for integrability

Now we provide a characterisation ofΛ–integrable functions. The necessary and sufficient conditions
will depend on the characteristics given in the Lévy form ofthe characteristic function ofΛ.

According to [38, Theorem 2.7], the integrability conditions are as follows.
Let f : S → R be aσ(A)–measurable function. Thenf is integrable w.r.t.Λ if and only if the

following three conditions are satisfied:

1.
∫
S |U(f(s), s)|λ(ds) <∞,

2.
∫
S |f(s)|2σ2(s)λ(ds) <∞, and

3.
∫
S V0(f(s), s)λ(ds) <∞, where

U(u, s) = ua(s) +

∫

R

(τ(xu) − uτ(x)) ρ(s, dx),

V0(u, s) =

∫

R

min(1, |xu|2)ρ(s, dx).
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Further, iff is integrable w.r.t.Λ, then the characteristic function of
∫
S fdΛ can be expressed as

E

(
exp

(
it

∫

S
fdΛ

))
= exp

(
itaf −

1

2
t2σ2

f +

∫

R

(
eitx − 1 − itτ(x)

)
Ff (dx)

)
,

where

af =

∫

S
U(f(s), s)λ(ds), σf =

∫

S
|f(s)|2σ2(s)λ(ds),

and

Ff (B) = F ({(s, x) ∈ S × R : f(s)x ∈ B \ {0}}), B ∈ B(R).
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ric Theory, 26(2):331–368, 2010.

[46] J. Walsh. An introduction to stochastic partial differential equations. In R. Carmona, H. Kesten,
and J. Walsh, editors,Lecture Notes in Mathematics 1180, Ecole d’Eté de Probabilités de Saint–
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