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1 Introduction

The recent financial crises has spurred a renewed interest in the estimation of tail events. We

add to the currently available tools for assessing tail behavior in financial markets by developing

a new and flexible non-parametric framework for the estimation of the jump tails of Itô semi-

martingales. These processes, which are ubiquitous in continuous-time economic modeling and

modern asset pricing finance in particular, portray the dynamic evolution in form of a drift term

and a combination of continuous and dis-continuous martingale increments, driven by separate

stochastic volatility and jump compensators, respectively. While both of the martingale com-

ponents can account for non-Gaussian behavior, the tails associated with the jumps manifest

themselves very differently from a formal statistical perspective.1 Exploiting these differences,

we develop a new robust methodology for estimating the jump tails. The approach is based on a

relatively simple-to-implement set of estimating equations associated with the compensator for

the jump measure, or its intensity, that only utilize the weak assumption of regular variation

in the jump tails, along with in-fill asymptotic arguments for uniquely identifying the “large”

jumps from the data. Importantly, the procedure permits very general dynamic dependencies in

the jump tails, and does not depend upon the behavior of the “small” jumps. Nor does it restrict

the dynamic dependencies in the continuous part of the process and the form of the stochastic

volatility.

The existing empirical evidence pertaining to the behavior of jump tails in asset prices comes

almost exclusively from tightly parameterized jump-diffusion models. In particular, following the

seminal work of Merton (1976), most empirical studies to date have relied on relatively simple

and tractable finite activity jump processes, with normally distributed jump sizes coupled with a

constant jump intensity, or a jump intensity process that is affine in the diffusive stochastic vari-

ance. Although such a formulation is very convenient from an analytical perspective, anticipating

our empirical findings, the data clearly suggest the existence of more complex dependencies and

often larger jump tails that are formally outside this framework.

To illustrate this point, and the inability of the standard modeling framework to adequately

describe the data, Figure 1 shows the unconditional empirical jump tails estimated directly from

a sample of one-minute high-frequency futures data for the S&P 500 aggregate market portfolio

spanning the period from January 1990 to December 2008.2 In addition to the raw empirical

1The two types of risks are also very different from an economic perspective. Stochastic volatility in effect
induces temporal variation in the investment opportunity set and a corresponding hedging component; see, e.g.,
Merton (1973). This additional risk may be spanned by an asset with payoff dependent on the stochastic volatility,
e.g., an option. In contrast, the presence of jumps require a different derivative instrument for each possible jump
size to completely span the jump risk. The seemingly high prices for close-to-expiration out-of-the-money puts
observed in the options markets may also be seen as indirect evidence that investors demand a separate risk
premium for jump tail events; see, e.g., Broadie et al. (2009).

2This same data also underlies our empirical illustration below, and we provide a more detailed description of
the data in Section 6.
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Figure 1: Empirical and Normal Jump Tails
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Note: The dotted lines in the two separate panels report the left and right empirical jump tail intensities based
on one-minute S&P 500 futures prices from 1990 to 2008. The dashed lines give the corresponding best fit by
a Merton type model with normally distributed jump sizes. The results are reported on a double logarithmic
scale.

jump intensities, we also include in the figure the jump tails implied by a model with normally

distributed jump sizes estimated with the same high-frequency prices.3 As the figure clearly

shows, this now standard approach to jump modeling tends to overestimate the “medium-sized”

jumps, while severely underestimating the likelihood of “large” jumps.

This points to a more fundamental problem with a fully parametric estimation of the jump

tails. Parametric models generally link the behavior of the “small” and “large” jumps in a highly

model-specific fashion.4 Statistically, however, the “small” and “large” jumps are fundamentally

different, and the requisite techniques for studying the relevant aspects of the jump compensator

(e.g., the Lévy measure) reflect those differences. The behavior of the Lévy measure around 0

primarily captures the pathwise properties of the jump process; e.g., finite or infinite activity,

finite or infinite variation, as well as the value of the Blumenthal-Getoor index. These features

can only be reliably estimated using high-frequency data and corresponding fill-in asymptotic ar-

guments; see, e.g., Aı̈t-Sahalia and Jacod (2009b,c), Todorov and Tauchen (2010a), and Woerner

(2003). On the other hand, the properties of the jump tails and the Lévy measure at infinity

3The parameter estimates are based on a simple method-of-moments type procedure. This estimation strategy
corresponds directly to maximum likelihood when the jump intensity is constant, and it may be formalized more
generally along the lines of the theoretical analysis in Todorov (2009).

4One example is the finite activity jump process with normally distributed jumps discussed above. Another
is an α-stable process in which the parameter α determines both the Blumenthal-Getoor index of the jumps as
well as the jump tail decay.
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are strictly related to the underlying data generating process. These features therefore cannot

be reliably estimated from a single realization over a fixed short time interval, but instead must

be inferred using standard asymptotic arguments and the notion of an increasing sample over

longer calendar time spans. Our estimation of the jump tails purposely avoids any link between

“small” and “large” jumps by utilizing fill-in asymptotic arguments to isolate and directly work

with the “large” jumps only, while at the same time relying on standard asymptotic arguments

for reliably estimating the population characteristics.

By focusing directly on the jumps, our procedure works both for the case where the jump

intensity is constant, i.e., pure Lévy type jumps, but importantly also in the practically more

relevant case with time-varying jump tail intensities. Intuitively, while the jumps may cluster in

time, the relative importance of differently sized jumps remains the same, leaving the ratios of

the tail jump intensities constant across jump sizes. In contrast, if one were to base the inference

on the price increments over fixed time-intervals, any clustering of the jumps would invariably

impact the size of the tails of the increments and would have to be somehow accounted for in

the estimation.5

The basic idea behind the estimation formally builds on the so-called peaks-over-threshold

method together with the assumption of regular variation in the tails, as originally developed

by Smith (1987) in the context of extreme-value theory with i.i.d. random variables. This basic

minimal assumption implies, among other things, that the jump tail intensities obey a power-law

for sufficiently large jump sizes.

The importance of using high-frequency data for effectively identifying the “large” jumps and

the jump tails is clearly illustrated by Figure 2, which compares the empirical jump tails for the

S&P 500 market portfolio estimated with one- and ten-minutes returns, respectively. While the

estimates coincide for the larger jump sizes, as they should, our ability to meaningfully extract

the more moderate-sized jumps obviously become more limited at the ten-minute frequency.

Intuitively, the coarser the sampling frequency, the more the continuous variation will obscure

the identification of the jumps, and the greater cutoff values will need to be used in the jump-tail

inference, in turn resulting in a loss of jump-observations and efficiency of the estimation.6

Figures 1 and 2 both corroborate the empirical validity of the assumed power-law decay un-

derlying our asymptotic approximations. Importantly, however, our estimates of the jump tails

go beyond the simple case of jumps with independent increments, i.e., Lévy type jumps, by

explicitly incorporating dynamic dependencies in the jump tail intensities. Specifically, utilizing

the assumption of regular variation in the tails, we show how appropriately rescaled and trans-

5Another advantage of working directly with the jumps is that our estimator does not depend upon the form
of the stochastic volatility, and in particular is robust to the possibility of jumps in the volatility, as recently
explored by, e.g., Jacod and Todorov (2010) and Todorov and Tauchen (2010b).

6Of course, the use of coarser daily frequency returns, as commonly done in the estimation of parametric
jump-diffusion models, would even further exaggerate these same effects and handicap the detection of jumps.
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Figure 2: Empirical Jump Tails and Sampling Frequency
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Note: The two separate panels report the left and right empirical jump tail intensities based on one-minute
(dotted line) and ten-minutes (dashed line) S&P 500 futures prices from 1990 to 2008. The results are reported
on a double logarithmic scale.

formed versions of the tails of the jump compensators should be approximately equal to the cdf of

the Generalized Pareto distribution, even for dynamically dependent jump tails. Going one step

further, we show how this in turn implies that appropriately transformed - by the scores from a

Generalized Pareto distribution - “large” jumps when integrated over time become approximate

martingales, thus setting the stage for the construction of a moment type estimator for the jump

tail parameters through the judicious choice of instruments.7

In practice, of course, our use of discretely sampled high-frequency data for inferring the

“large” jumps invariably introduces a discretization error, the size of which is directly related to

the mesh of the observation grid. In the last step of our theoretical analysis we provide formal

conditions under which this error has no first-order asymptotic effect on the estimation. We

further investigate the accuracy of these asymptotic based approximations through a series of

Monte Carlo simulations, confirming the applicability of the feasible version of the new jump tail

estimation procedure.

On actually implementing the estimators with the same high-frequency S&P 500 data un-

derlying the average jump tail intensities depicted in the figures discussed above, we find strong

evidence for temporal variation in the jump intensities and much richer and more complex dy-

namic dependencies in the resulting jump tails than hitherto entertained in the literature. As

7Even though our procedure is distinctly non-parametric in nature, it has the appealing feature that it corre-
sponds directly to parametric maximum likelihood when the tail decay obeys an exact power-law.
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such, our new econometric modeling framework developed in the paper has the potential of allow-

ing for jump tail forecasting, and in turn can be used to provide a deeper economic understanding

of the tail events of the types observed during the recent financial crises.

The rest of the paper is organized as follows. Section 2 introduces the basic notation and

key assumptions. Section 3 describes the main idea behind the new estimation method and

the relevant asymptotic results when continuous price records are available. Section 4 extends

the analysis to the practically relevant situation of discretely sampled prices. The practical

applicability of the new estimator is confirmed through a series of Monte Carlo simulations

presented in Section 5. Section 6 discusses the empirical estimation results for the S&P 500

market index, and our findings related to the rich dynamic dependencies inherent in the jump

tails of that portfolio. Section 7 concludes. All proofs are deferred to Section 8.

2 Setup and Assumptions

To set up the notation, let pt := ln (Pt) denote the logarithmic price of a financial asset. Without

loss of generality, we will assume that the log-price follows an Itô semimartingale defined on some

filtered probability space, i.e.,

dpt = αtdt + σtdWt +

∫

R
κ(x)µ̃(dt, dx) +

∫

R
κ′(x)µ(dt, dx), (2.1)

where αt and σt are both locally bounded processes; Wt denotes a Brownian motion; µ is a

one-dimensional measure on [0,∞) × R that counts the number of jumps of given size over a

given interval of time; the compensator of the jump measure is denoted by νt(x)dxdt, where

µ̃(dt, dx) := µ(dt, dx) − νt(x)dxdt refers to the corresponding compensated measure; κ(x) is a

continuous function with bounded support equal to x around the origin, with κ′(x) = x− κ(x).

We will also assume throughout that νt(dx) is absolutely continuous with respect to Lebesgue

measure, i.e., νt(dx) = νt(x)dx.8 The main contribution of the paper is to provide a new,

essentially model-free, robust framework for the estimation of the tail behavior of νt(x), leaving

other aspects of the date generating process in equation (2.1), including the drift term αt and

the stochastic volatility σt, as well as the activity level of the jumps, unspecified.

As noted in the introduction, the existing evidence concerning the empirical features of νt(x)

for large values of the jump sizes x come almost exclusively from tightly parameterized jump-

diffusion models. In particular, following Merton (1976), most empirical studies to date have

relied on relatively simple and tractable compound Poisson jump processes with normally dis-

tributed jump sizes. Under this specification the Lévy measure in equation (2.1) may be expressed

8With a slight abuse of notation we will henceforth refer to νt(x) as the Lévy measure instead of the correct
technical term “intensity of the jump compensator with respect to the Lebesgue measure.”

5



as νt(x) = λte
−(x−µ)2/(2σ2)(2πσ2)−1/2, where λt denotes some predictable stochastic process in-

tended to capture the time-varying probability of jump arrivals, typically postulated to be a

linear function of the stochastic volatility σ2
t−. While such a formulation is very convenient

from an analytical perspective, Figure 1 above clearly shows that such a specification doesn’t

necessarily fit the tails very well.

As also noted in the introduction, another problem with fully parametric approaches to

estimating the jump tails, is that they generally link the behavior of the “small” and the “large”

jumps in a highly model-specific fashion. Statistically, however, the “small” and the “large”

jumps are very different. The behavior of the Lévy measure around 0 captures mainly the

pathwise properties of the jump process; e.g., finite or infinite activity, finite or infinite variation.

These features are succinctly summarized by the generalized version of the Blumenthal-Getoor

index recently proposed by Aı̈t-Sahalia and Jacod (2009b),

β := inf

{
p :

∫ T

0

∫

R
(|x|p ∧ 1)µ(ds, dx) < ∞

}
. (2.2)

The index depends directly on the sample path of the jump process over [0, T ] and takes on

values in [0, 2], with more “vibrant” trajectories implying higher values. Importantly, however,

the value of β is determined solely by the “small” jumps.

In contrast, the last term in equation (2.1) and the jump tails only depend on the “large”

jumps.9 Indeed, our basic minimal assumptions related to νt(x), as stated in A1 and A2 imme-

diately below, only concern the behavior of the “large” jumps, and put no restrictions on the

jump activity per se.

Assumption A1. The jump compensator νt(x) satisfies,

νt(x) = (ϕ+
t 1{x>0} + ϕ−t 1{x<0})ν(x), (2.3)

where ϕ±t are nonegative-valued stochastic processes with càdlàg paths, and ν(x) is a positive

measure on R with
∫
R(|x|2 ∧ 1)ν(x)dx < ∞.

Assumption A1 factors the dependence in the jump compensator on time (t) and jump size (x)

into two separate functions. This implies that differently sized jumps will have the same dynamic

properties.10 All parametric jump specifications used to date, e.g., time-changed Lévy processes,

satisfy this assumption. Still, the assumption is slightly stronger than what we actually need,

and it would be possible to relax A1 to hold only for sufficiently large values of |x|. However, to

avoid the unnecessary (and trivial) complications that arise in this situation, we will maintain

A1 in its current form.

9Note that κ′(x) = 0 for x close to 0.
10Another implication is that the Blumenthal-Getoor index is deterministic and given by

inf
{
p :

∫
R(|x|p ∧ 1)ν(x)dx < ∞}

.
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Our interest center on the tail behavior of the Lévy density ν(x), which in turn determines

the tail behavior of the jumps in the price process. Our next assumption concerns the variation

in the tails of ν(x). Specifically, define the functions ψ(x) := e|x| − 1, and

ψ+(x) :=

{
ψ(x) x > 0,

0 x ≤ 0
ψ−(x) :=

{
0 x > 0,

ψ(x) x ≤ 0.

Also, denote ν+
ψ (y) = ν(ln(y+1))

y+1
and ν−ψ (y) = ν(− ln(y+1))

y+1
for y ∈ (0,∞). Then for every measur-

able set A in (0,∞),
∫
(0,∞)

1{x∈A}ν
+
ψ (x)dx =

∫
R+

1{ex−1∈A}ν(x)dx and
∫
(0,∞)

1{x∈A}ν
−
ψ (x)dx =∫

R− 1{e−x−1∈A}ν(x)dx. Moreover, denote the tails of the measures by ν±ψ (x) :=
∫∞

x
ν±ψ (u)du, for

some x > 0. The function ψ(x) maps the positive and negative jumps to (0,∞), with the Lévy

densities for the transformed jumps given by the ν±ψ measures. Assumption A2 imposes regular

variation for the tails of the latter.

Assumption A2.

(a) ν±ψ (x) are regularly varying at infinity functions; i.e., ν±ψ (x) = x−α±L±(x), where α± > 0,

and L±(x) are slowly varying at infinity.11

(b) L±(x) satisfy the condition L±(tx)/L±(x) = 1 + O(τ±(x)) as x ↑ ∞ for t > 0, where

τ±(x) > 0, τ±(x) → 0 as x ↑ ∞, and τ±(x) are nonincreasing.

Assumption A2 is key to our analysis and several comments are in order. First, the close to

linear behavior of the empirical jump tail estimates for the “large” jumps depicted in Figure 1

is directly in line with A2(a). Second, A2(a) rules out Lévy measures with light tails, i.e.,

Merton-type jumps, whose tails belong in the maximum domain of attraction of the Gumbel

distribution; see e.g., Embrechts et al. (2001).12 Third, the decay of the tail measures ν±ψ (x)

is directly linked to the fat-tailedness of the transformed jumps ψ(∆pt). In particular, the

integrability of
∫ t+a

t

∫
R |ψ(x)|pµ(ds, dx) depends on whether p ≷ α±. A2(a) therefore implies

that all powers of the jumps in the logarithmic price exist. Alternatively, one could assume that

A2(a) holds for ν±(x) instead of ν±ψ (x), where ν+(x) =
∫∞

x
ν(u)du and ν−(x) =

∫ −x

−∞ ν(u)du

for x > 0. Or equivalently, that the continuously-compounded returns ln
(

pt

pt−

)
, instead of the

“discrete” returns Pt−Pt−
Pt−

, should be modeled with Lévy densities with power decay in their

tails. We think the former is less appealing from an economic perspective.13 Note also that in

11A function L(x) is said to be slowly varying at infinity if lim
x→∞

L(tx)
L(x) = 1 for every t > 0.

12Although the estimation method developed below could be adopted to cover this case as well, parts of the
proof would require slightly different techniques, but since this arguably isn’t empirically relevant, we do not
consider it here.

13Assuming a heavy-tailed distribution for the continuously-compounded returns would imply an infinite condi-
tional variance for the price level, which in turn can result in infinite option prices, and as conjectured by Merton
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contrast to the tail behavior, the behavior of the Lévy density around 0 is not affected by the

transformation ψ(x), since ψ(x) ∼ x for |x| → 0, so that the value of the Blumenthal-Getoor

index remains unaltered.

The second part A2(b) of the assumption is taken directly from Smith (1987); see also Goldie

and Smith (1987). It essentially limits the deviation of the tail measures ν±ψ (x) from the power

law. We will use this assumption in determining the rate of convergence and establishing asymp-

totic normality of the estimates for the jump-tail probabilities.

Our next assumption imposes minimal stationarity and integrability conditions on ϕ±t . This

assumption is needed to ensure that the standard long span asymptotics works in conjunction

with the other assumptions for consistently inferring the jump tails.

Assumption A3. ϕ±s are stationary processes with E |ϕ±s |1+ι < K, for some K > 0 and ι > 0,

Our final assumption restricts ϕ±s to be an Itô semimartingale. It also imposes some weak

additional integrability conditions on the stochastic processes that appear in the definition of

pt. We need this assumption in the empirically realistic situation when the price process is only

observed at discrete points in time.

Assumption A4.

(a) ϕ±t are Itô semimartingales satisfying,

ϕ±t =ϕ±0 +

∫ t

0

α±
′

u du +

∫ t

0

σ±
′

u dWu +

∫ t

0

σ±
′′

u dBu +

∫ t

0

∫

R2

κ(δ±(u−,x))µ̃′(ds, dx)

+

∫ t

0

∫

R2

κ′(δ±(u−,x)), µ′(ds, dx)

(2.4)

where Bt is a Brownian motion orthogonal to Wt, the processes α±
′

t , σ±
′

t and σ±
′′

t , and the

functions δ± in their first argument, all have càdlàg paths, and µ′ is a Poisson measure

on R2 with independent marginals, the first of which counts the jumps, with compensator

νt(x1)dx1 ⊗ ν ′(x2)dx2, for ν ′(·) a valid Lévy density.

(b) For every p > 0 and every t > 0,

E
∣∣∣∣
∫ t

0

(|αs|+ σ2
s + |α±′s |+ (σ±

′
s )2 + (σ±

′′
s )2)ds +

∫ t

0

∫

R2

(δ±(s−,x))2µ′(ds, dx)

∣∣∣∣
p

< Kp,

(2.5)

where Kp > 0.

(1976) might result in infinite equilibrium interest rates. In practice, of course, it is impossible to differentiate
whether assumption A2(a) holds for ν±ψ (x) or ν±(x), as the difference between ln

(
pt

pt−

)
and Pt−Pt−

Pt−
is very small

for the size of jumps that we observe.

8



Assumption A4(a) is very weak. It is easily satisfied for virtually all parametric jump specifi-

cations used in the literature to date, including the most commonly applied affine jump-diffusions.

The assumption also allows for so-called self-exciting jump processes in which ϕ±t depend directly

on the jump measure µ, as in, e.g., Todorov (2010).

This completes our discussion of the basic setup and assumptions underlying the new jump

tail estimation procedures. We begin in the next section with a discussion of the infeasible case

in which continuously recorded prices are available for the estimation. This obviously facilitates

the estimation, as it allows us to perfectly separate the continuous from the discontinuous price

moves. We subsequently extend the analysis in Section 4 to the empirically realistic case when

prices are only observed at discrete points in time.

3 Estimation of Jump Tails: Continuous Price Records

The basic idea behind our estimation scheme builds on the three assumptions in A1-A3 and the

relevant extreme value theory type approximations for appropriately transformed versions of the

jump tails. The common approach for assessing tail behavior in extreme value theory rely on

discretely sampled prices, or returns, and a corresponding estimate of the tail index; see, e.g.,

Embrechts et al. (2001) and the references therein. Importantly, however, we are after the tail

behavior of the jump measure µ itself, as opposed to that of the discrete returns.14

In general, there is not a direct link between the tails of the discrete returns and the Lévy

measure of the price process. For one, time-varying volatility in the continuous part of the price

process, as determined by σt, invariably impacts the tails of the discrete returns.15 Secondly,

temporal dependencies in the jump intensity itself, i.e., the dependence of νt(x) on t, also affects

these tails. While, it would be possible to circumvent the first problem in the continuous-record

case by looking only at the jump increments, any time-variation in the jump intensity would still

blur the link between the tails of the latter and the tails of ν(x) in the decomposition in A1.

Instead, we base our inference directly on the jumps, or in the case of discretely observed

prices estimates thereof, and a set of moment conditions for the jump intensity νt(x) derived

from assumptions A1 and A2. Using the fact that the random jump measure µ differs from its

compensator by a martingale, we translate the moment conditions for νt(x) to a set of moment

conditions for µ that involve the actual in-sample jumps. To conserve space, we focus our discus-

sion on the estimation of the right tail only; the estimation of the left tail proceeds completely

14In the case of a Lévy process, it is well known that, under fairly general conditions, the tail of discrete
increments would be proportional to the tail of its Lévy measure; see e.g., Rosinski and Samorodnitsky (1993),
Theorem 2.1. Intuitively, since the continuous part of any Lévy increment is normal, its contribution becomes
negligible sufficiently “deep” in the tail.

15Following Leadbetter et al. (1983) and Leadbetter and Rootzen (1988), the extremes of two sequences of
discrete returns with the same marginal law, one with and the other without any temporal dependencies, is
generally different.
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analogous.

We begin by approximating the distribution of 1− ν+
ψ (y)

ν+
ψ (x)

for y ≥ x > 0, using A1 and A2. We

then rely on the scores from this approximating distribution to define a set of feasible estimating

equations based on the observed “large” jumps. This idea originates in the so-called peaks-

over-thresholds method for estimating the tails, and the tail decay, of i.i.d. random variables

developed by Smith (1987); see also the references therein.

Specifically, as formally shown in the Appendix, it follows from assumption A2 that

1− ν+
ψ (u + x)

ν+
ψ (x)

appr∼ G(u; σ+, ξ+) = 1− (
1 + ξ+u/σ+

)−1/ξ+

, ξ+ 6= 0, σ+ > 0, (3.1)

where u > 0, x > 0 is some “large” value, G(u; σ+, ξ+) denotes the cdf of a Generalized Pareto

distribution with parameters σ+ = x
α+ and ξ+ = 1

α+ , and the tail decay parameter α+ determined

by A2(a). Let the scores associated with the log-likelihood function of the generalized Pareto

distribution be denoted by,

φ+
1 (u, ξ+, σ+) = 1

σ+

(
1

ξ+ −
(
1 + 1

ξ+

)(
1 + ξ+u

σ+

)−1
)

,

φ+
2 (u, ξ+, σ+) = 1

(ξ+)2
log

(
1 + ξ+u

σ+

)
− 1

ξ+

(
1 + 1

ξ+

)
+ 1

ξ+

(
1 + 1

ξ+

)(
1 + ξ+u

σ+

)−1

.

(3.2)

where i = 1, 2 refer to the derivative with respect to σ+ and ξ+, respectively.

The idea is then to pick a “large” threshold trT , and fit the scores to the jumps above this

threshold. Doing so results in the following set of moment conditions involving the realized

“large” jumps,

gT (θ, trT ) =
1

M+
T

T−1∑
t=1

( ∫ t+1

t

∫
R φ+

1 (ψ(x)− trT , θ(1), θ(2))1{ψ+(x)>trT }µ(ds, dx)∫ t+1

t

∫
R φ+

2 (ψ(x)− trT , θ(1), θ(2))1{ψ+(x)>trT }µ(ds, dx)

)
, (3.3)

where θ denotes the 2× 1 vector of unknown parameters, and

M+
T =

T−1∑
t=1

∫ t+1

t

∫

R
1{ψ+(x)>trT }µ(ds, dx), (3.4)

counts the number of positive in-sample jumps that are above the threshold trT when transformed

by ψ(·). In theory, of course, trT will have to grow to infinity with the sample size T . Denote

the true parameter values implicitly defined by the moment conditions θ0
T =

(
ξ+, σ+

T

)′
, where

σ+
T = trT

α+ increases with the sample size T . We then have the following theorem.16

16Instead of the approximation in (3.1), we could have used the score based on the approximation
ν+

ψ (u+x)

ν+
ψ (x)

appr∼ (
1 + u

x

)−1/ξ+

, ξ+ 6= 0, obtained upon substitution of the true value of σ+ = x
α+ in (3.1).

This approach would involve only a single parameter, and it could be seen as an analogue of Hill (1975)’s esti-
mator in the jump tail setting. However, such an estimator would not be scale free, and the analysis in Smith
(1987) also suggests that it would be less robust than the estimator in Theorem 1.
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Theorem 1 For the process pt defined in equation (2.1), assume that assumptions A1-A3 hold.

Let the sequence of truncation levels satisfy

trT →∞, T ν±ψ (trT ) →∞, and
√

Tν±ψ (trT )τ±(trT ) → 0, (3.5)

where τ+(·) is defined in A2(b). Then with probability approaching one, gT (θ, trT ) = 0 has a

solution θ̂T :=
(
ξ̂+, σ̂+

T

)′
, which satisfies

√
M+

T

(
ξ̂+ − ξ+

σ̂+/σ+
T − 1

)
L→ √

cZ, (3.6)

where Z is a standard multivariate normal, and
√

c is an arbitrary square root of the non-random

square matrix c.

Unlike conventional asymptotic theory, the scaling factor for the difference between the esti-

mated and true parameters that control the tails is given by the random number M+
T . Of course,

M+
T /(Tν+

ψ (trT ))
P→ 1, and Tν+

ψ (trT ) is non-random. However, since ν+
ψ (trT ) converges to 0, the

rate of convergence is in general slower than the standard
√

T rate. In particular, it follows from

the conditions for the truncation level in (3.5), that the larger the deviations of the tail from

the power-law decay, i.e., the slower the rate at which τ+(x) goes to zero as x ↑ ∞, the slower

the rate of convergence of the estimator. Intuitively, the further are the tails from the eventual

power-law decay, the larger the required truncation level, which in turn slows down the rate of

convergence as fewer observations are employed in the estimation.

To further appreciate this result, suppose that τ+(x) = |x|−k for some k > 0. In this situation,

the required rate condition in (3.5) stipulates that trT = O
(
T

1
α++2k

)
, so that for k → ∞, i.e.,

L+(x) in A2 converging to unity and diminishing deviations from the power-law, it is possible

to get arbitrarily close to the standard parametric
√

T rate of convergence for optimally chosen

trT .

In practice, of course, we do not know a-priori the form of the slowly-varying function L+(x)

that dictates the optimal choice of the truncation level, and we are faced with a tradeoff in terms

of robustness versus efficiency in the estimation. A low value of trT would entail the use of

more observations, i.e., more jumps, and hence a more efficient estimator. On the other hand,

by choosing trT too small, we run the risk of larger deviations from the eventual power-law tail

decay and non-robustness of the estimation. We will explore these tradeoffs more fully in the

Monte Carlo simulations reported in Section 5 below.

Importantly, the estimating equations in (3.3) correctly identify the tail behavior of ν(x),

even in the presence of time-varying jump intensities. Intuitively, temporal dependence in the

jump intensity does not affect the distribution of the “large” jumps, and as such the presence

of more jumps in certain periods does not systematically bias the estimator. In contrast, any

11



estimator based on the jump increments over fixed intervals of time, e.g., days, would invariably

be affected by jump clustering and a failure to properly account for that effect would result in

biased tail index estimates.
Even though Theorem 1 allows for jump clustering, it doesn’t fully exploit the dynamic

structure of the jump tails implied by assumptions A1-A2, relying merely on the unconditional

approximations,
∫
R φ+

i (ψ(x) − trT , θ
0(1)
T , θ

0(2)
T )ν(x)dx ≈ 0, i = 1, 2. Going one step further, it

follows from the formal proofs in the Appendix that for t, s ≥ 0,17

Et

(∫ t+s

t

∫

R
φ+

i (ψ(x)− trT , θ(1), θ(2))µ(du, dx)
)

= Et

(∫ t+s

t

∫

R
φ+

i (ψ(x)− trT , θ(1), θ(2))µ̃(du, dx)
)

+
∫

R
φ+

i (ψ(x)− trT , θ(1), θ(2))ν(x)dxEt

(∫ t+1

t
ϕ+

u du

)

=
∫

R
φ+

i (ψ(x)− trT , θ(1), θ(2))ν(x)dxEt

(∫ t+s

t
ϕ+

u du

)
≈ 0,

where we have used the shorthand notation Et(·) = E(·|Ft). In particular, for any xt adapted

to Ft,

E
(

xt

∫ t+1

t

∫

R
φ+

i (ψ(x)− trT , θ(1), θ(2))µ(ds, dx)

)
≈ 0. (3.7)

This in turn suggests the following extension of Theorem 1.

Theorem 2 For the process pt defined in equation (2.1), assume that assumptions A1-A3 hold.

Let the sequence of truncation levels satisfy condition (3.5) of Theorem 1. Define the vector of

moment conditions

gT (θ, trT ) =
1

M+
T

T−1∑
t=1

xt ⊗
( ∫ t+1

t

∫
R φ+

1 (ψ(x)− trT , θ(1), θ(2))1{ψ+(x)>trT }µ(ds, dx)∫ t+1

t

∫
R φ+

2 (ψ(x)− trT , θ(1), θ(2))1{ψ+(x)>trT }µ(ds, dx)

)
, (3.8)

where xt is a q×1 Ft-adapted stationary vector process, satisfying E||xt||2+ι < ∞ for some ι > 0

and such that a law of large numbers holds for 1
T

∑T−1
t=1 xt

∫ t+1

t
ϕ+

s ds and 1
T

∑T−1
t=1 xtx

′
t

∫ t+1

t
ϕ+

s ds

with E
(
xt

∫ t+1

t
ϕ+

s ds
)
6= 0. Further, let ŴT denote a sequence of positive semidefinite 2q × 2q

matrices, such that ŴT
P→ W , where W is a 2q × 2q positive definite matrix. Denote θ̂T =

argminθ∈Θl
T
gT (θ, trT )′ŴT gT (θ, trT ), where Θl

T =
{

θ : αlθ
0(i)
T ≤ θ(i) ≤ αhθ

0(i)
T , i = 1, 2

}
for some

constants 0 < αl < 1 < αh. Then θ̂T exists with probability approaching one, and

√
M+

T

(
ξ̂+ − ξ+

σ̂+/σ+
T − 1

)
L→ √

cZ, (3.9)

where Z is a standard multivariate normal, and
√

c is an arbitrary square root of the non-random

square matrix c.

17Recall that the counting jump measure µ is not a martingale, but that its compensation version, µ̃(ds, dx) =
µ(ds, dx)− νt(x)dxdt, is.
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Aside from being properly adapted to Ft, Theorem 2 poses no restrictions on the {xt} process.

Given additional assumptions about the underlying model structure, it might be theoretically

possible to solve for the optimal set of instrument(s) following, e.g., Hansen (1985), and in certain

settings, i.e., affine specifications, also practically feasible, see, e.g., Nagel and Singleton (2010).

However, doing so in general is very challenging, and we will not pursue that issue further here.

Instead, we will discuss ways in which to expand on the basic moment conditions in the theorem

in an effort to provide more detailed information about the dynamic tail dependencies.

Thus far our focus has centered on recovering the tail properties of ν(x). In most practical

applications, however, one would be interested in the tails of νt(x). Building on the decomposition

for νt(x) in assumption A1 into its time-varying components ϕ±t , it follows that for the “large”

jumps, the difference

∫ t

0

∫

R
φ(s−, x)µ(ds, dx)−

∫ t

0

∫

R
φ(s−, x)ϕ+

s dsν(x)dx,

must be a martingale for any function φ(s, x) with càdlàg paths, and φ(s, x) = 0 for x < K,

where K > 0 denotes some constant. In parallel to the discussion above, this in turn allows for

the construction of a set of unconditional estimating equations through the appropriate choice

of instrument(s) xt.

In general, of course, the resulting moments will depend on the exact specification of the ϕ±t
processes. To illustrate, we next consider the special case in in which the time-varying part of the

right jump intensity is assumed to be an affine function of the spot variance, i.e., ϕ+
t = k+

0 +k+
1 σ2

t .

This same basic assumption also underlies our empirical illustration in Section 6 below.

3.1 Affine Jump Intensities

The assumption that the temporal dependencies in the jump intensities are affine in the spot

volatility nests virtually all parametric jump-diffusion models hitherto considered in the liter-

ature, including the affine jump-diffusion class of models popularized by Duffie et al. (2000).

Importantly, however, by making no parametric assumptions about the volatility process it-

self, the semi-parametric setup is much more flexible, allowing for the possibility of so-called

self-exciting jumps and models in which σt depends on the jump measure µ.

The maintained assumption of continuous price records underlying all of the results in this

section and our ability to perfectly identify the “large” jumps, similarly allows us to perfectly

infer the integrated variation
∫ t

t−1
σ2

sds. As discussed further below, the integrated variation is

also relatively easy to accurately estimate empirically in a non-parametric fashion. This in turn

suggests using that measure to help identify the dependence of ϕ+
t on σ2

t . The following corollary

extends the results above to cover this situation.
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Corollary 1 For the process pt defined in equation (2.1), assume that assumptions A1-A3 hold,

and that ϕ+
t = k+

0 + k+
1 σ2

t . Denote θ = (ξ+, σ+, k+
0 ν+

ψ (trT ), k+
1 ν+

ψ (trT )), and define the vector of

moment conditions,

gT (θ, trT ) =
1

M+
T

T−1∑
t=1

xt⊗




∫ t+1

t

∫
R φ+

1 (ψ(x)− trT , θ(1), θ(2))1{ψ+(x)>trT }µ(ds, dx)∫ t+1

t

∫
R φ+

2 (ψ(x)− trT , θ(1), θ(2))1{ψ+(x)>trT }µ(ds, dx)∫ t+1

t

∫
ψ(x)>trT

µ(ds, dx)− θ(3) − θ(4)
∫ t+1

t
σ2

sds


 , (3.10)

with xt =
(
1

∫ t

t−1
σ2

sds
)′

. Assume that the growth condition for trT in equation (3.5) is satisfied

and that a law of large numbers holds for 1
T

∑T−1
t=1

∫ t

t−1
σ2

sds
∫ t+1

t
σ2

sds and 1
T

∑T−1
t=1

(∫ t

t−1
σ2

sds
)2 ∫ t+1

t
σ2

sds

with E|σt|6+ι < ∞ for some ι > 0. Finally, let ŴT denote a sequence of positive semidefinite

6 × 6 matrices, such that ŴT
P→ W , where W is a 6 × 6 positive definite matrix, and denote

θ̂T = argminθ∈Θl
T
gT (θ, trT )′ŴT gT (θ, trT ).

(a) The estimator θ̂T then exists with probability approaching one, and

√
M+

T




ξ̂+ − ξ+

σ̂+/σ+
T − 1

̂k+
0 ν+

ψ (trT )/ν+
ψ (trT )− k+

0

̂k+
1 ν+

ψ (trT )/ν+
ψ (trT )− k+

1




L→ √
cZ,

where Z is a standard multivariate normal, and
√

c is an arbitrary square root of the non-

random square matrix c.

(b) Let zT = ηtrT for some constant η ≥ 1, and denote

̂k+
i ν+

ψ (zT ) = ̂k+
i ν+

ψ (trT )

(
1 +

ξ̂+

σ̂+
(zT − trT )

)−1/ξ̂+

, i = 0, 1. (3.11)

Then

√
M+

T

( ̂k+
0 ν+

ψ (zT )/ν+
ψ (zT )− k+

0

̂k+
1 ν+

ψ (zT )/ν+
ψ (zT )− k+

1

)
L→
√

dZ, (3.12)

where Z refers to the relevant part of the standard normal vector from (a), and d is a square

matrix of constants.

The last two moment conditions serve to disentangle the constant and time-varying parts;

i.e., k+
0 ν+

ψ (trT ) and k+
1 ν+

ψ (trT ), respectively. They may be interpreted as linear projections of the

counts of “large” jumps on a constant and the integrated variation over the previous period. As

such, these two moment conditions only require that the affine structure holds for the “large”

jumps.
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In the special case when σ2
t is an affine jump-diffusion, the optimal instrument xt will also

be an affine function of σ2
t . Given the high degree of persistence in financial market volatility,

our choice of the integrated variation as an instrument should therefore be very close to the

infeasible optimal instrument-choice in this case. However, as previously noted, empirically it

is much easier to reliably estimate the integrated, as opposed to the spot, volatility, rendering

empirical equivalents to the conditions in Corollary 1 easier to mimic with actual high-frequency

data.

Part (b) of the corollary shows how the estimation framework may be extended to mean-

ingfully characterize the behavior of the jump-tails at levels for which we (invariably) have few

in-sample observations. These, of course, are also the levels of interest in many risk management

situations involving extreme value-at-risk type quantities. We further illustrate this important

new dimension of our result in the empirical application discussion in Section 6 below.

Our formal analysis up until now has been based on the assumption of continuously recorded

prices. We next discuss how this empirically unrealistic assumption may be relaxed by only

having prices observed at discrete points in time.

4 Estimation of Jump Tails: Discretely Sampled Prices

The results in the previous section relied on our ability to directly identify the jumps in a

continuously observed realization of process. The theoretical notion of continuous price records

is, of course, practically infeasible. Instead, we will now assume that over each unit time interval

[t, t+1], the price process pt is “only” observed at the discrete points in time t, t+∆n, ..., t+n∆n,

for some ∆n > 0. We will refer to n = [1/∆n] as the number of high-frequency price observation

over the “day.”

In order to adapt the same basic estimation strategies to the case of actual high-frequency

data, we will assume that the length of the sampling interval goes to zero, i.e., ∆n → 0.18 This

will allow us at least in some limiting sense to identify the “large” jumps. We then proceed with

the construction of feasible estimates of the same integrals with respect to the jump measures and

corresponding moment conditions analyzed above, say ĝT (θ, trT ). These high-frequency based

estimates will, of course, contain discretization errors, but we will show that under appropriate

conditions, the errors shrink to zero and do not affect the estimates.

To facilitate the exposition, we will use the shorthand notation ∆n,t
i p := pt+i∆n − pt+(i−1)∆n

for i = 1, ..., n. Our estimates for the integrals
∫ t+1

t

∫
ψ+(x)>trT

φ+
i (ψ(x) − trT , θ(1), θ(2))µ(ds, dx),

18The assumption of equally spaced observations is not critical, but the assumption that the largest mesh size
goes to zero, or ∆n → 0 in the case of equidistant observations, is.
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i = 1, 2, may then be expressed as,

n∑
j=1

φ+
i (ψ(∆n,t

j p)− trT , θ(1), θ(2)) i = 1, 2.

These estimators rely on the fact that the score functions φ+
i (ψ(x)− trT , θ(j), θ(j+1)) are zero for

values of |x| in a neighborhood of zero. Using the modulus of continuity of càdlàg functions,

all, but the high-frequency intervals containing the “large” jumps, can be made arbitrary small

uniformly over a given fixed time-interval, and those increments therefore won’t matter in the

estimation of the integrals. This argument, of course, is only pathwise, and in our analysis the

time span T will also increase as ∆n goes to zero. This requires different arguments in the formal

proof, but the intuition remains the same.19

Altogether this implies that the feasible estimation with discretely sampled high-frequency

prices will be subject to three distinct types of errors: (1) sample error associated with the

empirical processes employed in the moment vector, controlled by the span of the data T , (2)

approximation error for the jump tail, controlled by the truncation size trT , and (3) discretization

error from “filtering” the jumps from the high-frequency data, controlled by the length of the

high-frequency interval ∆n, or equivalently the number of high-frequency observations per unit

time-interval n. The following theorem provides the requisite rate conditions on the relative

speed with which T , trT and n need to increase, in order to ensure that the feasible estimation

is equivalent to the infeasible procedures discussed in the previous section.

Theorem 3 For the process pt defined in equation (2.1) sampled at times 0, ∆n, ..., n∆n, ..., t, t+

∆n, ..., t + n∆n, ..., assume that assumptions A1-A4 hold, with ν(x) nondecreasing for x suf-

ficiently large. If in the moment vector gT (θ, trT ) of Theorem 2,
∫ t+1

t

∫
ψ+(x)>trT

φ+
i (ψ(x) −

trT , θ(1), θ(2))µ(ds, dx) is replaced by
∑n

j=1 φ+
i (ψ(∆n,t

j p) − trT , θ(1), θ(2)) for i = 1, 2 and t =

0, ..., T − 1, then the conclusions of that theorem continue to hold, provided that

√
M+

T ∆1−ι
n

(
1
∨ √

∆n log(trT )

ν+
ψ (trT )

)
→ 0, (4.1)

where ι > 0 is arbitrary small.

As before, since the score functions are only based on the “large” jumps, or the feasible

estimates thereof, the condition in (4.1) puts no restrictions on the behavior of the “small”

jumps.

To better understand the rate condition in (4.1) behind the asymptotic equivalence result,

it is instructive to consider the case in which τ+(x) = |x|−k for some k > 0. In that situation

19An additional complication arises from the fact that our integrands with respect to µ are discontinuous at
the point x for which ψ+(x) = trT , and this point of discontinuity changes with the time span. At the point of
discontinuity, however, νt(x) is absolutely continuous, at least asymptotically for increasing values of |x|.
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Theorem 2 dictates the optimal truncation level trT = T
1

α+2k
+ι, which translates into the rate

condition T
2k∧(α++k)

α++2k ∆1+ι
n → 0. Recall that k →∞ implies ever diminishing deviations from the

power-decay law for the jump tails, in turn allowing for the use of lower truncation levels. That

is, k →∞ may be interpreted as the “parametric limit case” of our estimation, with the relative

rate condition implied by the theorem given by T∆1+ι
n → 0. But, that condition is essentially

equivalent to the corresponding condition for the estimation of diffusion processes with discretely

sampled data; see e.g., Prakasa Rao (1988). Conversely, when the tail decay doesn’t perfectly

adhere to a power law, i.e., for finite k, we need to resort to higher truncation levels and larger

sized jumps, weakening the rate condition in (4.1) somewhat relative to the fully parametric limit

case.

The result in Theorem 3 is general and pertains to any discretely sampled Itô semimartingale

process. We next discuss how to make the estimation for the special case of affine jump intensities,

previously analyzed in Section 3.1 for the continuous record case, practically feasible.

4.1 Affine Jump Intensities

Given the feasible estimates for the integrals with respect to the jump measures discussed above,

the primary obstacle in implementing the estimator in Corollary 1 relates to the integrated

variation
∫ t+1

t
σ2

sds. We will base our estimates for this quantity on the so-called Truncated

Variation (TV) measure originally proposed by Mancini (2009); see also Jacod (2008),20

TV n
t =

n∑
j=1

(
∆n,t

j p
)2

1{|∆n,t
j p|≤α∆$

n }, α > 0, $ ∈
(

0,
1

2

)
. (4.2)

As the formula shows, the truncated variation is simply constructed by summing the “continuous”

squared price increments obtained by purging the price process of jumps, i.e., all of the price

increments above the threshold α∆$
n . Asymptotically, of course, ∆n → 0 so that the threshold

∆$
n ↓ 0.21 The following corollary provides the feasible analogue to Corollary 1 based on the TV

estimator.

Corollary 2 For the process pt defined in equation (2.1) sampled at times 0, ∆n, ..., n∆n, ..., t, t+

∆n, ..., t + n∆n, ..., assume that assumptions A1-A4 hold, with ν(x) nondecreasing for x suf-

ficiently large. If in the moment vector gT (θ, trT ) of Corollary 1,
∫ t+1

t

∫
ψ+(x)>trT

φ+
i (ψ(x) −

trT , θ(1), θ(2))µ(ds, dx) is replaced by
∑n

j=1 φ+
i (ψ(∆n,t

j p) − trT , θ(1), θ(2)) for i = 1, 2 and t =

20Alternatively, we could have used the multipower variation estimators developed by Barndorff-Nielsen and
Shephard (2004, 2006).

21To be consistent, in our numerical implementations of the integrated jump measures, we similarly truncated
the price increments from below by α∆$

n . This obviously doesn’t change anything asymptotically, as all of the
estimators are based on the “large” jumps, and ∆$

n ↓ 0.
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0, ..., T − 1, and
∫ t

t−1
σ2

sds is replaced by TV n
t defined in (4.2) for t = 1, ..., T , then the conclu-

sions of Corollary 1 continue to hold true, provided condition (4.1) of Theorem 3 is satisfied, and

in addition

√
M+

T ∆1−ι
n ∆(2−β)$−1

n → 0, (4.3)

where ι > 0 denotes an arbitrary small constant.

In contrast to the general rate condition given by equation (4.1) in Theorem 3, the condition

in (4.3) does depend on the behavior of the “small” jumps, as manifest by the presence of the

Blumenthal-Getoor index β. This additional requirement arises from the need to control the size

of the discretization error in estimating the integrated variation. Intuitively, the more active the

jumps, the more difficult it is to separate the continuous and the jump components of the price

process, and in turn the more difficult it is to estimate the integrated variation.

Meanwhile, in the numerical implementations reported on below, we systematically fix the

tuning parameter $ to be very close to its upper bound of 1
2
. Hence, for values of the Blumenthal-

Getoor index less than 1, i.e., jumps of finite variation, the condition in (4.3) will be automatically

satisfied by (4.1).

The feasible results in Theorem 3 and Corollary 2 are, of course, still based on asymptotic

approximations. To gauge the accuracy of these approximations and the practical applicability

of the new jump tail estimation procedures, we next present the results from a series of Monte

Carlo simulations.

5 Monte Carlo Simulations

The Monte Carlo simulation is designed to mimic the actual data analyzed in the next section.

To facilitate the interpretation of the results, we will calibrate all of model parameters so that

the unit time interval corresponds to a day. We will assume that the continuous spot volatility

process is determined by the popular affine, also sometimes called Heston, model,

dσ2
t = 0.0128(0.8136− σ2

t )dt + 0.0954σtdBt, (5.1)

where Bt is a Brownian motion independent from Wt and the particular parameter values were

taken from the estimation results reported in Eraker et al. (2003).

The Lévy measure νt(x) for the jumps in the log-price process satisfies assumption A1 with

ϕ±t = k±0 + k±1 σ2
t , and Lévy density,

ν(x) =

{
c0

e|x|

(e|x| − 1)
β0+1

+ c1
e|x|

(e|x| − 1)
β1+1

}
1{|x|≥0.4}. (5.2)
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This density represents a mixture of two measures with tail decay parameters β0 and β1, respec-

tively. In all of the simulations β0 < β1, so that the tail decay of the simulated price jumps is

always determined by β0.

Table 1: Jump Parameters

Case Parameters

β0 c0 β1 c1 k+
0 = k−0 k+

1 = k−1
T1 2.0 0.0077 6.0 1.4746× 10−4 0.5 0.6146

T2 3.0 0.0046 9.0 1.4156× 10−5 0.5 0.6146

T3 4.0 0.0025 12.0 1.2080× 10−6 0.5 0.6146

Note: The table reports the values of the jump parameters used in the Monte Carlo simulations. All of the values
are reported in units of daily continuously-compounded percentage returns.

We experimented with several different jump parameter configurations, the details of which

are given in Table 1. The values of β0 were chosen to cover the range of values for the tail decay

for financial returns typically reported in the literature; see e.g., Embrechts et al. (2001) and the

references therein. We set β1 to be three times that of β0. The value of β1 essentially controls the

behavior of the residual functions L± in A2(b). The two scale parameters c0 and c1 were chosen

to satisfy the following two criteria. First, we restrict the “daily” ν(|x| > 0.4) = 0.06, where the

jumps x are measured in percentages. This value approximately matches our estimate for the

actual financial data reported in the next section. Second, we fix the proportion of ν(x > 0.4) due

to the second measure in (5.2) to be 20%. The values of k±0 and k±1 were chosen to ensure that

the time-varying and the time-homogenous part of the jump measures are equally important, i.e.,

k±0 = k±1 E(σ2
t ).

22 Lastly, the sampling frequency n = 400 and time span of the data T = 5, 000,

corresponding to roughly 20 years of one-minute intraday prices over a 6.5 hours trading day,

were both chosen to match the data used in the actual empirical estimation.

Our estimates of the truncated variation in (4.2) were based on $ = 0.49 and α equal to

4 × √BVt ∧RVt, where BVt denotes the bipower variation of Barndorff-Nielsen and Shephard

(2004, 2006) and RVt stands for the realized variance, both calculated over that particular “day.”

To gauge the sensitivity of the estimation results to the choice of truncation level, we report the

results for three different values of trT , corresponding to jump tails equal to 0.030, 0.015, and

0.010, respectively. In parallel to the theoretical analysis, we focus on the right tail only.

All of the simulations were based on a total of 1,000 replications. To facilitate the interpre-

tation of the results, we focus on three distinct aspects of the new estimation procedure, namely

22Altogether the parameters imply that the contribution of jumps to the total quadratic price variation is in
the range of 5− 15%. This is directly in line with the recent non-parametric empirical evidence reported in, e.g.,
Huang and Tauchen (2005), Andersen et al. (2007), and Aı̈t-Sahalia and Jacod (2009a).

19



Table 2: Monte Carlo Simulation Results

Case True Value Truncation Level

ν+
ψ (trT ) = 0.030 ν+

ψ (trT ) = 0.015 ν+
ψ (trT ) = 0.010

Median IQR Median IQR Median IQR

Tail Index 1/ξ̂+

T1 2.0 2.092 [1.778 2.592] 2.003 [1.625 2.565] 2.118 [1.584 3.041]

T2 3.0 3.731 [2.875 5.425] 3.057 [2.260 4.473] 3.254 [2.275 5.421]

T3 4.0 6.551 [4.479 14.67] 4.445 [3.163 7.999] 4.237 [2.822 9.775]

Homogeneous Proportion k+
0 /

(
k+

0 + k+
1 E(σ2

t )
)

T1 0.5 0.558 [0.426 0.677] 0.474 [0.309 0.637] 0.474 [0.286 0.687]

T2 0.5 0.564 [0.441 0.698] 0.479 [0.316 0.642] 0.434 [0.222 1.386]

T3 0.5 0.572 [0.439 0.705] 0.479 [0.313 0.629] 0.397 [0.197 0.596]

Tail Precision ν̂+
ψ (2.0)/ν+

ψ (2.0)

T1 1.0 0.913 [0.674 1.160] 0.927 [0.692 1.184] 0.919 [0.681 1.177]

T2 1.0 0.791 [0.349 1.230] 0.907 [0.426 1.462] 0.821 [0.395 1.384]

T3 1.0 0.351 [0.056 1.059] 0.682 [0.174 1.742] 0.702 [0.139 1.899]

Note: The table reports the median tail estimates based on the estimating equations in Section 4 and the
corresponding interquartile range (IQR) obtained across a total of 1,000 replications for each of the different
models defined in Table 1.

its ability to accurately assess the tail decay, the time-varying proportion of the tails, and the

extreme tail behavior. For each of the relevant statistics, we report in Table 2 the median values

obtained across all of the simulations, together with the interquartile range (IQR).

The true tail decay for all of the three models is determined by the value of β0. Our non-

parametric estimate for the tail decay is given by the inverse of ξ̂+. The results reported in

the first panel of the table show that the new estimation procedure generally permits fairly

accurate estimation of the tail decay. The choice of truncation level does matter, however. On

the one hand, choosing a low truncation level, results in the use of more observations, and

hence everything else equal, reduces the sampling error. On the other hand, choosing too low

a truncation level increases the deviation from the power-law decay and the error associated

with the presence of the slowly varying function L+(x) in assumption A2. Too low a truncation

level also renders the impact of the discretization error, and the ability to separate jumps from

continuous moves, relatively more important.

Turning to the second panel, we report the estimates for k+
0 /

(
k+

0 + k+
1 E(σ2

t )
)
. This ratio in

effect summarizes the estimation procedure’s ability to disentangle the time-varying from the
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time-homogenous parts of the jump tails. The results indicate the same tradeoff in terms of the

choice of truncation level: the use of lower truncation levels reduces sampling error, but at the

same time increases the impact of the discretization error. This also helps explain the slight

downward and upward biases observed in the first and third columns, respectively, and point to

the middle truncation level of 0.015 as the preferred choice.

A distinct advantage of the new estimation procedure is that it allows us to meaningfully

extrapolate the behavior of the jump tails to “extreme” levels for which inference based on

historical sample averages is bound to be unreliable. To illustrate this important point, the third

panel in the table reports the estimates for the jump tail intensities for jump sizes in excess

of 2%, a very “large” value in typical financial data. To allow for a direct comparison across

the different models, we report the estimates relative to their true values; i.e., ν̂+
ψ (2.0)/ν+

ψ (2.0).

Further, corroborating the accuracy of the underlying approximations, most of the estimated

ratios are indeed quite close to unity. Of course, the same bias-variance type tradeoff as before

pertains to the choice of truncation level, again pointing to the middle value as the most reliable.

All-in-all, the simulation results clearly indicate that the new estimation procedure works

well, and that it gives rise to reasonable accurate estimates of the jump tail features of interest

in practical applications. To further illustrate the applicability, we turn next to an empirical

application involving actual high-frequency data for the S&P 500 aggregate market portfolio.

6 S&P 500 Jump Tails

Our estimates for the aggregate market jump tails are based on high-frequency intraday data

for the S&P 500 futures contract spanning the period from January 1, 1990 to December 31,

2008. The theory underlying the new estimator builds on the idea of increasingly finer sampled

observations over fixed time intervals, or ∆n → 0. In practice, of course, market microstructure

frictions prevent us from sampling too finely, while at the same time maintaining the basic Itô

semimartingale assumption in equation (2.1); see, e.g., the discussion in Andersen et al. (2001),

Zhang et al. (2005), and Barndorff-Nielsen et al. (2008). In lieu of this tradeoff, we choose to

sample the prices at a one-minute frequency, resulting in a total of 400 observations per day for

each of the 4, 750 trading days in the sample.23

Turning to the results, Table 3 reports the parameter estimates based on the assumption of

affine in σ2
t time-varying jump intensities, without otherwise restricting the volatility dynamics,

following the practical implementation strategy in Corollary 2.24 The validity of the underlying

23The one-minute returns are approximately serially uncorrelated, with first and second order autocorrelation
coefficients equal to −0.0016 and 0.0015, respectively. We also experimented with the use of coarser five- and ten-
minutes sampling, resulting in very similar, albeit somewhat less precise, estimates for the tail decay parameters
to the ones for the one-minute returns discussed below; see also Figure 2 in the introduction.

24Guided by the simulation results in the previous section, we set the truncation level at νψ(trT ) = 0.03, or
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Table 3: S&P Jump Tail Estimates

Parameter Estimate St.dev. Parameter Estimate St.dev.

Left Tail Right Tail

ξ− 0.2664 0.1153 ξ+ 0.2059 0.1301

σ−T 0.2566 0.0536 σ+
T 0.2435 0.0487

k−0 νψ(trT ) −0.0004 0.0057 k+
0 νψ(trT ) 0.0023 0.0052

k−1 νψ(trT ) 0.0161 0.0065 k+
1 νψ(trT ) 0.0129 0.0057

J-test 4.1606 J-test 1.8256

Note: The table reports the estimates for the jump tail parameters based on one-minute S&P 500 futures prices
from January 1, 1990 to December 31, 2008. The estimates rely on the moment conditions in Corollary 1 and
the practical implementation thereof in Corollary 2. The truncation level is set at trT = 0.5124, corresponding
to ν±ψ (trT ) = 0.015 for each of the tails. The J-test involves two over-identifying restrictions.

modeling assumptions is corroborated by the J-tests for the two over-identifying moment restric-

tions reported in the last row of the table. Consistent with the idea of a power law decay, the

estimates for ξ± are both statistically different from zero. Maybe somewhat surprisingly, the

pairwise estimates for the left and right tail parameters are generally fairly close, implying that

the tails are approximately symmetric. Importantly, the results also point to the existence of

strong dynamic tail dependencies. Indeed, it appears that the tail jump intensities are almost

exclusively determined by the time-varying parts of νt.

In order to more clearly illustrate these dynamic dependencies, we plot in Figure 3 the

actual in-sample “large” jump realizations, together with the estimated jump tail intensities;

i.e., ν±t (x).25 It is evident that the “large” jumps tend to cluster in time, with most of the

realizations during the early 1990-91 part of the sample, the 1999-2002 time period associated

with the Russian default, LTCM debacle, and the burst of the “tech bubble”, as well as the recent

2008 financial crises. These tendencies for the jumps to cluster in time is also directly manifest

in the estimated jump intensities depicted in the two lower panels in the figure. Reported on

a relative logarithmic scale, the estimates imply large variations in the jump intensities, with

tenfold changes within a few years not at all uncommon.

Rather than focussing on the estimated jump intensities, from a risk management perspective

approximately 0.015 for each of the tails, corresponding to trT = 0.5124 in percentage terms. Similarly, we
set α equal to 4 × √

BVt ∧RVt and $ = 0.49 in our calculation of TV n
t , with the “large” jumps based on

ψ−1(trT )∧α∆$
n . In addition, we adjust for the well-known diurnal pattern, by scaling α with an estimate of the

time-of-day volatility as in Bollerslev and Todorov (2009).
25The estimate for the spot variance used in the calculation of the jump intensities depicted in the figure is

based on the summation of the previous 200 truncated from above by α∆$
n squared one-minute returns; Jacod

and Todorov (2010) provide a formal justification for this estimator.
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Figure 3: Tail Jump Events
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Note: The two top panels show the daily realized “large” jumps in the one-minute S&P 500 futures prices from
January 1, 1990 to December 31, 2008, based on a truncation level of trT = 0.5124, or νψ(trT ) = 0.03. The two
bottom panels show the estimated logarithmic time-varying jump tail intensities ν±t (x).

it is often more informative to consider the likely size of a jump. In particular, keeping the jump

intensity constant, the intrinsic time-dependence in the jump sizes may be formally revealed

through,

q−t,α = sup{x < 0 : ν−t (x) ≤ α}, ν−t (x) =

∫ x

−∞
νt(z)dz,

q+
t,α = inf{x > 0 : ν+

t (x) ≤ α}, ν+
t (x) =

∫ ∞

x

νt(z)dz,

(6.3)

which define the time-varying jump sizes corresponding to the time t jump intensity of α > 0

for negative and positive jumps exceeding those values. The q±t,α may also be interpreted as

the inverse of the maps x → ν±t (x), and we will refer to them correspondingly as the “jump

quantiles.” Such quantities would generally be very difficult to accurately estimate empirically.

However, the key approximation in (3.1), together with the assumption of affine jump intensities

underlying our jump tail estimation, permits us to readily evaluate the jump quantiles in a

non-parametric fashion. Specifically, for the right tail we have the following approximation,

q̂+
t,α = ψ−1





trT +







̂k+
0 ν+

ψ (trT ) + ̂k+
1 ν+

ψ (trT )σ̂2
t

α




ξ̂+

− 1


 σ̂+

ξ̂+





, (6.4)
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where σ̂2
t denotes a consistent estimator for the spot volatility, as discussed above, and the left

tail estimator q̂−t,α may be defined analogously.26

Figure 4 shows the resulting estimated jump sizes corresponding to one positive, respectively

negative, jump larger, respectively smaller, than that value every two calendar year; i.e., one

jump of that absolute size per calendar year. The estimates again reveal surprisingly close to

symmetric tail behavior, albeit slightly larger variations in the negative jump quantiles due to the

slightly larger estimated value for k−1 νψ(trT ). The figure also shows that the size of the “large”

jumps vary quite dramatically over time, with jumps in excess of one percent highly unlikely for

most of the sample, while such jumps are fairly common during the recent financial crises.

Figure 4: Jump Quantiles
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Note: The figure shows the one-minute S&P 500 futures returns from January 1, 1990 to December 31, 2008,
together with the estimated jump sizes corresponding to a jump intensity of one positive, respectively negative,
jump every two calendar years, as formally defined by the “jump quantiles” q±t,α.

To further highlight these important dependencies, we plot in Figure 5 the estimated left

jump quantiles for 2005, a relatively quiet year, together with the quantiles for 2008. In addition

to the two-year quantiles shown in the previous figure, we also include the extreme jump sizes

corresponding to a negative jump every twenty years; i.e., once in the sample. These latter

extreme quantiles would be impossible to meaningfully estimate by extrapolating from standard

parametric procedures and coarser frequency, e.g., daily data. Looking at the figure, 2005 was

obviously an “easy” year from a risk management perspective. The two and twenty year jump

quantiles are both approximately constant, and hover around less than negative one and two

26To formally justify these estimators for q±t,α we need αT ∝ trT .
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percent, respectively. In sharp contrast, the jump quantiles for 2008 vary quite dramatically

throughout the year, reaching their peak in October in the aftermath of the Lehman bankruptcy

and the government TARP bailout program, gradually stabilizing towards the end of the year.

Figure 5: Left Tail Jump Quantiles
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Note: The figure shows the negative one-minute S&P 500 futures returns for 2005 (top panel) and 2008 (bottom
panel), together with the estimated left tail “jump quantiles” corresponding to a jump intensity of one negative
jump every two calendar years and one negative jump every twentieth calendar years, respectively, as formally
defined by q±t,α.

7 Conclusion

The availability of high-frequency intraday asset prices has spurred a large and rapidly grow-

ing literature. This paper further expands on our ability to extract useful information about

important economic phenomena from this new rich source of data through the development of

a flexible non-parametric estimation procedure for the jump tails. The method allows for very

general dynamic dependencies in the tails and imposes essentially no restrictions on the contin-

uous part of the price process. The basic idea is based on the assumption of regular variation

in the jump tails, and how that assumption translates into certain functionals of the “large”

jumps being approximate martingales. We confirm the reliability of the new estimation proce-

dure through a series of Monte Carlo simulation experiments, and illustrate its applicability with

actual high-frequency data for the S&P 500 market portfolio.

Looking ahead, the new estimation framework should be of use in many situations of practical
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import. In particular, the most important and difficult to manage financial market risks are

invariably associated with tail events. Hence, the ability to more accurately measure and possibly

forecast the jump tails, holds the promise of improved risk management techniques better geared

toward controlling large risks, leaving aside the smaller approximately “continuous” price moves.

By enhancing our understanding of the type of economic “news” that induce large price moves,

or tail events, empirical implementations of the new estimation procedure could also help shed

new light on the fundamental linkages between asset markets and the real economy.

The lack of investor confidence and fear of tail events are often singled out as one of the main

culprits behind the massive losses in market values in the advent of the Fall 2008 financial crises,

and the idea that rare disasters may help explain apparent mis-pricing has spurred a rapidly

growing recent literature. The arguments put forth in that literature often hinge on probabilities

of severe events that exceed those materialized in sample, or probabilities calibrated to reflect a

much broader set of assets and/or countries; e.g., Barro (2006) and Gabaix (2010). Instead, as

discussed in Bollerslev and Todorov (2009), the new econometric procedures developed here hold

the promise of reliably estimating the likely occurrence of tail events based on actually observed

high-frequency data, without having to resort to “peso” type explanations or having to impose

tight restrictions on the volatility dynamics.

8 Proofs

8.1 Proofs of Theorem 1 and Corollary 1

Follow from the proof of Theorem 2 below. ¤

8.2 Proof of Theorem 2

For notational convenience, denote

g̃(θ, zt, trT ) = g(θ, zt, trT ) •
(

θ(2)

1

)
and

(
φ̃+

1 (u, ξ, σ)

φ̃+
2 (u, ξ, σ)

)
=

(
φ+

1 (u, ξ, σ)σ

φ+
2 (u, ξ, σ)

)
,

G(θ, zt, trT ) =
(
G(ij)(θ, zt, trT )

)
i=1,...,2q, j=1,2

, G(ij)(θ, zt, trT ) =
∂g̃(i)

∂θ(j)
(θ, zt, trT ),

with g̃T (θ, trT ) and g̃T (θ, trT ) defined similar to gT (θ, trT ) from g̃(θ, zt, trT ). Further, set

Hi(θ, zt, trT ) =
(
H

(kl)
i (θ, zt, trT )

)
k,l=1,2

, H
(kl)
i (θ, zt, trT ) =

∂g̃(i)

∂θ(k)∂θ(k)
(θ, zt, trT ).
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We start by showing some preliminary results, which we will make use of later in the proof.

First, by a change of variable it follows that for any function φ(u),
∫

R
φ(ψ+(x)− trT )1{ψ+(x)>trT }ν(x)dx =

∫ ∞

0

φ(u)ν+
ψ (trT + u)du (8.1)

= ν+
ψ (trT )

∫ ∞

0

φ(u)

(
1− ν+

ψ (u + trT )

ν+
ψ (trT )

)′

du.

Next, using assumption A2 on the slowly varying function L+(x), integration by parts, and using

the results of Goldie and Smith (1987) for slowly varying functions with residuals (see also Smith

(1987), Proposition 3.1), we have for some β > 0 and r > 0,s

∫ ∞

0

(
1 + β

u

trT

)−r
(

1− ν+
ψ (u + trT )

ν+
ψ (trT )

)′

du = κ(β, r, α+) + Kτ+(βtrT ) + o(τ+(βtrT )), (8.2)

where K denotes some constant, and the function κ is continuous in its first argument with

κ(1, r, α+) = α+

α++r
. Similarly, for β > 0 and an integer s,

∫ ∞

0

(
− ln

(
1 + β

u

trT

))s
(

1− ν+
ψ (u + trT )

ν+
ψ (trT )

)′

du = κ̃(β, s, α+)+Kτ+(βtrT )+ o(τ+(βtrT )),

(8.3)

where K denotes some constant (generally different from the constant in the previous equation),

and the function κ̃ is continuous in its first argument with κ̃(1, s, α+) = (−α+)−sΓ(s + 1).

The proof proceeds in two steps by first showing consistency and then asymptotic normality

of the estimator.

Part 1. Consistency. From the definition of the random measure µ, it follows readily that

M+
T

Tν+
ψ (trT )

P→ E(ϕ+
t ). (8.4)

Now, by a standard law of large numbers, for any fixed ξ ∈ (0,∞) and β ∈ (0,∞) with σ =

ξtrT /β, we have





1
M+

T

∫ T

0

∫
ψ+(x)>trT

1
1+ξ(ψ+(x)−trT )/σ

µ(ds, dx)
P→ κ (β, 1, α+) ,

1
M+

T

∫ T

0

∫
ψ+(x)>trT

log(1 + ξ(ψ+(x)− trT )/σ)µ(ds, dx)
P→ κ̃ (β, 1, α+) .

Moreover, since log(1+x) and 1/(1+x) are monotone in x, the above convergence can be trivially

extended to uniform over the sets ξ ∈ [0, Kξ] and β ∈ (Kβ,∞] for any Kξ > 0, Kβ > 0. Then,

for a local neighborhood of the true parameter value we have

sup
θ∈Θl

T

||g̃T (θ, trT )− g(θ, trT )|| P→ 0,
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where

g(θ, trT ) =




1
ξ
−

(
1 + 1

ξ

)
κ (β, 1, α+)

− 1
ξ2 κ̃ (β, 1, α+)− 1

ξ

(
1 + 1

ξ

)
(1− κ (β, 1, α+))


 .

Thus, g(θ) = 0 for θ = θ0
T . Further, the derivative of g(θ, trT ) with respect to the parameter

θ, when evaluated at the true value is nonsingular (properly taking into account the fact that

the true value of σ+
T grows with the time span by multiplying the two derivatives involving

differentiation with respect to σ by trT ). Therefore, g(θ) = 0 is solved uniquely by θ = θ0
T in a

local neighborhood.

Part 2. Asymptotic Normality. Let θ = θ0
T + r̃, where

r̃ =
√

Tνψ(trT )E(ϕ+
s )r •




trT

α+Tν+
ψ (trT )

1
Tν+

ψ (trT )


 ,

for some r ∈ R2. Then, using a second-order Taylor expansion for this value of the vector θ we

can write
√

M+
T g̃T (θ, trT ) =

√
M+

T g̃T (θ0
T , trT ) +

√
M+

T GT (θ0
T , trT )r̃ + RT (r),

RT (r) =
1

2

1√
M+

T

T−1∑
t=1




r̃′H1(θ̃, zt, trT )r̃
...

r̃′H2q(θ̃, zt, trT )r̃


 ,

where θ̃ denotes some value between θ and θ0
T and GT (θ, trT ), H1(θ, zt, trT ),...,H2q(θ, zt, trT )

denote the corresponding first and second derivatives.

Our goal will be to show that for θ = θ0
T + r̃,

√
M+

T g̃T (θ, trT ) converges uniformly in r to

dZ + Πr for some non-random matrices d and Π (with Π of full column rank) and a standard

normal vector Z. By the continuity of the limit process (in r), this establishes the result in (3.9).

The proof proceeds in several steps.

Step 1. We prove 1√
M+

T

∑T−1
t=1 g̃(θ0

T , zt, trT )
L→ dZ, where d is a matrix of constants and Z

is the standard normal random vector of the theorem.

We first decompose the moment vector g̃(θ0
T , zt, trT ) into two components. Let g̃1(θ, zt, trT )

denote the vector

xt ⊗
( ∫ t+1

t

∫
ψ+(x)>trT

φ̃+
1 (ψ(x)− trT , θ(1), θ(2))µ̃(ds, dx)∫ t+1

t

∫
ψ+(x)>trT

φ̃+
2 (ψ(x)− trT , θ(1), θ(2))µ̃(ds, dx)

)
,

and g̃2(θ, zt, trT ) the vector

xt ⊗
( ∫ t+1

t

∫
ψ+(x)>trT

φ̃+
1 (ψ(x)− trT , θ(1), θ(2))ν(ds, dx)∫ t+1

t

∫
ψ+(x)>trT

φ̃+
2 (ψ(x)− trT , θ(1), θ(2))ν(ds, dx)

)
,
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so that by definition g̃(θ0
T , zt, trT ) = g̃1(θ

0
T , zt, trT ) + g̃2(θ

0
T , zt, trT ).

We first prove that 1√
M+

T

∑T−1
t=1 g̃2(θ

0
T , zt, trT )

P→ 0. Using the fact that for the true parameter

value, θ0
T , we have θ(2)

θ(1) = trT , together with the definition of the score functions φ+
1 and φ+

2 in

(3.2), and the results in (8.1)-(8.3), the two elements of g̃(2)(θ0
T , zt, trT ) may be expressed as

Cν+
ψ (trT )

(
τ+(trT ) + o(τ+(trT ))

) ∫ t+1

t

ϕ+
s ds,

for some constant C which differ for each of the two elements. Then, since
√

Tν+
ψ (trT )τ+(trT ) →

0 and assumption A3 implies that the process ϕ+
t is stationary and integrable, it follows that

1√
Tν+

ψ (trT )

T−1∑
t=1

E||g̃2(θ
0
T , zt, trT )|| P→ 0.

Then, combining this result with (8.4), we get 1√
M+

T

∑T−1
t=1 g̃2(θ

0
T , zt, trT )

P→ 0.

We are left with showing that 1√
M+

T

∑T−1
t=1 g̃1(θ

0
T , zt, trT )

L→ dZ. This convergence will

follow from a Central Limit Theorem for a triangular array; see, e.g., Jacod and Shiryaev (2003),

Theorem VIII.2.29. It suffices to prove that




1
M+

T

∑T−1
t=1 Etg̃1(θ

0
T , zt, trT )

P→ 0,

1
M+

T

∑T−1
t=1 Etg̃1(θ

0
T , zt, trT )g̃1(θ

0
T , zt, trT )′ P→ dd′,

1
(M+

T )1+α/2

∑T−1
t=1 Et||g̃(i)

1 (θ0
T , zt, trT )||2+α P→ 0, for some α > 0 and i = 1, 2.

(8.5)

The first condition in (8.5) is trivially satisfied, as {g̃1(θ
0
T , zt, trT )}t=1,2,... is a martingale difference

sequence. To show the second convergence in (8.5), note that for i, j = 1, ..., 2q,

Et

(
g̃

(i)
1 (θ0

T , zt, trT )g̃
(j)
1 (θ0

T , zt, trT )
)

= x
(i−b(i−1)/qcq)
t x

(j−b(j−1)/qcq)
t Et

[∫ t+1

t

∫

ψ+(x)>trT

ζ1(x)µ̃(ds, dx)

∫ t+1

t

∫

ψ+(x)>trT

ζ2(x)µ̃(ds, dx)

]

= x
(i−b(i−1)/qcq)
t x

(j−b(j−1)/qcq)
t

∫

ψ+(x)>trT

ζ1(x)ζ2(x)ν(x)dxEt

∫ t+1

t

ϕ+
s ds,

where ζ1(x) and ζ2(x) are one of the functions that appear as integrands of µ̃ in the definition

of g̃1(θ
0
T , zt, trT ), and the second equality follows from Itô ’s lemma. Now, using the results in

(8.1)-(8.3), we can write

∫

ψ+(x)>trT

ζ1(x)ζ2(x)ν(x)dx = ν+
ψ (trT )

(
K + τ+(trT ) + o(τ+(trT ))

)
,

where the constant K depend on the true parameter vector θ0
T , but do not depend on T . Also,

by assumption A3 the process ϕ+
t is stationary and integrable and by the assumption of the
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theorem we get

1

T

T−1∑
t=1

xtx
′
tEt

(∫ t+1

t

ϕ+
s ds

)
P→ E

(
xtx

′
t

∫ t+1

t

ϕ+
s ds

)
,

Then in parallel to Step 1, we can use M+
T ∼ Tν+

ψ (trT ) to show the second part of (8.5).

To prove the third part of (8.5), let α ≤ 2 such that E|ϕ+
s |1+α < ∞. The existence of α is

guaranteed by assumption A3. Then, using the Burkholder-Davis-Gundy inequality,

Et

[∫ t+1

t

∫

ψ+(x)>trT

ζ(x)µ̃(ds, dx)

]2+α

≤ Et

(∫ t+1

t

∫

ψ+(x)>trT

ζ2(x)µ(ds, dx)

)1+α/2

,

where ζ is one of the functions that appear as integrands of µ̃ in the definition of g̃1(θ
0
T , zt, trT ).

Further,

Et

(∫ t+1

t

∫

ψ+(x)>trT

ζ2(x)µ(ds, dx)

)1+α/2

≤ KEt

∣∣∣∣
∫ t+1

t

∫

ψ+(x)>trT

ζ2(x)µ̃(ds, dx)

∣∣∣∣
1+α/2

+ K

(∫

ψ+(x)>trT

ζ2(x)ν(x)dx

)1+α/2

Et

(∫ t+1

t

ϕ+
s ds

)1+α/2

,

for K > 0 some constant. For the first term on the right hand side of the above inequality,

applying the inequality (
∑

i |ai|)p ≤ ∑
i |ai|p for 0 < p ≤ 1, and the fact that α ≤ 2, together

with the definition of the jump compensator, we have

Et

∣∣∣∣
∫ t+1

t

∫

ψ+(x)>trT

ζ2(x)µ̃(ds, dx)

∣∣∣∣
1+α/2

≤ K

∫ t+1

t

∫

ψ+(x)>trT

ζ2+α(x)ν(x)dxEt

(∫ t+1

t

ϕ+
s ds

)
.

The third result of (8.5) now follows directly. full column-rank matrix of constants depending on

the true parameter vector θ0
T . We denote with G1(θ, zt, trT ) the 2q× 2 matrix with the following

elements for i = 1, ..., 2q,

G
(ij)
1 (θ, zt, trT ) = x

(i−b(i−1)/qcq)
t





trT

α+

∫ t+1

t

∫
ψ+(x)>trT

∂φ̃+
iq

∂θ(1) (ψ(x)− trT , θ(1), θ(2))µ̃(ds, dx), j = 1,
∫ t+1

t

∫
ψ+(x)>trT

∂φ̃+
iq

∂θ(2) (ψ(x)− trT , θ(1), θ(2))µ̃(ds, dx), j = 2,

where iq = 1 for i = 1, ..., q and iq = 2 for i = q + 1, ..., 2q. As in the previous step, it is possible

to show

1√
M+

T

T−1∑
t=1

G1(θ
0
T , zt, trT )

L→ bZ,

where b is some vector of constants, and Z is a standard normal vector, and therefore

1√
M+

T

T−1∑
t=1

G̃1(θ
0
T , zt, trT )

P→ 0,
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for G̃1(θ
0
T , zt, trT ) = 1√

Tν+
ψ (trT )E(ϕ+

s )
G1(θ

0
T , zt, trT ).

Next, define the G2(θ, zt, trT ) matrix such that G2(θ, zt, trT )r = G(θ, zt, trT )r̃−G̃1(θ, zt, trT )r

for every r. We are then left with proving 1√
M+

T

∑T−1
t=1 G2(θ

0
T , zt, trT )

P→ Π. Using the results

in (8.1)-(8.3) it is possible to show that the above matrix sequence is equal to

KT ⊗
(

1

T

T−1∑
t=1

xt

∫ t+1

t

ϕ+
s ds

)
,

where KT is a 2 × 2 matrix with elements of the form K
(ij)
T = K(ij) + τ+(trT ) + o(τ+(trT ))

for i, j = 1, 2 with the constants K(ij) depending on the value of the true parameter vector θ0
T

and such that the matrix {K(ij)}i,j=1,2 is non-singular. Since
√

Tν+
ψ (trT )τ+(trT ) → 0, using the

assumption in the theorem for 1
T

∑T−1
t=1 x

(i)
t

∫ t+1

t
ϕ+

s ds, it follows that it converges in probability.

Then note that Π is of full column rank because of our assumption E
(
xt

∫ t+1

t
ϕ+

s ds
)
6= 0 and

this proves the claim of this step.

Step 3. To complete the proof, we show that supr:θ∈Θl
T
||RT (r)|| P→ 0. Using the condition√

Tν+
ψ (trT )τ+(trT ) → 0, the elements of the matrix RT (r) may be expressed as,

KT × ZT (θ),

where KT
P→ 0, which does not depend on θ, and

ZT (θ) =
1

M+
T

T−1∑
t=1

x
(i)
t

∫ t+1

t

∫

ψ+(x)>trT

φ(ψ+(x)− trT , θ)µ(ds, dx),

for i = 1, ..., q, and the function φ(·, θ) involves second derivatives of φ1 and φ2 (with respect to

the parameter). We may therefore bound ZT (θ) ≤ NT on the set Θl
T , where NT

P→ K for some

constant K. ¤

8.3 Proofs of Theorem 3 and Corollary 2

We start by establishing several preliminary lemmas. In what follows we use the notation En
i for

E (·|Fi∆n) and Pn
i for P (·|Fi∆n). Also, we will use C to denote a positive constant that might

change from line to line.

Lemma 1 Suppose we observe the process pt at the discrete times 0, ∆n, 2∆n, ..., [T/∆n], and

assume that A1 and A4 hold. Then for some α > 0 and $ ∈ (
0, 1

2

)
, we have

√
NT

T




[T/∆n]∑
i=1

(∆n
i p)2 1{|∆n

i p|≤α∆$
n } −

∫ T

0

σ2
sds


 P→ 0, as ∆n ↓ 0, T ↑ ∞, (8.6)

where ∆n
i p = pi∆n − p(i−1)∆n, and NT is some deterministic sequence of T increasing to infinity

with the property that
√

NT ∆
(2−β)$
n → 0.
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Proof: We have
(

(∆n
i p)2 1{|∆n

i p|≤α∆$
n } −

∫ i∆n

(i−1)∆n

σ2
sds

)
= a1

i − a2
i + a3

i + a4
i + a5

i − a6
i + a7

i ,

a1
i =

(
(∆n

i Z)2 −
∫ i∆n

(i−1)∆n

σ2
sds

)
, a2

i = (∆n
i Z)2 1{|∆n

i p|>α∆$
n },

a3
i = (∆n

i Y )2 1{|∆n
i p|≤α∆$

n }, a4
i = 2∆n

i Ẑ∆n
i Ỹ ,

a5
i = 2∆n

i Ẑ∆n
i Ŷ , a6

i = 2∆n
i Ẑ∆n

i Y 1{|∆n
i p|>α∆$

n }, a7
i = 2∆n

i Z̃∆n
i Y 1{|∆n

i p|≤α∆$
n },

Zt =

∫ t

0

σsdWs +

∫ t

0

α̃sds, α̃t =

{ ∫ t

0
αsds, if β ≥ 1,∫ t

0
αsds− ∫ t

0

∫
R κ(x)dsνs(dx), if β < 1,

Z̃n
i =

∫ i∆n

(i−1)∆n

(σs − σ(i−1)∆n)dWs +

∫ i∆n

(i−1)∆n

α̃sds, Ẑn
i = σ(i−1)∆n∆n

i W,

Yt =

{ ∫ t

0

∫
R κ(x)µ̃(ds, dx) +

∫ t

0

∫
R κ′(x)µ(ds, dx), if β ≥ 1,∫ t

0

∫
R xµ(ds, dx), if β < 1,

Ŷt =

{ ∫ t

0

∫
R κ′(x)ν(ds, dx), if β ≥ 1,∫ t

0

∫
R xν(ds, dx), if β < 1,

, Ỹt = Yt − Ŷt.

We will need an equivalent (in distribution) decomposition of the process Y . We define it on an

independent copy of the original probability space with the only difference being that the jump

measure is defined from a homogeneous Poisson measure via thinning, i.e.,

Y
(1)
t =





∫ t

0

∫
R+

∫
R κ (x) (1{x<0, u<ϕ−

(i−1)∆n−}
+ 1{x>0, u<ϕ+

(i−1)∆n−}
)µ̃(ds, du, dx)

+
∫ t

0

∫
R+

∫
R κ′ (x) (1{x<0, u<ϕ−

(i−1)∆n−}
+ 1{x>0,u<ϕ+

(i−1)∆n−}
)µ(ds, du, dx), if β ≥ 1,

∫ t

0

∫
R+

∫
R x(1{x<0, u<ϕ−

(i−1)∆n−}
+ 1{x>0, u<ϕ+

(i−1)∆n−}
)µ(ds, du, dx), if β < 1,

Y
(2)
t =





∫ t

0

∫
R+

∫
R κ(x)

(
1{x<0, u<ϕ−s−} − 1{x<0, u<ϕ−

(i−1)∆n−}
)

µ̃(ds, du, dx)

+
∫ t

0

∫
R+

∫
R κ(x)

(
1{x>0, u<ϕ+

s−} − 1{x>0, u<ϕ+
(i−1)∆n−}

)
µ̃(ds, du, dx)

+
∫ t

0

∫
R+

∫
R κ′(x)

(
1{x<0, u<ϕ−s−} − 1{x<0, u<ϕ−

(i−1)∆n−}
)

µ(ds, du, dx),

+
∫ t

0

∫
R+

∫
R κ′(x)

(
1{x>0, u<ϕ+

s−} − 1{x>0, u<ϕ+
(i−1)∆n−}

)
µ(ds, du, dx), if β ≥ 1,

∫ t

0

∫
R+

∫
R x

(
1{x<0, u<ϕ−s−} − 1{x<0, u<ϕ−

(i−1)∆n−}
)

µ(ds, du, dx)

+
∫ t

0

∫
R+

∫
R x

(
1{x>0, u<ϕ+

s−} − 1{x>0, u<ϕ+
(i−1)∆n−}

)
µ(ds, du, dx), if β < 1,

where µ is a Poisson measure with compensator ds⊗ du⊗ ν(x)dx.

The rest of the proof consists in showing the asymptotic negligibility of the scaled sums of

the terms aj
i for j = 1, ..., 7 and their subcomponents. We will use either convergence in L1 or

L2 for proving this.
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We start with the term a1
i . Application of Itô lemma gives

a1
i = ã1

i + â1
i ,

ã1
i = 2

∫ i∆n

(i−1)∆n

Zn
s α̃sds, â1

i = 2

∫ i∆n

(i−1)∆n

Zn
s σsdWs, Zn

s = Zs − Z(i−1)∆n .

Further decomposing ã1
i = ã1

i (1) + ã1
i (2) + ã1

i (3),





ã1
i (1) = 2

∫ i∆n

(i−1)∆n
α̃(i−1)∆n

∫ s

(i−1)∆n
σudWuds,

ã1
i (2) = 2

∫ i∆n

(i−1)∆n
α̃(i−1)∆n

∫ s

(i−1)∆n
α̃udWuds,

ã1
i (3) = 2

∫ i∆n

(i−1)∆n
(α̃s − α̃(i−1)∆n)Zn

s ds,

we have for q ≥ 2

En
i−1ã

1
i (1) = 0, E|ã1

i (1)|q ≤ C∆3q/2
n ,

while for q ≥ 1

E|ã1
i (2)|q ≤ C∆2q

n , E|ã1
i (3)|q ≤ C∆3q/2+q/2∧1

n .

Also, for q ≥ 2 using Doob’s inequality and the Cauchy-Schwartz inequality,

E|â1
i |q ≤ CE

(∫ i∆n

(i−1)∆n

(Zn
s σs)

2 ds

)q/2

≤ C∆q/2−1
n

∫ i∆n

(i−1)∆n

E|Zn
s σs|qds ≤ C∆q

n.

Using Holder’s inequality for any 1 ≤ q < p/2,

E|a2
i |q ≤ (E|∆n

i Z|p)2q/p (P (|∆n
i p| ≥ α∆$

n ))1−2q/p ≤ C∆q+(1−2q/p)(1−βω)−ε
n , ε > 0.

We proceed with a3
i and the following decomposition,

|a3
i | ≤ |a3

i |+ |ã3
i |+ |â3

i |, a3
i = (∆n

i Y )2 1{|∆n
i Y |≤1.5α∆$

n },

ã3
i = (∆n

i Y )2 1{|Z̃n
i |≥0.25α∆$

n }, â3
i = (∆n

i Y )2 1{|Ẑn
i |≥0.25α∆$

n }.

Then, for any ε > 0 and q ≥ β/2,

E|a3
i |q ≤ C∆(2q−β−ε)$

n E|∆n
i Y |β+ε ≤ C∆(2q−β)$+1−ε

n .

For ã3
i and q < p/2, we can write

E|ã3
i |q ≤ CE

(
|∆n

i Ỹ |2q1{|Z̃n
i |≥0.25α∆$

n }
)

≤ C
(
E|∆n

i Ỹ |p
)2q/p (

P
(
|Z̃n

i | ≥ 0.25α∆$
n

))1−2q/p

≤ C∆
1+( 1

2
−$)(p−2q)

n .
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Further decomposing â3
i ,

E|â3
i |q ≤ C

(
E|â3

i (1)|q + E|â3
i (2)|q) ,

â3
i (1) =

(
∆n

i Y (1)
)2

1{|Ẑn
i |≥0.25α∆$

n }, â3
i (2) =

(
∆n

i Y (2)
)2

1{|Ẑn
i |≥0.25α∆$

n },

where Ẑn
i is defined on the probability space of Y

(1)
t , and Y

(2)
t as the same process on the original

probability space, where for simplicity we have kept the same notation for this process. Then,

for 1 ≤ q < p/2 we have

E|â3
i (1)|q ≤ E

(
En

i−1|∆n
i Y (1)|2qEn

i−1

(
1{|Ẑn

i |≥0.25α∆$
n }

))
≤ C∆

1+( 1
2
−$)(p−2)

n .

Using Holder’s inequality, it follows that for every x > 1,

E|â3
i (2)|q ≤ (

E|∆n
i Y

(2)|2qx
)1/x

(
P

(
|Ẑn

i | ≥ 0.25α∆$
n

))1−1/x

≤ C∆
3
2

1
x
+(1− 1

x
)( 1

2
−$)p

n .

Next, note that En
i−1a

4
i = 0, and for 2 ≤ q < p

E|a4
i |q ≤ C (E|∆n

i Z|p)q/p
(
E|∆n

i Ỹ | qp
p−q

)1−q/p

≤ C∆1+q(1/2−1/p)
n .

We can decompose a5
i as follows

a5
i = ã5

i + â5
i , ã5

i = ∆n(C+ϕ+
(i−1)∆n− + C−ϕ−(i−1)∆n−)∆n

i Ẑ,

â5
i = ∆n

i Ẑ

∫ i∆n

(i−1)∆n

(C+(ϕ+
s − ϕ+

(i−1)∆n−) + C−(ϕ−s − ϕ−(i−1)∆n−))ds,

where C+ and C− are some constants. Thus for q ≥ 2

En
i−1ã

5
i = 0, E|ã5

i |q ≤ C∆3q/2
n .

Application of Holder’s inequality for q ≥ 1 and arbitrary small ε > 0 implies that

E|â5
i |q ≤ C∆3q/2+q/2∧1−ε

n .

We turn now to a6
i , which may be bounded as

|a6
i | ≤ |a6a

i |+ |a6b
i |+ |a6c

i |, a6a
i = 2Ẑn

i ∆n
i Y 1{|Z̃n

i |>0.25α∆$
n },

a6b
i = 2Ẑn

i ∆n
i Y 1{|∆n

i Y |>0.5α∆$
n }, a6c

i = 2Ẑn
i ∆n

i Y 1{|Ẑn
i |>0.25α∆$

n }.

For a6a
i and q < p, we can apply Holder’s inequality twice together with the fact that moments

of all powers of the normal distribution exist, to conclude that some sufficiently small ε > 0,

E|a6a
i |q ≤ C (E|∆n

i Y |p)q/p
(
E

(
|σ(i−1)∆n |

qp
p−q |∆n

i W | qp
p−q 1{|Z̃n

i |>0.25α∆$
n }

))1−q/p

≤ C∆
q
p
+q/2

n

(
E

(
|σ(i−1)∆n |(1+ε) qp

p−q 1{|Z̃n
i |>0.25α∆$

n }
)) 1−q/p

1+ε

≤ C∆
q
p
+q/2

n

(
E

(
|σ(i−1)∆n |(1+ε) qp

p−qPn
i−1

(
|Z̃n

i | > 0.25α∆$
n

))) 1−q/p
1+ε

.

≤ C∆
q
p
+q/2

n ∆
1−q/p
1+ε

+( 1
2
−$)

(p−q)−(1+ε)q
(1+ε)

n .
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Next we have

E|a6b
i |q ≤ C

(
E|a6b

i (1)|q + E|a6b
i (2)|q + E|a6b

i (3)|q) , a6b
i (1) = 2Ẑn

i ∆n
i Y

(1)1{|∆n
i Y (1)|>0.25α∆$

n },

a6b
i (2) = 2Ẑn

i ∆n
i Y

(1)1{|∆n
i Y (2)|>0.25α∆$

n }, a6b
i (3) = 2Ẑn

i ∆n
i Y (2)1{|∆n

i Y |>0.5α∆$
n }.

Then, En
i−1a

6b
i (1) = 0 and for some arbitrary small ε > 0,

E|a6b
i (1)|q ≤ CE

(
En

i−1|Ẑn
i |qEn

i−1|∆n
i Y

(1)|q1{|∆n
i Y (1)|>0.25α∆$

n }
)
≤ C∆1+q/2−((β−q)∨0)$−ε

n .

For p > q ∨ β and any ε > 0,

E|a6b
i (2)|q ≤ C

(
E|Ẑn

i ∆n
i Y

(1)|p
)q/p (

E
(
1{|∆n

i Y (2)|>0.25α∆$
n }

))1−q/p

≤ C∆
q
2
+ q

p
+(1− q

p
)( 3

2
−β$)−ε

n .

By Holder’s inequality for any ε > 0 and q < p,

E|a6b
i (3)|q ≤ C

(
E|Ẑn

i |p
)q/p (

E|∆n
i Y

(2)|qp/(p−q)
)1−q/p ≤ C∆

q
2
+ 3

2(
1
β
∧ p−q

pq )q−ε
n .

Next, note that

E|a6c
i |q ≤ C

(
E|a6c

i (1)|q + E|a6c
i (2)|q) ,

a6c
i (1) = 2Ẑn

i ∆n
i Y

(1)1{|Ẑn
i |>0.25α∆$

n }, a6c
i (2) = 2Ẑn

i ∆n
i Y

(2)1{|Ẑn
i |>0.25α∆$

n }.

Also, for q < p

E|a6c
i (1)|q ≤ CE

(
En

i−1

(
|Ẑn

i |q1{|Ẑn
i |>0.25α∆$

n }
)
En

i−1|∆n
i Y

(1)|q
)
≤ C∆

q
2
+ q

β
∧1+( 1

2
−$)(p−q)

n .

For a6c
i (2), we can proceed the same way as for â6b

i (3) and get that for any ε > 0 and q < p,

E|a6c
i (2)|q ≤ C

(
E|Ẑn

i |p
)q/p (

E|∆n
i Y (2)|qp/(p−q)

)1−q/p ≤ C∆
q
2
+ 3

2(
1
β
∧ p−q

pq )q−ε
n .

Turning to a7
i , we have for ∆n small enough using the integrability conditions on αs and σs, and

the Cauchy-Schwartz inequality,

E|a7
i |q ≤ CE

(
|∆n

i Z̃∆n
i Y |q1{|∆n

i Y |≤α∆$
n }

)
≤ ∆1+1/(2q)+(2q−β)$/2

n .

¤

Lemma 2 Suppose we observe the process pt at the discrete times 0, ∆n, ..., n∆n, ..., t, t+∆n, ..., t+

n∆n, .... Assume that A1-A4 hold, and let either Xt =
∫ t+1

t
σ2

sds or Xt =
∫ t+1

t

∫
ψ+(x)>trT

φ̃i(ψ(x)−
trT , θ(1), θ(2))µ(ds, dx) for i = 1, 2 and θ ∈ Θl

T . Then for some α > 0 and $ ∈ (
0, 1

2

)
,

√
NT

T

T−1∑
t=1

Xt

(
TV n

t−1 −
∫ t

t−1

σ2
sds

)
P→ 0, (8.7)

provided that
√

NT ∆
(2−β)$
n → 0.
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Proof: We make the same decomposition of the difference

((
∆n,t−1

i p
)2

1{|∆n,t−1
i p|≤α∆$

n } −
∫ t−1+i∆n

t−1+(i−1)∆n

σ2
sds

)

as in Lemma 1. We denote the corresponding components in this decomposition for the high-

frequency interval [t+(i−1)∆n, t+i∆n] by aj
t,i, with the components denoted analogously. Then,

using Holder’s inequality for some a > 1,

1

T − 1

T−1∑
t=1

XtLt ≤
(

1

T − 1

T−1∑
t=1

|Xt|a
)1/a (

1

T − 1

T−1∑
t=1

|Lt|a/(a−1)

)1−1/a

,

where Lt =
∑n

i=1 aj
t,i, or the identical sum over their subcomponents. For the terms involving

ã1
t,i(1), â1

t,i, a4
t,i, ã5

t,i and a6b
t,i(1), we can use a = 2, and show convergence to zero of NT

T

∑T
t=1 |Lt|2.

The latter follows from the bounds on the second moments of â1
t,i and a4

t,i derived in the previous

Lemma, and the fact that these terms form martingale difference sequences.

For the rest of the terms we can set set a arbitrarily large. 1
T−1

∑T−1
t=1 |Xt|a will be bounded in

L1 by the integrability assumptions on the processes σs and ϕ±s in A4. Asymptotic negligibility

of
N

0.5a/(a−1)
T

T−1

∑T−1
t=1 |Lt|a/(a−1) follows from the basic inequality

(∑N
i=1 |ai|

)q

≤ N q−1
∑N

i=1 |ai|q for

any q > 1, and the bounds derived in the previous Lemma, when we pick a sufficiently high. ¤

Lemma 3 Suppose we observe the process pt at the discrete times 0, ∆n, 2∆n, ..., [T/∆n]. Let

fT (x) be a function in x (changing with T ) with the following properties for a given deterministic

sequence trT > 1 (which depends only on the time span T ):

(a) fT (x) = 0 for x < log(trT ),

(b) |fT (x)| ≤ C(log(trT ) ∨ x) and |f ′T (x)| ≤ C for x ≥ log(trT ),

(c) |fT (log(trT ) + δ)| ≤ Cδ for δ ≥ 0, where Cδ > 0 is a constant that depends on δ,

and f ′T (x) denotes the right derivative for x = log(trT ). Then under assumption A1, with ν(x)

nondecreasing for x sufficiently large, and assumption A4, we have

1√
NT




[T/∆n]∑
i=1

fT (∆n
i p)−

∑
s≤T

fT (∆ps)


 P→ 0, as ∆n ↓ 0, T ↑ ∞, (8.8)

for NT = Tν+(log(trT )) with ν+(z) =
∫∞

z
xν(x)dx, provided that

√
NT ∆1−ε

n

(
1
∨ √

∆n log(trT )

ν+(log(trT ))

)
→ 0, (8.9)

where ε > 0 is arbitrary small.
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Proof: For a constant K > 0, we denote

pt(K) =

∫ t

0

αsds +

∫ t

0

σsdWs +

∫ t

0

∫

|x|<K

κ(x)µ̃(ds, dx) +

∫ t

0

∫

|x|<K

κ′(x)µ(ds, dx).

The proof goes through several steps.

Step 1. We start by showing that for any s < t and K →∞,

P
(

sup
s≤u≤t

ϕ−u + sup
s≤u≤t

ϕ+
u ≥ K

)
≤ K−q, ∀q > 0.

Using the assumed dynamics for ϕ±u , we can write ϕ±u−ϕ±s =
∫ u

s
α±

′
v dv+

∫ u

s
σ±

′
v dWv+

∫ u

s
σ±

′′
v dBv+∫ u

s

∫
R2 κ(δ±(v−,x))µ̃′(ds, dx) +

∫ u

s

∫
R2 κ′(δ±(v−,x))µ′(ds, dx). Then, using the basic inequality

|ϕ±u | ≤ |ϕ±s | + |ϕ±u − ϕ±s |, the Burkholder-Davis-Gundy inequality, Chebychev’s inequality, and

finally the integrability assumption on the process ϕ±t , it is possible to derive the result of this

step.

Step 2. We next show that for some constants K0, K1 > 0 and α < 1/β,

P
(∫ i∆n

(i−1)∆n

∫

|x|≥K0∆α
n

µ(ds, dx) ≥ K1

)
≤ C∆(1−αβ−ι)bK1c

n , ∀ι > 0.

We start by introducing the following sets that we will rely on later in the proof,

Rn = {x : |x| ≥ K0∆
α
n} , Sn = {x : |x| ≤ K0∆

α
n} , Tn = {x : K0∆

α
n ≤ |x| ≤ K0} .

Using the representation of the jumps with the homogenous measure µ introduced in Lemma 1,

we may write

P
(∫ i∆n

(i−1)∆n

∫

|x|≥K0∆α
n

µ(ds, dx) ≥ K1

)

= P
(∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Rn

(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ(ds, du, dx) ≥ K1

)

≤ P
(∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Rn

1{u<∆−ε
n }µ(ds, du, dx) ≥ K1

)

+ P

(
sup

s∈[(i−1)∆n,i∆n]

ϕ−s ≥ ∆−ε
n

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

ϕ+
s ≥ ∆−ε

n

)
,

where ε > 0 is arbitrary small. For the second probability we can apply the result of Step 1. For

the first probability, we can use the fact that
∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

x∈Rn

µ(ds, du, dx)

has a Poisson distribution with intensity ∆1−ε
n

∫
|x|≥K0∆α

n
ν(x)dx. Therefore,

P

(∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

x∈Rn

µ(ds, du, dx) ≥ K1

)
≤C∆(1−ε)bK1c

n

(∫

|x|≥K0∆α
n

ν(x)dx

)bK1c

≤C∆(1−βα−2ε)bK1c
n ,
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where for the last inequality made use of the fact that
∫
R(|x|β+ι ∧ 1)ν(x)dx < ∞ for ι > 0

arbitrary small, in particular ι < ε.

Step 3. For β < 1 and for every ι > 0, we have

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ(x)µ̃(ds, dx) +

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ′(x)µ(ds, dx)

∣∣∣∣ ≥ K1

)
≤ C∆(1−ι)bK1/K0c

n .

This result follows from the fact that
∫ i∆n

(i−1)∆n

∫
R κ(x)νs(x)dxds < ∞ for β < 1, together with

the following sequence of bounds,

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ(x)µ̃(ds, dx) +

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ′(x)µ(ds, dx)

∣∣∣∣ ≥ K1

)

≤ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

xµ(ds, dx)

∣∣∣∣ ≥ K1 − C

∫ i∆n

(i−1)∆n

(ϕ−s + ϕ+
s )ds

)

≤ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

xµ(ds, dx)

∣∣∣∣ ≥ K1 − C∆1−ε
n

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

ϕ−s ≥ ∆−ε
n

)

+ P

(
sup

s∈[(i−1)∆n,i∆n]

ϕ+
s ≥ ∆−ε

n

)

≤ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

µ(ds, dx)

∣∣∣∣ ≥
K1 − C∆1−ε

n

K0

)
+ C∆q

n,

for arbitrary small ε > 0, and arbitrary large q > 0 (recall C denotes some positive constant).

From here we can apply the result of Step 2 to get the final result of this step.

Step 4. For β ≥ 1 we prove

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ(x)µ̃(ds, dx) +

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ′(x)µ(ds, dx)

∣∣∣∣ ≥ K1

)
≤ C∆bK1/K0c−ι

n ,

for ι > 0 sufficiently small. Again, relying on the representation of the jumps by the homogenous

Poisson measure µ on an extended space with the extra dimension used for thinning, we have

for ∆n sufficiently small (κ′(x) is zero for |x| in some neighborhood of 0) and 0 < α < 1/β,

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ(x)µ̃(ds, dx) +

∫ i∆n

(i−1)∆n

∫

|x|≤K0

κ′(x)µ(ds, dx)

∣∣∣∣ ≥ K1

)

≤ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Tn

κ(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ̃(ds, du, dx)

+

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Tn

κ′(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ(ds, du, dx)

∣∣∣∣ ≥ ρK1

)

+ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Sn

κ(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ̃(ds, du, dx)

∣∣∣∣ ≥ (1− ρ)K1

)
,

for any ρ ∈ (0, 1). For the second probability successive applications of the Burkholder-Davis-

Gundy inequality together with the fact that
∫
|x|≤K0∆α

n
|κ(x)|qν(x)dx ≤ C∆

(q−β)α−ι
n for q > β
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and ι > 0 arbitrary small, imply that for any q > β,

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Sn

κ(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ̃(ds, du, dx)

∣∣∣∣ ≥ (1− ρ)K1

)

≤ C∆n

∫

|x|≤K0∆α
n

|κ(x)|qν(x)dx + C∆qα+(1−βα)z−ι
n ≤ C∆(q−β)α−ι

n ,

for ι > 0 arbitrary small, and some z ∈ [0, 1). For the first probability, following Step 3 we can

split the integral with respect to the compensated measure into two parts, and then for ∆n small

conclude that

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Tn

κ(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ̃(ds, du, dx)

+

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Tn

κ′(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ(ds, du, dx)

∣∣∣∣ ≥ ρK1

)

≤ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈Tn

x
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ(ds, du, dx)

∣∣∣∣

≥ ρK1 − C∆α(1−β−ι)
n

∫ i∆n

(i−1)∆n

(ϕ−s + ϕ+
s )ds

)

≤ P
(∣∣∣∣

∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

x∈Tn

xµ(ds, du, dx)

∣∣∣∣ ≥ ρK1 − C∆1−α(β−1+ι)−ε
n

)

+ P

(
sup

s∈[(i−1)∆n,i∆n]

ϕ−s ≥ ∆−ε
n

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

ϕ+
s ≥ ∆−ε

n

)

≤ CP

(∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

x∈Rn

µ(ds, du, dx) ≥ ρK1 − C∆
1−α(β−1+ι)−ε
n

K0

)

≤ C∆(1−αβ)bρK1/K0c
n ,

where ι > 0 is arbitrary small, and we made use of the result of Step 1 and Step 2. The final part

of the proof for this step then follows by applying the above two inequalities with ρ sufficiently

close to 1, and α close to 0.

Step 5. Using the integrability assumptions on the processes α and σ, we have

P
(∣∣∣∣

∫ i∆n

(i−1)∆n

αsds +

∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣ ≥ K1

)
≤ C∆q

n, ∀q > 0.

Step 6. Combining the results of steps 1-5, it follows that for any bK1/K0c > q,

P (|∆n
i p(K0)| > K1) ≤ C∆q−ι

n ,

for some arbitrary small ι > 0.

Step 7. For some δ ∈ (0, 1) with δ > 1/trT , let K > 0 be such that K < | log(δ)|/3 ∧ log(δtrT ),

then

E




[T/∆n]∑
i=1

∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ai}


 ≤ CT log(trT )∆1−ε

n ,
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where Ai =
{

ω :
∫ i∆n

(i−1)∆n

∫
|x|≥K

µ(ds, dx) ≥ 2
}

and ι > 0 is arbitrary small. To prove this result

we first use the fact that




fT (∆n
i p) ≤ C(log(trT ) ∨ |∆n

i p|),
E

(∑
(i−1)∆n≤s≤i∆n

|fT (∆ps)|
)
≤ C log(trT )∆nν

+(log(trT )).

The result then follows readily from an application of Holder’s inequality and the result of Step

2.

Step 8. For the same choice of δ and K used in Step 7, denote the set Bi = {ω : |∆n
i p(K)| ≥ | log(δ)|}.

Then as in Step 7, using the result of Step 6, we get

E




[T/∆n]∑
i=1

∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bi}


 ≤ CT log(trT )∆n.

Step 9. Denote the sets Ci = {ω : ∃s ∈ [(i− 1)∆n, i∆n] : ∆ps ≥ log(trT )} and Di = {ω : ∆n
i p ≥ log(trT )}.

We will show that

E




[T/∆n]∑
i=1

∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Cc

i , Di}




≤ C∆1/2−ι
n T (ν+(log(trT )))1−ι,

for some arbitrary small ι > 0. On the set Ac
i ∩ Bc

i ∩ Cc
i ∩Di, there is exactly one jump of size

above K in absolute value, and its size must be in the interval [log(δtrT ), log(trT )] (recall the

restriction δ > 1/trT ). Therefore, using the fact that |fT (x) − fT (log(trT ))| ≤ C|x − log(trT )|
for x ≥ log(trT ) (by first-order Taylor series expansion) and that fT (log(trT )) ≤ C, we have

∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Cc

i , Di}

≤ C|∆n
i p(K)|

∫ i∆n

(i−1)∆n

∫

R
1{x∈[log(δtrT ),log(trT )]}µ(ds, dx)

+ C

∫ i∆n

(i−1)∆n

∫

R
1 (|∆n

i p(K)| ≥ log(trT )− x, x ∈ [log(δtrT ), log(trT )]) µ(ds, dx).

(8.10)

Note that in the last integral, the integrand is not adapted but this does not matter as the

integral with respect to µ is defined in the usual Riemann-Stieltjes sense; i.e. not in a stochastic

sense. Now using the representation of the jumps with respect to µ, we have for the first term
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on the right-hand side of (8.10),

E
(
|∆n

i p(K)|
∫ i∆n

(i−1)∆n

∫

R
1{x∈[log(δtrT ),log(trT )]}µ(ds, dx)

)

≤ E
(∣∣∣∣

∫ i∆n

(i−1)∆n

αsds +

∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣
∫ i∆n

(i−1)∆n

∫

R
1{x∈[log(δtrT ),log(trT )]}µ(ds, dx)

)

+ E
( ∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

|x|≤K

κ(x)
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ̃(ds, du, dx)

∣∣∣∣

×
∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

x∈[log(δtrT ),log(trT )]

µ(ds, du, dx)

)

+ E

(∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

|x|≤K

κ′(x)µ(ds, du, dx)

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ ∆−ε
n

0

∫

x∈[log(δtrT ),log(trT )]

µ(ds, du, dx)

)

+ C∆q
n ≤ C∆3/2−ρ

n ν+(log(δtrT ))1−ρ,

(8.11)

for some ε > 0, ρ > 0 arbitrary small, and arbitrary q > 0. For the first expectation on the right

hand side we have used Holder’s inequality, for the second we have conditioned first on the fil-

tration generated by µ(R+,R+, x ∈ [log(δtrT ), log(trT )]) and then applied the Burkholder-Davis-

Gundy inequality and Holder’s inequality, while for the last term we have used the independence

of the filtration generated by µ(R+,R+, x ∈ [log(δtrT ), log(trT )]) from that of µ(R+,R+, |x| ≤ K)

(note that K is less than log(δtrT )). Now, for the second term on the right hand-side of (8.10)

∫ i∆n

(i−1)∆n

∫

R
1 (|∆n

i p(K)| ≥ log(trT )− x, x ∈ [log(δtrT ), log(trT )]) µ(ds, dx)

≤ C|∆n
i p(K)|1−ρ

∫ i∆n

(i−1)∆n

∫

R

1

| log(trT )− x|1−ρ
1 (x ∈ [log(δtrT ), log(trT )]) µ(ds, dx),

for arbitrary small ρ > 0. From here we can proceed exactly as in (8.11) upon using the following

bound for any 1 ≤ α < 1/(1− ρ),

E
(∫ i∆n

(i−1)∆n

∫

R

1

| log(trT )− x|1−ρ
1 (x ∈ [log(δtrT ), log(trT )]) µ(ds, dx)

)α

≤ C∆n

∫

x∈[log(δtrT ),log(trT )]

1

| log(trT )− x|α(1−ρ)
ν(x)dx

+ C∆α
n

(∫

x∈[log(δtrT ),log(trT )]

1

| log(trT )− x|1−ρ
ν(x)dx

)α

,

≤ C∆nν
+(log(δtrT )),

where for the first inequality we made use of the Burkholder-Davis-Gundy inequality, and for

the second the restriction that α < 1/(1− ρ) together with the fact that ν(x) is non-increasing

in the tails.
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Step 10. In this step we show

E




[T/∆n]∑
i=1

∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Ci, Dc

i }




≤ C∆1/2−ι
n T (ν+(log(trT )))1−ι,

for some arbitrary small ι > 0. On the set Ac
i ∩ Bc

i ∩ Ci ∩Dc
i , there is exactly one jump of size

above K in absolute value and its size must be in the interval [log(trT ), log(trT )− log(δ)]. Then,

using the fact that |fT (x)| ≤ C for x ∈ [log(trT ), log(trT )− log(δ)] (C depends on δ), we have
∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Ci, Dc

i }

≤ C

∫ i∆n

(i−1)∆n

∫

R
1 (|∆n

i p(K)| ≥ x− log(trT ), x ∈ [log(trT ), log(trT )− log(δ)]) µ(ds, dx).

From here the result follows exactly as in Step 9.

Step 11. In the final step we show

E




[T/∆n]∑
i=1

∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Ci, Di}




≤ CT∆1/2−ι
n

(
ν+(log(trT ))

)1−ι
,

for some ι > 0. On the set Ac
i ∩ Bc

i ∩ Ci ∩ Di, we have only one jump of p above log(trT ).

Therefore, since the function fT is differentiable for values of the argument exceeding log(trT ),

a first-order Taylor expansion together with the boundedness of the first derivative of fT yields
∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Ci, Di} ≤ C|∆n

i p(log(trT )|1{Ac
i , Bc

i , Ci, Di}.

To continue further we introduce the following two sets,

RT = {x : |x| ≥ log(trT )} and ST = {x : |x| ≤ log(trT )} .

Using the alternative representation of the jumps with respect to µ, we have

E




∣∣∣∣∣∣
fT (∆n

i p)−
∑

(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣
1{Ac

i , Bc
i , Ci, Di}




≤ CE

(
1{Ac

i , Bc
i , Ci, Di}|∆n

i p(log(trT )|
∫ i∆n

(i−1)∆n

∫

u<ϕ+
s−

∫

x∈RT

µ(ds, du, dx)

)

≤ CE
(
|∆n

i p(log(trT )|
∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

)

+ CE
(
|∆n

i p(log(trT )|1{sups∈[(i−1)∆n,i∆n] ϕ+
s ≥∆−ε

n }
)

.
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Furthermore,

E
(
|∆n

i p(log(trT )|
∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

)
≤ I + II,

I = CE
[(∫ i∆n

(i−1)∆n

(|αs|+ ϕ+
s− + ϕ−s−)ds +

∫ i∆n

(i−1)∆n

σsdWs

) ∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

]
,

II = CE
[ ∣∣∣∣

∫ i∆n

(i−1)∆n

∫

R+

∫

x∈ST

x
(
1{x<0, u<ϕ−s−} + 1{x>0, u<ϕ+

s−}
)

µ̃(ds, du, dx)

∣∣∣∣

×
∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

]
.

By Holder’s inequality and the integrability conditions,

I ≤ C∆3/2−ι
n

(
ν+(log(trT ))

)1−ι
,

for some arbitrary small ι > 0. For the term II, we can condition on the filtration generated by

the measure µ(R+,R+, x ∈ RT ), denoted with F ∗, and the fact that the homogenous measure

on disjoint sets creates independent filtration, see e.g. Sato (1999), to get by an application of

the Burkholder-Davis-Gundy inequality,

II ≤CE
[√∫ i∆n

(i−1)∆n

E((ϕ+
s + ϕ−s )|F ∗)ds

∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

]

≤C∆1+1/2−2ε
n ν+(log(trT )) + II ′,

II ′ =CE
(√√√√E

(∫ i∆n

(i−1)∆n

(ϕ+
s + ϕ−s )ds

(∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

)2 ∣∣∣∣F ∗

)

× 1{sups∈[(i−1)∆n,i∆n] ϕ+
s ≥∆−ε

n }

)
.

An application of the Cauchy-Schwartz inequality then implies,

II ′ ≤ C∆q/2
n

√√√√E
(∫ i∆n

(i−1)∆n

(ϕ+
s + ϕ−s )ds

(∫ i∆n

(i−1)∆n

∫

u<∆−ε
n

∫

x∈RT

µ(ds, du, dx)

)2
)
≤ C∆q/2

n ,

for any q > 0.

Step 12. Combining the results of Steps 7-11, we get (8.8) provided condition (8.9) holds. ¤

Lemma 4 Suppose we observe the process pt at the discrete times 0, ∆n, ..., n∆n, ..., t, t+∆n, ..., t+

n∆n, ..., and assume that assumptions A1, with ν(x) nondecreasing for x sufficiently large, and

A4 hold. Then, for the function fT defined in Lemma 3,

1√
NT

T−1∑
t=1

(
n∑

i=1

fT (∆n,t
i p)−

t+1∑
s=t

fT (∆ps)

)
TV n

t−1
P→ 0, as ∆n ↓ 0, T ↑ ∞, (8.12)

provided condition (8.9) holds.
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Proof: We can proceed exactly as in the proof of Lemma 2, using the result in Lemma 3. For

this we only need that E|TV n
t−1|p < ∞ for arbitrary p > 0. But, this follows from the fact that

by successive conditioning and application of Holder’s inequality, E
(|∆n,t−1

i1
p|q1 ...|∆n,t−1

ik
p|qk

) ≤
C∆k−ε

n , for k an integer, ε > 0 arbitrary small, ij for j = 1, ..., k, and qj ≥ 2 for j = 1, ..., k. ¤
Proofs of Theorem 3 and Corollary 2. The proofs will follow from the proof of Theorem 1

if we can show

sup
θ∈Θl

T

√
M+

T ||ĝT (θ, trT )− g̃T (θ, trT )|| P→ 0,

where ĝT (θ, trT ) is defined from g̃T (θ, trT ) by substituting
∫ t+1

t

∫
ψ+(x)>trT

φ+
i (ψ(x)−trT , θ(1), θ(2))µ(ds, dx)

with
∑n

j=1 φ+
i (ψ(∆n,t

j p)− trT , θ(1), θ(2)) for i = 1, 2 and t = 0, ..., T − 1, and in the case of Corol-

lary 1
∫ t

t−1
σ2

sds is also replaced by TV n
t for t = 1, ..., T . But, this result follows directly from

Lemma 2 and Lemma 4, as the conditions on the function fT are satisfied by our score functions

ϕ+
i on the set θ ∈ Θl

T . ¤
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