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Abstract

Ambit processes are general stochastic processes basgrtbastic integrals with respect to
Lévy bases. Due to their flexible structure, they have grvetntial for providing realistic models
for various applications such as in turbulence and finandas papers studies the connection
between ambit processes and solutions to stochasticlgdifftaential equations. We investigate
this relationship from two angles: from the Walsh theory afrtingale measures and from the

viewpoint of the Lévy noise analysis.
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1 INTRODUCTION

1 Introduction

In physics, partial differential equations (PDES) give anayic way to describe how phenomena
in nature evolve over time and space. For instance, theicddseat equation of Einstein gives a
dynamic model for how heat diffuses in a medium. Stochastitiad differential equations (SPDES)
add randomness to such evolution equations, where the smisee may come from uncertainties in
measurements, non—explainable effects and turbulenopiema. The noise is usually modelled as a
random field in time and space, also called white noise orgrgenerally, Lévy noise. We shall be
mostly concerned with parabolic PDEs in this paper.

Ambit processes have been proposed and introduced by B#fridielsen & Schmiegel and have
thereafter been applied in various areas such as turbulandelling (see e.g. [6; 13]), in medical
context in form of describing tumor growth ([12]), and moeeently for modelling energy markets
([4; 5.

The solution of a parabolic differential equation is oftepnesented as an integral over a Green’s
function (the fundamental solution of the PDE) convoluteithvgome initial condition. Such rep-
resentations look very similar to the definition of statighambit processes of [13]. The Green’s
function representation is an explicit solution as longles Green’s function is known, where the
deterministic space—time dynamics of the phenomena intiqueis encapsulated in the form of this
function. It is closely linked to density functions of stashic diffusion processes.

Introducing noise leads to complications of interpretingvhat sense we have a solution. This
requires a theory for stochastic integration in time anccepauch as proposed in Walsh [46]. It
turns out, that solutions of parabolic equations with antagdsource of noise can be represented as
the stochastic convolution of the Green'’s function and tiikgal value, where the integration is with
respect to the random field. We present the theory of Walshadé link it to ambit processes.

When having a stochastic source term, one may have solli&ng singular. This is the starting
point for applying white noise analysis (WNA) or, more gaalst Lévy noise analysis (LNA) to
analyse SPDEs. We discuss the theory of LNA and link it to amplmcesses. Here we will also
include discussions of SPDEs and how they are related tot gmdmesses.

Note that ambit processes may provide a statistical aphrimamodel physical processes in nature
far simpler than SPDEs, since they provide a way to speciBctiy the model based on a probabilistic
understanding of the phenomena in question. They also dgrasreework for extending the solutions
of SPDEs. In order to have a solution in the sense of Walskenaddtrong integrability conditions
are imposed. The ambit processes are well-defined undefmesly conditions of integrability, and
thereby we may extend the solutions of certain equationsctade far more general initial conditions,
say, or more general types of noise.

The main issue of this paper is to relate the use of the bgjldione in ambit processes, Lévy
bases, to the language of Walsh and the theory of LNA. Therl#iks about processes being the
derivatives of Levy processes, while Walsh talks about@amcheasures and their derivatives.

The outline for the remaining part of the paper is as folloWsSection 2 the concepts of ambit
fields and processes are outlined, and the important speasal of spatial dimension O is treated in
some detail; in that case the ambit processes are referasiliévy semistationary((SS) processes
or, in the Gaussian case, as Brownian semistatiorfa8( processes. In particular, an indication of
the theory and use of multipower variations for inferencatmnvolatility process is given. Section
2 concludes by a brief discussion of some applications tautance and energy markets. Section 3
connects the idea of Lévy bases to the theory of random fildg¢o Walsh. We show how, subject to
an L? restriction and based on the theory of Hilbert space randelusiit is possible to define Lévy
noise for Lévy bases, and the associated integrationyhgaliscussed. Finally, some applications to



2 AMBIT PROCESSES

SPDEs and their relation to ambit processes are considSedion 4 links the theory of Lévy noise
analysis for Lévy processes, as developed in Holden, @ededbge and Zhang [31], to that of Lévy
bases and ambit processes, and discusses SPDEs in that.cdiite concluding Section 5 briefly
brings the various strands together.

2 Ambit processes

2.1 Background

The general background setting for the concept of ambitgqa®es consists of a stochastic fiEld=
{Y; ()} in space-timeX x R, a curver () = (x(0),t(0)) in X x R, and the values\y =
Yy (z () of the field along the curve, the focus being on the dynamipenties of the stochastic
processX = {X,}. Here the spac#’ is often, but not necessarily, taken®&for d = 1,2 or 3. The
stochastic field is supposed to be generated by innovatiospace—time and the valu&g(x) are
assumed to depend only on innovations that occur prior ta tima ¢t. More precisely, at each point
(x,t) only the innovations in some subsét (z) of X x R; (whereR, = (—o0, t]) are influencing
the value ofY; (x), and we refer to4, (z) as theambit sefassociated t¢z, ), and toY andX as an
ambit fieldand anambit processrespectively; see Figure 1 for an illustration.

t A

Figure 1: Example of an ambit proce&$ along the curvéz(0),t(0)), where the ambit set is given
by Ay ((0)).

Obviously, without further structure nothing interestiogn be said about the field and the
processX, and we shall specify such structure in mathematical datal moment. But in verbal
terms,Y; (x) will be defined in the form of a stochastic integral plus a sthaerm, and the integrand
in the stochastic integral will consist of a deterministigthel times a positive random variate which is
taken to embody theolatility or intermittencyof the fieldY". We shall mostly consider specifications
under whichY; (z) is stationary in time for each fixed



2 AMBIT PROCESSES

The volatility field, denoted by, is given also as an ambit field, and a central issue is what can
be learned about from observation ot” or X.

Note that, in general, ambit processes are not semimalgmghlany of the standard tools from
semimartingale theory are therefore not applicable amdredtive methods are required.

The more precise mathematical specification of what is mgam¢rally by ambit fields and pro-
cesses is given in Section 2.2. In Sections 2.3, 2.4 and 2.beus on the null-spatial case, i.e.
whereX consists of a single point. There the concept of ambit psEsespecialises to that of Lévy
and Brownian semistationary process€s§ andBSS processes). Already in that setting there are
many interesting questions of a nonstandard characterseTlhave important analogues in the gen-
uinely tempo—spatial case.

As for semimartingales, the questions of existence andgpties of quadratic variations, and more
generally multipower variations, are of central imporeint the study of ambit fields and processes,
in particular as these objects relate to the volatilitgimittency. We will review the main results in
that context in Section 2.6 and refer to [17], [8] and [9] fopmm details.

Section 2.7 contains some applications of ambit procesdestulence (Section 2.7.1) and energy
finance (Section 2.7.2), respectively.

2.2 Ambit fields and processes
Generally we think of ambit fields as being of the form
Y(z) = p+ /A()g(&s;w,t)as(s)L(ds,ds) + /D()Q(&S;w,t)as(f)did& (1)

whereA; (z), andD, (z) are ambit setg; andq are deterministic functiony > 0 is a stochastic field
referred to as thtermittencyor volatility, and L is aLévy basisdefined as follows (see [20], [36]):
Let B(R¥) be the Borel sets dk* and denotes,(.S) the bounded Borel sets 6f ¢ B(RF).

Definition 1. A family {A(A) : A € B,(S)} of random vectors ifR? is called anR¢—valued l&vy
basis onS if the following three properties are satisfied:

1. The law ofA(A) is infinitely divisible for allA € B;(.S).
2. If Ay,..., A, are disjoint subsets i, (5), thenA(A;), ..., A(A,) are independent.
3. If Ay, Ag, ... are disjoint subsets if8;,(S) with | J;, 4; € By(S), then

A (G Al> = iA(Az) ,a.S.,
i=1 i=1

where the convergence on the right hand side. ss.

Conditions (2) and (3) define an independently scatteredoranmeasure. Note that we uge
when we refer to a general Lévy basis, and when we have segarat time as one dimension, we
talk of Lévy bases defined ofi = X x R and we indicate integration with respect to such bases by
L(d¢,ds).

Inference on the volatility/intermittency field is a focal point for the study of ambit processes
and fields. Often the volatility field (or the logarithmic watility field) will itself be defined as an
ambit field through
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o? (x) = / h (€, si2,0) L (dé, ds), @)
Ci(z)

with A a positive function(; (z) some ambit set and whereis a nonnegative non—-Gaussian Lévy
basis.

At the present level of generality we take the integrals nt¢lbe defined in the sense of inde-
pendently scattered random measures, cf. [38], assurang,th, ¢ anda are sufficiently regular for
the integrals to exist. However, in more concrete casesoittés of interest to establish whether the
definition of the integrals can be sharpened to a more dyramwéesion, for instance in the sense of
Itb—type integrals. We return to this question later, segairticular Sections 3.4 and 4.

Of particular interest are ambit processes that are statjoin time and nonanticipative. More
specifically, they may be derived from ambit fieldsof the form

Vi) = wt [ glet-sao ©Leds) + [ alet-saa@dds @
At(m) Dt(IE)
Here the ambit setd, (x), and D, (z) are taken to b&omogeneouandnonanticipativei.e. 4; (x)
is of the formA; () = A+ (z,t) whereA only involves negative time coordinates, and similarly for
Dy (z). Further, we assume that¢, ;) = 0 andq(§, 7;x) = 0 forall 7 < 0.

Remark Recall from [12; 36] that every Lévy baslsexhibits a Lévy—Itd decomposition. L&t de-
note the Poisson basis associated with the Levy dalisough such a decomposition andidedenote
the intensity measure df. Clearly, we havé (N (dx; d€, ds)) = v(dx; d€, ds). In the following, we
are interested ihomogeneoukévy bases, i.e. Lévy bases which satisfylz; d¢, ds) = v(dx; d§)ds

for a measurée.

Remark Many prominent tempo—spatial models are constructed frorordinary, partial or frac-
tional differential equation by adding a noise term, fortamee in the form of white noise, to the
equation. The solution to the equation then being ofteresegptable as an integral with respect to the
noise of the Green’s function of the original deterministifferential equation (see [3; 24]). Thus the
solution is taking the form of an ambit process. For some gtasnwith discussion, see Sections 3.5
and 4.2.

Note that, in general, ambit processes involve time vargimipit sets and allow for a stochastic
volatility factor. Such stochastic volatility is importam many areas in science, not only in the
contexts of turbulence and finance which are in focus in thgep

For understanding the nature of ambit processgs= Y, g) (= (7)), and as a step towards handling
questions of inference am, it is useful to discuss the cores Bfand X. With the ambit field given
by (1), thecoresY, and X, of Y and X are defined, respectively, by

Yot(w):/A( )g(f,s;x,t)L(dg,ds),

and

X — / g (&, 57 (0)) L(d€, ds),
A(6)

where, as above; (0) = (= () ,t (#)) and where we have usetl(#) as a shorthand fod, ) (z (9)).
In case the Lévy basik is the Wiener basidl” we speak of &aussian core

5



2 AMBIT PROCESSES

Remark A class of processes having some properties common withdimersional ambit pro-
cesses is studied in [44] under the namixed moving averagesviore precisely the authors study
processesX = (X¢)er Of the form

X = flx, t —s)A(dx,ds), 4)
X xR

whereX is a non—empty set antl is a symmetricx—stable (&S) random measure ok x R with
Lévy measure x leb, whereleb is the Lebesgue measure ants ac—finite measure o&’. Note that
such processes are always stationary. In th® Son—Gaussian case, they show that this is the smallest
class containing all superpositions and weak limits of mady SxS moving averages. Furthermore,
Rosinski [39] has obtained a Wold—-Karhunen type decomiposif stationary &S non—Gaussian
processes in which mixed moving averages play a role sinolardinary moving averages in the
Gaussian case. And in [40] this type of result is extendedimad range of non—Gaussian infinitely
divisible processes.

2.3 Null-spatial case: levy Semistationary Processe(SS)

When the spacé&’ consists of a single point (or we just considénx) of (1) in its dependence an
keepingz fixed) the concept of ambit processes specialises to tHadwof Semistationary Processes
(£SS), introduced in [5], which are processEs= {Y;},.y of the form

t t
Yi=p+ / g(t — s)osdLs + / q(t — s)asds, (5)
—0o0 —0o0
wherey is a constant[ is a Lévy processy andq are nonnegative deterministic functions®pwith
g(t) =¢q(t) =0fort <0, ands anda are cadlag processes. Wheanda are stationary, as we will
require henceforth, then so¥s. Hence the name Lévy semistationary processes. It is o@veto
indicate the formula fot” as

Y=p+gsxocelL+qgxaeleb, (6)

whereleb denotes Lebesgue measure.

Generally we have taken the stochastic integrals as definitisense of [38]. However, in the
present case, afSS processes, one may define the integrals in the 1td senaéyeeio the filtration
FL generated by the increments — L,, —o0o < s < t < oo. Here we adopt the latter definition,
noting that the two versions agree with respect to all finiteeshsional distributions.

WhenL = B in formula (5) for a standard Brownian motid, thenY specialises to Brownian
Semistationary Proceg8SS), introduced in [17]. The Gaussian core 0B&S process is

¢
Yo = / g(t — s)dBs. (7)

—00

We consider the8SS processes to be the natural analogue, for stationaritjerkarocesses, of
the clas3S M of Brownian semimartingales

t t
Yt:/ USdBS+/ asds.
0 0

Already in this null-spatial case the question of drawirfgrience orv? is highly nontrivial. The
main tool is multipower variation, see [8] and [9].

6



2 AMBIT PROCESSES

2.4 Key example for aBSS process

An example of particular interest in the context®$S processes is where
gt)=t""te ™, for te (0,00), (8)

for some\ > 0 and withv > 3. The latter condition is needed to ensure the existenceeaittithastic
integral in (7).

Remark For the key example (8) the derivativé of g is not square integrable g <v<lor

1 < v < 3; hence, in these cas&5is not a semimartingale. Fdr < v < 1 we haveg (04) = oo
while g (0+) = 0 whenl < v < % These two cases are radically different in nature. Of agurs
for v = 1 the proces®” = [ g(- — s)o,B(ds) is simply a modulated version of the Gaussian
Ornstein—Uhlenbeck process, and in particular, a semimgate. Note also that whem > % then

Y is of finite variation and hence, trivially, a semimartingallo summarise, the nonsemimartingale
cases are € (3,1) U (1, 3].

2.5 Generality of BSS

As a modelling framework for continuous time stationaryqasses the specification (6) is quite gen-
eral. Infact, the continuous time Wold—Karhunen decontmsssays that any second order stationary
stochastic process, possibly complex valued, of nie@md continuous in quadratic mean can be rep-
resented as

t
th/ 6 (t — 8)d=, + Vi, ©)

where the deterministic functiofiis an in general complex, deterministic square integrabetfon,
the proces& has orthogonal increments Wifﬁ{\dEt\Q} = wdt for some constantz > 0 and the
processV is nonregular (i.e. its future values can be predicted, énfthsense, by linear operations
on past values without error).

Under the further condition that,crsp {Zs : s < ¢t} = {0}, the function¢ is real and uniquely
determined up to a real constant of proportionality; anddhme is therefore true & (up to an
additive constant).

In particular, ifd=; = o0,dB; with ¢ and B as in (6), therE is of the above type witho =

E{o2}.

2.6 Multipower variations

One of the interesting aspects in the contexB8iS models is the question on how to estimate the
stochastic volatilityc and how to make inference on it. A key tool for tackling thisegtion is a
statistic calledealised varianceand, more generallyealised multipower variation

A realised multipower variation of a stochastic proca&ss an object of the type

[nt]—k
=1

whereA?X = X — X,-1 andpy,...,p, > 0. Le. it is assumed that the proceX¥s= (X;);>¢ is

observed at time&, whered = % and: = 0,1,...,[nt]. These concepts have been developed in

+1 k
[T1ar,; . xp, (10)
j=1

7



2 AMBIT PROCESSES

the context of financial times series, see e.qg. [10; 11; 1821Pfor results in a framework based on
Brownian semimartingales. In the presence of jumps, thaaatigies have been studied by [32; 33]
and [45]. A detailed survey on this aspect is also given by fR&jwever, in the non—semimartingale
set up the underlying theory is much more involved. We justdkthe main results here briefly and
refer to [17], [8] and [9] for more detalils.
Consider a filtered probability spat®, F, (F;):>0, P), assuming the existence thereon &#S$S

processY defined as in (5), wherg = B is a standard Brownian motion. L&étdenote the Gaussian
core ofY as defined in (7), i.e.

t
Gt ot = / g(t — S)st,

and letG be theo—algebra generated ly. The correlation function of the increments@fis given
by

A", G ity R(=L
7%(j):co\/(AG 14j >:R( ) 212%7(2)+R(n).

Next, we introduce a class of measures that is crucial fabéshing an asymptotic theory for
realised multipower variations. We define

[(g(@ = 8) — g(x))2da
I (g(z = 0) — g(x))?da’ y =0,

and we further set5(z) = m5({y : v > x}). Note thatr; is a probability measure dR. .
We are interested in the asymptotic behaviour ofrtbemalised multipower variations

Tn Tn

ms(A) =

RGN
V(Y,ph---’m)?:m—m > TT1aN Y,

i=1  j=1

wherep = Z?:l pj and7? = R(1/n) with R(t) = E[|Gs1t — Gs|*],t > 0.
In order to establish a weak law of large numbers, one need®llowing assumption.
(LLN): There exists a sequenegj) with

Moreover, it holds that
lim 75(e) =0,

for anye > 0.
Then the law of large numbers is given by the following propos.

Proposition 1.  Assume that the conditigi LN) holds forY = g« c ¢ W + ¢ x a e leb. Define
W _p [ ATG|" ARG pk] ,

p EARAS
p1 Pk Tn Tn
_ ucp,
V(Y7p17"'7pk _pp17 7pk/ ’O’ ’p+d8

where the convergence is uniform on compacts in probalfility).

P1

Then we have

8



2 AMBIT PROCESSES

Furthermore, for a central limit theorem, one needs thedotig assumption.
(CLT): Assumption(LLN) holds, and

rn(j) = (), 720,

where p(j) is the correlation function of some stationary centeredrdie time Gaussian process
(Q:)i>1 With E[Q?] = 1 (as before). Moreover, for anyn > 1, there exists a sequencgj) with

() <r(G), DTl < oo

=1

Finally, the tail mass functiom™ is assumed to satisfy an additional mild condition.
Now, we can formulate a joint central limit theorem for a fgmi
(V(Y,pi,...,p,)1)1<j<q Of multipower variations as follows.

Proposition 2.  Assume that the processis G—measurable and the conditi¢@LT) holds. Then
we obtain the stable convergence

. . 3 p t
Va(VOplee st =03, [loarhas) = [ 2,
0 1<5<d 0

D7se-Py,

whereB is ad—dimensional Brownian motion that is defined on an extensidine filtered probability

space(2, F, (Fi)t>0, P) and is independent of, and Z is ad x d—dimensional process given by
79 = fylo v 1<ij<d,

where thed x d matrix 5 is defined as in [8].

Note that in order to obtain an asymptotic limit theory for idevrange of multipower variations,
one is forced to consider also multipower variations of sédcorder differences. (For Brownian
semimartingales passing to second order differences wmoakk no essential change in the limit
theory.) Multipower variations based on second order difiees are quantities having the same
form as (10) but using

OVX = Xjs5 — 2X (515 + X(j-2)5,

instead ofA;‘X . However, we shall not dwell on this aspect here, but reféyt@] for discussions,
detailed results and applications.

2.7 Applications to turbulence and finance
After having introduced the concept of ambit fields and arpbitcesses, we turn our attention to
applications of such processes in turbulence and in finance.

2.7.1 Tempo-spatial settings in turbulence

The idea of ambit processes arose out of a project aimedailisbing realistic stochastic models
of the velocity fields in stationary turbulent regimes (@; 12] and also [13—-17]). In turbulence the
basic notion ofntermittencyrefers to the fact that the energy in a turbulent field is unveistributed

in space and time, and the paper [12] introduced stochastdels for turbulent intermittency (also

9



2 AMBIT PROCESSES

referred to agnergy dissipationfields, in the form of ambit fields. The later paper [13] pregod a
class of ambit processes for the description of the veldisgtg, in the form

Yi(o) = u+[&)g@—xi—$adaw%%ﬂ@

[ ale-at-si©aeds (12)

Dy(z)

for a Gaussian Lévy basl§” with associated intermittency (or energy—dissipationyifie

@ = [ h(E-mt- )L ds). 12)
Ci(z)

whereL is a nonnegative Lévy basis. An alternative way of modgliiris by defininglog o2 as

log o? (z) = / h(§—x,t—s)L(d¢, ds). (13)
Ci(x)

This latter specification has the advantage of allowing togfo cascade theories in turbulence, see
[43].

Clearly, the choice of the ambit setg(z), D:(z), C(x) influences the behaviour of an ambit
process. Therefore, it is important to investigate whapehaf the ambit set reflects the empirical
facts best.

In order to illustrate how such ambit sets may look, we pre\aglot of a particular type of ambit
set, the shape of which is rooted in turbulence (see [12]).

TR
r

Figure 2: Example of the choice of an ambit gg{x) for turbulence modelling, see [12].

Note that the mathematics of turbulence is inherently lihiaestochastic partial differential equa-
tions (see [24]), as will be discussed in Sections 3 and 4.

2.7.2 Modelling energy markets by ambit fields

Following the success in describing turbulence, it trarespihat ambit fields have also great potential
in financial applications. In particular, recent reseas#e [4; 5], has focused on using ambit fields

10



2 AMBIT PROCESSES

for modelling energy markets. Due to the general structfiseroit fields, these new models are able
to capture many stylised facts of energy markets in geramnalelectricity prices in particular. Special
features of those markets are e.g. strong seasonal pattemgspronounced volatility clusters, high
spikes/jumps, the existence of the so called Samuelsoateife. the fact that the volatilities of the
forward price are generally smaller than the ones of the nlyidg spot price and converge, when
time to maturity tends to zero, to the volatilities of the saia fast rate. Furthermore, there are strong
correlations between forward contracts which are closeatunty. In the following we will describe
how the structure of ambit processes can be exploited tauatéor these stylised facts.

2.7.3 Spot price

We start with the the question of how to model the electrisfigt price. A natural choice of processes
taken from the ambit world is the class 68 S processes as previously described. In [5], we propose
to model the electricity spot pric& = (S;):cr by

Si = A(t) exp(Y1), (14)

whereA : R — R, denotes a deterministic seasonal function and

t

Y; = / g(t — s)wsdLs, (15)
—0oQ

for a deterministic damping function : R — R with g(¢) = 0 for t < 0 and a cadlag, positive,

stationary process = (w;)ter Which is independent of the two—sided Lévy procéss (L;):cr.

There are several key features which make a model for thérielgcspot price which is based
on aLSS process both theoretically interesting and practicallgvant compared to the traditional
models. First and foremost, the deseasonalised, logadthpot priceY is modelleddirectly rather
than its stochastic dynamics. By doing so, one can introdugeneral damping functiog, which
adds much more flexibility in modelling the mean—reversibthe price process and in accounting
for the well-known Samuelson effect ([41]).

Furthermore, we account for stochastic volatilitysince this is clearly an issue in energy mar-
kets (see e.g. Hikspoors and Jaimungal [30] and Benth [Z8))ery general model for the volatil-
ity process would be that we model it itself as a Lévy Voleprocess, i.ew? = Z,and Z; =
ffoo h(t,s)dLs, whereL = (L)cr is another Lévy process. The functiéns assumed to satisfy
the same conditions as

For further details oiCSS—based models for electricity spot prices we refer to [5] amd our
attention now to models for electricity forward contraceséd on ambit fields. In the context of
forward modelling, we do not stick to the zero spatial casarobit fields, but rather allow for both
a temporal and a spatial component to reflect the fact thebtiaeard price does not only depend on
the current time, but also on the time to maturity.

2.7.4 Forward price

In [4], we propose to use an ambit field given by
= [ M oL ), (16)
t\T

for modelling the forward price of electricity. Here,> 0 denotes the current timé&, > 0 denotes
the time of maturity of the forward contract amd= T — ¢ the corresponding time to maturity.

11



3 LEVY BASES AND THE THEORY OF WALSH

Clearly, in order to specify the model completely, we havepecify the ambit setl;(x), the
damping or weight functiot and the stochastic volatility fields(&). It is important to note that in
modelling terms we can vary the choice of the ambit set, thightéunctioni and the volatility fields
and can still achieve the particular dependence structerare/aiming for. As such there is generally
not a unique choice of the ambit set or the weight functiomenlatility field to achieve a particular
type of dependence structure and the choice will be basedaoketnintuition and considerations of
mathematical/statistical tractability.

We assume that the volatilitys (£) > 0 is a stochastic field of®;. x R, which is stationary in
the time domain, i.e. with respect 0 and which expresses the volatility on the forwards market a
a whole, andL is a Lévy basis (integration in the sense of [38]) @&nid a damping function. For
analytical tractability, we assume thatis independent of., and in order to ensure thgt(z) is
stationary in timef, we take the ambit sets to be of the fortn(z) = Ay (z) + (0,¢). Regarding the
choice of ambit sets, we just illustrate, in Figure 3, twogdodities of interest.

S S
& T=x+t p T=x+t
AN N .
T\ t
0 *X ¢ 0 *X ¢

Figure 3: Two relevant choices of the ambit sigtx) in the context of modelling electricity forward
prices.

Furthermore, we suggest to model the volatility field by
= [ a6t sl as),

for a nonnegative Lévy basis, a deterministic damping functiop (with ¢(&, 7;2) = 0 for 7 < 0)
and an ambit sef;(x) = Cy(x) + (0,t). In order to have that forward contracts close in maturity
dates are strongly correlated with each other (as indidayezmpirical studies), we could choose the
Lévy kernelg such that

Cor(o?(m),atz(f))

is high for values ofc andz which are close to O (i.e. closeness to maturity).

3 Lévy bases and the theory of Walsh

In this section we connect the notion of a Lévy basis to tle®th of white noiserandom fields of
Walsh [46]. Further, we show how to define thaiseof sufficiently regular Lévy bases based on the
theory of Hilbert space random fields. We summarise the asiithintegration theory of Walsh [46]
and present some applications to stochastic partial difteal equations in view of ambit processes.

12



3 LEVY BASES AND THE THEORY OF WALSH

3.1 Brief account on the stochastic integration theory of Wish

In this subsection we briefly present the approach of Walhtfdefine stochastic integration with
respect to random fields. We keep the discussion on a heudgsél, focusing on the ideas only, since
we in any case will introduce the concepts of Walsh in detalibl.

The purpose of Walsh [46] is to study stochastic partialedéhtial equations rigorously. The
eqguations are of parabolic type, meaning that the soluaoa$unctions of time and space where their
derivative in time is equal to some elliptic operator in spad he partial differential equations are
perturbed by random fields, that is, stochastic procesdestintime and space (or rather, derivatives
of such, called the noise), and in order to make sense outcbf aguations, one must have available
a theory for stochastic integration with respect to sucltgsses.

The key question is how to make sense out of stochastic altegf the form

/ot/BX(S’w) M(dz,ds),

whereB is some measurable subsef®sf andX is some random field in space and time. Tiente-
grator comes from the "noise” driving the stochastic padifierential equation, and heuristically we
may think of this as the time—space derivative of a randord,ftekt is,M (dz, ds) = M (s, x) ds dz.
However, as is the case for classical Itd integration wébpect to a Brownian motion, the time—
derivative may not be well-defined.

In the setting of Walsh [46], the approach is to separatedteeaf time and space, and introduce
a class of so—callethartingale measures/;(A) for A being a suitable class of measurable subsets
of R%. The martingale measures are so that for each time0, M, is a measure—valued square—
integrable random variable, and for each 4ethe process — M, (A) is a martingale (with respect

to a given filtration). In addition, theovariance functional

Q:(A,B) =< M(A),M(B) >

plays a crucial role in the construction. Under some teclirissumptions o€, Walsh [46] constructs
the stochastic integral following the scheme of 1td. Hevehdhat for elementary integrands, the
stochastic integral is a martingale measure, and by limpimcedures, the definition can be extended
to predictable integrand¥ satisfying some quadratic integrability condition (yielgl an extension

of the Itd isometry). In fact, the stochastic integral iddlcome a martingale measure.

As it turns out, when studying the relation between Lévyekaand the Walsh theory, so—called
orthogonalmartingale measures are the crucial objects. A martingekesaore is called orthogonal if,
for two disjoint setsd and B, the processes/,(A) and M, (B) are orthogonal. Orthogonal martingale
measures satisfy the additional assumptions on the coearfanctional, and it is moreover sufficient
to study thecovariance measure

Q([0,1] x A) =< M(A) >4,

instead when defining the stochastic integral. In fact, thegrands will be predictable and square
integrable with respect tQ. Noteworthy is that the measutgis closely linked to the control measure
of a Lévy basis.

We now go on with a rigorous study of Lévy bases, white nors stochastic integration in the
sense of Walsh, where many of the above concepts will bednted and discussed in mathematical
detalil.

13



3 LEVY BASES AND THE THEORY OF WALSH

3.2 Lévy bases and white noise

In order to relate Lévy bases to the white noise random fields introduced by Walsh [46]sit i
convenient to slightly reformulate the definition of a Léwysis given in Definition 1.
We first show that a Lévy basisis countably additive since its law is infinitely divisible:

Lemma 1. A Lévy basis\ is countably additive, that is, for a sequence of dets} C B,(S) where
A, | 0 it holds that
lim P(|A(4,) >¢) =0, (17)

n—oo

for everye > 0.

Proof. From the general theory of infinitely divisible laws, thexésés a characteristic triplet such that
the law ofA(A) has the triplef 4, v4,v4). One can show (see Pedersen [36, p. 3]) that v, £
are signed measures fo¢ j, andA — v4(B), %% are measures for eveiyand B € B(R?). Hence,

if A, | 0is asequence of bounded Borel sets, then by standard pespeftmeasures it holds that
(34,,,74,,v4,) — (0,0,0), and thus the law oA (A,,) converges t@,. Hence, in probability and
a.s. it holds thatA(A,,) converges to zero. The countable additivity in (17) follows O

The following Lemma follows from countable additivity af.

Lemma 2. Condition (3) in Definition 1 is equivalent to the conditiofor each pair of disjoint sets
A and B, it holdsa.s. that
A(AUB)=A(A)+ A(B).

Proof. ConsiderCy = UiN:1 A;andDy = U;’iNH A;, and use thaf’y and Dy are disjoint to find

that N
A (U AZ) = A(4;) + A(Dy).
=1 =1

SinceDy | 0, and by the countable additivity df, we can use Chebyshev’s inequality to find

00 N
p ( A (U AZ-) =) A4
=1 =1

and the right hand side tends to zero by countable additiVitys gives us convergence in probability
of the serieszf\i1 A(A;) when N — oo. But since the\(A4;)’s are independent random variables,
we get convergenc€-a.s. by the 1td—Nisio Theorem. O

e2

> 5) =P ([A(Dn)| 2 ¢) < iE[A(DN)2]7

Recall Condition (2) of independence for Lévy badeim Definition 1. We note that it is equiva-
lent to assume this condition far= 2 only. To see this, letd, A,, ..., A, ben disjoint subsets in
By(S). Then,A(A;) andA(A;) are independent for any combinatiog j, i, j = 1,...,n. Butthen
A(Ay),...,A(A,) are independent.

We may give an equivalent definition of a Lévy baAiss follows:

Definition 2. A family {A(A) : A € B,(S)} of random vectors ifR? is called anR%—valued levy
basis onS if the following three properties are satisfied:

1. The law ofA(A) is infinitely divisible for allA € B,(.S).
2. If A and B are disjoint subsets i, (.S), thenA(A) and A(B) are independent.

14



3 LEVY BASES AND THE THEORY OF WALSH

3. If Aand B are disjoint subsets if8;,(.5), then
A(AUB) =A(A)+ A(B),a.s..

The above definition of a Lévy basis provides a natural gdisation of the object defined as
white noisein Walsh [46]. A white noise is a random set functiéin on ac—finite space F, &, v)
defined as follows:

Definition 3. A white noisdV is a random set function oy, the setsA € £ wherev(A) < oo, such
that

1. W(A) is normally distributed with zero mean and varianged);
2. W(A) andW (B) are independent as long asand B are disjoint;
3. W(AUB)=W(A)+ W(B) as long as4 and B are disjoint.

We observe that in the cage = R¢, this white noise concept is a very particular example of a
homogeneous Lévy basis (and the definition of Lévy basegjven in the Appendix, could easily
be extended to more general spagdsHence, homogeneous Lévy bases provide a generaligaftion
white noise td_évy noise

As a note in passing, Walsh [46] concentrates on random mesasgthich have finite variance,
in the sense that for each € B,(S), A(A) € L?(P). Further, the following stronger countable
additivity condition is introducedA is said to becountably additivef for a sequence of setsd,, } C
By(S) whereA,, | (it holds that

lim E[A(A,)?] =0. (18)

This is stronger than the condition (17), which only holdgpmobability and does not require any
finite variance of the random measure. However, the stronditton of Walsh [46] is suitable when
defining a theory of stochastic integration which we will s@ler in Section 3.4.

Walsh [46] also introduces a concept @ffiniteness of the random measurks To this end,
suppose there exists an increasing sequence of Sgts, C B(S) such that)>° , S, = S, and for all
n, it holds that3(S)|S,, C By(S) and

sup  E[A(A4)Y] < .
A€eB(S)|Sn
If this is true, we say thad is o—finite If A is o—finite, thenA is countably additive o#8(.S)|S,, if
and only if for any sequence of sets, | ) with A,, € B(S9)|S,, we havelim,,_.., E[A(4,)?] = 0.
Walsh [46] makes this extension since for sucbne may extend their domain of definition to include
some new setd € B(S): If A € B(S5), we define
A(A) := lim A(ANS,),

if the limit exists inL?(P), and considen (A) undefined otherwise. This leavasinchanged on each
B(S)|Sy, but may change its value for setse 5(.S) which are not in any3(S)|S,,. In Walsh [46],
A extended in this way is calleda-finite L?>—valued random measure. Note that we can make this
extension for all Lévy bases trivially wheneversS is bounded. Fo5S unbounded, the—finiteness
follows wheneverA has mean zero. To see this, we make the following computation

E[A%(Sn)] = E[A%(S, \ A)] + 2E[A(A)JE[A(S, \ A)] + E[A%(A)]

> E[A*(A)].

Thus, the variance ak(A) is bounded by the variance af(S,,), which is finite, andr—finiteness
follows.
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3 LEVY BASES AND THE THEORY OF WALSH

3.3 Lévy bases and random variables in a Hilbert space

For certain types of Lévy basés we introduce the mapping — A(x) for x € S, being thenoiseof
A. For this purpose, it will be convenient to interpret thery.®ases in terms of Hilbert space valued
random variables.

To this end, letS be a bounded Borel set i®*, and introduce the measure spasesS, leb), with
leb being the Lebesgue measure @the Borel sets o. Assume thats is such thatl.?(S, S, leb)
is separable and denote Hy:}rcv @ complete orthonormal system in the Hilbert spd€e=
L?(S,S,leb). We suppose in addition that for all € S with leb(A) = 0 we haveA(A4) = 0
a.s.. Finally, we assume thAthasnuclear covarianck, that is,

kiE (/ ek<x>A<dx>)2] <o, 19)
=1

where the integration af;, with respect to\(dz) is understood in the sense of Rajput and Rosinski
as reviewed in Section A.3. We note that in Walsh [46], it ismsed that the integrals with respect
to A(dx) is in the sense of Bochner ([25] and also Chapter Ill in [2&jhich is a stronger concept
defined by convergence in variance.

The nuclear covariance condition (19) implies tiAdtA) has finite variance, as the following
Lemma shows.

Lemma 3. For everyA € S, A(A) € L%(P).

Proof. Let A € S. Since obviouslyl 4 (z) € L?(S, leb), we have that

1a(z) = ,; /A ex(y)dy ex(z),

and therefore -
M) = [ Atdo) = > [ et [ evwnias).

But by the Cauchy—Schwarz inequality for sums, we find

E[A(A)?] < gl (/A ex(y) dy>2 « g:lE [(/S €k($)A(d$)>2]
)A(dx) :

=|1A|%§E[(/Sek<m )] oo

For everyp € L%(S,S, leb), let us introduce the following functional Q¥ (S, S, leb):
6= M) = [ o). (20)

Lemma 4. The mappings — A(¢) defined in(20) is a linear functional on.2(S, S, leb).

This is in accordance with the definition of Walsh [46, p. 288]
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3 LEVY BASES AND THE THEORY OF WALSH

Proof. We show that the operator is bounded. We havedhat) "~ | ¢re; and thus

/S¢($)A(dw) ZkZ:l(bk/Sek(x)A(dx).

The Cauchy-Schwarz inequality for sums now yields

<Z¢kaE{/ dx)]<oo,

and hence, the integral is finites.. Obviously,¢ — A(¢) is linear, and it therefore defines a linear
functional onL?(S, S, leb). O

2
A(dx)

We are now ready to show thAthas a Radon—Nikodym derivative with respect to the Lebesgue
measure.

Proposition 3. There exists a functioh € L?(S, S, leb) such that

_ / A@)p(z)dz . 21)
S

ThusA is the Radon—Nikodym derivative Adfwith respect to the Lebesgue measurg 6nS).

Proof. Since any linear functional on a Hilbert space may be reptesevia the inner product with
some element of the Hilbert space, we are ensured the ecgstéra functionA € L%(S, S, leb) such
that (21) holds. Note that sinde, () is a function inL?(S, S, leb) for all A € S, we have

= / A(z)dz . (22)
A
O
Moreover,
A(A)A(B) = A(z)A(y)dzdy . (23)
AxB
Note that
Z/ek A(dy) ex(z) .
Introduce

Q(A x B) = E[A(A)A(B)]. (24)
Then we have that

O(A x B) = /A E [A(x)A(y)} dz dy.

We call the signed measuégthe covariance measuref the Lévy basis.
Define now the linear operaty as

Of(x) = /5 a(z,9) () dy, (25)

with ¢(z,y) = E[A(z)A(y)]. We prove thaf) is a non—negative, nuclear operator fréif( S, S, leb)
into itself.
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3 LEVY BASES AND THE THEORY OF WALSH

Proposition 4. The linear operator@ defined in(25) mapsL?(S, S, leb) into itself. The operator is
non-negative and nuclear.

Proof. By the Minkowski and Cauchy—Schwarz inequalities, we have

< [l wlady
- [(/ q2<w,y>dw)1/zrf<y>rdy
<([[ q2<x,y>dmdy) T
(e
< ([ [Ere )]dwdy>1/2|f|2

~E “Au Ifls-

( dy

However, by Parseval’s identity and the nuclear covariaacglition (19), we have that

EUA(Z] ZE (/ (d:c)>2] <0,

and h~ence§f isin L%(S, S, leb). Furthermore, we have that the operator is non-negativeeisgnse
that(Qf, f)2 > 0 for all f € L?(S,leb). This follows since

(Qf.f)2 =E [(f, A)ﬂ >0

We check whether the operator is nuclear. By using the sesjgesentation af (i), we find

0f () = / 4(z.9)f(y) dy

=3 i [ae @] awsma

[e.e]

(e 12 [Ao) [ ) Ala)]

k=1

This is the representation in Definition A.1 in Peszat andcZghk [37] of nuclear operators, where
we identifyak( ) = ek( ) and N
br(x) = E[A(z) [4ex(y) Aldy)]. Now, Q is nuclear ify~)7, |ax|2|br|2 < oo. But this is equivalent

’ gj [ (2] [aw A(dy>D2dx <o,
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3 LEVY BASES AND THE THEORY OF WALSH

sincee;, is an orthonormal basis. But, by the Cauchy—Schwarz ingguake find

> [ (e[ [ ot an])
< g /S E[A%(2)] drE ( [S ex(y) A(dy)ﬂ
_E “A‘j gE (/S ex(1) A(dy)>2

And this is finite by the nuclear covariance condition (19). O

We conclude tha@ is a covariance operator in the sense of Peszat and Zabczyi.[30], where
it is defined for Gaussian random variables with values inladii space. This links the Lévy bases
to the theory of square—integrable Hilbert space valuedaanvariables. We note that the nuclear
covariance condition (19) makes the Lévy basis sufficjamijular to create random fields with values
in a Hilbert space, where we can define covariance operasatseacrucial object to understand the
covariance structure. Tracing back, we see that the cowaieneasure of the Lévy basiscan be
represented by the covariance operato @fs

Q(Ax B) = (Qla,1p)s. (26)

Thus, the covariance measure is representable via anahtegnel.

3.4 Extension of the stochastic integration theory of Walsh

Letus consider a Lévy basison[0,7] x S € B(R*+1), that is, a Lévy basis where we have separated
out the first variable to denote time.
We introduce the following measure—valued process

M (A) == A((0,t] x A), (27)

for any A € By(S). The following properties are inherited from the Lévy Isafsir a fixed setd €
By(S):

Proposition 5. The measure valued proceds;(A) for A € B,(S) defined in(27) is an additive
process, i.e. it satisfies the following properties:

1. The law ofM,(A) is infinitely divisible for eaclt.
2. The increments af/,(A) are independent.
3. The procesd/;(A) is stochastically continuous.

4. The procesd/;(A) is right—continuous, witl/y(A) = 0, a.s..

2More precisely, we have thail,(A) is anadditive process in laysee Definition 1.6 in Sato [42].
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3 LEVY BASES AND THE THEORY OF WALSH

Proof. The first property follows from the fact that the Lévy baaiss infinitely divisible. To see the
second property, we observe from the additivityA\athat

A((0,4] x A) = A({(0, 5] x AYU {(s,] x A}) = A((0, 5] x A) + A((s,4] x A).

From the independence property/ofit holds thatA((s,t] x A) is independent oA ((0, 7] x A) for
all sets(0, 7] x A wherer < s. Hence M;(A) — M (A) is independent ol/;(A). We continue with
proving property (3). Observe that

P(|Mi(A) — Ms(A)] > €) = P(|A((s, 1] x A)| > ¢),

and whent | s we have thafs,t] x A | 0. Hence, from the countable additivity in probability, wiic
holds for Lévy bases, it follows that

lim P(|M;(A) ~ Mi(4)] > £) = 0.

This proves property (3). In particular, we find

ltlglP(lMt(A)l >¢) =0,

and thereforeM/;(A) converges in probability to zero, which implies convergeirtlaw tody. This
gives thatlim, |y M;(A) = 0, a.s., and we have that/y(A) = lim; o M;(A) = 0,a.s.. Moreover,
following the same argument as above, we see that fer, (using independence o)
A((0,8] x A) = A((0,t] x A) + A((t,s] x A).
The countable additivity o\ yields that
A((t,s] x A) — 0,

in probability whens | ¢ since(t,s] x A | 0, and therefore\((t, s] x A) converges in law t@y.
Hence,
A((0,5] x A) — A((0,1] x A),

and it follows thatM/;(A) is right—continuous. Hence, we have shown the last property O

Remark To obtain a Lévy process, we would need to have stationafitgcrements, i.e. the law of
the incrementV/;,+(A) — M4(A), s,t > 0 should be independent ef But

My t(A) — Ms(A) = A((s,s +t] x A),

and the characteristic triplet for the law is th(S o1y 4s V(s s+ x A5 V(s,s+4x4)- |f there exist

measure& 4, and7 4, and a signed measufg such that, , 4 = leb(7)X 4, Yrxa = leb(T)74 and
vrx A = leb(T)v 4, for T a bounded Borel subset of the positive real line, we woulesationarity.
Such a separation property of the characteristic tripletldionply thatA/;(A) is a Lévy process.

We want to useM,(A) as integrators like in Walsh [46], where the Itd integratapproach is
used. We conveniently suppose that for edgh\f;(A) € L?(Q, F, P). Furthermore, we define the

filtration 7, by 7, = No2, 77, ,,, where

FP=0{MA): AecBy(S),0<s<t}VN,
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3 LEVY BASES AND THE THEORY OF WALSH

and whereV\ denotes thé®—null sets ofF. Then,F; is right—continuous by construction. Finally, we
suppose that the expected value of the Lévy bAssequal to zero, that i€[M,(A)] = 0. If thisis
not the case, we can always redefine the Lévy basis by stibgrats mean value in order to obtain a
mean-zero process.

It turns out thath;(A) is a square—integrable martingale satisfying an orthdggrmoperty:

Proposition 6. Under the assumption of square—integrability and mean aéfd,(A), the following
two properties hold

1. ForeachA, t — M,;(A) is a (square—integrable) martingale with respect to thedilon F;.
2. If A and B are two disjoint sets i (.5), thenM;(A) and M,;(B) are independent.

Proof. The second property holds trivially from the independenmperty of the Lévy basis. To see
the first property, let < ¢t. We have by the independence property of the Lévy basis that

A0, 4] x A) = A((0, 5] x AU (5,1] x A) = A((0, 5] x A) + A((s,] x A),

and therefore
M(A) = Ms(A) + A((s,t] x A).

Furthermore, we have that((s, t] x A) is independent af; since any setf), s;] x B will be disjoint
with (s,t] x A aslong as; < s. Therefore

E[Mt(A) |fs] = E[MS(A) |fs] +E[A((S>t] X A)] = MS(A) :

The last equality is obtained by the zero—mean assumptidhneobévy basis and the measurability of
M;(A) to Fs. O

These two properties together with the fact thaf(A) = 0 a.s., are essentially defining what is
called arorthogonal martingale measuie Walsh [46]. Walsh [46] adds a further regularity conditio
on A — M;(A) which he callss—finiteness to make up the definition of an orthogonal maating
measure. As we have seen earlieffiniteness follows for Lévy bases with mean zero, whichligiv
is supposed here.

As is shown in Walsh [46] (see also [34] for a survey), for ogbnal martingale measures we
may introduce &ovariance measurg as

Q([0,t] x A) =< M(A) >y, (28)

for A € By(S). The covariance measufg is positive, and is used as the control measure in the

Walsh sense when defining stochastic integration with gpé/. We now describe the integration

procedure followed by Walsh [46], which is essentially ttéedpproach to stochastic integration. To

make matters slightly simpler, we suppose thas a bounded Borel set, and we recall the notation

S for the Borel subsets o8. Furthermore, we treat only integration up to a finite tifieNote that

extensions to unboundefiand infinite time interval follow by standard arguments (g p. 289)).
First, we say that a random fiefd s, x) is elementanyif it has the form

f(s,z,w) = X(w)l(a,b](s)lA(x) ) (29)

where0 < a < t, X is bounded andr,—measurable and € S. For elementary functions we can
define stochastic integration as

/Ot /B f(s,z) M(dz,ds) := X (Mipq(AN B) — Myap(ANB)) (30)
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for every B € S. In fact, the stochastic integral becomes a martingale uneass discussed earlier.
The extension of stochastic integration to finite linear borations of elementary random fields is
obvious. A finite linear combinations of elementary randogtds is called simplerandom field, and
the set of simple random fields is denotEd Thepredictablec—algebraP is theo—algebra generated
by 7, and a random field is callgutedictableas long as it iS"—measurable. A nor- ||, is defined
on the predictable random fielgisby

1113, = E [/[O T]Xsfz(sjw)Q(dwde) ; (31)

which determines the Hilbert spa@®, := L*(Q x [0,T] x S,P,Q). In Walsh [46] it is proved
that 7 is dense inP,,;. To define the stochastic integral fe P,;, we choose an approximating
sequence f,},, C 7 such that|f — f.|[xs — 0asn — oco. Itis easy to see that for each € S,
f[o,t]xA fn(s, ) M(dzds) is a Cauchy sequence it? (2, F, P), and thus there exists a limit which
we define as the stochastic integralfofit turns out that this stochastic integral is again a mgetia
measure, and that the “Itd isometry” holds;

2
E (/ f<s,w>M<dx,ds>> — 17112, (32)
[0,t]x A

See Walsh [46], Theorem 2.5 for the complete result and proof

The weak integration of Rajput and Rosinski ([38]) externils definition of stochastic integration
in the following sense. For any sequenick,},, C 7 of deterministic functions converging tbin
P, there exists a subsequengé, },, C 7 converging tof Q—a.e., and for this sequence the
stochastic integrals converge in probability since theyweege in variance by definition. Hence, for
f € Pu, the definition of weak integration according to Rajput arabsiRski presented in Section
A.3 in the Appendix extends that of Walsh as long as the comtieasure\ of the Lévy basisA
is absolutely continuous with respect ¢ (See Section A.2 in the Appendix). However, as the
following computation showsy and )\ are equivalent: Since we have assumed that the Lévy hasis
has zero mean, it follows from the characteristic exponefimula (48) of the Appendix that

Q(o.f x4 = |

0

<02(w,3) + / 22 p(m,s,dz)) Adz,ds) .
A XA R

Therefore we conclude that the weak integration conceptafiil® and Rosinski is a true generalisa-

tion of that due to Walsh as long as deterministic integraargsconsidered. We remark in passing

that the integration theory of Rajput and Rosinski is natrigted to square—integrable Lévy bases, as
is the Walsh integration concept we have presented here.

Remark Note that we do not know if we have disintegration with theottyeof Walsh. However, we
know that the integral is a martingale process in time, wlidts important dynamics which gives
us a big advantage compared to the weaker form of integratiailable from Rajput and Rosinski

([38]).

3Note that in Walsh [46], the argument is made for so—caNedthy martingale measures. As argued in Walsh [46], an
orthogonal martingale measure is worthy, and moreovectinrol measuraised to define stochastic integrals sits in this
case on the diagonal &f x S. We have chosen to present that particular case.
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3 LEVY BASES AND THE THEORY OF WALSH

Note also that in the definition of weak integration in the eqgix only deterministic integrands
are used. The general definition of ambit processes invebeehastic integrands. This can be accom-
modated by further extension of the Walsh theory. Such siteris currently under development in
collaboration with Andreas Basse—O’Connor, Svend Erikv&rsen and Jan Pedersen, see e.g. [22].

3.5 Stochastic partial differential equations and ambit piocesses

In this subsection we consider a class of parabolic stochpattial differential equations (SPDE)
analysed in detail by Walsh [46]. The motivation with ourg®etation here is to relate the solutions
of such SPDEs to ambit processes, and discuss possiblesiexteinased on these.

Letting 1V be a white noise in the sense of Walsh, we introduce the faligwon—linear parabolic
SPDE

P(t,0)=22(t,K)=0, t>0, (33)

'U(O,x):UO(':U)v 0<ZE<K,

whereK > 0 is some constant anglis a Lipschitz continuous function inof at most linear growth.
Furthermore, it is supposed that is Fy—measurable anB[v3(z)] is bounded. Since white noise is
too rough to expect smooth solutions of the parabolic SPD&sh[46] introduces aveak solution
concept. We say thatis aweak solutiorof (33) if for everyp € C*°(]0, K]) with ¢'(0) = ¢/(K) =0

it holds that

K t K
/O (o(t,2) — vo(z))p(z) dx = /0 /0 o(s,2)(¢" (@) — B(z)) duds

t K
—I-/O/O f(s,v(s,x))p(x) W(dzx,ds). (34)

In Walsh [46], Theorem 3.2, it is proved that there exists akv@lutionwv to (33) which is bounded
in variance or0, K| x [0, 7] for eachT > 0. The proof goes by application of the Green’s function
and Picard iterations.

To see the connection to (33) note that formal differerdratf (34) with respect to gives

K K K
/ u(t, z)p(z)dr = / vt x) (¢ (z) — ¢()) dx + / fto(t, z))p(x)W (dz, dt) .
0 0 0

An integration—by—parts applied formally to the first intglgon the right hand side and application of
the initial conditions essentially leads to (33).

The homogeneous form of (33) is known as ttable equationand Walsh [46] presents the
Green'’s function of this as

Gy = % i exp <_(y—x;t2nK)2> L exp (_(y+w;t2nK)2> ‘

A solution to the cas¢ = 1 can be represented as

n=—oo

K t K
o(t,z) = /O Gu(zr, y)uo(y) dy + /O /O Gy_a(,y) W (dy, ds) . (35)

Note that if the last integral was computed oyeroo, t] rather than ovef0, ¢], the Wold—Karhunen
representation with respect to a Brownian motion could leeluis principle.
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4 LEVY NOISE ANALYSIS

The solution in (35) represents the solution to an SPDE wteetbe related to physical processes.
Walsh [46] interprets the problem (33) to description ofleevous system, and another interpretation
is diffusion of heat. These physical systems may be degtdbectly through an ambit process rather
than via an SPDE. As such, we could model the phenomena ugjageaal Lévy basid instead of
the particular white nois&@’. Thus, a generalisation ofin (35) is to consider

K t K
olt,z) = /0 Gul(,y)voly) dy + /0 /0 Gr_a(,) L{dy, ds) . (36)

One may also take this further, and consider “stochastarnmttency” described by a random field
o(t,x). Thus,

K t K
v(t,w):/o Gt(w,y)vo(y)dy—i—/o/o Gi—s(z,y)o(s,y) L(dy,ds) . (37)

The intermittency fieldr may be defined as an ambit field, and as such, we havesthat) is an
ambit field over the ambit sed;(z) = [0, ] x [0, K] under appropriate regularity conditions ensuring
the existence of the integrals in (37). In fact, we have #itatz) in (37) is by definition amild solution

of the parabolic problem

%:%—U—l—a(t,x)/\, t>0,0<z<K,
G(t.0) = Q(t,K) =0, >0, 38)
v(x, ):’U Q}), O<r< K.

Here, A is a suggestive notation for the noise of the Léevy bds{see Section 4 for a mathematical
formulation of this). The definition of a mild solution of anadolic stochastic partial differential
equation is introduced in Da Prato and Zabczyk [26, p. 158]iarin general weaker than a weak
solution. By Theorem 6.5 in Da Prato and Zabczyk [26], we Hhaéthe mild solution(¢, ) in (37)

is a weak solution under natural integrability conditiomssoanduy.

It is important to notice that we can generalise the soluti@nzx) in (37) to hold for very general
specifications ob, in fact, by going to the general integration concept of Bagnd Rosinski [38],
we can make sense oft, z) as an ambit field. By weakening the integration, we can stifirpret
v as a mild solution to the parabolic problem. A further gehlsation is of course to allow for more
general ambit setd,(z), leaving the specificationl,(z) = [0,¢] x [0, K]. This will allow for a great
deal of flexibility in modelling the physical phenomena iregtion, in particular how the dependency
structure in time and space evolves.

4 Lévy noise analysis

The white noise analysis introduced by Hida in the 80tiesldiea®me a popular tool for analysing
SPDEs which are singular in the sense of not admitting regualtions. Hida proposed an analysis
based on white noise, that is, the time—derivative of Branmotion, with applications from quantum
mechanics and Feynman path integrals in mind. In Hida, KotthBff and Streit [29] one can find
a detailed account of the so—callethite noise analysiand its applications to physics. In this paper
we are concerned with SPDEs, and will base our further disonson the Lévy noise analysis for
Lévy processes introduced in Holden, @ksendal, Ubge aath@[B81]. In particular, we link Lévy
bases and ambit processes with the Lévy noise analysi®Wvark, and finally discuss SPDEs in this
context.
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4 LEVY NOISE ANALYSIS

4.1 Lévy bases and Evy noise

Let S(R?) be the Schwartz space of rapidly decreasing function®gnand define? = S'(R9)
whereS'(R9) is its dual. Denote byF the Borelo—algebra o2, and let/ be a Lévy measure on
R\ {0} satisfying the condition of square—integrability

C:= 22 0(dz) < oo. (39)
R\{0}

By the Bochner—Minlos Theorem (see Definition 5.4.1 in [3hPre exists a probability measure
P on(Q, F) such that

/ e dp(w)
Q

_ 1 W)z _ 1 _
—exp< soloh [ ] e -1 i) sy ) @o

where (w, ¢) := w(¢), that is, the action of» € S'(R%) on ¢ € S(R?), and| - |5 is the norm in
L?(R%). The probability spacé, 7, P) is called thed—parametet.évy noise probability spadey
Holdenet al.[31]*. This probability space will support@-parameter Lévy process and is the basis
for defining its derivative, theévy noise.

Introduce the cylindrical random variablég, by

Ny(w) = (w, ), (41)

for ¢ € S(R?). Observe, that since (40) gives an explicit form of the cttaréstic function ofNy in
terms of the Lévy measure, we easily find that

E[Ng] =0,
and

Var[Ny] = (o2 + O) » % (y) dy .

We can extend these random variablespte L?(R%) by a standard limit argument choosing a se-
quence{s¢,} C S(RY) converging inL?(R?) to ¢. The limit of N, exists inL?(P) and will be
denotedV,. The limit is independent of the choice of approximatingusate. In particular, we can
defineN, := N, , for bounded Borel setd C R?, We make the following definition.

Definition 4. For every bounded Borel subsétof R?, define the random measure
A(A) = Ngy.

We show that\ defines a Lévy basis (see Proposition 7) and that it is homemes (see Proposi-
tion 8).

“We note that in Holdert al. [31] one constructs this probability space for Brownian imo@nd a pure—jump Lévy
process separately. We merge this into a more general Lieeggs with both jumps and continuous martingale partheart
note that the representation result (40) was originallyoohticed in [28]. See also [1] for related work.

SNote that Holderet al. [31] call such noisé.évy coloured noise
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4 LEVY NOISE ANALYSIS

Proposition 7. The random measurkis a Lévy basis, with mean zero and variar{eé +C)-leb(A),
whereleb(A) is the Lebesgue measuref and the associated control measure\ois

MA) = g%leb(A) + /R min(1, z2) £(dz)leb(A) .

Proof. The random measurg&(A) has mean zero and variance equalMaeb(A), whereleb(A) is
the Lebesgue measure of the detWe show thai\ has the additivity and independence properties.
Let A and B be two disjoint bounded Borel sets, and dgt — 14 andv,, — 1p in L2(RY).
Since obviousiyl 4 = 14 + 15 ande¢,, + &, converges td 4 + 1 in L2(Rd), on + &, COnverges
to 1405 in L?(R%). Hence, by independence of the approximating sequencendénfat thatVy ¢,

converges in.2(P) to A(A U B), and since

N¢+5n(w) = <w7 On + 1/’n> = (wv ¢n> + <w7¢n> = N¢n(w) + N¢n(w) )

it holds that
A(AUB)=A(A)+ A(B).

This proves the additivity. To prove independence, we havshbw that for two disjoint bounded
setsA and B, A(A) is independent ol (B), or equivalently,N 4 is independent oiNy. To this end,
choose two approximating sequenggsandé,, in S(RY) converging tol 4 and 1, respectively, in
L%(R%). Use the characteristic function 6f;, and N, to find

InE [ei"N% einNsn} — InE [ei<-,€¢n+n§n>]
= o000 0

+/ / {0onWrmenW)z 1 —§(06,(y) + 1€ (y))2} €(d2) dy .
Re JR\{0}

We can write thel.2(R%)—norm as follows,

1060 + a3 = 62 / 62 () dy

SUPPbr \SUPEn

+ / (06n(y) + 16n(y))* dy +1° / &n(y)dy .
SUPRA, NSUPKE R, SUPEn \SUPRbR

The set supp,, N sup[,, must go to a set of Lebesgue measure zero sihceB = (); otherwise the
two sequences will not converge to their respective indicamnctions inL?(R¢). Hence, passing to
the limit, we find that

im0y, + néal3 = 0°leb(A) + n?leb(B).

A similar argument shows that

n—~o0

lim / / (SO ) _ 1 506, (y) + nén(y))=} £(d2) dy
R4 JR\{0}

= leb(A) / {€9% — 1 —i0z} ((dz) + leb(B) / {€9% —1 -0z} ¢(dz).
R\{0} R\{0}
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4 LEVY NOISE ANALYSIS

Thus, after taking limits, we find
E [ejeA(memA(B)] ) [eiGA(A)] < F [einA(B)} '

This proves independence.
In fact, the above limit argument shows that the (log-)ctianmastic function ofA(A) is

In E[e?A )] = (-%9202 + / {e9* —1 —in}E(dz)) leb(A),
R\{0}

This is the Lévy—Kintchine formula where we can read off tbatrol measure for the Lévy basis as
being

AMA) = o?leb(A) + / min(1, 22)0(dz)leb(A),
R
(see Appendix A for the definition of the control measure fbéay basis). O

By letting /(dz) = 0 ando = 1, we recover the case of white noise and the setting for theewhi
noise analysis. Note that here we consider only Lévy basiesne drift and being square integrable.
The Lévy basis has a stationarity property, as shown in ¢ixé Rroposition.

Proposition 8. For eachz € R?, A(-) andA(- + z) has the same distribution, i.4.is homogeneous.

Proof. Give ¢ € S(R?), we prove thatV, and N, have the same distribution, whege (y) =
¢(y — x). It follows from the translation invariance of the Lebesgueasure that

/ / (0027 1 _ig(y — 2)2} f(dz) dy = / / (€90 _ 1 i(y)=) €(dz) dy.
R JR\ {0} R JR\ {0}

Similarly we have that¢|s = |¢.|2. Hence, the characteristic function f, and of N, is the
same. By a limit argument, it follows th&f, and N4, , has the same characteristic function as well,
implying that their distributions are coinciding. The Paogjiion is proved. O

In Lévy noise analysis, one is interested in the noise m®cé the smoothed random variables
Ny. Introduce the objecdV, for z € R? by

No(w) = (w,8,) (42)

whered, is the Diracé—function. Obviouslyd, is not an element of.?(R¢) (and definitely not a
Schwartz function), however, it is a tempered distributidrhe notation(w, ¢,.) is just suggestive,
since it only makes sense in an operator context as we nowssisdBy conveniently introducing
spaces obmoothrandom variables as certain subspace&fP) one can look at their duals and in
fact manage to embedl,, into one of these. Thus, i is a smooth random variable, théh, makes
sense as a linear functional on this (we refer to [31] for itt9taAs a simple example, we have that
N, is a smooth random variable, and in this case

((Nzy No)) = (00, ) = () -

From this we can do the following: Interpreting the integrathe sense of Pettis or Bochner, we can
define forg € S(R?)

¢(x)N, d (43)
]Rd

27



4 LEVY NOISE ANALYSIS

as an integral with values in a suitable space of linear fanats on smooth random variables. How-
ever, as it turns out, this integral will coincide with a srtiaex white noise,

g ()N, dx = Ny.

But then we can interpre¥, as the noise of\, since we can write by limit arguments
A(A) = / N, dz.
A

So, N is an extension of the previously introduced objéctNote that there is no nuclear condition
given here in order to introducl¥,.. Indeed, we have that

o(x)A(dz) = | ¢(x)N,dx = Ny,
Rd R4

for a functiong € L%(R), and thus,

[e'e} 2 [e'e} [ee) [e'e}
E er(r) A(dz =) E[N2]= erls = 1=o00.
> [(/de() ( >)] > BN = les =

k=1

Here,{e;} is a complete orthonormal systemid(R?). Hence, we have that the nuclear covariance
condition does not hold. This means that we have a Lévy ldsish has finite variance, but is not
sufficiently smooth to admit a Hilbert space valued Radokebym derivateN,. This links Léevy
bases to the Lévy noise analysis.

4.2 Stochastic partial differential equations and Levy noise analysis

Consider the stochastic Poisson equation

Au(z) = —N,, xeD
u(z) =0, x €dD,

whereD C R? is a bounded domain with regular boundary aRds the Laplace operator iR?. In
order to make sense out of this equation, Holdeal. [31] introduce the space of Hida distributions
(8)*, which plays much the same role for stochastic processdseaspace of tempered Schwartz
distributions plays for functions. The space of Hida dmsttions, is the dual of the space of Hida test
functions(S), which is the space of smooth random variables. This spat&ste of square integrable
random variables for which the terms in the chaos expanseays rapidly in variance. A precise
definition of (S) and(S)* is found in Holderet al.[31], but important to notice is thatS)* consists

of linear operators on the spa¢g), and as such can not be understood as random variablesf (i.e.,
X € (S)*, X (w) does not make sense in generaldoe Q). A prominent example i%V, € (S)*. As

is well-known, the noise of a Lévy process can not be reghadea classical random variable.

The Poisson equation is interpreted as an SPDESirf. More precisely, we say that is a
generalised solution of the stochastic Poisson equatien:ifD +— (S)* is twice differentiable,
satisfies the boundary conditions and the SPDE. By diffeabitity of a (S)*—valued mapping from
D we mean that the limitu(z + h) — u(z))/h exists in(S)*.
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LettingG(x, y) be the Green’s function @k on D with zero boundary conditions, Lakka, @ksendal
and Proske [35] shows that the unique solution is

u(x):/DG(m,y)Ny dy . (44)

Note that the integral is interpreted as a Pettis integhalt, its, defining an operator on the space of
smooth random variabléss). If d < 3, itis shown in Lekkaet al.[35] thatu € L?(P), butin general
dimensions we have to interpret the solution in a weak sense.

Since ford < 3 the solutionu is square—integrable, we may write the solution as

u(z) = /D G, y) Ady) (45)

Therefore,u is in fact an ambit process, with the ambit set being the domai The reason for
u losing its square—integrability when going beyond dimens lies in the fact thatG(x,y) has a
singularity atz = y of order|z — y|>~? for d > 3. By using ambit processes, we may define more
general expressions
o) = | G y)oly)Aldy), (46)

for general random fields(x) sufficiently regular to make the stochastic integral wedfited. The
set D, denotes some ambit set which can be defined to incorporat@lenrapatial dependency
structures. In fact, such a specificatiéfx:) may go beyond what can be linked to a stochastic partial
differential equation, and still make sense as a random(iirejohrticular, a real-valued random field).

Note that the theory of white noise permits the study of SPDi&en by noise in both time
and space, and provide a theory for defining the noise of lpFwgesses (or, in our context, Lévy
bases). Hence, one can interpret the SPDES in a strong satisthe price that the solutions must be
understood as operators rather than random fields. This@nimast to the theory of Walsh presented
above, where the solution is formulated in terms of an irdlegguation moving all derivatives to test
functions. Ambit processes appear as a natural object ithdwry of Lévy noise, as well.

5 Conclusions

We have considered ambit processes and their building glddvy bases, in view of two classical
theories for studying stochastic partial differential afijons: the Walsh theory of martingale measures
and the Lévy noise analysis. Lévy bases can be naturatigemied to both theories by introducing
concepts of noise of Lévy bases and processes. We shovhéhsplutions of some stochastic partial
differential equations can be represented by integralaedaom fields with respect to Lévy bases,
naturally relating to ambit processes. In this respect,igpnbcesses provide a class of random fields
which generalise the solutions of these physical dynansigstems and provide new and interesting
models that include the additional elements of volatiliglds and time dependent ambit sets. A
further key point is that the extended integration theofgved the handling of objects such as the
main term in (3) by means of integration w.r.t. martingaleaswees.

A Lévy bases and integration

This section reviews the integration theory of [38] (for av&y, see also [40]), since this concept of
integration is used for defining stochastic integrals indbwetext of ambit fields.
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A.1 Introduction

Throughout the text, let denote a non-empty set and Jétdenote as—finite j—ring on S, i.e. A

is a family of subsets of such that for every pair of sets i, the union, the intersection and the
set difference is ind (henceA is a ring) and if(4,),>1 C AthennA, € A, also, there exists a
sequencgA’),>1 C Asuchthat A} = S.

Note that we call a real stochastic procéss= {A(A) : A € A} on some probability space
(©, F,P) anindependently scattered random measifrior every sequence of disjoint setsd,, ) ,>1
say, the random variabléq A4,,) are independent, for = 1,2, ..., and ifu, A, € S, thenA(U,A,) =
>, A(Ay,) almost surely.

A.2 Representation of the characteristic function of a levy basis

If A(A) is infinitely divisible for everyA € A, we call it aLévy basis Its characteristic function for
A € Aisthen given by

E (exp(itA(4)))

= exp <it1/0(A) — %tzyl (A) + / (eitz —1-— itT(:U)) FA(dLL')> , (47)
R
wherey, : S — R is a signed measure; : A — [0,00) is a measure anfl4 is a Lévy measure on
R for every A € A while A — F4(B) € [0,0) is a measure for everi € B(R), whenevel ¢ B.
Also, the centering function is defined byr(z) = z if ||z|| < 1 and byr(z) = z/||z||, if ||z|| > 1.
Further, let

AMA) = [wl(A) + 1 (A) + /Rmin(l,mz)FA(dx), Ae A

It can be shown thak : A — [0,00) is a measure ot such that if, for every(4,),>1 C A,
A(A,) — 0, thenA(4,) — 0 in probability. Also, if, for every sequenced))),>1 C A with
Al c A, € A, we haveA(A!,) — 0 in probability, then\(4,,) — 0.

Note that the measurk satisfies\(A}) < oo forn = 1,2,.... Hence, it can be extended to a
o—finite measure oS, o(.A)). This measure is then called thentrol measuref A.

It turns out, that the characteristic function of an infilitdivisible random measure has also an
alternative representation than the one given above.

In order to state it, we need a preliminary result first (sé& [2mma 2.3]). Leff: be as above.
Then there exists a unique-finite measurd” ono(.A) x B(R) such thatF'(A x B) = F4(B) for all
A e A, B € B(R). Furthermore, there exists a functipn S x B(R) — [0, oo] such that

1. p(s,-) is a Lévy measure oB(R), for everys € S,
2. p(-, B) is a Borel measurable function, for eveye B(R),

3. [oup h(s,2)F(ds,dz) = [ ( [z h(s,2)p(s,dx)) A(ds), for everyo(A) x B(R)-measurable
functionh : S x R — [0, 00]. Under some restrictions regarding the behaviout-at, this
equality can be extended to real and complex—valued fumtio

Using the above notation, we can now rewrite the charattefisction of A(A) (see [38, Propo-
sition 2.4)):

E (exp (itA(A))) = exp </A K(t, S))\(ds)> , teR,Ae€ A, (48)
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where
K(t,s) =ita(s) — %tzaz(s) + / (e — 1 —itr(x)) p(s, dz),
R
wherea(s) = % (s), o%(s) = %1 (s) andp is defined as above. Furthermore,

2 i 2 = —a.e..
la(s)| + o“(s) —I—/len(l,x )p(s,dz) =1, A

A.3 Integration with respect to a Lévy basis

Next, we review the definition of a stochastic integral widlspect to an infinitely divisible random
measure\ as defined in [38].

First, we define integration of a real simple function$yrwhich is given byf = Z?:1 x;14; for
disjoint A; € A. Then, for everyA € o(.A), the stochastic integral with respectAds defined by

A =

The generalisation to general functions works as follows.céll a measurable functigh: (S,c(.A)) —
(R, B(R)) A—-integrable, if there exists a sequence of simple functiofig,,>1 such thatf,, — f \—
a.e. and for everyl € o(A), the sequenc(afA fndA)n>1 converges in probability as — oco. In that
case, we define B

/ fdA =P — lim [ f.dA.
A A

The above integral is well defined in the sense that it doedeénd on the approximating sequence
(fr)nz1-
A.4 Criteria for integrability

Now we provide a characterisation &fintegrable functions. The necessary and sufficient ciomdit
will depend on the characteristics given in the Lévy fornthaf characteristic function of.
According to [38, Theorem 2.7], the integrability conditfare as follows.
Let f : S — R be ac(A)—measurable function. Thefis integrable w.r.tA if and only if the
following three conditions are satisfied:

1. fS lU(f(s),s)|\(ds) < oo,

2. [5|f(s)|Pa(s)A(ds) < oo, and

3. [5Vo(f(s),s)A(ds) < oo, where
U(u,s) = wua(s) + /]R (1(zu) — ur(z)) p(s, dz),
Vo(u, s) = /Rmin(l,\xulz)p(s,dw).
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Further, if f is integrable w.r.tA, then the characteristic function gﬁg fdA can be expressed as

E <exp <z’t /S fdA>> — oxp <¢mf - %tzoj% + /R (¢ — 1 itr(a)) Ff(dx)> ,

where
o = [ U7 9)ds), 7y = [1f6)F ),
and
Fi(B) = F({(s,x) € S xR : f(s)z € B\ {0}}), B € B(R).
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