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An Asset Pricing Approach to Testing General Term Structure
Models including Heath-Jarrow-Morton Specifications and Affine

Subclasses

Abstract

We develop a new empirical approach to term structure analysis that allows testing
for time-varying risk premia and for the absence of arbitrage opportunities based on
the drift restriction within the Heath, Jarrow and Morton (1992) framework. As in the
equity case, a zero intercept condition is tested, but in addition to the standard bilinear
term in factor loadings and market prices of risk, the relevant mean restriction in the
term structure case involves an additional nonlinear (quadratic) term in factor loadings.
We estimate our general model using likelihood-based dynamic factor model techniques
for a variety of volatility factors, and implement the relevant likelihood ratio tests. Our
factor model estimates are similar across a general state space implementation and
an alternative robust two-step principal components approach. The evidence favors
time-varying market prices of risk. Most of the risk premium is associated with the
slope factor, and individual risk prices depend on own past values, factor realizations,
and past values of other risk prices, and are significantly related to the output gap,
consumption, and the equity risk price. The absence of arbitrage opportunities is
strongly rejected with one or two factors in the model, but not with three or more

factors.

Keywords: arbitrage, bond aging effect, dynamic factor model, macroeconomic con-
ditioning variables, nonlinear drift restriction, state space model, time-varying risk

premia, yield curve model
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1 Introduction

The Treasury market is among the largest financial markets in the world, with $7,888 billion
worth of domestic debt securities outstanding at the end of 2008, compared to the total stock
market capitalization of $11,738 billion.! Treasuries are held by many different financial in-
stitutions, including commercial and investment banks, pension funds, insurance companies,
and hedge funds, as well as private investors, for purposes of diversification, immunization,
asset allocation, market timing, and risk management. The weight of government bonds
in many portfolios has increased dramatically after the onslaught of the financial crisis. In
the relatively liquid Treasury market, where individual issues of comparable maturity and
contractual terms are fairly close substitutes, market conditions at any given point in time
are effectively summarized by the yield curve. Indeed, bonds, notes, and bills are always
quoted in terms of their corresponding yields.

In this paper, we use an asset pricing approach to test the relevant efficient market
pricing conditions directly on the sequence of consecutive observed yield curves. As in the
equity case, a zero intercept condition is tested, but in addition to the standard bilinear
term in factor loadings and market prices of risk, the relevant mean restriction in the term
structure case involves a nonlinear (quadratic) term in the loadings, and the test is applied
to yield changes appropriately adjusted for both average slope (or yield spread) and local
slope (or bond aging effect, cf. Litterman and Scheinkman (1991)) of the yield curve. With
these extensions to the asset pricing approach, testing can proceed in a fashion parallel to
multivariate testing of equity pricing models. Indeed, a tension between apparent non-zero
intercepts (indicative of mispricing) and potentially omitted factors, similar to that common
in the equity case, arises empirically in our term structure setting.

The idea that the yield curve captures current market conditions provides the foundation
of the Ho and Lee (1986) and Heath, Jarrow and Morton (1992) (henceforth HJM) approach
to general interest rate modeling, where the entire yield curve acts as the state variable in
the dynamic term structure model. An assumption is made about the shape of the volatility
functions governing the stochastic evolution through time of the curve. To preclude arbitrage
opportunities, a restriction linking drifts and volatilities of yields through market prices
of risk is required. At this point, the distribution of all future interest rates is specified,
both under the physical and the risk neutral measure, hence facilitating derivative pricing.
Calibration to the entire current term structure is feasible, since the shape of the current
yield curve is not restricted by parameters and state variables, and this makes the approach
overwhelmingly popular among practitioners, for pricing, trading, and hedging bonds and

interest rate sensitive claims. The idea is to condition current prices on all the information

!Source: Bank for International Settlements (BIS) Quarterly Review, June 2009, for the bond market
figure, and the World Federation of Exchanges, the sum of the NYSE Euronext (U.S.), NASDAQ OMX, and
American Stock Exchange total capitalizations for the stock market.



in the current yield curve, but reduce the dependence on potentially obsolete parameter
estimates based on past observations. In spite of this, the framework has rarely been analyzed
econometrically. In particular, it has not been tested whether risk premia are time-varying
in the HJM framework, and whether the no-arbitrage drift condition is satisfied in practice

in the market place.

We build an econometrically tractable dynamic term structure model consistent with the
HJM framework, and we also consider the potential reduction to well-known affine subclasses.
The general model allows for an arbitrary number of latent factors, and a potentially time-
varying risk premium is associated with each of these. The model is specifically formulated
at the level of yields to maturity, since this is how market prices are quoted, and because
factor loadings are more reasonably taken to be similar for consecutive (changes in) yields
of equal maturity than for a time series of returns to a bond that by definition becomes
shorter as maturity is approached (unlike a stock). We develop an asset pricing approach to
the empirical analysis of yields as opposed to returns, using likelihood-based methods and a
state space implementation. We specify latent state variables such that market prices of risk
are given as conditional expectations of these. In the special case of serially uncorrelated
state variables, the state space model reduces to the classical factor analysis applied by Roll
and Ross (1980) to stock market data. We use the Kalman filter to handle the generalization
to a hidden Markov process for the state variables. To verify robustness to departures from
distributional assumptions, we compare with results from an alternative two-step principal
component-based approach. The analysis allows studying the appropriate number of latent
factors to be included in order to explain term structure movements in this framework, as
well as testing whether risk premia are in fact time-varying, and whether the no-arbitrage
drift restriction is satisfied in the data. Here, we consider the unsmoothed Fama-Bliss fixed
maturity panel of monthly U.S. zero-coupon Treasury yields of maturities ranging from three

months through ten years, over the period 1985 through 2000.

Allowing for time-varying risk premia is important for a number of reasons. In particular,
this is so even if the main interest is in derivative pricing and hedging, and hence in the risk
neutral distribution, although this is obtained by setting all risk premia equal to zero. On
the one hand, derivatives may be priced based only on the current yield curve and the
volatility functions governing future changes in yields. Under the no-arbitrage restriction,
the drifts of future yields of all maturities are known functions of the volatilities. In this
sense, the interest in whether risk premia are time-varying under the physical measure is
perhaps less obvious, and this may explain why the hypothesis has not been tested before
in the literature. On the other hand, the volatility functions are required in any case for the
pricing of bonds as well as derivatives. A natural way to obtain the volatility functions is to
estimate them econometrically. This could be done using data on yields, derivatives, or both.

Estimation based on yields over time necessarily uses the model under the physical measure,
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and so risk premia enter. Thus, to bring yield data to bear on volatility estimation, risk
premia must be accommodated in the empirical approach. Simply setting premia equal to
zero would lead to inconsistent estimates of the volatility functions in yield data. Similarly,
incorrectly restricting risk premia to be constant through time would lead to inconsistent
volatility estimates, and hence the importance of testing for whether risk premia are in
fact time-varying. Of course, if all volatility function parameters are backed out as implicit
parameters from current data on derivative prices, only, then potentially time-varying risk
premia may be ignored entirely, see, e.g., Flesaker (1993), and Amin and Morton (1994).
However, the precision of volatility estimates is generally enhanced greatly by including
data under the physical measure, in particular, yields to maturity, and thus the econometric

approach of the present paper.

Allowing for time-varying risk premia is important when testing for the absence of arbi-
trage opportunities, as well. For one, as already argued, volatility estimates would be incon-
sistent if risk premia were inappropriately constrained to be constant, and as the volatilities
enter into the drift specification under the no-arbitrage condition, the test of this would be
misspecified. Secondly, even if consistent volatility estimates were used, the test on the drift
restriction would be misspecified if the wrong (constant in time) form of market prices of
risk were entered into the condition tested. An additional issue relates to the interpretation
of results of tests. Thus, rejection of the arbitrage restriction may arise spuriously if the
maintained model is misspecified. In the present application, this could occur, e.g., if the
number of latent factors included were insufficient, or if market prices of risk were incorrectly
taken to be constant. This reinforces the importance of our general approach allowing for
an arbitrary number of factors, and testing for time-varying risk premia and no arbitrage for
each given number of factors. Indeed, what we are dealing with is nothing but the usual joint
hypothesis problem of market efficiency tests, well-known from the asset pricing literature
using stock market data. In particular, any rejection of the arbitrage restriction could either
be interpreted as an indication of the presence of arbitrage opportunities, or, if no arbitrage
is a maintained hypothesis throughout, as suggesting that more factors be added, or that
risk premia be allowed to vary across time, if they are not already. Either alternative would
render the model under the null inappropriate for pricing purposes, and hence the critical

importance of having a procedure for testing the no-arbitrage condition.

The HIM framework for term structure modeling is general and so includes, e.g., the
popular affine models and all standard short rate models. In the short rate approach, a
stochastic process assumption is adopted for the short rate of interest. When combined
with a rule for the measure change from the physical to the risk neutral, e.g., based on
a risk premium specification from equilibrium theory, then this delivers a model for the
shape and stochastic evolution through time of the entire term structure of interest rates

of all maturities. The literature on short rate models is huge, and a complete survey well



beyond the scope of this paper, but some of the seminal contributions in the area are the
Gaussian model of Vasicek (1977), the general equilibrium model of Cox, Ingersoll and Ross
(henceforth CIR, 1985a), the resulting square root model of CIR (1985b), the general affine
model framework of Duffie and Kan (1996), along with the empirical analysis of this in Dai
and Singleton (2000), and the essentially affine models of Duffee (2002). In all these models,
the issue of whether or not risk premia are time-varying is a relevant one, hence providing
a link to our research. In most cases, risk premia are set as given parametrized (e.g., affine)
functions of state variables, see, e.g., CIR (1985b), Dai and Singleton (2002), Duffee (2002),
and Duarte (2004). Stanton (1997) estimates this functional relation nonparametrically.
Another empirical literature explores the expectations hypothesis and extensions, see, e.g.,
Campbell and Shiller (1991). An early contribution on time-varying risk premia in this area
is Fama (1984), and Bams and Wolff (2003) is a recent study using a state space framework.
In the present paper, we allow for time-varying risk premia that are adapted to the driving
Wiener processes in the HJM framework and are dependent through time according to a

Markov transition scheme.

In addition to time-varying risk premia, many short rate models allow for time-varying
volatility, starting with CIR (1985b). In the present paper, we focus instead on unrestricted
shape in the maturity direction of the volatility function, while keeping it constant through
time, and dynamics enter through the risk premium transition equation. More general speci-
fications could in principle be considered, since each short rate model can be extended within
the HJM framework by letting the volatilities of yields of all maturities coincide with those
in the short rate model in question and leaving the initial term structure shape unrestricted.
This prescription highlights the generality of the HJM approach, although restrictions on
yield curve shapes are implied also in this framework, once a process specification for risk

premia is adopted.

Papers closely related to ours are few. Bliss and Ritchken (1996) and de Jong and Santa
Clara (1999) consider a specific HJM-style model in a dynamic factor model setting, but
they impose the no-arbitrage drift restriction throughout, rather than testing it, which is
part of our main focus. Their model involves only a single market price of risk, and de Jong
and Santa Clara (1999) restrict this to be proportional to the volatility of the short rate, as
in CIR (1985b), whereas Bliss and Ritchken (1996) do not estimate it at all. In contrast, we
work with a vector of potentially time-varying risk premia, and as a second part of our focus
test for the special case that premia are constant. Recently, Jeffrey et al. (2004) consider
nonparametric estimation of the volatility function, but also do not test the no-arbitrage

drift condition, or estimate any premia.

Our empirical results show that time-varying risk premia are preferred over constant
premia. We find that at least three or four factors are necessary to explain term structure

movements, consistent with the bulk of the empirical literature, dating back to Litterman



and Scheinkman (1991). Our results regarding the drift condition are broadly consistent with
the absence of arbitrage opportunities. When only one or two latent factors are included
in our model, the arbitrage restriction is strongly rejected at all conventional levels. When
three or four latent factors are included, there is much weaker evidence of arbitrage oppor-
tunities. The difference in results is of interest in its own right. In particular, researchers
working with one or two factors, only, may find apparent signs of arbitrage opportunities
in the market place, whereas the proper understanding of their results is actually that the
model is misspecified, with too few factors. This is reminiscent of the tension between non-
zero Jensen’s alphas and omitted factors in the asset pricing literature using stock market
data. On the other hand, even if no arbitrage is maintained throughout, our results do not
yield any evidence that more than four factors (or other generalizations) are required. While
our implementation uses a state space formulation and (Gaussian) distributional assump-
tions, our dynamic factor model estimates are confirmed using an alternative robust two-step
principal components-based approach. We document that even with three or four factors
our tests have power, and so in particular the failure to get strong rejection of no arbitrage
is meaningful. Our estimates show that most of the risk premium is associated with the
slope factor, and individual time-varying market prices of risk depend on own past values,
factor realizations, and past values of risk prices associated with other factors. In addition,
market prices of risk are significantly related to a number of relevant macroeconomic con-
ditioning variables, in particular the output gap suggested by Cooper and Priestley (2009),

consumption, and the equity risk price or Sharpe ratio.

Our work establishes the empirical importance of the nonlinear (quadratic) component
of the no arbitrage condition and of suitable slope-adjustment of the yield change data.
In particular, we show that if the average and local slopes (yield spread and bond aging,
respectively) are not correctly accounted for, or if the nonlinear component is left out of the
arbitrage condition, so that the test coincides with that for Ross’ (1976) arbitrage pricing
theory (APT) applicable to returns even in the present term structure case, then this changes
the qualitative conclusions regarding arbitrage opportunities compared to those from our
test appropriately accounting for the nonlinear (in loadings) drift term and applied to slope-

adjusted yield changes.

The rest of the paper is laid out as follows. In Section 2, we present the model and
the main hypotheses. In Section 3, we present in turn the data, empirical methodology,
estimation results, and hypothesis tests. In a separate analysis in Section 4, we consider
the sensitivity of our general approach to a number of relevant issues arising in practice,
such as possible errors in model specification, data, distributional assumptions, etc. We
investigate the empirical validity of standard parametrized volatility structures from the
literature, including affine subclasses, and results using the alternative robust two-step prin-

cipal components-based approach are presented and compared to those from the previous
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section. Section 5 concludes.

2 The Model

The analysis is set in the Heath, Jarrow and Morton (1992) (henceforth HJM) framework for
yields as opposed to forward rates and using the Brace and Musiela (1994) parametrization
where term to maturity 7 rather than maturity date enters as a separate argument in the
continuously compounded zero coupon yield to maturity y (¢,7) at time ¢. The yield curve

dynamics are given by the infinite dimensional stochastic differential equation
dy (t,7) = a(t,7)dt + o (t,7) dW,, (1)

with drift o and yield volatility function o. Writing d for the dimension of the driving Wiener
process W, the dimension of o (¢, 7) is d x 1. Thus, the mapping 7 — y(t, -) gives the yield
curve at date ¢, and (1) shows how this evolves through calendar time. The no-arbitrage

drift condition in this setting is

a(t,T) = % (y(t,7) =y (t,0)) + % (t,7) +o(t,7) N+ ga (t,7) o (t,7), (2)

where ); is the d-vector of market prices of risk. As HJM derived the relevant drift condition
in an alternative parametrization with maturity date ¢ + 7 instead of term to maturity 7
as a separate argument, and for instantaneous forward rates instead of the yield curve, we
present a brief derivation of (2) in Appendix A. The first two terms in (2) are not present in
the HJM version of the drift condition. The first term, (y (t,7) — y (£,0)) /7, is an average
slope or yield spread, and appears because we consider yields rather than forward rates. The
second term, Qy(t,7)/0T, is a local slope, i.e., the yield curve differentiated in the maturity
direction, and appears because we consider constant terms to maturity rather than constant
maturity dates. Litterman and Scheinkman (1991) decomposed bond returns into a locally
deterministic bond aging effect and the return on constant maturity zeroes, and the local
slope reflects the former. The third term in (2) is the risk premium, given by the volatility
functions multiplied by the relevant market prices of risk. For derivative pricing purposes,
changing measure from the physical to the risk neutral is equivalent to setting \; equal to
zero. The final term, linear in maturity and quadratic in volatility, replaces a term involving

an integral in the HJM representation.

Consider panel data on yields v = (Ytrgy ooy Ytrm)s t = 1,...,T. Thus, there are m + 1
observed yields, corresponding to terms to maturity 79 < ... < 7,,, and 7" is the number of

time periods. By a discrete time (Euler) approximation to (1), allowing for idiosyncratic
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(e.g., measurement) error £;; in the i’th yield, and imposing the drift condition (2), we have

1 Y17 — Yt—-1,7
—1,7 —1,Ti—1

(ytflﬂ'i - ytfl,To) +

Ty — To Ty — Ti—1

Ytr; — Yto1,7; = + VN1 + %bgbl- +biwg +er4, (3)
i =1,...,m, where o (t,7;) = b;, i.e., we henceforth take the volatility function to be time-
invariant. This is more relevant in the current parametrization with fixed term to maturity
than in the HJM parametrization. The d-dimensional vector w; of driving factors corre-
sponds to increments in the Brownian motions W;. Note that the shortest observed term
to maturity 7o in practice is positive, so y(¢,0) from (2) is replaced by ¥t .r,, and one cross-
section dimension is lost. Thus, the shortest maturity 7y is not considered on the left hand
side, but on the right hand side it is used in calculation of the first term (the average slope,
or yield spread) for all longer maturities, and also in the calculation of the second term (the
local slope) for the second-shortest maturity 7. Because y; ., enters these calculations, we
measure it by the 3-month T-bill yield, which should be a more market based rate than, say,
the 1-month yield, and a good short rate proxy, see Chapman, Long, and Pearson (1999).

It is natural to collect yield data on the left hand side by defining the slope-adjusted
yield changes
]_ yt—l,Ti - yt—l,ﬂ'_l
(4)

(ytflﬂ'i - ytfl,To) - 5
Ty — 70 Ty — Ti—1

Yt,;i = Ytory — Y1,y —

i.e., the raw yield changes adjusted for both average and local slope, and form the m-vector

Ut = (Gt.rys -5 Ut.mpn ). The resulting model has factor structure,
Yt = pu + By + &, (5)

where the i’th row of the m x d matrix B is given by ¥, and ¢, = (g4, ..., €t7m)’. Thus, B
gives the loadings on the common covariance-generating factors wy, and pr; = (f1g, .., fhomt)’
contains the conditional means of the slope-adjusted yield changes 7;, given information
through ¢ — 1. Without loss of generality, we specify var (w;) = I, since any covariance
terms may be absorbed in B. In addition, we assume that the idiosyncratic errors are
contemporaneously uncorrelated, i.e., var (¢;) = VU is a diagonal matrix, and that w; and &,
are independent of each other and across time (note that w; = ftt;l dWy). In the system (5),

the no-arbitrage drift restriction (2) is recast as
/ Tiyy
pit = biAe—1 + Ebibz‘- (6)

Note the similarity to the arbitrage pricing theory (APT) of Ross (1976). Following Roll and
Ross (1980), a standard approach to testing the APT is to apply the classical factor analysis

to excess stock returns, thus estimating the loadings, say B, then test the APT as a cross-



sectional restriction on the mean excess returns u, in particular, u = B, for suitable market
prices of risk A\. There are two important differences in our term structure case. First, the
factor analysis structure (5) applies to the appropriately slope-adjusted yield changes defined
in (4) above, not to raw yields, spreads, or yield changes. Secondly, the theory restriction
tested is not that means be linear in loadings, as in the APT, viz. p;; = bi\;—1. Instead,
the no-arbitrage term structure restrictions include the additional terms Z-b;b; in (6) above,
which are nonlinear (indeed, quadratic) in loadings. In this context, the original APT test

simply drops the second (quadratic) term.

The no-arbitrage condition should be tested in term structure analysis. Unfortunately,
the empirical literature has invariably left out this step. If the condition is rejected, then
the model is simply wrong, since it admits arbitrage. In particular, the volatility function
(loadings) or the price of risk specification is too simplistic. Once a specification is determined
where the no-arbitrage condition is not rejected, it is possible to use the framework to
explore the dynamic properties of the vector of risk prices \;_;. To test the no-arbitrage
restriction, a number of alternative approaches suggest themselves. Two-step procedures
may be used, in the first step estimating p by the sample means and B either by principal
components or the classical factor analysis. In the second step, risk prices are estimated
by cross-sectional regression based on (6). In a sense, the first step uses constant risk
premia, but time-varying premia may be picked up in the second step by running the cross-
sectional regressions period by period. We develop a full information maximum likelihood
one-step procedure that instead allows introducing time-varying risk prices from the outset.
In the special case of constant risk prices A, the procedure is equivalent to expanding the
classical factor analysis likelihood function by the mean specification (6) above. With time-
varying risk prices the state space form is used, and the prediction error decomposition of the
likelihood function is calculated based on the innovations from the Kalman filter. In both
one- and two-step approaches, this description corresponds to the restricted model, and the
unrestricted alternative specified for testing purposes adds maturity-specific intercepts «; to

the drift specification (6), producing
Wit = O + b;/\t—l + %bgbz (7)

Here, the no-arbitrage null hypothesis is Hy : @ = 0, where a@ = (a, ..., ;)" Our main
focus is on testing this hypothesis, which can now proceed much as in multivariate testing of
equity pricing models, as well as on determining the appropriate number of factors, d, and

testing for time-varying market prices of risk ;.
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3 Empirical Results

3.1 Data and Summary Statistics

The data set we use is the unsmoothed Fama-Bliss fixed maturity panel over the period
1985 through 2000. It is constructed by Diebold and Li (2006), who use end of month prices
for U.S. Treasuries from the CRSP government files to obtain unsmoothed Fama and Bliss
(1987) forward rates. With this procedure the authors obtain a fixed maturity dataset for a
cross-section of 17 maturities: 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and
120 months. We have for the cross-sectional dimension of the yields m 4+ 1 = 17, and thus
for the dimension of the vector of slope-adjusted yield changes we have m = 16.

Summary statistics appear in Table 1. The first column shows term to maturity. In the
remainder of the table, the left portion is summary statistics for yields, and the right portion
is for slope-adjusted yield changes. The yield portion of the table is similar to Diebold and
Li (2006). Thus, on average, the term structure of interest rates is upward sloping, from
5.6% to 7.3% (column labelled Mean), while the term structure of volatilities tends to be
downward sloping (column Sd). For each maturity, there is a considerable spread between
the minimum and maximum observation, indicating a great deal of variation over the period.
Finally, there is strong positive autocorrelation at the one and 12 month lags, and even at
lag 30 for maturities of two years and above. Turning to the slope-adjusted yield changes in
the right hand side of the table, the means are much smaller, and very close to zero. The
term structure of volatilities is now essentially flat for maturities of 12 months and above,
and serial correlation is much less than for yields and not systematically positive for lags 12
and 30. This suggests that the factor model approach is more appropriate for slope-adjusted
yield changes.

Figure 1 provides a three-dimensional view of our data on raw yields and slope-adjusted
yield changes. In both cases, the curves appear somewhat flat in the term to maturity
direction, consistent with level shifts being of greater order of magnitude than slope and
curvature shifts. The stronger autocorrelation in yields shows up as more systematic swings
in the calendar date dimension for raw than for slope-adjusted yield changes. The vertical

axes are different because of the smaller size of the slope-adjusted yield changes.
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Table 1: Summary Statistics of Yields and Slope-Adjusted Yield Changes

The table reports summary statistics for the yields and slope-adjusted yield changes from the unsmoothed Fama-Bliss dataset. We look at the yield curve
for 17 maturities over the period January 1985 up to December 2000. The slope-adjusted yield changes are obtained according to the equation

~ 1 yt—l,Ti - yt,Ti71
Yt,7ro = Yt,ri — Yt—1,7 — (Y17 = Yt-1,79) = ————
Ti — 70 Ti — Ti-1
for ¢ = 1,...,m, and where y; -, is the i-th observed yield at time ¢, with corresponding time to maturity 7;, with 7o = 3, 7 = 6 and 7,,, = 120. In the

table we show mean, standard deviation (Sd), minimum (Min), maximum (Maz) and three autocorrelation coefficients, 1 month (p(1)), 1 year (p(12))
and 30 months (5(30)).

Summary Statistics
Yields Slope-Adjusted Yield Changes

7, Mean Sd Min  Max p(1) p(12)  p(30) Mean Sd Min Max p(1) p(12)  p(30)
3 5.630 1.484 2.732 9.131 0.978 0.569 -0.079

6 5.785 1.479 2.891 9.324 0.976 0.555 -0.042 -0.119 0.273 -1.209 0.561 0.132 0.047 0.050
9 5907 1.488 2984 9.343 0.973 0.545 -0.005 -0.105 0.283 -1.239 0.609 0.175 0.037 -0.026
12 6.067 1.497 3.107 9.683 0.969 0.539 0.021 -0.120 0.319 -1.452 0.723 0.109 0.058 -0.091
15 6.225 1.500 3.288 9.988 0.968 0.527 0.060 -0.123 0.314 -1.156 0.716 0.207 0.052 -0.072
18  6.308 1.492 3.482 10.188 0.965 0.513 0.089 -0.096 0.312 -1.123 0.870 0.234 0.053 -0.084
21 6375 1.480 3.638 10.274 0.963 0.502 0.115 -0.088 0.315 -1.029 0.780 0.193 0.080 -0.079
24 6401 1460 3.777 10.413 0.960 0.481 0.133 -0.070 0.327 -1.141 0.948 0.200 0.042 -0.102
30  6.550 1.458 4.043 10.748 0.957 0.479 0.190 -0.086 0.329 -1.168 0.831 0.210 0.021 -0.090
36 6.644 1.435 4.204 10.787 0.956 0.471 0.226 -0.073 0.329 -1.086 0.824 0.206 0.031 -0.103
48 6.838 1.435 4.308 11.269 0.951 0.457 0.294 -0.072 0.337 -1.109 0.869 0.149 0.043 -0.086
60 6.928 1.426 4.347 11.313 0.951 0.464 0.336 -0.060 0.330 -1.098 0.741 0.147 0.009 -0.094
72 7.082 1453 4.384 11.653 0.953 0.454 0.372 -0.064 0.322 -1.066 0.768 0.137 -0.008 -0.082
84  7.142 1422 4.352 11.841 0.948 0.448 0.391 -0.055 0.323 -1.365 0.822 0.110 -0.020 -0.080
96 7.226 1.410 4.433 11.512 0.954 0.468 0.417 -0.054 0.310 -1.158 0.772 0.098 -0.030 -0.064
108  7.270 1.425 4.429 11.664 0.953 0.475 0.426 -0.050 0.308 -1.176 0.663 0.097 -0.036 -0.070
120 7.254 1428 4.443 11.663 0.953 0.467 0.428 -0.043 0.313 -1.176 0.776 0.071 -0.013 -0.072




3.2 Estimation Methodology

The factor structure in (5) combined with the potential dynamics of the risk prices in (6)
suggests a dynamic factor model approach for estimation and inference. To proceed further,
the process for A\; must be specified. Following HJM, we assume that the risk price process
is adapted to the filtration generated by the driving Wiener processes. In particular, in the
discrete time formulation of the econometric model, we specify that risk prices be affine in

a suitable vector of latent state variables, say xy, i.e.,
At = Qa + Al't, (8)

where a is d x 1 and A is d x d, and z; is measurable with respect to the w;-process. Thus,
constant risk premia are the special case A = 0. Smooth time-variation in risk premia is
generated by ensuring this property for the state variable sequence, and analysis under the
risk neutral measure (for derivative pricing) is facilitated by setting both a and A equal to
zero. In the absence of arbitrage opportunities, i.e., in the system (5)-(6), and aside from
idiosyncratic noise €, time variation in the slope-adjusted yield change ¥, ,, is generated by

bi(A\i—1 + wy), so it is natural to specify the latent state vector as
Ty = )\t,1 -+ wy. (9)

Thus, state variables are driven by the w, process, and also reflect past risk prices. Inserting
(8) into (9) produces
Ty = a+ Avi_1 + wy, (10)

showing that latent state variables are governed by a vector autoregressive (VAR) system
forming a hidden Markov process underlying the observed yield data. In particular, the state
vector reflects the full shock w; = ftt_l dWy, and, in addition, depending on the structure of
the transition matrix A, a portion of the past state. In the special case A = I, the state
variables x, are exactly tracking the driving Wiener processes W, = Y w,. Presumably,
more empirically relevant specifications involve less weight on past shocks, e.g., through
eigenvalues below unity in A. Note that from (8) and (10), the market prices of risk are
given by

A = Ey(2441), (11)

i.e., the expected next period state variables, conditional on the sequence of states (or,

equivalently, wg) through ¢, thus allowing a natural economic interpretation of our latent z;.

With these specifications, our model is

U = a+ vecr, {bibiT;/2} + By + &y,

(12)
Ty = a"‘Axtfl_'_wta

13



Figure 1: Plot of Yields and Slope-Adjusted Yield Changes
In this figure we show a 3-dimensional plot of both the yields and slope-adjusted yield changes from the
unsmoothed Fama-Bliss dataset. We look at the yield curve for 17 maturities over the period January 1985
up to December 2000. The slope-adjusted yield changes are obtained according to the equation

1 Yt—1,7 — Yt,1i1
Yt—1m = Yt1,70) = —————

yt,Ti = yt,Ti - ytfl,Ti -
Ti — 70 Ty — Ti—1

)

where ¥, -, is the i-th observed yield at time ¢, with corresponding time to maturity 7;.
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with ¢, the m-vector collecting all slope-adjusted yield changes ., at time ¢ for different
maturities 7; = 7,..., 7, B the m X d loading matrix whose columns are the volatility
functions corresponding to the d factors, b; the i’th row of B, vecy.,{-} denoting the m x 1
vector with typical element given in brackets, ¢; idiosyncratic noise with diagonal variance
matrix W, and the elements of w; standard normal. The upper equation in (12) corresponds
to equations (5), (7), and (9). As discussed in Section 2, intercepts o = (v, ..., )" are
included to measure the deviation from the arbitrage restriction (6). In the restricted model
imposing no arbitrage, « is set equal to 0 in (12). By considering the state variable x; rather
than w; and A\;_; separately in the model, we are able to introduce time-variation in the risk
prices \; without introducing additional noise terms. From (8), risk prices are adapted to
the driving Wiener processes, as in HIM, with cross-effects (non-diagonal A) allowed. If A
had involved separate sources of uncertainty not present in w;, then the physical and risk

neutral (A; = 0) measures would not be equivalent.

The model is in state space form, and (12) gives the m-dimensional measurement equation
and d-dimensional state transition equation. Assuming normal distributions for the state
shocks w; and noise term ¢;, the Kalman filter can be employed (see Harvey (1989) and
Durbin and Koopman (2001); Appendix B provides a brief summary of the Kalman filter
recursions) to filter the latent states z;. The filter provides estimates of the unobserved z;
conditionally on data through ¢ —1, i.e., the ‘predicted’ state E;_;[x;] (this and the following
expectations using square brackets are conditional on data through ¢ — 1, as opposed to the
true driving w;), and conditionally on the expanded information set including current (time
t) data g, the ‘filtered’ state E;[x;]. This allows calculating the innovations (prediction
errors) in the data sequence and the corresponding (prediction error decomposition of) the
conditional likelihood function given the initial observation go. We maximize this likelihood
to obtain our parameter estimates. In addition, we use the filtered and predicted states to
obtain estimates of our risk prices A\;_; and covariance generating factors w;. In particular,
as F;_1[w;] = 0, an estimate of \;_; is provided by the predicted state, g = Ei [z =a+
AFE;_[x;_1]. The covariance generating factors are estimated off the expectations revisions

from predicted to updated or filtered states, w; = Ey[x;] — Ey_1[xy].

For a given dimension of covariance generating factors d = 1,2,3,4 we estimate four
variations of our model. The first distinction is between constant and time-varying risk
prices. Constant risk prices correspond to the special case of no state transition, A = 0. In
this case, the vector of market prices of risk is given by A = a. Time-varying risk prices
is the case where A is left free. A second distinction is between the presence or absence of
arbitrage opportunities. Under the no-arbitrage restriction, o = 0 is imposed on the top
equation in (12). In the unrestricted case, with « free, a is set equal to 0 for identification,

as it enters the mean of the slope-adjusted yield changes through x;.

Finally, we discuss the restrictions that we need to impose to ensure identifiability for
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all these models and the initialization of the Kalman filter. As Geweke and Zhou (1996)
point out, a general identification issue in factor models is that the factors can be rotated
(say, pre-multiplied by an orthogonal matrix P) and the factor loadings (the B-matrix in our
case) adjusted for this (post-multiplied by P’) to yield an observationally equivalent model.
A way to overcome this is to impose m X (m — 1)/2 restrictions on the matrix B such that
this transformation is no longer possible. In practice we do this by restricting the portion

above the diagonal in the upper square m x m part of B to consist of zeros,

01,1 0
021 022 ... 0

B=1 " 7 ], (13)
Om,1 Om2 --- Omd

with o;; the (i,j)’th element of B. Next, to initialize the Kalman filter, we specify the

distribution of the first unobserved state. In general, one can write
L1 NN(M$17EI1>‘ (14>

Different types of initializations can be implemented by changing ., and ¥,,. When not
much is known about the initial state, one can set its variance X,, very large, and take
tz, = 0. As in our case the dynamics of x; are in fact a VAR system, we can use the
properties of its unconditional distribution to initialize the system (see Appendix B). In this
case, [, and X, depend on a and A, and reversing the sign of a factor (state variable) is
not simply counteracted by a reversal in sign of the associated column of B, but also impacts

both a and A and hence the initialization of the system.

3.3 Estimates

In Table 2 we report the estimated market prices of risk and likelihood values for the re-
stricted and unrestricted models with constant and time-varying risk premia. This is done
separately for d = 1, 2, 3, and 4 factors. In the first model, the single-factor case, the re-
stricted version has a negative market price of risk, estimated at about —2.0 in the constant
A case. In the time-varying case, the mean value of \; given by yu = (I — A)~'a is reported.
This takes about the same value, and both are strongly significant (¢-values in parentheses).
The difference in degrees of freedom between the restricted and unrestricted models in the
constant A\ case is 48 — 33 = 15, corresponding to m = 16 parameters saved in « by impos-
ing the no-arbitrage restriction, whereas A is a new parameter introduced in the restricted
model. The difference is 15 in the time-varying \; case, too, since again 16 parameters « are

saved and in this case the parameter a is introduced when passing to the restricted model,
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whereas A is included both with and without the no-arbitrage condition.

In the two-factor model, d = 2, the first risk price is smaller in magnitude, about —1.3,
but the second risk price is an order of magnitude larger, and both are strongly significant.
Of course, the total impact on the risk premium is the risk price times the relevant volatility
or loading. A graphical depiction of the estimated loadings b; for each factor as function
of maturity is shown in Figure 2. From the second exhibit in Panel (A) (d = 2), the first
factor is a level factor, and the second factor with numerically larger risk price (at —27, see
Table 2) is seen to be a slope factor. From the third exhibit (d = 3) of Figure 2, the third
factor is a curvature factor, reaching a maximum or hump at 12 (maturity 6 years). Upon
introducing this, the ordering of the second and third factor is reversed, as seen in the figure.
The reversal is also reflected in Table 2, the case d = 3, i.e., it is still the slope factor that
carries the largest risk price, now at —30, whereas also the price on the curvature factor
(at —4) exceeds that on the level factor in magnitude. Similarly, when a fourth factor is
introduced, this is seen from Figure 2 to be an additional curvature factor, with hump at 5
(maturity 18 months). From Table 2, d = 4, this factor, too, gets a higher risk price than the
level factor (15 in the constant and 6 in the time-varying risk price case). Still, the risk price
on the slope factor remains the largest (for d = 4, the slope factor is the fourth factor, see
Figure 2). Throughout, average risk prices in the restricted models are quite similar across
constant and time-varying \; specifications.

In Table 3 we show the estimated risk price dynamics, as given by the matrix A. In
the single-factor model, the autocorrelation coefficient of the risk price process is .20 in the
unrestricted model and .23 with the no-arbitrage restriction imposed. The numbers are very
similar for the first factor (the upper left corner of A) in the higher-dimensional models.
When introducing the slope factor, it seems to get a lower coefficient, below .04 for d = 2
and 3 (recall from Figure 2 that for d = 3 the slope factor is the third factor), and also low
(.02) in the restricted four factor model (where the slope factor is the fourth factor). There
is an indication of negative dependence on own lag for the third factor (second curvature
factor) in the four-factor model. Some of the off-diagonal elements in A are of the same
order of magnitude as the diagonal elements, showing strong interdependence between the
risk price dynamics processes. In the three and four factor models, the risk price on the last
(slope) factor depends strongly (coefficient about .25 in magnitude and significant) on the
lagged risk price on the first (level) factor. To interpret the results, note that a slope factor
with loading increasing in maturity tends to get a negative risk price. An observationally
equivalent model is obtained by reversing the sign of both the corresponding column in B
and the relevant coordinate of . Accounting for the change of sign in both loadings and risk
price for the slope factor between the three and four factor models, the results show that an

increase in yields in one period reduces the slope of the yield curve in the next.
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Table 2: Estimates of Time-Varying Risk Premia

In this table we report the estimated risk prices. We estimate the following model for the slope-adjusted yield changes g .,:

g = a+vec,{bibiT;/2} + Bxy + &y,
xe = a+ Axi_1 +wy,

with 7; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, = 7, ..., 7m, Tt = M¢—1 + ws, B the loading matrix
whose columns are the volatility functions, b} the i-th row element of B, vecy.,,{-} denoting the m x 1 vector with the typical element given in brackets,
¢; idiosyncratic noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors d = 1,2, 3,4, we estimate 4
models. We estimate the model with a constant A; (denoted with Constant X in the table, to this end we set A = 0) and time-varying A\; (TV A, A # 0).
For both of these variations we estimate an unrestricted version (Unrestr, where o # 0 but we set a = 0 to ensure identifiability) and a model imposing
the no-arbitrage drift restriction (Restr, « = 0). In the case with constant risk premia we report the estimate, in the case with time-varying risk premia
we report the estimated mean (in both cases this is u = (I — A)~!a from the above equation). The t-statistics are given below the estimates, the asterisks
(*/**) denote significance at the 5%/1% level. In addition we report the log likelihood, number of parameters and Akaike information criterion (AIC).

Estimates of Time-Varying Risk Premia — d = 1,2
Number of Risk Factors

Constant A TV A Constant A TV A
Unrestr  Restr Unrestr  Restr Unrestr  Restr Unrestr  Restr
Factor 1 (A1) Est/p —2.04** —2.03** —1.27** —1.27*
—27.4 —21.4 ~15.2 “12.2
Factor 2 (Ag;) Est/p —27.1* —27**
—10 —9.99
Factor 3 (Ag;) Est/u
Factor 4 (\y) Est/p
Log likelihood 2684 1394 2688 1428 3575 3548 3582 3553
# Parameters 48 33 49 34 63 49 67 53

AIC -5272 -2722 -9277 -2789 -7025 -6999 -7030 -7000




61

Table 2 Cont’d: Estimates of Time-Varying Risk Premia — d = 3,4

Number of Risk Factors

d=3 d=1
Constant A TV A Constant A TV A\
Unrestr  Restr Unrestr  Restr Unrestr  Restr Unrestr  Restr
Factor 1 (A\;) Est/p —1.23** —1.23** —1.23** —1.23**
~15.3 ~12.8 ~15.3 ~12.8
Factor 2 Est —4.11* —4.04* 4.21* —4.17*
actor 2 (M) st/ —23 —2.(2)9 9.24 25
Factor 3 (A3;) Est/u __%gg —§(9)..478 11.50.63 61.351
Factor 4 (\y) Est/p —2\25..8% 2%.’%
Log likelihood 3691 3680 3706 3694 3722 3705 3749 3737
# Parameters 7 64 86 73 90 78 106 94
AIC -7227 -7231 -7240 -7242 -7263 -7253 -7286 -7285




Figure 2: Volatility Functions and Covariance-Generating Factors
In this figure we show estimates of the volatility functions b; = o(t, 7;) and a time series plot of the estimated
covariance-generating factors. We estimate the following model for the slope-adjusted yield changes ¢, -,:

o + vecym {bibiT; /2} + By + &,

Ut
a+ Axi_1 + wy,

Tt

with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, =
Tly- oy Tm, Tt = A—1 + Wy, B the loading matrix whose columns are the volatility functions, b, the i-th row
element of B, vecy.,,,{-} denoting the m x 1 vector with the typical element given in brackets, &; idiosyncratic
noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors
d=1,2,3,4, we estimate 4 models. We estimate the model with a constant A; (to this end we set A = 0) and
time-varying A: (A # 0). For both of these variations we estimate an unrestricted version (where a # 0 but
we set a = 0 to ensure identifiability) and a model imposing the no-arbitrage drift restriction (o = 0). We
show the volatility functions and covariance-generating factors for the model with time-varying risk premia
and the no-arbitrage restriction imposed (thus A # 0 and o = 0). The estimates in Panel (A) document the
estimated B matrix for d = 1,2,3,4. The time series plots in Panel (B) document the estimated w; time
series for each of the factors in the four factor case d = 4 imposing the no-arbitrage restriction and allowing
for time-varying risk prices.
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Table 3: Estimated Risk Price Dynamics

In this table we report the estimated risk price dynamics. We estimate the following model for the slope-adjusted yield changes g ,,:

g = a4 vecm{bibiT;/2} + Bxy + &y,
re = a+ Axi_1 +wy,

with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7;, x = A¢s—1 + w, B the loading matrix whose columns
are the volatility functions with row element b}, vecy.,,,{-} denoting the m x 1 vector with the typical element in brackets, &; idiosyncratic noise with
diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors d = 1, 2, 3,4, we estimate 4 models. We estimate the
model with a constant A; (we set A = 0) and time-varying A; (A # 0). For both of these variations we estimate an unrestricted version (where a # 0
but we set a = 0 to ensure identifiability) and a model imposing the no-arbitrage drift restriction (o« = 0). We report the estimated A matrix for the
time-varying risk price case (thus where A # 0). The t-statistics are given below the estimates, asterisks (*/**) denote significance at the 5%/1% level.

Panel B: VAR Estimates d = 2

Panel A: VAR Estimates d = 1 Unrestricted Restricted
Unrestr Restr Factor 1 Factor 2 Factor 1 Factor 2
Factor I  Factor 1 Factor 1 (A;) 0.242% —0.0173  0.239" —0.0167
Factor 1 (A;;) 0.196™ 0.226** 3.38 —0.233 2.76 —0.254
2.72 8.38 Factor 2 (A\g;) —0.104 0.0389 —0.0937 0.0323
~1.39 0.518 ~1.02 0.474
Panel C: VAR Estimates d = 3
Unrestricted Restricted
Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3
Factor 1 (A\;;) 0.195™  —0.0251 0.0184 0.205**  —0.0393 0.0318
2.62 —0.312 0.24 2.77 20.476 0.434
Factor 2 (Ag;)  0.0887 0.206* —0.15 0.0865 0.201* —0.139
0.727 2.32 W 1.04 2.25 ~1.72
Factor 3 (A\s;) —0.265** 0.109 0.00698 —0.253** 0.109 —0.0012
307 0.98 0.0874 —3.04 1.2 —0.0153
Panel D: VAR Estimates d = 4
Unrestricted Restricted
Factor 1 Factor 2 Factor 3 Factor 4 Factor 1 Factor 2 Factor 3 Factor 4
Factor 1 (A;;) 0.209* —0.0211 —0.107 0.125 0.186* —0.0649 —-0.142 —0.0277
2.75 ~0.191 ~0.372 0.495 2.49 —0.701 ~1.6 ~0.341
Factor 2 (Ag;)  0.0932 0.19 —-0.0775 —0.143 0.00557 0.181 —0.318 0.169
0.805 1.77 20.204 —0.449 0.0515 1.13 145 1.8
Factor 3 (A\s;) —0.134 0.184 —0.214 0.463* —-0.143 —-0.0299 -0.301 —0.0124
—0.284 0.615 —0.199 2.48 —1.42 —0.145 ~1.93 —0.0917
Factor 4 (As;) —0.21 0.0227 0.031 —0.209 0.255*  —0.0647 —0.0102 0.0202
—0.689 0.0516 0.274 ~0.193 2.81 —0.778 ~0.0608 0.252




Panel (B) of Figure 2 shows the fitted time series of covariance-generating factors from
the restricted models imposing the no arbitrage condition and allowing for time-varying risk
prices. Consistent with the model assumptions, the factors are all of the same order of
magnitude, they appear roughly serially uncorrelated, and move around a zero level. The
corresponding estimated time-varying market prices of risk appear in Figure 3. Evidently,
these are more strongly serially dependent, especially the first (level) factor, consistent with
the results from Table 3. Each risk price moves around the stable non-zero level p reported
in the table, and in particular is not trending. The levels and volatilities are different across
the four risk prices, in contrast to the fitted factors from the previous figure.

Figure 4 shows in panel (A) the combined effect on slope-adjusted yield changes of both
loadings and risk prices, i.e., this is the contribution to the total risk premium B\; from
each risk factor, by maturity. From the figure, by far the majority of the risk premium stems
from the pricing of the slope factor, especially for longer maturities, and this is so for all
models with two or more factors. Panel (B) of the figure shows the evolution over time of
the total risk premium b;)\; for four selected maturities 7; (6, 12, 60, and 120 months). Risk
premia move in similar fashions across different maturities, and in each case the movement
is around a stable level that differs by maturity due to the slope.

In Figure 5, Panel (A), we show the estimated intercepts « from the unrestricted models.
They are strongly decreasing in maturity for all four dimensions of the vector of factors and
both for the constant and time-varying risk price specifications. It is this pattern that must
be captured by BA in the restricted models. This is exactly achieved by the estimated risk
premia in the previous Figure 4, where the slope factor is particularly useful in picking up the
required pattern to preclude arbitrage opportunities. Finally, Panel (B) of Figure 5 shows
the estimated idiosyncratic variances in W, by maturity. Errors are largest in the long end
of the term structure in case of the single-factor model. With two or more factors, errors
are smaller, and actually decreasing in maturity, except for the very longest. Note that the
vertical axes are different, and that adding the third and fourth factors continues to reduce
the magnitude of errors. This is consistent with the likelihood value and Akaike information
criteria (AIC) of both unrestricted and restricted models in the previous table, that also
pointed to the models with at least three or even four factors. The four factor model might
be slightly over-parametrized, in that the idiosyncratic error variance is brought to zero for
i =5 (maturity 18 months) in Panel (B) of Figure 5, exactly corresponding to the hump in
the factor loading on the second curvature factor in Panel (A) of Figure 2, i.e., one factor is
fitted to this key yield.

3.4 Tests of the No-Arbitrage Restriction

We are now ready to look at the results from a test of the no-arbitrage condition Hy : « = 0
in (12).
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Figure 3: Time Series Plot of Estimated Market Prices of Risk

In this figure we show a time series plot of the estimated risk prices. We estimate the following model for
the slope-adjusted yield changes ¥ r,:

g = a+vecn{bibiTi/2} + By + 4,
Ty = a+ Axi_1 + wy,

with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, =
Tlye ey Tm, Tt = At—1 + Wy, B the loading matrix whose columns are the volatility functions, b} the i-th row
element of B, vecy.,,,{-} denoting the m x 1 vector with the typical element given in brackets, &; idiosyncratic
noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors
d=1,2,3,4, we estimate 4 models. We estimate the model with a constant A; (to this end we set A = 0) and
time-varying A; (A # 0). For both of these variations we estimate an unrestricted version (where o # 0 but
we set a = 0 to ensure identifiability) and a model imposing the no-arbitrage drift restriction (o = 0). We
show the estimated risk premia for the model with time-varying risk premia and the no-arbitrage restriction
imposed (thus A # 0 and o = 0). We show the estimated A time series that is obtained for each of the four
factors in the case d = 4, and provide 95% confidence boundaries.

Risk Price Time Series for d = 4 with Confidence Boundaries

| __— Factor 2
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Figure 4: Time Series Plot of Risk Prices Interacted with Loading Matrix
In this figure we show how the estimated risk prices and loadings interact to form risk premia for different
maturities. We estimate the following model for the slope-adjusted yield changes @ -,:

o+ Vecl:m{b;‘biTi/2} + Bmt + &,
a+ Axi_1 + wy,

with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, =
Tl Tm, Tt = A—1 + wy, B the loading matrix whose columns are the volatility functions, b the i-th row
element of B, vecy.,,{-} denoting the m x 1 vector with the typical element given in brackets, &; idiosyncratic
noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors
d=1,2,3,4, we estimate 4 models. We estimate the model with a constant A; (to this end we set A = 0) and
time-varying A; (A # 0). For both of these variations we estimate an unrestricted version (where o # 0 but
we set a = 0 to ensure identifiability) and a model imposing the no-arbitrage drift restriction (o = 0). We
show the estimated risk prices for the model with time-varying risk premia and the no-arbitrage restriction
imposed (thus A # 0 and « = 0), interacted with the loading matrix B. In Panel (A) we document the
estimated mean risk prices y = (I — A)~la premultiplied by the factor loading matrix B that is obtained
for the four different numbers of factors d = 1,2, 3,4. In Panel (B) we focus on the case of four factors, and
show the estimated risk prices A; pre-multiplied with loading matrix B for four maturities (6 months, and
1, 5 and 10 years).
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Figure 5: Unrestricted Intercept and Measurement Variance
In this figure we show the estimates of the mean and measurement error variance of the HIM model with
time-varying risk premia. We estimate the following model for the slope-adjusted yield changes g -,:

o+ Vecl:m{brlibiTi/2} + BIt + &,
a+ Axi_1 + wy,

Yt
Tt

with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, =
Tl Tm, Tt = M—1 + Wy, B the loading matrix whose columns are the volatility functions, b the i-th row
element of B, vecy.,,{-} denoting the m x 1 vector with the typical element given in brackets, &; idiosyncratic
noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors
d=1,2,3,4, we estimate 4 models. We estimate the model with a constant A; (to this end we set A = 0)
and time-varying A: (A # 0). For both of these variations we estimate an unrestricted version (where o # 0
but we set a = 0 to ensure identifiability) and a model imposing the no-arbitrage drift restriction (o = 0).
In Panel (A) we show the estimates of « for both the constant and time-varying risk premia case when the
no-arbitrage restriction is not imposed (thus when o« # 0). In Panel (B) we show the idiosyncratic variance
U for the model with time-varying A; and the no-arbitrage restriction imposed (thus A # 0 and a = 0).
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Table 4: LR-Tests of No-Arbitrage Restriction and Time-Varying Risk Premia
In this table we report results of tests of the no-arbitrage drift restriction and time-varying risk prices. We
estimate the following model for the slope-adjusted yield changes g r,:

g = a+vecn{bibiTi/2} + By + 4,
e = a+ Axi_g + wy,

with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, =
Tlye ey Tm, Tt = At—1 + we, B the loading matrix whose columns are the volatility functions, b} the i-th row
element of B, vecy.,,,{-} denoting the m x 1 vector with the typical element given in brackets, &; idiosyncratic
noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors
d=1,2,3,4, we estimate 4 models. We estimate the model with a constant A; (to this end we set A = 0)
and time-varying A; (A # 0). For both of these variations we estimate an unrestricted version (where o # 0
but we set a = 0 to ensure identifiability) and a model with the no-arbitrage drift restriction (v = 0). In
the top part of the table (Restr vs Unrestr) we provide LR-tests of the no-arbitrage drift restriction (i.e.
a test whether o = 0) for both the case that risk premia are constant (A = 0) and time-varying (A # 0).
In the bottom part (Const vs TV \) we provide LR-tests of the restriction that A is constant rather than
time-varying (i.e. a test whether A = 0) for both the case without and with the no-arbitrage drift restriction
imposed (a # 0 and « = 0 respectively). The p-value of rejecting the null hypothesis of the test is reported
below the test statistic. Asterisks (*/**) denote significant rejection at the 5%/1% level.

LR-Tests of No-Arbitrage Restriction
Number of Risk Factors
d=1 d=2 d=3 d=4

Restr vs. Unrestr

Constant A 2580**  BH3.7** 222  34.1*
1.00 1.00 0.947 0.999

TV A 2518**  58.4*  23.6* 24.8*
1.00 1.00 0.965 0.984

Const vs TV A
Unrestricted 7.25* 13.5* 30.2** b4.7**

0.993 0.991 1.00 1.00
Restricted 68.7** 878  28.7** 64.1*
1.00 0.933 0.999 1.00
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In Table 4 we show the results for the one through four factor models. The top half
of the table shows tests of the no-arbitrage condition separately for the constant and time-
varying risk price specifications. Numbers under the test statistics are p-values for rejecting
the no-arbitrage condition. For d = 1 and 2, the condition is strongly rejected. The test
fails to reject the no-arbitrage condition at level 5% in the three-factor model with constant
risk price. In the three-factor model with time-varying risk price, the test fails to reject no-
arbitrage at 1%, although not at 5%, and this is so in the corresponding four-factor model
with time-varying risk price, too (except here the test rejects in the constant A case).

The bottom half of the table shows tests of the hypothesis of constant risk price (A =
0) against the time-varying case, separately for the unrestricted and the restricted (no-
arbitrage) models. All tests except that in the restricted two-factor model strongly reject.
Thus, the evidence favors the specification with time-varying risk prices.

The results are interesting, from a number of perspectives. First, on the methodological
side, the outcome of the no-arbitrage test depends strongly on the number of factors in
the estimated model. Thus, it is important to determine the number of factors correctly
before proceeding to the no-arbitrage test. If the market is in fact driven by three common
covariance-generating factors, the wrong conclusion about arbitrage is drawn in our data if
too few factors are used in estimation. Secondly, on the substantive side, given the strong
prior that three (or maybe even four) factors matter for interest rates, based on both the
literature (e.g., Litterman and Scheinkman (1991)) and our results, and given that the
evidence supports the time-varying over the constant risk-price specification (lower portion of
table), it is interesting to see that the test fails to reject the absence of arbitrage opportunities
at 1% once at least three factors are included in the time-varying risk price model. This
softens the evidence against market efficiency compared to that apparently present when
using too few factors. Note also that the failure to produce a strong rejection is not a
general lack of power of our procedure. In particular, the tests do reject at 1% in several of
the other cases (d =1 and 2, and d = 4 with constant \).

Overall, we conclude that market prices of risk are time-varying, and that there is no
strong evidence of arbitrage opportunities. We now turn to an investigation of the underlying

source of this time-variation in market prices of risk.

3.5 Macroeconomic Sources of Time-Varying Risk Prices

We relate our time-varying market prices of risk to a number of macroeconomic variables.
There is recent evidence that macroeconomic variables explain bond market premia, see, e.g.,
Wachter (2006), Joslin, Priebsch and Singleton (2009), Ludvigson and Ng (2009), and the
factors underlying the bond market, see, e.g., Ang and Piazzesi (2003), Diebold, Rudebusch
and Aruoba (2006) and Duffee (2008). Stimulated by this evidence, we explore the potential

macroeconomic underpinning of premia in our model by regressing our estimated market
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Figure 6: Time Series Plot of Macroeconomic Variables
In this figure we show time series plots of the macroeconomic variables that we consider. We show Output
Gap, Industrial Production, Nonfarm Payroll Employment, Consumption Expenditures and a Stock Market
Risk Price. Industrial Production and Personal Consumption Expenditure data are collected from the
Federal Reserve Bank of St. Louis Economic Database (FRED) and the Nonfarm Payroll Employment data
is obtained from the Bureau of Labor Statistics. The output gap is obtained by detrending industrial
production using a nonlinear trend. For Industrial Production, Employment and Consumption, we show
monthly relative changes. We use the difference between the (annualized) monthly return of the S&P500

index and the 3m T-bill yield scaled by an estimate of the monthly S&P500 index volatility to get a stock
market risk price.
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prices of risk one by one on variables suggested in the literature. The most explanatory power
is achieved using the variables exhibited in Figure 6 as regressors. Indeed, the three most
important variables turn out to be the monthly relative change in industrial production, the
monthly change in nonfarm payroll employment, and the stock market risk price or Sharpe
ratio, defined as the monthly S&P 500 excess return above the 3-month Treasury yield,
relative to the sum of daily absolute returns over the month. Also significant in some of
our regressions are the two other variables shown, the output gap, defined as deviations of
industrial production from a nonlinear trend, as in Cooper and Priestley (2009), and the
monthly relative change in nondurable consumption expenditures. In other experiments,
we also tried the CPI inflation rate, a set of macro factors defined as the eight leading
principal components extracted from the 132 macroeconomic variables in the Stock and
Watson (2002) data (appropriately transformed and detrended to stationarity, following the
article), the credit spread (Baa less Aaa rates from Moody’s) and term spread (10 years less
3-months Treasury yields), and, finally, the short rate (3-month yield) itself. None of these
alternative variables yielded significance at the 1% level in any univariate or multivariate
regressions of the type reported below, and two of the macro principal component factors
(the second and fifth of the eight) were the only significant regressors at the 5% level in
univariate regressions explaining our first, second, and fourth risk prices. Thus, we focus on

the five most powerful explanatory variables in the following.

Results from regressing our market prices of risk on the five macroeconomic variables
appear in Table 5. Each panel shows results for one of the risk prices from the estimated
four factor model, starting with the first risk price in Panel A. The five univariate regressions
are reported in the first five columns of each panel. The last column reports the multivariate
regression of the relevant market price of risk on all five macroeconomic variables. From the
results in Panel A, the market price of the level factor is significantly related to industrial
production, employment, and the equity risk price at the 1% level, to consumption at the
5% level, and to the output gap at the 10% level (p-value of 6.5% in two-sided test). In the
multivariate regression (last column in Panel A of Table 5), consumption and the equity risk
price remain significant at the 5% and 1% levels, respectively, and the regression explains
17% of the variation in the market price of risk on the level factor, up from 9.0% in the highest
of the univariate regressions, that on the equity risk price. From Panel (D) of Figure 6, there
are apparent outliers in the first few months of 2000 in the nondurable consumption data
series, and when excluding these periods from consideration, the t-value for consumption
changes to 3.1 in the univariate regression, compared to 2.0 in the table, indicating that
the relation to the risk premium is not spurious and purely driven by the outliers. We
conclude that the pricing of level factor risk in the bond market is significantly related to

macroeconomic conditions, in particular the equity risk price and consumption.

Panel B of Table 5 shows the similar results from regressing the risk price of the second
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Table 5: Regression of Risk Prices on Macroeconomic Variables
In this table we regress the time-varying risk prices from our model on the macroeconomic variables that we
consider. The risk price estimates used for constructing the correlation matrix correspond to the restricted
four factor model with time-varying risk premia. The macroeconomic variables we consider are Output Gap,
Industrial Production, Nonfarm Payroll Employment, Consumption Expenditures on Nondurable Goods and
a Stock Market Risk Price. In each of the four panels we show these regressions for each of the four factors,
omitting the first and the last observation. We consider six regressions for all panels, where we first regress
the relevant risk price on the individual macro variables, and then jointly. Robust Newey and West (1987)
t-statistics are given below the estimates, and the asterisks (*/**) denote significance at the 5%/1% level.

In addition we report the adjusted R? and the number of observations.

Panel A: Risk Price 1 Regression

Dependent Variable: Risk Price 1

(1) (2) (3) (4) ()

(6)

Output Gap 0.9%589 0.105155
Ind Prod ' 0.103* 0.0;,97
Employment 0.02083** 0.09(1)7148
Nond Cons Exp ' 0.00427* 0.00457*
1.98 2.27
Risk Price —0.075*  —0.0741*
~4.66 —4.57
Intercept —1.23** —1.26"* —1.28* —1.24** —1.21** —1.26**
~69.2 ~62.1 —48.2 —59.8 —67.7 —61.2
R? 0.020 0.046 0.030 0.029 0.090 0.168
#0Obs 190 190 190 190 190 190
Panel B: Risk Price 2 Regression
Dependent Variable: Risk Price 2
(1) (2) (3) (4) (5) (6)
Output Gap 0.0316* 0.026*
2.43 2.2
Ind Prod 0.128 0.0752
1.96 1.08
Employment 0.0(%0142174* 0.09(2)5285
Nond Cons Exp . 0.00281 0.00198
0.827 0.583
Risk Price —0.0248 —0.0157
—0.966 —0.631
Intercept —4.17*  —4.2%*  —4.26%* —4.18* —4.16** —4.25**
~159 137 915 ~137 ~135 —91.4
R? 0.024 0.031 0.033 0.005 0.004 0.065
#0Obs 190 190 190 190 190 190
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Panel C: Risk Price 3 Regression

Dependent Variable: Risk Price 3

(1) (2) (3) (4) (5) (6)
Output Gap 0.00814 0.00889
0.815 0.984
Ind Prod 0.0364 0.0415
0.705 0.738
Employment —0.0000370 —0.000135
—0.222 —0.807
Nond Cons Exp 0.00221 0.00212
1.09 0.925
Risk Price —0.00691 —0.00583
—0.284 —0.236
Intercept 6.21** 6.2 6.21* 6.2"* 6.21* 6.22**
376 324 203 333 339 216
R? 0.002  0.003 0.000 0.004 0.000 0.011
#0Obs 190 190 190 190 190 190

Panel D: Risk Price 4 Regression
Dependent Variable: Risk Price 4

(1) (2) (3) (4) () (6)

Output Gap 0.9%581 0.9%432
Ind Prod ©0.09267 0.0246
2.05 0.539
Employment 0.0020%79** 0.09%267
Nond Cons Exp . 0.00346 0.00355
1.68 1.89
Risk Price —0.06™  —0.0585**
—3.48 —3.64
Intercept 29.4**  29.4** 29.3* 29.4** 29.4** 29.3**
1351 1174 1021 1194 1310 1179
R? 0.015  0.031 0.041 0.016 0.048 0.111
#Obs 190 190 190 190 190 190
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factor, a curvature factor (see Figure 2, Panel (A), d = 4), on the macroeconomic variables.
The output gap and employment are significant at 5% in univariate regressions, and the
output gap remains significant in the multivariate regression. This explains 6.5% of the
variation in the risk price, i.e., the level factor risk price is more strongly related to the
macroeconomic factors than the curvature risk price, and different macroeconomic forces
determine the two, with output gap in the price of curvature, and equity risk price and
consumption in the price of level risk.

Panel C shows that the second curvature factor is unrelated to all of the macroeconomic
variables. Finally, from Panel D, the important slope factor has an associated market price
of risk that is significantly related especially to the equity risk price and employment, and
also to industrial production. In the multivariate regression, the equity risk price remains
significant at the 1% level, and the regression explains 11% of the variation in the price of
slope risk.

Overall, we conclude that our estimated market prices of risk are related to relevant
macroeconomic variables, including the output gap suggested by Cooper and Priestley
(2009), along with the equity risk price or Sharpe ratio, and changes in consumption. In
particular, the output gap explains the price of curvature risk, whereas the price of slope
risk is explained by the equity risk price, and the latter along with consumption changes
explains the price of level factor risk. The results suggest that our estimates represent true

economic pricing mechanisms in the bond market.

4 Sensitivity Analysis

In this section, we investigate the sensitivity of our general approach to a number of rel-
evant issues arising in practice, such as errors in model specification, data, distributional

assumptions, etc.

4.1 Sensitivity to Model Misspecification: Missing Nonlinear Term

Our approach is to test for no arbitrage at the level of yields, which is how traded instruments
are quoted. In this case the relevant condition is (6), and the test is on the conditional means
of slope-adjusted yields. An alternative analysis of the returns of the heterogeneous bonds,
bills, and notes that comprise the market would instead focus on the standard APT condition
omitting the quadratic form in loadings in (6). As a first diagnostic we examine the behavior
of the test based on the same data as in Section 3 when the quadratic form in factor loadings
is incorrectly left out. In particular, in equation (12) the term vecy.,{b,b;7;/2} is omitted.
The rest of the analysis is identical to that of Section 3.

Panel A of Table 6 is directly comparable to Table 4. In both cases, the tests reject the

32



Table 6: Sensitivity Analysis of LR-Tests for No-Arbitrage Restrictions
In this table we provide three sensitivity analyses of the LR-tests of the no-arbitrage restriction. In all cases
we estimate variations of the following model:

o+ vecy, {bjbiTi /2} + By + &4,
a+ Az + wy.

Yt
Tt

In Panel A we report our LR-tests for the case where we omit the nonlinear vecy.,{b;b;7;/2} term, such
that the test is the same as according to the Arbitrage Pricing Theory (APT). In Panel B we use raw yield
changes Ay, rather than slope-adjusted yield changes ¢;. In Panel C we restrict B to be of the Nelson-Siegel
functional form. In all cases, in the top part of the table (Restr vs Unrestr) we provide LR-tests of the no-
arbitrage drift restriction (i.e. a test whether oo = 0) for both the case that risk premia are constant (A = 0)
and time-varying (A # 0). In the bottom part (Const vs TV A) we provide LR-tests of the restriction that
A is constant rather than time-varying (i.e. a test whether A = 0) for both the case without and with the
no-arbitrage drift restriction imposed (o # 0 and o = 0 respectively). The p-value of rejecting the null
hypothesis of the test is reported below the test statistic. Asterisks (*/**) denote significant rejection at the
5%/1% level.

Panel A: LR-Tests —
Missing Nonlinear Term
Number of Risk Factors
d=1 d=2 d=3 d=4

Restr vs. Unrestr

Constant A 204*  131**  64.5** 47.8**
1.00 1.00 1.00 1.00

TV A 204** 131"  64.0* 46.1*
1.00 1.00 1.00 1.00

Const vs TV A
Unrestricted 7.25%  13.5™  30.2* 54.7**

0.993 0.991 1.00 1.00
Restricted 7.2 13.6™  30.7  56.4*
0.993 0.991 1.00 1.00

Panel B: LR-Tests —
Missing Slope-Adjustment
Number of Risk Factors
d=1 d=2 d=3 d=4

Restr vs. Unrestr

Constant A 2930*  77.5*  21.0 50.7*
1.00 1.00 0.927 1.00

TV A\ 2859**  85.4** 214  22.4*
1.00 1.00 0.935 0.966

Const vs TV A

Unrestricted 8.13** 19.6* 32.5™ 72.2**
0.996 0.999 1.00 1.00

Restricted 79.4* 11.7  32.1**  101*
1.00 0.981 1.00 1.00

Panel C: LR-Tests — Restricted B
Number of Risk Factors
d=1 d=2 d=3 d=4

Restr vs. Unrestr

Constant A 3444 932 217 217
1.00 1.00 1.00 1.00
TV A 3333 924* 205" 104"
1.00 1.00 1.00 1.00

Const vs TV A
Unrestricted 7.21** 7.5 36.4*  131**

0.993 0.888 1.00 1.00
Restricted 118**  15.5* 48.1** 244**
1.00 0.996 1.00 1.00
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Figure 7: Estimated Intercept Terms in Sensitivity Analysis Model
In this figure we provide the estimated intercept term in the time-varying risk premia HJM model for a
model from our sensitivity analysis. We estimate the following model for the slope-adjusted yield changes
Yt,ri

U = a+vecm{bibiTi/2} + Bxy + &4,

Ty = a+ Axi_1 + wy,
with g; the vector that collects all slope-adjusted yield changes at time ¢ for different maturities 7, =
Tl Tm, Tt = M—1 + wy, B the loading matrix whose columns are the volatility functions, b the i-th row

element of B, vecy.,,{-} denoting the m x 1 vector with the typical element given in brackets, &; idiosyncratic
noise with diagonal variance matrix ¥ and w; standard normal. For the number of variance generating factors
d=1,2,3,4, we estimate 4 models. We estimate the model with a constant A; (to this end we set A = 0)
and time-varying A¢ (A # 0). For both of these variations we estimate an unrestricted version (where o # 0
but we set a = 0 to ensure identifiability) and a model imposing the no-arbitrage drift restriction (o = 0).

In the above model we omit the Veclzm{i)gi)iﬁ /2} term from the specification. In the figure below we report
the estimates of o for both the constant and time-varying risk price case when the no-arbitrage restriction
is not imposed (thus when « # 0).

Unrestricted Intercepts () — Missing Nonlinear Term
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restriction o = 0 at 1% if d = 1 or 2 factors are used. The difference is that in Panel A of
Table 6, the same happens with d = 3 or 4 factors. This shows the importance of including
the nonlinear veclzm{lggl;m /2} term in the empirical analysis. Without this, strong rejection
(at 1%) is erroneously obtained in these data. The intuition is that while precluding arbitrage
opportunities in equities requires that the means be spanned by the volatility matrix through
coefficients (risk prices) that enter linearly, in the term structure case it is the means of the
appropriately slope-adjusted yield changes less the critical nonlinear function of volatilities
given by veclzm{lgglgm /2} that must be spanned in this manner. The simplified APT-style

test ignoring this term may point to arbitrage opportunities that do not exist.

Figure 7 shows the unrestricted intercepts when ignoring the additional nonlinear volatil-
ity term. Regardless of d, these correspond exactly to the means from the summary statistics

for slope-adjusted yield changes. The means are generally increasing in maturity, in sharp
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contrast with the declining pattern of the unrestricted intercepts in the correctly specified
model in Panel (A) of Figure 5. It is the latter means that may be spanned by the columns
of B, at least to the extent of avoiding rejection at 1%, and from the difference in patterns
it is not surprising that the means in Figure 7 may not be similarly spanned.

These comparisons demonstrate the empirical importance of the detailed structure of
the no-arbitrage condition applied to slope-adjusted yield changes. Next, we consider the

possibility that this adjustment is missed altogether.

4.2 Sensitivity to Data Error: Missing Slope-Adjustment

The slope-adjusted yield changes of (4) look very similar to raw yield changes, defined as
AYi 7, = Yi.r;, — Yi—1,,- Lhe only differences between the two are given by the average slope or
yield spread (yi—1.+, — Yt—1.1,)/ (7 — 7o) and local slope or bond aging (yi—1.-, — Yt—1.5_,)/ (7 —
7,—1) terms, which empirically tend to be decreasing in ¢ as the step length between the
maturities increases. As a second experiment we examine what happens if our approach is
applied directly to raw yield changes Ay, ,,, without slope-adjustment.

Like Panel A, also Panel B of Table 6 may be directly compared and contrasted with Table
4. Qualitatively, the conclusions of tests again agree when using one or two factors, only.
This time the main difference is that when using raw yield changes, we fail to reject even at
5% in the model with time-varying risk prices (the failure occurs for levels 6.5% and better).
Again, due to the empirical relevance of the specification with three factors and time-varying
risk prices, the difference is important. What it means is that the empirical analysis should
be conducted carefully on properly slope-adjusted yield changes. Otherwise, the wrong
conclusions may be drawn regarding the presence or absence of arbitrage opportunities.

Combining with the results of the previous subsection, we conclude that both the non-
linear term in the drift restriction and the proper slope-adjustment of the yield changes are

required in the empirical analysis.

4.3 Sensitivity to Framework: Restricted Volatility Factors and
Affine Subclasses

Well-known affine term structure models arise by appropriately restricting the general volatil-
ity factors. As an additional illustration of the sensitivity to model misspecification, we
consider testing this type of restrictions. In particular, we consider restrictions generating
the affine models of Ho and Lee (1986) and Hull and White (1990), as well as more general
volatility restrictions.

The volatility functions in Figure 2 behave like factor loadings in the set-up of the general
model. The estimated functions seem to give rise to a level, slope and curvature interpre-

tation. If this is indeed the case, alternative specifications may greatly reduce the number
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of parameters. In the case where we have one covariance generating factor, d = 1, we could
for example obtain the forward rate volatility o;(7;) from the Ho and Lee (1986) setting:
0}(7}) = 01, i.e., flat forward rate volatility. Integrating and dividing by the time to matu-
rity provides a yield volatility of exactly o, in this case for all maturities: o'(7;) = ;. Our
volatility matrix B would be a vector: o; x 1,,, i.e., the first factor is a level factor. For
d = 2 we could take the first volatility factor as in the Ho-Lee case, and the second from the
Hull and White (1990) model: 07(7;) = 02 exp(—m17;), exponentially declining forward rate
volatility, with +; a parameter to be estimated. Similar derivations as before produce the
yield volatility o?(7;) = 02(1 — exp(—717;))/717; in this case, i.e., the second factor is a slope
factor, and the level and slope loadings or volatility functions only use up three degrees of
freedom through (oy, 02,71). Given the similarity of these first two volatility functions with
the Nelson and Siegel (1987) model we take a similar hump-shaped yield volatility as in that

model for the next dimension. For the full four-factor case d = 4 we set
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and in case d < 4 we use the first d elements of this vector.

Panel C of Table 6, again directly comparable with Table 4, provides the LR-test results
when we estimate the time-varying HJM model with the restricted volatility factors. In this
case the no-arbitrage restrictions are rejected for all tests. On the methodological side, the
analysis shows the importance of using our approach to testing the no-arbitrage restrictions in
the general HJIM framework, without parametric restrictions imposed on the factor loadings.

On the substantive side, the results provide evidence against the affine subclasses considered.

4.4 Sensitivity to Distributional Assumptions: Principal Compo-

nents Analysis

To see how robust our results are to alternative distributional assumptions we also estimate
two model variations where we use principal components analysis (PCA). In a first step
we run a principal component analysis on the demeaned slope-adjusted yield changes. In
particular, writing the PCA as 3, — i = Bw; + &4, where i denotes the sample mean, we also
obtain estimates for the volatility matrix B and the covariance generating factors w; in this
framework. For comparison with the state space model, we use a version of the PCA with
var(wy) = I, absorbing the factor variances and covariances into B.

In Panel (A) of Figure 8 we show the estimated loadings on the covariance generating

factors. The pattern is very similar to that in Panel (A) of Figure 2. With two factors,
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Figure 8: Volatility Functions and Covariance-Generating Factors — PCA
In this figure we show a time series plot of estimates of the volatility functions b; = o (¢, 7;) and the estimated
covariance-generating factors. We obtain these by running a principal component analysis on the slope-
adjusted yield changes @ r,. The estimates in Panel (A) document the estimated B matrix (from the
equation §; — i = Bw; + &¢, with [i the sample mean of the slope-adjusted yield changes) for the dimension
of the driving Wiener process W; equal to d = 1,2,3,4. The time series plots in Panel (B) document the
estimated w.
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the first captures the level, and the second is a slope factor. The third factor captures the
curvature or hump. With only one factor, the loading pattern in the d = 1 portion of the
figure may appear to be explaining part of the hump, but the vertical axes are different, and
this is in fact the same loading pattern as that for the level factor in the specifications with
higher d. In general, the PCA loadings on the first k& factors are unchanged as more factors
are added, a property not shared with the previous state space analysis. Note also that the
loadings on the level factor are of the order .3 in the PCA, compared to about .08 in the
state space case with d = 1 in Figure 2, although the shape is similar. The reason for the
difference is that the loadings exhibited in the state space case are those from the model
with the no-arbitrage condition imposed, and they have to capture both variance-covariance
properties and means of the data, by the nature of the restriction where B enters into both
first and second moments. For higher d, the impact of the restriction on the level factor is
less since with more factors it is easier to span the means by the columns of B, and so the
loadings on the level factor for d = 2 and higher in Panel (A) of Figure 2 are more similar
to those from the PCA in Panel (A) of Figure 8.

In Panel (B) of Figure 8 we provide a time series plot of the fitted covariance-generating
factors w;. Again, the picture is similar to that in the state space case, Panel (B) of Figure
2. For example, the large positive spike in the fourth (slope) factor in 1986 in the state space
case is matched by a positive spike in the second principal component similarly associated
with downward sloping loadings.

The estimated volatility functions B and covariance generating factors w, allow us to take
another look at the obtained risk prices. To this end, the regression of the sample estimate
of the unconditional mean of the slope-adjusted yield changes fi on the estimated volatility
matrix from the principal component analysis B gives these risk prices. Following equation
(6), we need to subtract b,b;7;/2 from each cross-sectional observation. The regression in

this case is
ﬂ - VeCl;m{lA);Z;iTi/Q} = é)\ —+ n. (16)

An important thing to note is that this procedure is only an approximate way to get the
risk prices. The estimates of the volatility functions are obtained in the first step through
principal components. Thus, the information from the no-arbitrage relation estimated in the
second step is not utilized when the volatility functions and covariance generating factors
are obtained in the first. The state space approach allows imposing the drift restriction from
the outset, so that estimation is subject to this.

In Table 7 we show the estimated risk prices when we estimate equation (16) by gener-
alized least squares (GLS), to account for heterogeneity. The covariance used to weigh the
observations is estimated using the PCA results: m — BB + U, with ¥ diagonal with
clements Wy; = (1/T)Y2,é2 for i = 1,...,m. The risk prices we obtain follow a similar

pattern to those in the state space model in Table 2. In both cases, the first (level) risk
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Table 7: Risk Price Estimates — Two-Step PCA and GLS Approach
In this table we report the estimated risk prices and a test of the no-arbitrage drift restriction using a
two-step approach. In the first step we run a principal component analysis (PCA) on the demeaned slope-
adjusted yield changes 9 ,,. Specifically, writing the PCA as g, — i = Bw; + &, with /i the sample mean

of the slope-adjusted yield changes, we obtain B. Then, in the second step, we run a cross-sectional GLS
regression to obtain estimates of the risk premia. Specifically, we estimate

[L — veclzm{l;%in/Z} = B)\ + n,

with l;; the i-th row element of B and vect.m{-} defined as the vector with the typical element in brackets
for e =1,...,m. The table documents the estimated A for the dimension of the driving Wiener process W;
equal to d = 1,2, 3,4. To account for heteroskedasticity and cross-correlation we use GLS. The covariance is
estimated using the results from the principal components analysis: m = BB+ \il, with ¥ diagonal with
elements U;; = (1/T) >, €% for i = 1,...,m. The t-statistics are given below the estimates, the asterisks
(*/**) denote significance at the 5%/1% level. In addition we report the adjusted R2.

Risk Prices — Two-Step PCA & GLS
Number of Risk Factors
d=1 d=2 d=3 d=4

Factor 1 (A\y) —7.09 —-7.66 —8.08 —8.06
~0426  —0.976  —1.86  —1.93

Factor 2 (Ag) 24.3*  22.8* 23.1*
3.03 5.15 5.46

Factor 3 (\3) 4.1 13.3*
2.99 3.05

Factor 4 (\4) 4.00
0.925

R? 0.012 0421 0.752 0.783
#Obs 192 192 192 192
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price is negative regardless the number of factors included in the model. With two factors,
d = 2, the first risk price is similar to the d = 1 case, whereas the second risk price (on the
slope factor) is an order of magnitude larger (in an absolute sense). Keeping in mind that
the ordering of the factors in the table switches in the state space case but not in the PCA
case, it is seen that the patterns of risk prices is similar across the two cases, with the slope
factor carrying the largest risk price.

To obtain time-varying estimates of the risk prices in this framework we estimate a
slightly altered version of the above. Based on (12) and (9), the relevant cross-sectional

regression in period t is
i — By — vecy {01 /2} = BA_1 + 11, (17)

again estimated by GLS using m from above. As in this case the regressand is time-
varying, our risk prices will be so, too. In Figure 9 we show the time series of estimated
risk prices. The evolution of risk prices resembles that from the state space model, Figure 3.
The time series behavior of each risk price is quite homogeneous through the period, except
perhaps for the first risk price, where variability is greater in the early part of the period,

and this is true for both the state space and PCA versions.

5 Conclusion

Our general dynamic factor model approach facilitates analysis of several relevant issues in
term structure analysis, such as the number of factors, the shapes of the volatility func-
tions, the no-arbitrage drift restriction, the dynamics of risk premia, and their relation to
macroeconomic conditioning variables. On the methodological side, the implementation
clearly demonstrates the tractability of our likelihood based state space approach. Formally,
Gaussian distributional assumptions are adopted, but we demonstrate consistency of our
results with those obtained using robust alternative procedures. Furthermore, even without
Gaussianity, the Kalman filter generates minimum mean squared error linear predictions of
the latent state variables. On the substantive side, our results document the importance of
time-varying risk premia in the Heath, Jarrow and Morton (1992) framework, and we fail
to reject the absence of arbitrage opportunities at level 1%, although not at 5%, provided
three or more factors are included in the model specification. Most of the risk premium is
associated with the important slope factor. Movements in the price of slope risk depend
strongly on past movements in both the slope price itself and in the price of level risk, with
an increase in yield levels leading to a subsequent decrease in slope. The price of slope risk
is strongly related to the equity risk price. The price of level risk is strongly related to

both the equity risk price and consumption growth, whereas the price of curvature risk is
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Figure 9: Time Series Plot of Risk Prices — Two-Step Approach
In this figure we show a time series plot of the estimated time-varying risk prices using a two-step approach.
In the first step we run a principal component analysis (PCA) on the demeaned slope-adjusted yield changes
Jt,7;- Specifically, writing the PCA as g§; — it = Bw; + ¢, with i the sample mean of the slope-adjusted yield
changes, we obtain B and ;. Then, in the second step, we run a cross-sectional GLS regression at each
point in time to obtain estimates of the risk prices. Specifically, we estimate

gt — B’Li)t — Veclzm{l;;l;iTi/Q} = B)\t —+ Nt

with 13; the i-th row element of B and vecy.m{-} defined as the vector with the typical element in brackets for
i =1,...,m. The time series plots below document the estimated \; for the dimension of the driving Wiener
process W, equal to d = 1,2,3,4. To account for heteroskedasticity and cross-correlation we use GLS. The
covariance is estimated using the results from the principal components analysis: var[n;] = BB + ‘il, with
¥ diagonal with elements W;; = (1/7) Y, €% for i = 1,...,m. We show the estimated A time series that is
obtained for each of the four factors in the case d = 4.

Risk Prices Time Series for d = 4 — Two-Step PCA and GLS Approach
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strongly related to the output gap variable suggested by Cooper and Priestley (2009). Our
work establishes the empirical importance of the nonlinear (quadratic in loadings) term in
the no arbitrage condition and of proper treatment of bond aging and yield spread through
adjustment of yield changes for local and average slope of the yield curve.

Judging from our results, derivative pricing in the HJM framework should not be based
on model specifications with only one or two factors, and should not restrict the shape
of the volatility function to the standard parametrized forms associated with the affine
subclasses considered, even though both simplifications are extremely popular in practical
applications. More generally, the indication is that the framework should not be adopted for
derivative pricing based on a volatility function and an initial yield curve, only, without a
preceding analysis of the appropriate structure involving dynamic risk premium specification
and testing for arbitrage opportunities under the physical measure.

Appendix A

Here, we derive the appropriate no-arbitrage drift condition for the yield dynamics with fixed
term to maturity. There are two main differences between our setting and that in HIM: (i)
we study yields to maturity, while HIM consider instantaneous forward rates; and (ii) we use
the parametrization from Brace and Musiela (1994) with fixed term 7 to maturity, whereas
HJM use a fixed maturity date 7" in their notation.

The HJM specification of the dynamics of instantaneous forward rates takes the form
df (t,T) = oy (¢, T)dt + os (¢, T) dW,,

i.e., an infinite dimensional SDE for the forward curve f(¢,-), where oy and o; are the
forward rate drift and volatility functions, ¢ is calendar time, and 7" the fixed maturity date.
Equivalently, we assume that under the physical measure the yield curve dynamics can be
written as

dy (t,7) = a(t,7)dt + o (t,7) dW;,

which is (1). Here, 7 > 0 indicates term to maturity. For the traded bond with maturity
date T', we may write T' = t+ 7, i.e., term to maturity 7 shrinks as calendar date ¢ increases,
which is the bond aging effect. Write P (¢,7) = exp(— (T —t)y(¢,T —t)) for the zero
coupon bond price. By Ito’s lemma, using 7' =t + 7, bond price dynamics are

Oy

dP (t,1 1 + 77— ) d
ap(t,T) —7dy (t,7) + 720 (t,7) 0 (t,7)dt +y (t,7) dt D) (t,7) dt
2 T

( (7) 2 (7), (’) y(?) y(?)) (’),
87—

= a,(t,7)dt + 0, (t,7) dW,,
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where «,, and o0, are the expected return and return volatility of the bond. The absence of

arbitrage opportunities requires the existence of a market price of risk process \; such that
o, (t,7) =1+ 0, (t,7) N\,

where r; = y (¢,0) is the short rate at time ¢. Inserting for the bond drift and volatility from
above, we get the yield drift condition under the physical measure,
dy

a(t,T)= % (y (t,7) —y (t,0)) + o (t,7) + %7’0 (t,7) o (t,7) +o(t,7) \,

which is (2).

Appendix B

Here we briefly describe the state space approach and the Kalman filter, following Harvey
(1989) and Durbin and Koopman (2001), that we apply to our model (12), restated as

U = a+ vecr, {bibiT;/2} + By + &y,

T, = a-+ Ariq + wy.

The model is in state space form, with measurement equation given by the first equation
above, and state transition equation given by the second. In the special case of a static

model, A = 0, the model collapses to
U = a+vecy,{blb;T;/2} + Ba+ Bw; + ¢y,

which is the classical factor analysis model with special structure on the means. If no
arbitrage is not imposed, « is estimated by the sample average of g;—vecy., {b;b;7;/2}, and
the average risk price A = a is unidentified. With no arbitrage imposed, o = 0, estimation
of risk prices proceeds as a GLS regression of g;—vecy.,,,{b;b;7;/2} on the columns of the
loadings matrix B. In both cases, the relevant variance-covariance matrix is that from the
classical factor analysis, ¥ = BB’ + VU, and since the estimates of « respectively A = a
depend on B (through the quadratic term in b; in the unrestricted case, and in the restricted
case in addition through regression on B and GLS using ¥), the estimates are inserted in the
likelihood function and the resulting concentrated likelihood is maximized iteratively with
respect to B and V.

In the dynamic case with unrestricted state transition A, the Kalman filter recursions
provide estimates of the unobserved state z; given the data, with a distinction between
conditioning on two different information sets. In each recursive step the estimate of the

unobserved state at time ¢t is first made based on the information up to the previous time
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point, that is §1, 72, . .., %+—1. We denote this estimate as zy,—1 = El[z|th, . .., Gi-1] = Er1[2]
and refer to it as the ‘predicted’ state. The uncertainty around this estimate is measured by
the covariance matrix Py,_; := vary_1]xg]. When the new observation g; becomes available
we can update our information set to ¥y, 9o, ..., %1, Ui, and obtain an updated estimate of
the unobserved state. We denote this updated estimate as x,, = Elx|g1, ..., 0] = Eifx]
and refer to it as the ‘filtered’ state; the uncertainty around this estimate is measured by

Py = var(wzy).

Due to the properties of the Gaussian ¢; and w; the predicted and filtered estimates of the
unobserved state, and the uncertainty around these, can be calculated in a simple recursive
manner. Given that for time ¢ — 1 a filtered estimate ;1,1 (and error variance P;_y;_)
of the state has been obtained, we get a predicted estimate and error variance for the state

at the next time ¢ through

Tyr = a+ Az,
Py-1 = AP_y 1A +var(wy) = AP 1 A"+ 1,

with I; the d-dimensional identity matrix. After the new observation ¢; comes in we can

update these estimates and obtain the filtered estimate and error variance for the state using

Tyt = Tgp—1 T Pt\t—lB,Ffl’Ut,
Py = Py — F)t|t—lB/Ft_lBF)t|t—17

where we define

Ve = Y= Y1 = Y — (04 + vec, {bbiT; /2} + B$t|t—1) )
E = Uart_l('l}t) = BPt‘t—lB/ + 'UCLT(gt) = Bf)ﬂt—lB, + v,

To initialize the Kalman filter we use the properties of the process of the latent state x; to
get the unconditional distribution (see also the discussion in Section 3.2). We can write the

dynamics of the state as
vy =(I-A)(I-A) " at+Ar, 1 +w & 2 = (T—A)p+Av,_ +w, & 20— p = Az —p) +wy,
with 4 = (I — A)~'a. For the unconditional variance of x;, denoted ¥, we get
Y, =AY, A + 1,
which we can solve using the properties of the vectorization operator vec to give:
vee(S,) = [Ipp — (A® A)] tvec(lp),
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with ® the Kronecker product. Thus, the filter is initialized by setting xgo = p and Py = X,.

The vectors a and « and the matrices B, ¥, A contain the parameters that need to
be estimated. Given normality of the ¢, and w; we can use the output from the above
Kalman recursions. In general, the logarithm of the likelihood for a model with conditional

probability density function p(g:|91,...,J:—1) is given by

T
logL(gh s agT) = Zlogp(gt|gl7 cee agt—1)7
t=1

where p(71|7o) is according to the initialization of the system (see above), and T is the number
of observations. Due to normality of all distributions and the additivity in the system, the
latent state z; conditional on 91, ..., #7—1 is normal with mean x;;_; and variance P;;_,. For

1 wWe can write
Ur = o+ vecy, {UibiTi /2} + B(xy — Tye—1) + Bay—1 + &,

from which we get that the distribution of g; conditional on ¢4, ..., #;_1 is normal with mean
o+ vecy.m {0;b;7;/2} + Bay,—1 and variance matrix Fy. Thus, using the definition of v; above,

we can write the log-likelihood for the state space model as

T T
log L(i1, ... ) = =Tm/2 = Y "log|F|/2 = > v/ F, v /2.
t=1

t=1

This is maximized numerically, re-running the filter at each trial value of the parameter
vector. Standard errors are estimated off the squareroots of the diagonal elements of the

negative inverse Hessian at the optimum.

References

Amin, K. and A. Morton (1994). Implied Volatility Functions in Arbitrage-Free Term
Structure Models. Journal of Financial Economics 35, p141-180.

Ang, A. and M. Piazzesi (2003). A No-Arbitrage Vector Autoregression of Term Struc-
ture Dynamics with Macroeconomic and Latent Variables. J. Monetary Economics 50,
pT45-T787.

Bams, D. and C. Wolff (2003). Risk Premia in the Term Structure of Interest Rates: A
Panel Data Approach. International Financial Markets, Institutions and Money 13,
p211-236.

Bliss, R. and P. Ritchken (1996). Empirical Tests of Two State-variable Heath-Jarrow-
Morton Models. Journal of Money, Credit and Banking 28, p452-476.

45



Brace, A. and M. Musiela (1994). A Multifactor Gauss Markov Implementation of Heath,
Jarrow, and Morton. Mathematical Finance 4, p563-576.

Campbell, J. and R. Shiller (1991). Yield Spreads and Interest Rate Movements: A Bird’s
Eye View. Review of Economic Studies 58, p495-514.

Chapman, D., J. Long, and N. Pearson (1999). Using Proxies for the Short Rate: When
Are Three Months Like an Instant? Review of Financial Studies 12, p763-806.

Cooper, 1. and R. Priestley (2009). Time-Varying Risk Premiums and the Output Gap.
Review of Financial Studies 22, p2801-2833.

Cox, R., J. Ingersoll, and S. Ross (1985a). An Intertemporal General Equilibrium Model
of Asset Prices. FEconometrica 53, p363—-384.

Cox, R., J. Ingersoll, and S. Ross (1985b). A Theory of the Term Structure of Interest
Rates. Econometrica 53, p385-407.

Dai, Q. and K. Singleton (2000). Specification Analysis of Affine Term Structure Models.
Journal of Finance 55(5), p1943-1978.

Dai, Q. and K. Singleton (2002). Expectation Puzzles, Time-Varying Risk Premia, and
Affine Models of The Term Structure. Journal of Financial Economics 63, p415-441.

de Jong, F. and P. Santa-Clara (1999). The Dynamics of the Forward Interest Rate Curve:
a Formulation With State Variables. Journal of Financial and Quantitative Analy-
sis 34, p131-157.

Diebold, F. and C. Li (2006). Forecasting the Term Structure of Government Bond Yields.
Journal of Econometrics 130, p337-364.

Diebold, F., S. Rudebusch, and S. Aruoba (2006). The Macroeconomy and the Yield
Curve. Journal of Econometrics 131, p309-338.

Duarte, J. (2004). Evaluating an Alternative Risk Preference in Affine Term Structure
Models. Review of Financial Studies 17, p379-404.

Duffee, G. (2002). Term Premia and Interest Rate Forecasts in Affine Models. Journal of
Finance 57, p405-443.

Duffee, G. (2008). Information in (and not in) the Term Structure. Working Paper.

Duffie, D. and R. Kan (1996). A Yield-Factor Model of Interest Rates. Mathematical
Finance 6, p379-406.

Durbin, J. and S. Koopman (2001). Time Series Analysis by State Space Methods. Oxford

Statistical Science Series.

Fama, E. (1984). The Information in the Term Structure. Journal of Financial Eco-

nomaics 15, pb09-528.

46



Fama, E. and R. Bliss (1987). The Information in Long-Maturity Forward Rates. American
Economic Review 77, p680—692.

Flesaker, B. (1993). Testing the Heath-Jarrow-Morton/Ho-Lee Model of Interest Rate
Contingent Claims Pricing. Journal of Financial and Quantitative Analysis 28, p483—
495.

Geweke, J. and G. Zhou (1996). Measuring the Pricing Error of the Arbitrage Price
Theory. Review of Financial Studies 9, p557-587.

Harvey, A. (1989). Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.

Heath, D., R. Jarrow, and A. Morton (1992). Bond Pricing and the Term Structure of In-
terest Rates: a New Methodology for Contingent Claims Valuation. Econometrica 60,

p77-105.

Ho, T. and S. Lee (1986). Term Structure Movements and Pricing Interest Rate Contingent
Claims. Journal of Finance 41, p1011-1029.

Hull, J. and A. White (1990). Pricing Interest-Rate-Derivative Securites. Review of Fi-
nancial Studies 3, p573-592.

Jeffrey, A., D. Kristensen, O. Linton, T. Nguyen, and P. Phillips (2004). Nonparametric
Estimation of a Multifactor Heath-Jarrow-Morton Model: An Integrated Approach.
Journal of Financial Econometrics 2, p251-289.

Joslin, S., M. Priebsch, and K. Singleton (2009). Risk Premium Accounting in Macro-
Dynamic Term Structure Models. Working Paper.

Litterman, R. and J. Scheinkman (1991). Common Factors Affecting Bond Returns. Jour-
nal of Fixed Income 1, phb4—61.

Ludvigson, S. and S. Ng (2009). Macro Factors in Bond Risk Premia. Review of Financial
Studies (forthcoming).

Nelson, C. and A. Siegel (1987). Parsimonious Modelling of Yield Curves. Journal of
Business 60-4, p473-489.

Newey, W. K. and K. D. West (1987). A Simple Positive Semi-Definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix. Fconometrica 55, 703-8.

Roll, R. and S. Ross (1980). An Empirical Investigation of the Arbitrage Pricing Theory.
Journal of Finance 35, p1073-1103.

Ross, S. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic
Theory 13, p341-360.

Stanton, R. (1997). A Nonparametric Model of Term Structure Dynamics and the Market
Price of Interest Rate Risk. Journal of Finance 52, p1973-2002.

47



Stock, J. H. and M. Watson (2002). Macroeconomic Forecasting using Diffusion Indexes.
Journal of Business and Economic Statistics 20, 147-62.

Vasicek, O. (1977). An Equilibrium Characterization of the Term Structure. Journal of
Financial Economics 5, p177-188.

Wachter, J. (2006). A Consumption-Based Model of the Term Structure of Interest Rates.
Journal of Financial Economics 79, p365-399.

48



2010

2010-01:

2010-02:

2010-03:

2010-04:

2010-05:

2010-06:

2010-07:

2010-08:

2010-09:

2010-10:

2010-11:

2010-12:

2010-13:

2010-14:

Research Papers MCREATES

Center for Research in Econometric
Analysis of Time Series

Anders Bredahl Kock and Timo Terasvirta: Forecasting with nonlinear
time series models

Gunnar Bardsen, Stan Hurn and Zoé McHugh: Asymmetric unemploy-
ment rate dynamics in Australia

Jesper Rangvid, Maik Schmeling and Andreas Schrimpf: Cash Flow-
Predictability: Still Going Strong

Helle Bunzel and Walter Enders: The Taylor Rule and “Opportunistic”
Monetary Policy

Martin M. Andreasen: Non-linear DSGE Models and The Optimized
Particle Filter

Sgren Johansen and Bent Nielsen: Discussion of The Forward Search:
Theory and Data Analysis by Anthony C. Atkinson, Marco Riani, and
Andrea Ceroli

Giuseppe Cavaliere, Anders Rahbek and A.M.Robert Taylor: Bootstrap
Sequential Determination of the Co-integration Rank in VAR Models

Peter R. Hansen and Asger Lunde: Estimating the Persistence and the
Autocorrelation Function of a Time Series that is Measured with Error

Tom Engsted, Thomas Q. Pedersen and Carsten Tanggaard: Pitfalls in
VAR based return decompositions: A clarification

Torben G. Andersen and Luca Benzoni: Stochastic Volatility

Torben B. Rasmussen: Affine Bond Pricing with a Mixture Distribution
for Interest Rate Time-Series Dynamics

Martin M. Andreasen and Bent Jesper Christensen: The SR Approach:
a new Estimation Method for Non-Linear and Non-Gaussian Dynamic
Term Structure Models

Peter Reinhard Hansen, Zhuo (Albert) Huang and Howard Howan
Shek: Realized GARCH: Complete Model of Returns and Realized
Measures of Volatility

Bent Jesper Christensen and Michel van der Wel: An Asset Pricing
Approach to Testing General Term Structure Models including Heath-
Jarrow-Morton Specifications and Affine Subclasses



