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Abstract

GARCH models have been successful in modeling financial returns. Still, much is to be gained by
incorporating a realized measure of volatility in these models. In this paper we introduce a new framework
for the joint modeling of returns and realized measures of volatility. The Realized GARCH framework
nests most GARCH models as special cases and is, in many ways, a natural extension of standard GARCH
models. We pay special attention to linear and log-linear Realized GARCH specifications. This class of
models has several attractive features. It retains the simplicity and tractability of the classical GARCH
framework; it implies an ARMA structure for the conditional variance and realized measures of volatility;
and models in this class are parsimonious and simple to estimate. A key feature of the Realized GARCH
framework is a measurement equation that relates the observed realized measure to latent volatility. This
equation facilitates a simple modeling of the dependence between returns and future volatility that is
commonly referred to as the leverage effect. An empirical application with DJIA stocks and an exchange
traded index fund shows that a simple Realized GARCH structure leads to substantial improvements in
the empirical fit over to the standard GARCH model. This is true in-sample as well as out-of-sample.

Moreover, the point estimates are remarkably similar across the different time series.
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1 Introduction

The latent volatility process of asset returns are relevant to a wide variety of applications, such as option
pricing and risk management, and GARCH models are widely used to model the dynamic features of volatility.
This has sparked the development of a large number of ARCH and GARCH models since the seminal paper
by Engle (1982). Within the GARCH framework, the key element is the specification for the conditional
variance. GARCH models utilize daily returns (typically squared returns) to extract information about
the current level of volatility, and this information is used to form expectations about the next period’s
volatility. A single return is unable to offer more than a weak signal about the current level of volatility. The
implication is that GARCH models are poorly suited for situations where volatility changes rapidly to a new
level, because the GARCH model is slow at “catching up” and it will take many periods for the conditional
variance (implied by the GARCH model) to reach its new level.

High-frequency financial data are now readily available and the literature has recently introduce a number
of realized measures of volatility, including the realized variance, the bipower variation, the realized kernel,
and many related quantities, see Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys
(2001), Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2008a), Hansen and Horel (2009), and references therein. Any of these
measures is far more informative about the current level of volatility than is the squared return. This makes
realized measures very useful for modeling and forecasting future volatility. Estimating a GARCH-X model
that includes a realized measure in the GARCH equation provides a good illustration of this point. Such
models were estimated by Engle (2002) who used the realized variance and by Barndorff-Nielsen and Shephard
(2007) who used both the realized variance and the bipower variation. Within the GARCH-X framework
no effort is paid to explain the variation in the realized measures, so these GARCH-X models are partial
(incomplete) models that have nothing to say about returns and volatility beyond a single period into the
future.

Engle and Gallo (2006) introduced the first “complete” model in this context. Their model specifies a
GARCH structure for each of the realized measures, so that an additional latent volatility process is introduced
for each realized measure in the model. The model by Engle and Gallo (2006) is known as the Multiplicative
Error Model (MEM), because it builds on the MEM structure proposed by Engle (2002). Another complete
model is the HEAVY model by Shephard and Sheppard (2010) that, in terms of its mathematical structure, is
nested in the MEM framework. Unlike the traditional GARCH models, these models operate with multiple
latent volatility processes. For instance, the MEM by Engle and Gallo (2006) has a total of three latent
volatility processes and the HEAVY model by Shephard and Sheppard (2010) has two (or more) latent
volatility processes.

In this paper we introduce a new framework that combines a GARCH structure for returns with a model
for realized measures of volatility. Models within our framework are called Realized GARCH models, a name

that transpires both the objective of these models (similar to GARCH) and the means by which these models



operate (using realized measures). A Realized GARCH model maintains the single volatility-factor structure
of the traditional GARCH framework. Instead of introducing additional latent factors, we take advantage of
the natural relationship between the realized measure and the conditional variance, and we will argue that
there is no need for additional factors in many cases. Consider the case where the realized measure, ¢, is a
consistent estimator of the integrated variance. Now write the integrated variance as a linear combination
of the conditional variance and a random innovation, and we obtain the relation z; = £ + ph; + ¢;. We do
not impose ¢ = 1 so that this approach also applies when the realized measure is compute from a shorter
period (e.g. 6.5 hours) than the interval that the conditional variance refers to (e.g. 24 hours). Having a
measurement equation that ties x; to h; has several advantages. First, it induces a simple and tractable
structure that is similar to that of the classical GARCH framework. For instance, the conditional variance,
the realized measure, and the squared return, all have ARMA representations. Second, the measurement
equation makes it simple to model the dependence between shocks to returns and shocks to volatility, that
is commonly referred to as a leverage effect. Third, the measurement equation induces a structure that is
convenient for prediction. Once the model is estimated it is simple to compute distributional predictions for
the future path of volatilities and returns, and these predictions do not require one to introduce auxiliary
future values for the realized measure.

To illustrate our framework and fix ideas, consider a canonical version of the Realized GARCH model
that will be referred to as the RealGARCH(1,1) model with a linear specification. This model is given by

the following three equations

e = \/htzt7
hy = wH Bhy_1 +yxi_y,

ry = §4 ohy +7(2) + uy,

where 74 is the return, z; ~ iid(0, 1), u; ~ iid(0,02), and hy = var(ry|Fi—1) with Fy = o(ry, 4,741, T4—1, - - .)-
The last equation relates the observed realized measure to the latent volatility, and is therefore called the
measurement equation. It is easy to verify that h; is an autoregressive process of order one, hy = u +
whi—1 + wi—1, where 4 = w + 7§, m = B+ ¢y, and w, = Y7(2¢) + yue. So it is natural to adopt the
nomenclature of GARCH (generalized autoregressive conditional heteroskedasticity) models. The inclusion
of the realized measure in the model and the fact that x; has an autoregressive moving average (ARMA)
representation motivate the name Realized GARCH. A simple, yet potent specification of the leverage function
is 7(2) = Tz + 72(2? — 1), which can generate an asymmetric response in volatility to return shocks. The
simple structure of the model makes the model easy to estimate and interpret, and leads to a tractable
analysis of the quasi maximum likelihood estimator.

We apply the Realized GARCH framework to the DJIA stocks and an exchange traded index fund,
SPY. We find, in all cases, substantial improvements in the log-likelihood function when benchmarked to

a standard GARCH model. Substantial improvements are found in-sample as well as out-of-sample. The



empirical evidence also strongly favors inclusion of the leverage function, and the parameter estimates are
remarkably similar across stocks.

The paper is organized as follows. Section 2 introduces the Realized GARCH framework as a natural
extension to GARCH. We focus on linear and log-linear specification and show that squared returns, the
conditional variance, and realized measures have ARMA representations in this class of Realized GARCH
models. Our Realized GARCH framework is compared to MEM and some related models in Section 3.
Likelihood-based inference is analyzed in Section 4, where we derive the asymptotic properties of the QMLE
estimator. Our empirical analysis is given in Section 5. We estimate a range of Realized GARCH models
using time series for 28 stocks and an exchange traded index fund. Additional results and some extensions
are presented in Section 6. For instance, we derive the skewness and kurtosis of returns over one or more
periods, and show that the Realized GARCH is capable of generating substantial skewness and kurtosis.

Concluding remarks are given in Section 7, and Appendix A presents all proofs.

2 Realized GARCH

In this section we introduce the Realized GARCH model. The key variable of interest is the conditional
variance, hy = var(r¢|Fi—1), where {r;} is a time series of returns. In the GARCH(1,1) model the conditional
variance, hy, is a function of h;_; and r?_;. In the present framework, h; will also depend on z;_1, that
represents a realized measure of volatility, such as the realized variance. More generally, x; will denote a
vector of realized measures, such as the realized variance, the bipower variation, the intraday range, and the
squared return. A measurement equation, that ties the realized measure to the latent volatility “completes”
the model. So the Realized GARCH model fully specifies the dynamic properties of both returns and the
realized measure.

To simplify the exposition we will assume E(r¢|F;—1) = 0. A more general specifications for the conditional
mean, such as a constant or the GARCH-in-mean by Engle et al. (1987), is accommodated by reinterpreting
ry as the return less its conditional mean. The general framework for the Realized GARCH model is presented

next.

2.1 The General Formulation

The general structure of the RealGARCH(p,q) model is given by

re =/ ez, (1)
ht :’U(htfl,..wht,p,l‘t,l,...,.’Et,q), (2)

Ty = m(ht,2t7ut), (3)

where z; ~ iid (0,1) and u; ~ iid (0,02), with 2z, and u; being mutually independent.



We refer to the first two equations as the return equation and the GARCH equation, and these define
a class of GARCH-X models, including those that were estimated by Engle (2002), Barndorff-Nielsen and
Shephard (2007), and Visser (2008). The GARCH-X acronym refers to the the fact that x; is treated as
an exogenous variable. The HYBRID GARCH framework by Chen et al. (2009) includes variants of the
GARCH-X models and some related models.

We shall refer to (3) as the measurement equation, because the realized measure, z;, can often be in-
terpreted as a measurement of h;. The simplest example of a measurement equation is: x; = h; + us. The
measurement equation is an important component because it “completes” the model. Moreover, the measure-
ment equation provides a simple way to model the joint dependence between r; and x;, which is known to be
empirically important. This dependence is modeled though the presence of z; in the measurement equation,
which we find to be highly significant in our empirical analysis.

It is worth noting that most (if not all) variants of ARCH and GARCH models are nested in the Realized
GARCH framework. See Bollerslev (2009) for a comprehensive list of such models. The nesting can be
achieved by setting x; = r; or 7; = r?, and the measurement equation is redundant for such models, because

it is reduced to a simple identity. This is illustrated in the following two examples.
Example 1. By setting z; = 72, it is easy to verify that the Real GARCH(p,q) nests the GARCH(p,q) model.

For instance with p = ¢ = 1 we obtain the GARCH(1,1) structure with

v(ht_l,rtz_l) =w+ ozrtz_l + Bhi_1,

m(ht, Zt, ut) = htZtQ

The measurement equation is simply an identity in this case, so that we can take u; = 0 for all ¢.

Example 2. If we set x; = 1, then we obtain the EGARCH(1,1) model by Nelson (1991) with

V(hi—1,7—1) = exp{w + a|zi—1| + 021 + Bloghy—1}, since 21 =ri—1/\/ -1,
m(htaztaut) =V hiz.

Naturally, the interesting case is when x; is a high-frequency based realized measure, or a vector containing

several realized measures. Next we consider some particular variants of the Realized GARCH model.

2.2 Realized GARCH with a Log-Linear Specification

The Realized GARCH model with a simple log-linear specification is characterized by the following GARCH

and measurement equations.

P q
loght = w + Zi:l Bilog hi—; + ijl 75 log x—j, (4)

logzy = £+ ploghy + 7(2¢) + u, (5)



where z; = r;/\/hy ~ iid (0,1), u; ~ id (0,02), and 7(z) is called the leverage function.

Remark 1. A logarithmic specification for the measurement equation seems natural in this context. The
reason is that (1) implies that

log 2 = log hy + log 22, (6)

and a realized measure is in many ways similar to the squared return, r2, albeit a more accurate measure
of hy. It is therefore natural to explore specifications where log x; is expressed as a function of log h; and z;,
such as (5). Having chosen a logarithmic form for the measurement equation, makes it convenient to specify
the GARCH equation with a logarithmic form, because this induces a nice ARMA structure, as we shall see

below.

Remark 2. In our empirical application we adopt a quadratic specification for the leverage function, 7(z;).
The identity (6) motivated us to explore expressions that involves log zZ, but these were inferior to the
quadratic expression, and resulted in numerical issues because zero returns are occasionally observed in

practice. Additional details about the leverage function is given in Section 2.2.1.

Remark 3. The conditional variance, h; is, by definition, adapted to F;_1. Therefore, if v # 0 then z; must
also be adapted to F;. A filtration that would satisfy this requirement is F; = o(ry, x4, 7¢—1,T1—1,-..), but

JF; could in principle be an even richer o-field.

Remark 4. Note that the measurement equation does not require x; to be an unbiased measure of h;. For
instance, z; could be a realized measure that is computed with high-frequency data from a period that only
spans a fraction of the period that r; is computed over. E.g. x; could be the realized variance for a 6.5
hour long period whereas the return, r, is a close-to-close return that spans 24 hours. When z; is roughly
proportional to hg, then we should expect ¢ = 1, and that is indeed what we find empirically. Both when we
use open-to-close returns and close-to-close returns.

An attractive feature of the log-linear Realized GARCH model is that it preserves the ARMA structure
that characterizes some of the standard GARCH models. This shows that the “ARCH” nomenclature is
appropriate for the Realized GARCH model. For the sake of generality we derive the result for the case

where the GARCH equation includes lagged squared returns. Thus consider the following GARCH equation,

P a a
loghy = w+ Zi:l Biloghi—; + ijl v, logxy—; + ijl a; log rf_j, (7)

where ¢ = max;{(;,vi) # (0,0)}.

Proposition 1. Define wy = 7(z;) +u; and v; = log 22 — k, where k = Elog 22. The Realized GARCH model



defined by (5) and (7) implies

PVq q

log hy = pp, + Z(ai + Bi + ¢vi)log hy—i + Z(’ijtfj + ajvi—j),
i—1 =1
pVaq pVaq

log z¢ = pigz + Z(Oﬁ + Bi + i) logzs—i +wi + Z {=(aj + Bj)wi—j + pojvi_j},
i=1 j=1
pVq pVq

logr} = i+ > (i + i+ ovi) logri_ + v+ > _{vi(wij — pvi_j) — Bjui—s},
i—1 =1

where pp, = w + Ve + Aok, iz = P(w + k) + (1 — e — Bo)§, and pr = w + Y€ + (1 — Bo — ©Ve )5, with

q P q
Qe = Zj:l aj, 50 = Zi:l Biv and Yo = Zj:l Vi
using the conventions 3; = v; = a; =0 fori > p and j > q.

So the log-linear Realized GARCH model implies that log h; is ARMA(p V q,q — 1), whereas logr? and
log z; are ARMA(pVq,pVyq). If oy =--- =y =0, then logx; is ARMA(p V ¢, p).
From Proposition 1 we see that the persistence of volatility is summarized by a persistence parameter

rVq

= (ai+Bi+e%) =+ e+ 7.
i=1

Example 3. For the case p = ¢ = 1 we have
loght =w+ Bloghi—1 +~vlogz,—1 and logz, =&+ ploghy + 7(z:) + wy,
so that log hy ~AR(1) and log z; ~ARMA(1,1). Specifically
loghy = pp + wloghi—1 +ywi—1 and logz, = py + wlogxy_1 + wy — fwy_1,

where m = 5 + 7.

Remark 5. The measurement equation induces a GARCH structure that is similar to an EGARCH with a
stochastic volatility component. Take the case in Example 3 where log hy = pp+mlog hy—1 +7y7(ze—1) +yue—1.
Note that y7(2;—1) captures the leverage effects whereas yu;_1 adds an additional stochastic component that
resembles that of stochastic volatility models. So the Realized GARCH model can induce a flexible stochastic
volatility structure, similar to that in Yu (2008), but does in fact have a GARCH structure because u;—q
is F;_1-measurable. Interestingly, for the purpose of forecasting (beyond one-step ahead predictions), the
Realized GARCH is much like a stochastic volatility model since future values of u; are unknown. This
analogy does not apply to one-step ahead predictions because the lagged values, 7(2;—1) and u;—_1, are known

at time ¢ — 1.



An obvious advantage of using a logarithmic specification is that it automatically ensures a positive vari-
ance. Here it should be noted that the GARCH model with a logarithmic specification, known as LGARCH,
see Geweke (1986), Pantula (1986), and Milhgj (1987), has some practical drawbacks. These drawbacks may
explain that the LGARCH is less popular in applied work than the conventional GARCH model that uses a
specification for the level of volatility, see Terdsvirta (2009). One drawback is that zero returns occasionally
are observed, and such will cause havoc for the log-specification unless we impose some ad-hoc censoring.
Within the Realized GARCH framework, zero returns are not problematic, because logr?_; does not appear

in its GARCH equation.

2.2.1 The Leverage Function

The function 7(z) is called the leverage function because it captures the dependence between returns and
future volatility, a phenomenon that is referred to as the leverage effect. We normalized such functions by

E7(z) = 0, and we focus on those that have the form

T(zt) = may(ze) + - + mear(ze), where Eag(z:) =0, for all k,

so that the function is linear in the unknown parameters. We shall see that the leverage function induces
an EGARCH type structure in the GARCH equation, and we note that the functional form used in Nelson
(1991), 7(2¢) = 112 + 74 (J2¢| — E|z¢]) is within the class of leverage functions we consider. We shall mainly

consider leverage functions that are constructed from Hermite polynomials

7(2) =z + (2% = 1)+ 732 = 32) + mu(2* =622 +3) + -,

and our baseline choice for the leverage function is a simple quadratic form 7(z;) = 71 2; + 72(22 — 1). This
choice is convenient because it ensures that E7(z;) = 0, for any distribution of z;, so long as Ez; = 0 and
var(z;) = 1. The polynomial form is also convenient in our quasi likelihood analysis, and in our derivations
of the kurtosis of returns generated by this model.

The leverage function 7(z) is closely related to the news impact curve, see Engle and Ng (1993), that maps
out how positive and negative shocks to the price affect future volatility. We can define the news impact
curve by

v(z) = E(log hyt1]2e = 2) — E(log hyy1),
so that 100v(z) measures the percentage impact on volatility as a function of the studentized return. From
the ARMA representation in Proposition 1 it follows that v(z) = v17(2).
2.2.2 Multiple Realized Measurements

The Realized GARCH framework makes it simple to utilize multiple realized measures. For instance, let

x; = (r2, Ry, RV,)’, where R is the intraday range (high minus low) and RV is the realized variance. Then



we could consider the following model,

htztz
hy = w+ Bhy—1 + 7'z, and xy = mlhe, 2, up) = exp{ér + pr logh + ur¢} )

exp{&rv + prv log hy + urv ¢ }

which has a structure that is similar to the MEM by Engle and Gallo (2006). A key difference between the
Realized GARCH structure and the MEM is that we only have one latent variable for volatility, h;. The
MEM has one for each of the three variables in ;. Both RV and R are naturally tied to hy, so it is perhaps
more natural to use two measurement errors instead of two additional latent volatility variables. We revisit

this issue in Section 3.

2.3 Realized GARCH with a Linear Specification

In this section we adopt a linear structure that is more similar to the original GARCH model, by Bollerslev
(1986). One advantage of this formulation is that the measurement equation is simple to interpret in this
model. For instance if x; is computed from intermittent high-frequency data (i.e. over 6.5 hours) whereas r;
is a close-to-close return that spans 24 hours. Then we would expect ¢ to reflect how much of daily volatility

that occurs during the trading hours. The linear Realized GARCH model is defined by,

p q
hy = w+ _ Bihi—i + YiTi—j,
=1 J=1

xy =&+ phy +7(2) + u,

As is the case for the GARCH(1,1) model the RealGARCH(1,1) model with the linear specification implies
that h; has an AR(1) representation

he = (w+E) + (B+v0)hi—1 +ywi_1,

where wy; = uy + 7(2¢) is an iid process.
Analogous to the properties of squared returns in a GARCH(1,1) model, the realized measure, z;, will

have an ARMA(1,1) representation,

z=@w+ (1= B)6+ (B + py)oi—1 +w — Bwy_1,

which is consistent with the time-series properties of realized measures in this context, see Meddahi (2003).

In this linear model, it may be more appropriate to scale the leverage function by h;, i.e. substitute
hi7(z¢) for 7(z). The reason is that the asymptotic variance for many realized measures is known to be
roughly proportional to h?. Alternatively, we could use the return as the argument, i.e. 7(r;). We have

experimented with measurement equations of this type, but did not find a version of the linear model that



we preferred to the simple log-linear specification.

3 Comparison to MEM and HEAVY

In this section we relate the Realized GARCH model to the Multiplicative Error Model (MEM) by Engle
and Gallo (2006) and the HEAVY model by Shephard and Sheppard (2010).!

The MEM by Engle and Gallo (2006) utilizes two realized measures in addition to the squared returns.
These are the intraday range (high minus low) and the realized variance, whereas the HEAVY model by
Shephard and Sheppard (2010) uses the realized kernel (RK) by Barndorff-Nielsen et al. (2008a). These
models introduce an additional latent volatility process for each of the realized measures. So the MEM and
the HEAVY digress from the traditional GARCH models that only have a single latent volatility factor.

In comparison to the MEM by Engle and Gallo (2006) and the HEAVY model by Shephard and Sheppard
(2010), the Realized GARCH has the following characteristics.

e Maintains the single factor structure of latent volatility.

Ties the realized measure directly to the conditional variance.

Explicit modeling of the return-volatility dependence (leverage effect).

Implies a simple reduced-form model for {r;, h;} that is useful for forecasting, see Section 6.2.

The Realized EGARCH model, developed in Section 6.5.1, takes one step further and decomposes the
contributions from the realized measure in the GARCH equation, that yields important insight about

the merits of this type of models.

Key model features are given in Table 1. We have included the level specification of the Realized GARCH
model because it is most similar to the GARCH, MEM, and HEAVY models. Based on our empirical analysis
in Section 5 we recommend the log-linear specification in practice.

Brownless and Gallo (2010) estimates a restricted MEM model that is closely related to the Realized
GARCH with the linear specification. They utilize a single realized measure, the realized kernel by Barndorff-
Nielsen et al. (2008a), so that they have two latent volatility processes, hy = E(r?|F;_1) and py = E(z¢|Fi—1).
However, their model is effectively reduced to a single factor model as they introduce the constraint, h; =
¢+ dug, see Brownless and Gallo (2010, eqs.6-7). This structure is also implied by the linear version of our
measurement equation. However, they do not formulate a measurement equation or relate x; — i to a leverage
function. Instead they, for the purpose of simplifying the prediction problem, adopt a simple time-varying
structure, u; = a; + byzy_1, where a; and b; are defined by spline methods. Spline methods were introduced

in this context by Engle and Rangel (2008) to capture the low-frequency variation in the volatility.

1The Realized GARCH model was conceptualized and developed concurrently and independently of Shephard and Sheppard
(2010). However, in our current presentation of the model we have adopted some terminology from Shephard and Sheppard
(2010).
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One of the main advantages of Realized GARCH framework is the simplicity by which dependence between
return-shocks and volatility-shocks is modeled with the leverage function. The MEM is formulated with a
general dependence structure for the innovations that drive the latent volatility processes. The usual MEM
formulation is based on a vector of non-negative random innovations, 7, that are required to have mean
E(n:) = (1,...,1)". The literature has explored distributions with this property such as certain multivariate
Gamma distributions, and Cipollini, Engle, and Gallo (2009) use copula methods that entail a very flexible
class of distributions with the required structure. Some drawbacks of this approach are that estimation is
rather complex and a rigorous analysis of the asymptotic properties of these estimators seems intractable. A
perhaps simpler way to achieve the structure in the multiplicative error distribution is by setting ; = Z; ® Z;,
and work with the vector of random variables random variables, Z;, instead. The required structure can be
obtained with a more traditional error structure, where each element of Z; is required to have zero mean
and unit variance. This alternative formulation can be adopted without any loss of generality, since the
dependence between the elements of Z; can take any form. The estimates in Engle and Gallo (2006) and
Shephard and Sheppard (2010) are based on a likelihood where the elements of 7; are independent y2-
distributed random variables with one degree of freedom. We have used the alternative formulation in Table
1 where (22, Z?%,t’ Zl%éV,t)/ corresponds to 7 in the MEM by Engle and Gallo (2006).

A related framework that is currently under development is the HYBRID GARCH models by Chen et al.
(2009).

3.1 Realized GARCH Nomenclature

The Realized GARCH framework can be extended to a multi-factor structure. For instance with m realized
measures (including the squared return) we could specify a model with k£ < m latent volatility factors.
The Realized GARCH model introduced in this paper has k = 1 whereas the MEM has m = k. This hybrid
framework with 1 < k& < m, provides a way to bridge the Realized GARCH models with the MEM framework.

All these models can be viewed as extensions of standard GARCH models, where the extensions are
achieved by incorporating realized measures into the model in various ways.? For this reason we suggest that
all such models be called Realized GARCH models. This name transpires both the objective of these models

(similar to GARCH) and the means by which these models operate (using realized measures).

4 Quasi-Maximum Likelihood Analysis

In this section we discuss the asymptotic properties of the quasi-maximum likelihood estimator within the
Realized GARCH(p, ¢) model. The structure of the QMLE analysis is very similar to that of the standard
GARCH model, see Bollerslev and Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996), Jensen
and Rahbek (2004a,b), and Straumann and Mikosch (2006). Both Engle and Gallo (2006) and Shephard and

2 A realized measure is here used a generic for statistics that are constructed from high-frequency data, such as the realized
variance, the realized kernel, intraday range, the number of transactions, and volume.
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Sheppard (2010) justify the standard errors they report, by referencing existing QMLE results for GARCH
models. This argument hinges on the fact that the joint log-likelihood in Engle and Gallo (2006) and
Shephard and Sheppard (2010) is decomposed into a sum of univariate GARCH-X models, whose likelihood
can be maximized separately. The factorization of the likelihood is achieved by two facets of these models:
One is that all observables (i.e. squared return and each of the realized measures) are being tied to their
individual latent volatility process. The other is that the primitive innovations in these models are taken to
be independent in the formulation of the likelihood function. The latter inhibits a direct modeling of leverage
effect with a function such as 7(z;), which is one of the traits of the Realized GARCH model. However,
in the MEM framework leverage type dependencies can be achieved indirectly by including suitable realized
measures in various GARCH equations, such as the realized semivariance, see Barndorff-Nielsen et al. (2009b),
or by introducing suitable indicator functions as in Engle and Gallo (2006).

In this section we will derive the underlying QMLE structure for the log-linear Realized GARCH model.
The structure of the linear Realized GARCH model is similar. We provide closed-form expressions for the
first and second derivatives of the log-likelihood function. These expressions facilitate direct computation of
robust standard errors, and provide insight about regularity conditions that would justify QMLE inference.
For instance, the first derivative will unearth regularity conditions that enable a central limit theorem be
applied to the score function.

For the purpose of estimation, we adopt a Gaussian specification, so that the log likelihood function is
given by

n

1
Ur,250) = =5 D llog(he) + 1 /e + log(oy) + ui /7).

t=1
We write the leverage function as 7'a; = mai(z) + - + 7ax(z), and denote the parameters in the model
by

0= (A/a ,703)/7 where A= (wvﬁla"'7ﬁpa’ylv~~~,’7q)/, ’l/): (5,9037_/)/'

To simplify the notation we write hy = log b, and #; = log z;, and define
gt = (L b1y Py Boo1ye s Beg)s oy = (1, Ay, al).
So the GARCH and measurement equations can be expresses as
he = N gy and T = Y'my + uy,

The dynamics that underlies the score and Hessian are driven by h; and its derivatives with respect to A.

The properties of these derivatives are stated next.
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Lemma 1. Define hy = aht and hy = 8‘9;5‘;\, . Then hs =0 and hy = 0 for s < 0, and

p
:Zﬂihtﬂ‘Jrgt and Zﬁzht i Ht 1+Ht 1),
i=1

where Hy_1 = <Ol+p+q><l7 izt_l, e ht_p, 01+p+qu> isanp+q+1XxXp+q+ 1 matriz.
(11) When p = q = 1 we have with § = 1 that

t—1 t—1
he=Y Blg; and  hy=> kBFNGik+Giy),
i=0 k=1

where Gy = (03x1, gt, 03x1)-

n
Proposition 2. (i) The score, % Z %—, is given by

(1 — Zt2 + 2“; ’U,t)ht

Y R
00 2
o2 y2
o

where Uy = Ouy/Ologhy = —p + 1zt7"dt with dt = Oa(z:)/0z.

(ii) The second derivative, 3289’ = Z 8080/’ is given by

4 {4 2ROy — 4 {1 2p 4 2 L . .
82£t : U / u ! 1 /
9000 émtht ébtht — Gz My ° )
“t—f;“h’ U ) loi—Quf
ot 't o' 2 o8
where b, = (0,1, —3z4;) and i, = — 37/ {za; + 2dy } with G, = 0%a(z) /02

An advantage of our framework is that we can draw upon results for generalized hidden Markov models.
Consider the case p = ¢ = 1: From Carrasco and Chen (2002, Proposition 2) it follows that h; has a
stationary representation provided that 7 = 84 ¢y € (—1,1). If we assign ho its invariant distribution, then
hy is strictly stationary and S-mixing with exponential decay, and E|h:|* < oo if E|7(z;)+us|* < co. Moreover,
{(r¢,x¢),t > 0} is a generalized hidden Markov model, with hidden chain {h;,t > 0}, and so by Carrasco
and Chen (2002, Proposition 4) it follows that also {(r,x;)} is stationary S-mixing with exponentially decay
rate. See also Straumann and Mikosch (2006) who adopt a stochastic recurrence approach to analyze the
QMLE properties for a broad class of GARCH models.

The robustness of the QMLE as defined by the Gaussian likelihood is, in part, reflected by the weak
assumptions that make the score a martingale difference sequence. These are stated in the following Propo-

sition.
Proposition 3. (i) Suppose that E(u|z, Fi—1) = 0, E(22|Fi—1) = 1, and E(u?|F;_1) = 2. Then 5,(0) =
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26,(0) ; :
50 18 a martingale difference sequence.

(11) Suppose, in addition, that {(rt,xt,ﬁt)} is stationary and ergodic. Then

1 n 3& d 1 "~ 82‘& D,
727 — N(0,Jp) and 7523980/ = o,
po t=1
provided that
TB(1 = 2F + ) °E (hub} . ’
g = (i) FEmemi) e
— u3 Ut ) u? u% Uii ’
SRRt e SR
and
_2 ..
{4+ 2852 B(hiin) . 0
Ty = — 012 E {(utmt + uby) hé} U%E(mtmé) 0 ’
0 0 2;4
are finite.

Note that in the stationary case we have Jy = E (%ggi) , 80 a necessary condition for |Jy| < oo is that

z¢ and ug have finite forth moments. Additional moments may be required for z;, depending on the complexity
of the leverage function 7(z), because u; depends on 7(z).

Straumann and Mikosch (2006) established conventional QMLE results for a broad class of GARCH
models. The mathematical structure of the Gaussian quasi log-likelihood function for the Realized GARCH
model is quite similar to the structure analyzed in Straumann and Mikosch (2006). So we conjecture that

Straumann and Mikosch (2006, theorem 7.1) can be adapted to the present framework, so that

vn (én _ 9) = N (0,7, J0T; ).

To make this result rigorous we would need to adapt and verify conditions N.1-N.4 in Straumann and
Mikosch (2006). This is not straightforward and would take up much space, so we leave this for future
research. Moreover, the results in Straumann and Mikosch (2006) only applies to the stationary case, T < 1,
so the non-stationary case would have to be analyzed separately using methods similar to those in Jensen
and Rahbek (2004a,b).

In the context of ARCH and GARCH models, it has been shown that the QMLE estimator is consistent
with an Gaussian limit distribution regardless of the process being stationary or non-stationary. The latter
was established in Jensen and Rahbek (2004a,b). So unlike the case for autoregressive processes, we need
not have a discontinuity of the limit distribution at the knife-edge in the parameter space that separates
stationary and non-stationary processes. This is an important result for empirical applications, because the
point estimates are typically found to be very close to the boundary.

Notice that the martingale difference result for the score, Proposition 3(i), does not rely on stationarity.

So a suitable central limit theorem for martingale difference processes may be applicable even if the process
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is non-stationary, as is the case in Jensen and Rahbek (2004a,b).

Finally, we observe that the estimator of the parameters in the GARCH equation, A, and those of the
measurement equation, ¢, are not asymptotically independent. This asymptotic correlation is induced by the

leverage function in our model, and the fact that we link the realized measure, x;, to h; with a measurement

equation.

4.1

While standard errors for 6 may be compute from numerical derivatives, these can also be computed directly

using the following expressions

n
= 1 A Al
= — E StS
n v
t=1

and

where the zero follows from the first order condition: Soi, gy, = 0. Moreover, the first-order conditions

h]li

for A implies that

g

For our baseline leverage function, 71 2; + 7'2(zt2 —

The results in this section is easily generalized to specifications that include the squared return (or log-squared

return) in the GARCH equation. This is achieved by stacking the appropriate lags of r? (or logr?) to the

vector g.

Utut
04

42
2t

Computational issues

where

G52
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u

62 (utmt n ﬁtbt> B
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t1202

—2;

2(42 +aig)
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} halt, +
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sii

}hh’
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5 Empirical Analysis

In this section we present empirical results using returns and realized measures for 28 stocks and and exchange-
traded index fund, SPY, that tracks the S&P 500 index. Detailed results are presented for SPY, whereas
our results for the 28 other time series are less detailed to conserve space. We adopt the realized kernel,
introduced by Barndorff-Nielsen et al. (2008a), as the realized measure, z;. We estimate the realized GARCH
models using both open-to-close returns and close-to-close returns. High-frequency prices are only available
between “open” and “close”, so the population quantity that is estimated by the realized kernel is directly
related to the volatility of open-to-close returns, but only captures a fraction of the volatility of close-to-close
returns.

The results for the linear and log-linear Realized GARCH models are presented in Tables 3 and 4,
respectively. Our empirical results with the level specification suggest that open-to-close volatility (the
period with high-frequency prices) is about 75% of daily volatility. Then we compare the linear and log-linear
specifications and argue that the latter is better suited for the problem at hand. We report empirical results
for all 29 assets in Table 5 and find the point estimates to be remarkable similar across the many time series.
In-sample and out-of-sample likelihood ratio statistics are computed in Table 6. These results strongly favor
the inclusion of the leverage function and show that the realized GARCH framework is superior to standard
GARCH models, because the partial log-likelihood of any Realized GARCH models is substantially better
than that of a standard GARCH(1,1). This is found to be the case in-sample, as well as out-of-sample.

5.1 Data Description

Our sample spans the period from January 1, 2002 to August 31, 2008, which we divide into an in-sample
period: January 1, 2002 to December 31, 2007; leaving the eight months, 2008-01-02 and 2008-08-31, for

3 We adopt the realized kernel as the realized measure, x;, using the Parzen kernel

out-of-sample analysis.
function. This estimator is similar to the well known realized variance, but is robust to market microstructure
noise and is a more accurate estimator of the quadratic variation. Our implementation of the realized kernel
follows Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b) that guarantees a positive estimate, which
is important for our log-linear specification. The exact computation is explained in great details in Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2009a). When we estimate a Realized GARCH model using open-to-
close returns we should expect z; =~ h;, whereas with close-to-close returns we should expect x; to be smaller
than h; on average.

To avoid outliers that would result from half trading days, we removed days where high-frequency data
spanned less than 90% of the official 6.5 hours between 9:30am and 4:00pm. This removes about three daily

observation per year, such as the day after Thanksgiving and days around Christmas. When we estimate a

model that involves logr?, we deal with zero returns by the truncation max(logr?,e) with e = 10720,

350 our sample does not include the very volatile period during the financial crisis, because these data were not available
when we initiated the empirical analysis.
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Symbol  T,. minr,. maxre. T2, Fee minre maxre r2, RK minRK maxRK

AA -0.12  -8.09 8.49 3.17 -0.01 -10.91 9.24 4.44 3.56 0.49 40.52
AlIG -0.08 -12.06 11.16  3.14 -0.08 -19.90 12.04 443 3.00 0.13 53.44
AXP 0.03 -8.50 9.42 263 0.01 -10.60 1041 3.53 2.82 0.07 57.60
BA -0.01  -6.97 9.39 218 0.04 -8.41 6.78 291 2.46 0.21 33.92
BAC 0.02 -12.50 15.87 245 0.01 -10.66 20.22  3.08 2.24 0.13 62.72
C -0.09 -12.84 16.23 299 0.07 -15.69 8.63 3.09 3.28 0.17 89.01
CAT 0.00 -5.52 8.18 223 0.07  -15.69 8.63 3.09 2.32 0.30 27.93
CVX 0.00 -6.08 5.46 1.58 0.05 -6.93 5.27 1.97 1.81 0.22 18.60
DD -0.02  -5.96 9.84 1.65 0.01 -6.78 9.42 213 2.03 0.28 36.99
DIS 0.05 -6.50 8.11 224 0.03 -9.45 13.66  3.14 2.66 0.23 45.96
GE -0.06  -8.38 9.90 177 -0.01 -13.71 9.08 241 1.97 0.08 36.70
GM -0.23  -12.76 13.64 498 -0.07 -16.33 16.64 6.64 4.49 0.22 112.63
HD -0.03  -5.89 11.14 2.62 -0.04 -15.18 10.20  3.62 2.88 0.18 39.69
IBM 0.06 -6.39 5.95 1.52  0.00 -10.67 10.67 231 1.63 0.14 19.44
INTC -0.04 -8.22 8.82 3.68 -0.02 -20.48 10.29  5.55 3.65 0.45 44.89
JNJ 0.02 -4.68 7.92 095 0.02 -17.25 7.91 1.37 1.29 0.07 36.63
JPM  -0.01 -16.41 25.28 3.58 0.01 -19.95 14.88 461 3.74 0.10 224.45
KO 0.04 -4.39 7.51 1.00 0.01 -10.62 5.33 1.35 1.29 0.04 25.21
MCD 0.09 -11.33 6.01 1.93 0.06 -13.72 8.85 259 224 0.24 37.65
MMM -0.01 -7.14 6.86 1.20 0.02 -9.37 6.89 1.65 1.40 0.08 17.96
MRK 0.03 -11.13 9.75 1.92 -0.02 -31.15 12.22 3,51 2.30 0.14 63.78
MSFT -0.02 -7.71 10.98 2.04 0.00 -12.07 10.55  2.85 2.14 0.14 35.54
PG 0.11 -5.94 5.17 0.83 0.04 -7.66 4.43 1.06 1.07 0.04 12.88
T -0.03 -11.46 8.99 2.82 0.00 -10.76 8.71 291 2.78 0.12 54.01
UTx -0.02 -7.99 6.88 1.68 0.05 -9.16 9.38 223 181 0.23 25.93
VZ -0.02  -7.63 7.12 2.03 0.00 -12.57 8.87 2.58 241 0.16 39.50
WMT -0.01  -4.77 7.88 1.36 0.01 -6.89 7.73 1.87 1.75 0.16 28.78
XOM 0.03 -6.83 10.62 1.64 0.05 -8.86 9.30 2.10 1.87 0.19 26.00
SPY -0.02  -3.98 8.19 0.88 0.01 -3.98 5.80 1.09 0.80 0.06 13.14

Table 2: Summary statistics. The sample period is January 1, 2002 to August 31, 2008. Subscript-oc and
subscript-cc refer to open-to-close and close-to-close returns, respectively. The realized kernel, RK, is used
as our realized measure of volatility.
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5.2 Some Notation related to the Likelihood and Leverage Effect

The log-likelihood function is (conditionally on Fo = o({r¢, z¢, ht},t < 0)) given by

log L({re, zi }i=1;0) = Zlog f(re, @ Feev).
t=1

Standard GARCH models do not model z;, so the log-likelihood we obtain for these models cannot be
compared to those of the Realized GARCH model. However, we can factorize the joint conditional density
for (r¢,z¢) by

flre,xel Feoa) = f(re Feea) f(@elre, Fe),

and compare the partial log-likelihood, ¢(r) := >_ log f(r¢|Ft—1), with that of a standard GARCH model.
t=1

Specifically for the Gaussian specification for z; and w;, we split the joint likelihood, into the sum

1 n
lr,x {jlog (2m) + log(he) + 77 /he] +

l\D\»—t

5 ZlogQw +log(o2) + ui /o2].

=4(r) ={(xz|r)

Asymmetries in the leverage function are summarized by the following two statistics,

p~ = corr{T(z¢) + us, z¢|z¢ < 0} and pt = corr{7(z) + uy, 2|z > 0}.
These capture the slope of a piecewise linear news impact curve for negative and positive returns, such as

that implied by the EGARCH model.

5.3 Empirical Results for the Linear Realized GARCH Model

First we consider Realized GARCH models with the linear specification. We estimate a standard GARCH(1,1)
model and six Realized GARCH models using both open-to-close and close-to-close returns for SPY. We use
RG(p,q) to denote the Realized GARCH model with p lags of h; and ¢ lags of ;. We estimate three models
with p = ¢ = 2. In addition to the standard RG(2,2) model we estimate a model without the leverage
function (denoted RG(2,2)") and an extended model, RG(2,2)", that also includes a lag of the squared
return it the GARCH equation. The results for open-to-close returns are given in the left panel of Table 3,
and the corresponding results for close-to-close returns are presented in the right panel of Table 3.

First we discuss the empirical results for open-to-close returns in the left half of Table 3. First we know
that the empirical estimates of ¢ and £ in the measurement equation are roughly ¢ ~ 1 and é ~ 0, which
shows that the realized kernel, which is used as the realized measure of volatility, =, is roughly unbiased as
a measure of open-to-close volatility. Comparing RG(2,2) with RG(2,2)" shows that the leverage function is
highly significant. Omitting the two 7-parameters leads to a rather large drop in the log-likelihood function.
Next, if we compare the extended model RG(2, 2)* with the standard model RG(2,2) we see that the ARCH
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parameter is insignificant. Consider now the auxiliary statistics in Panel B. The persistence parameter
is estimated to be close to one in all models, and the models with a leverage function all suggest a rather
strong asymmetry in the new impact curve, as summarized by p~ and pT. The partial likelihood statistic
£(r) is the likelihood for the returns alone. For the case of the Realized GARCH models this amounts to the
likelihood for the GARCH-X model arising from the the return and GARCH equations alone. Note that the
Realized GARCH models do not maximize this term, yet the model still produces a better empirical fit than
the GARCH(1,1) model.

The empirical results for the close-to-close returns in the right half of Table 3 are quite similar. Not
surprisingly are the estimates of ¢ smaller which reflect the fact that the realized measure only measures
volatility over the open-to-close period. The point estimates are ¢ ~ 0.75, which suggests that volatility
during the “open period” amounts to about 75% of daily volatility. Interestingly, the ARCH parameter is
found to be significant in the analysis of close-to-close returns. This finding should be taken with a grain of
salt, because the linear model is grossly misspecified, as we shall see in Section 5.5, and the estimate of «
in the linear model is sensitive to outliers. Note that the inclusion of « causes a large decline in the partial
log-likelihood for returns, ¢(r). Moreover, the estimated model suggests that volatility is far less persistent

than is usually found in practice, in part because the estimates of the S-parameters are unusually small.

5.4 Empirical Results for the Log-Linear Realized GARCH Model

In this section we present detailed results for Realized GARCH models with a log-linear specification of
the GARCH and measurement equations. We strongly favor the log-linear specification over the linear
specification for reasons that will be evident in Section 5.5 where we compare empirical aspects of the two

specifications.

5.4.1 Log-Linear Models for SPY (Table 4)

Table 4 is analogous to Table 3, except that we use the log-linear specification for the Realized GARCH mod-
els. For the sake of comparison we use the logarithmic GARCH(1,1) model and the conventional benchmark,
when comparing the empirical fit of the partial likelihood (for returns). Again we report results for both
open-to-close returns and close-to-close returns for SPY.

From Table 4 we see that the extended model RG(2, 2)*, which includes the squared return in the GARCH
equation, results in very marginal improvements over the standard model RG(2, 2), and the ARCH parameter,
a, is clearly insignificant. Comparing the RG(2,2)" with the standard model shows that the leverage function
is highly significant. The improvement in the log-likelihood function is almost 100 units.

The robust standard errors suggest that [ is significant, when it is actually not the case. This is simply
a manifestation of a common problem with standard errors and t¢-statistics in the context with collinearity.
In this case, log ht—1 and log h;_o are highly collinear which causes the likelihood surface to be almost flat

along lines where 81 + 2 is constant, while there is sufficient curvature along the axis to make the standard
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errors small.

The empirical estimates of ¢ are close to unity, ¢ ~ 1, for both open-to-close and close-to-close returns.
This suggests that the realized measure, x;, is roughly proportional to the conditional variance for both
open-to-close returns and close-to-close returns. The fact that £ is estimated to be smaller (more negative)
for close-to-close returns that for open-to-close returns simply reflects that the realized measure is computed
over an interval that spans a shorter period than close-to-close returns.

In terms of partial log-likelihood function, ¢(r), the log-linear specification leads to an even better fit
than the linear specifications, whereas the logarithmic GARCH(1,1) model leads to a worse fit than the
GARCH(1,1) model, see Table 3. The joint log-likelihood function, £(r,x), for the log-linear model is not
directly comparable to that of the linear model (because we are modeling log x; as oppose to z;).

The standard errors of the extended model, RG(2,2)*, for close-to-close returns are rather sensitive to
the truncation parameter, €, we use to avoid the problem of taking the logarithm to (a squared) zero. There
are about 10 days with zero returns in the sample. The problem disappears if we use a smaller truncation
parameter, but the smaller truncation parameter also causes the performance of the LGARCH to deteriorate

substantially.

5.4.2 Log-Linear Real GARCH(1,2) for All Stocks (Table 5)

Table 5 shows the parameter estimates for the log-linear Realized GARCH(1,2) model for all 29 assets. The
empirical results are based on open-to-close returns. We observe that the estimates are remarkably similar
across the stocks that span different sectors and have varying market dynamics. An interesting observation
is observed from the conditional correlations, p~ and p*. The index fund, SPY, is found to have a strong
asymmetry, since p~ = —0.32 and p* = 0.13. This is consistent with the existing literature. Also consistent
with the existing literature, see e.g. Yu (2008) and reference therein, is that fact that the two conditional
correlations are more balanced for the individual stocks. However, two stocks, CVX and XOM have strong
asymmetries of the same magnitude as the index fund, SPY. These two stocks are both are oil companies,
so a possible explanation is that the valuations of CVX and XOM were strongly influenced by the volatility

of oil prices in the sample period.

5.4.3 News Impact Curve (Figure 1)

The leverage function, 7(z) is closely related to the news impact curve that was introduced by Engle and Ng
(1993). High frequency data enable are more more detailed study of the news impact curve than is possible
with daily returns. A detailed study of the news impact curve that utilizes high frequency data is Ghysels
and Chen (2010). Their approach is very different from ours, yet the shape of the news impact curve they
estimate is very similar to ours. The news impact curve shows how volatility is impacted by a shock to the

price, and our Hermite specification for the leverage function presents a very flexible framework for estimating
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News Impact Curve

--1BM

Figure 1: News impact curve for IBM and SPY

the news impact curve. In the log-linear specification we define the new impact curve by

v(z) = E(log hyy1|2 = 2) — E(log hyy1),

so that 100v(z) measures the percentage impact on volatility as a function of return-shock measures in units
of standard deviations. As shown in Section 2 we have v(z) = 417(2). We have estimate the log-linear
Real GARCH(1,2) model for both IBM and SPY using a flexible leverage function based on the first four
Hermite polynomials. The point estimates were (71, 72,73, 74) = (—0.036,0.090,0.001, —0.003) for IBM and
(71, T2, 73, 74) = (—0.068,0.081,0.014,0.002) for SPY. Note that the Hermite polynomials of orders three and
four add little beyond the first two polynomials. The news impact curves implied by these estimates are
presented in Figure 1. The fact that v(z) is smaller than zero for some (small) values of z is an implication
of its definition that implies, E[v(z)] = 0.

The estimated news impact curve for IBM is more symmetric about zero than that of SPY, and this
empirical result is fully consistent with the existing literature. The most common approach to model the news
impact curve is to adopt a specification with a discontinuity at zero, such as that used in the EGARCH model
by Nelson (1991), 7(2) = 11 2+7+(|2|—E|z|). We also estimated the leverage functions with the piecewise linear
function that leads to similar empirical results. Specifically, the implied news impact curves have the most
pronounced asymmetry for the index fund, SPY, and the two oil related stocks, CVX and XOM. However,
the likelihood function tends to be larger with the polynomial leverage function, 7(2) = 712 + 72(2? — 1), and

the polynomial specification simplifies aspects of the likelihood analysis.
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5.4.4 In-Sample and Out-of-Sample Log-Likelihood Results

Table 6 shows the likelihood ratios for both in-sample and out-of-sample period. The statistics are based
on our analysis with open-to-close returns. The statistics in Panel A are the conventional likelihood ratio
statistics, where each of the five smaller models are benchmarked against the largest model. The largest
model is labeled (2,2). This is the log-linear RealGARCH(2,2) model that has the squared return r? in the
GARCH equation in addition to the realized measure. Thus the likelihood ratio statistics are in Panel A are

defined by
LR; = 2{lrg(2,2) (r,2) = Li(r,2) } ,

where i represents one of the five other Realized GARCH models. In the QMLE framework the limit
distribution of likelihood ratio statistic, LR;, is usually given as a weighted sum of y2-distributions. Thus
comparing the LR; to the usual critical value of a x2-distribution is only indicative of significance.

Comparing the Real GARCH(2,2)* to Real GARCH(2,2) leads to small LR statistics in most cases. So «
tends to be insignificant in our sample. This is consistent with the existing literature that finds that squared
returns adds little to the model, once a more accurate realized measure is used in the GARCH equation.

The leverage function, 7(z;), is highly significant in all cases. The LR statistics associated with the
hypothesis that 74 = 75 = 0 are well over 100 in all cases. These statistics can be computed by subtracting
the statistics in the column labeled (2,2) from those in the column labeled (2,2)f. The joint hypothesis,
B2 = 2 = 0 is rejected in most cases, and so the empirical evidence does not support a simplification of the
model to the RealGARCH(1,1). The results for the two hypotheses 82 = 0 and v, = 0 are less conclusive. The
likelihood ratio statistics for the hypothesis, > = 0 are, on average, 5.7 = 9.6 —3.9, which would be borderline
significant when compared to conventional critical values from a Xfl)—distribution. The LR statistics for the
hypothesis, 75 = 0, tend to be larger with an average value of 16.6. So the empirical evidence favors the
Real GARCH(1,2) model over the RealGARCH(2,1) model.

Consider next the out-of-sample statistics in Panel B. These likelihood ratio statistics are computed
as \/%{ERGQ’Q) (r,z) — ¢;(r,x)}, where n and m denote the sample sizes, in-sample and out-of-sample,
respectively. The in-sample parameter estimates are simply plugged into the out-of-sample log-likelihood,
and the asymptotic distribution of these statistics are non-standard because the in-sample estimates do
not solve the first-order conditions out-of-sample, see Hansen (2009). The Real GARCH(2,2) model nests,
or is nested in, all other models. For nested and correctly specified models where the larger model has &
additional parameters that are all zero (under the null hypothesis) the out-of-sample likelihood ratio statistic

is asymptotically distributed as

\/% {li(r,x) — £;(r,z)} 4 Z1Zs, as m,n— oo with m/n— 0,

where Z; and Z, are independent Z; ~ N (0,T). This follows from, for instance, Hansen (2009, corollary 2),
and the (two-sided) critical values can be inferred from the distribution of |Z] Z5|. For k = 1 the 5% and 1%
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X Linear Model: x against /2 Log-Linear Model: log(x) against log(#)

. . log(x)

2 5 log(hy

Figure 2: Heteroskedasticity in measurement equation

critical values are 2.25 and 3.67, respectively, and for two degrees of freedom (k = 2), these are 3.05 and 4.83,
respectively. Compared to these critical values we find, on average, significant evidence in favor of a model
with more lags than Real GARCH(1,1). The statistical evidence in favor of a leverage function is very strong.
Adding the ARCH parameter, «, will (on average) result in a worse out-of-sample log-likelihood. As for the
choice between the RealGARCH(1,2), RealGARCH(2,1), and Real GARCH(2,2) the evidence is mixed.

In Panel C, we report partial likelihood ratio statistics, that are defined by 2{max; ¢;(r|z) — ¢;(r|z)}, so
each model is compared with the model that had the best out-of-sample fit in term of the partial likelihood.
These statistics facilitate a comparison of the Realized GARCH models with the standard GARCH(1,1)
model, and we see that the Realized GARCH models also dominate the standard GARCH model in this
metric. This is made more impressive by the fact that Realized GARCH models are maximizing the joint

likelihood, and not the partial likelihood that is used in these comparisons.*

5.5 A Comparison of the Linear and Log-Linear Specifications

In this Section we focus on two empirical aspects that both favor the log-linear model over the linear model:
Heteroskedasticity and the degree of misspecification of the Gaussian likelihood.

The measurement equations for the linear and log-linear model are
oy =&+ phy +7(2) +w and logz; = § + plog hy + 7(2¢) + uy,

respectively, where 7(z;) + u; is modeled as an iid process, hence homoskedastic.
Figure 2 displays two scatter plots. The left panel plots z; against fzt, as estimated with the linear
RealGARCH(1,2) model and the right panel plots log z; against log h, where the latter is estimated with a log-

linear RealGARCH(1,2) model. The two models produce very similar value for h;, however there is obviously

4There is not a well developed theory for the asymptotic distribution of these statistics, in part because we are comparing
a model that maximizes the partial likelihood (the GARCH(1,1) model) with models that maximizes the joint likelihood (the
Realized GARCH models).
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Standard Errors for the RealGARCH(1,2) Model

Linear Model Log-linear Model
Ifl jfl Ifljzfl Ifl jfl Iflj:zfl
w 0.007 0.004 0.019 0.015 0.015 0.016
8 0.034 0.017 0.125 0.040 0.031 0.053
v 0.053 0.040 0.133 0.030 0.025 0.040
v2  0.054 0.032 0.177 0.046 0.036 0.062
& 0.038 0.037 0.096 0.044 0.042 0.051
¢ 0.080 0.064 0.212 0.044 0.033 0.069
o, 0.009 0.002 0.054 0.005 0.005 0.006
7 0.013 0.014 0.016 0.010 0.011 0.011
75 0.008 0.013 0.011 0.006 0.008 0.006

Table 7: Conventional and robust standard errors computed for Realized GARCH(1,2) model with a quadratic
leverage function. The data are open-close SPY returns.

a very pronounced degree of heteroskedasticity in the linear models. This suggests we should adopt a different
leverage specification in the linear model, where h;{7(2;) 4+ u;} is used in place of 7(z;) + u;. This reinforces
the value of modeling the leverage effect in this context. Homoskedastic errors are not essential for the quasi
maximum likelihood estimators but causes the QMLE to be inefficient. Moreover, misspecification causes
the likelihood ratio statistic to have an asymptotic distribution that is a weighted sum of X%l)—distributed
random variables, rather than a pure sum of such. Comparing likelihood ratio statistics to critical values to a
standard y2-distribution, as an approximation, becomes very dubious when the model is highly misspecified.

In Figure 3 we present scatter plot for four variants of the Realized GARCH model. The residuals,
{2, G}, are those for the SPY returns, obtained with the RealGARCH(1,2) model, using the four combi-
nations of linear /log-linear specification and with /without a leverage function. The upper panels in Figure 3
are the residuals for the linear specification and the two lower panels are for the log-linear specification. The
left panels are residuals obtained with out a leverage function (i.e. 7(2) = 0), and those on the right are the
residuals obtained with a quadratic specification for 7(z). The residuals for the linear specification reveals
a great deal of misspecification. The log-linear model with our a leverage function leads to residuals that
strongly indicates the independence assumption between z and u is violated. The log-linear models with the
quadratic leverage function offers a much better agreement with the underlying assumptions.

The fact that the log-linear model is far less misspecified than the linear model can also be illustrated
by comparing robust and non-robust standard errors. In Table 7 we have computed standard errors using
those of the two information matrices (the diagonal elements of Z=! and J~!) and the robust standard errors

computed from the diagonal of Z='JZ 1.

5.6 The Number of Latent Volatility Factors

To illustrate that a single latent volatility factor may be sufficient in this context, we have estimated the

latent volatility processes for returns, range, and the realized kernel using a simple GARCH(1,1) structure for
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Linear specification without leverage function Linear specification with quadratic leverage function

Log-linear specification without leverage function Log-linear specification with quadratic leverage function

Figure 3: Scatter plots of the residuals, (2, 4;), obtained with four different RealGARCH(1,2) models. The
upper panels are for the linear specification and the lower panels are for the log-linear specification. The
left panel are for models without a leverage function the right panels are with a quadratic leverage function.
The log-linear specification with the leverage function is clearly best suited for the Gaussian structure of the
quasi log-likelihood function.
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Scatter plot: hreturn) against h(range) Scatter plot of h(RK) against h(range)

m

Figure 4: Scatter plots of latent volatility processes for returns, range, and the realized kernel. Each were
estimated separately using a GARCH(1,1) structure. The co-linearity between these latent processes suggests
that the three processes can be modeled with a single latent process.

each of them. Each of the three volatility processes were extracted by maximizing —%{Z?:l log(he)+yi/hi}
where hy = w4+ ay; ¢—1 + Shi—1, where y; ; denotes either the squared return, r2, the squared intraday-range,
R?, or the realized kernel, RK;. For each of the three time series we maximize the quasi log-likelihood function
with respect to (w, a, 3,, ho), so the three volatility processes are obtained separately. Figure 4 presents two
scatter plots of the estimated volatility processes, and the pronounced collinearity suggests that a single

latent volatility factor may be sufficient in this context.

6 Moments, Forecasting, and Insight about the Realized Measure

In this section we elaborate on the interpretations that can be deduced from the Realized GARCH model.

Specifically in terms of:
e Skewness and kurtosis of cumulative returns as implied by the Realized GARCH model.
e Issues related to multi-period forecasting.

e A decomposition of the realized measure in the GARCH equation that enables us to interpret the
underlying structure of the model. This decomposition motivates a modified GARCH equation that

resembles that of an EGARCH model.

6.1 Properties of Cumulative Returns: Skewness and Kurtosis

We consider the skewness and kurtosis for returns generated by a Realized GARCH model. First an analytical

results for a single period return for the linear Realized GARCH model.
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Proposition 4. Suppose that r, = \/hz;, where

he = w+ari_; + Bhi_1 + vz,
re = &4 ohy +7(2) + ug,
T(zt) = Tz + TQ( -1+ Tg( —3zt) + -+ T Hi(2e),

with z; ~ iidN(0,1), u; ~ iid(0,02), and Hg(z;) being the k-th Hermite polynomial.
Definem =a+ 8+ ¢y, p =w+7E, o 2 = E7(2)?, and suppose that 7> + 2a% < 1. Then the excess

kurtosis of ry is given by

(1—m)2 02 + o2 o 60
2 ol e ) a-m )T 2 3
1—7% -2« W ® 1 —72 -2«

In the special case were o = 0, the excess kurtosis is

and in the special case where v = 0 we obtain the excess kurtosis for the GARCH(1,1) model,

6a?
1—(a+ )% —2a2

When z; ~ N(0,1) and the leverage function is constructed from Hermite polynomials, 7(z;) = 112 +
To(27 — 1)+ 73(2 —32) + -+, then 02, = 7§ + 273 + 675 + 4l + -+ .
For the log-linear Realized GARCH model we have the following results for the kurtosis of a single period

return.

Proposition 5. Consider the log-linear Real GARCH(1,1) model and define m = 5+ ¢y and p = w + @&, so
that

loghy =7mloghi—1 + p + ywe—1, where wy = T12¢ + 7'2( —1) + uy,

with z; ~ iidN(0,1) and us ~ iidN(0,02). The kurtosis of the return vy = /hiz is given by

) © 1 _9 20,2, 2 2 2
2t =3 L exp Z — 2272 eXp{WJuz}' (8)
) o V1 —AminTy 1 — 67iyTy + 872iny 1—7

There does not appear to be a way to further simplify the expression (8), however when y7, is small, as

we found it to be empirically, we have the approximation (see the appendix for details)

(9)

—logm 1—72

{ S Gl i) }
+ .
The skewness for single period returns is non-zero, if and only if the studentized return, z;, has non-zero
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w = 0.04124604

B = 0.70122085
v = 0.45067217
Y = -0.17604791
¢ = -0.17999580
0 = 1.03749403
Ou = 0.38127405
m = -0.06781023
T = 0.07015828

Table 8: Parameter estimates for the log-linear Realized GARCH(1,2) model that is used to simulate cumu-
lative returns.
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Figure 5: Skewness and kurtosis of cumulative returns from a Realized GARCH model with the log-linear
specification, see Table 8. The z-axis gives the number of periods that returns are accumulated over.
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skewness. This follows directly from the identity 7, = v/h:2:, and the assumption that z;1Lh;, that shows
that,
d/2 d/2 d/2
E(rf) = B(h*2) = E{B({*1F 1)} = BB,

and in particular that E(r}) = E(h?/Q)E(zf) So a symmetric distribution for z; implies that r; has zero
skewness, and this is property that is shared by standard GARCH model and Realized GARCH model alike.

For the skewness and kurtosis of cumulative returns, r¢ +- - - + 7441, the situation is very different, because
the leverage function induces skewness. For this problem we resort to simulation methods using a design
based on our empirical estimates for log-linear Realized GARCH(1,2) model that we obtained for the SPY
returns. The exact configuration is given by Table 8, and the skewness and kurtosis of cumulative returns
are shown in Figure 5. From Figure 5 it is evident that the Realized GARCH model can produce strong and

persistent skewness and kurtosis.

6.2 Multi-Period Forecast

One of the main advantages of having a complete specification, i.e., a model that fully describes the dynamic
properties of x; is that multi-period ahead forecasting is feasible. In contrast, the GARCH-X model can
only be used to make one-step ahead predictions. Multi-period ahead predictions are not possible without a
model for x;, such as the one implied by the measurement equation in the Realized GARCH model.
Multi-period ahead predictions with the Realized GARCH model is straightforward for both the linear
and log-linear Realized GARCH models. Let h; denote either h; or log h, and consider first the case where
p = ¢ = 1. By substituting the GARCH equation into measurement equation we obtain the VARMA(1,1)

structure

hy B8 v hi1 w 0
= + + ,
Ty o8 @y Ty £+ pw 7(2¢) +

that can be used to generate the predictive distribution of future values of izt, T, as well as returns 74, using

- h ~ J
Retn B h e A w 0
Tyqn ©B @y Ty =0 | B v £+ pw T(2t4n—j) + Utrn—j

This is easily extended to the general case (p,q > 1) where we have

}/t:A}/;f—l“Fb‘Ffta

with the conventions
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he
(ﬂlw"?ﬂp) (71V'~57q) w
hy_ Iy 1xp_1,0,_ 0, 0,
}/;: t~p+1 7 A= (p 1xp—1,Yp 1><1) p—1Xq ’ b= p—1x1 ’ € = T(Zt)+Ut
Ty (B, .-, Bp) ©(15---,7%) £+ pw
OQ*lxp (]éflxqflyoqflxl) Oqflxl
ft—q—kl ]
so that
h-1
Yien = AhYt+ZAJ(b+€t+h—j)~
=0

The predictive distribution for BHh and/or Zyyp, is given from the distribution of Z?:_OI Ale; i, which also
enables us to compute a predictive distribution for 7,15, and cumulative returns ryy1 + -« 4+ 74 4p.

The Realized GARCH model can be used to predict both the conditional return-variance and the realized
measure. The latter has been the subject of a very active literature. See e.g. Andersen, Bollerslev, Diebold,
and Labys (2003), Andersen, Bollerslev, and Meddahi (2004, 2005, 2010),Andersen, Bollerslev, and Diebold
(2007).

6.2.1 A Reduced-Form Expression

If it is not an objective to predict future values of the realized measure,Z;, then the Realized GARCH implies
another structure that is simpler for predicting the future path of volatility and returns. From the ARMA

structure for izt we have that
hi = W+ mhe 4o+ Wﬁﬁt—ﬁ + {7 (z—1) + w1} + - F {7 (2—g) + ui—q},

where 1 = w + 7§ and m; = §; + ¢v;, for j =1,...,p = max(p, q).

Hence, if the objective is to predict the future path of volatility and/or the predictive distribution of
future returns, including multi-period returns such as, r441 + - -+ + 7445, then there is no need to consider
axillary future values of the realized measure. Note the mixture of z; and u; innovations that defines the
volatility path. This structure resembles the dynamic features of a stochastic volatility model with leverage

effect, see e.g. Yu (2008).

6.3 Decomposing the Realized Measure in the GARCH Equation

In this section we provide a more detailed analysis of the leverage term, 7(z;), and its dynamic effect on

volatility. First we consider a hypothetical decomposition of the realized measure in the GARCH equation.
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This yields valuable insight about the gains from utilizing realized measures in these models. Then we provide
an alternative (but econometrically equivalent) representation of the GARCH equation. This representation
suggests a simple extension of the Realized GARCH model, that offers a more flexible specification of the
leverage effect. We also study a different functional form for 7(z), that induces an EGARCH structure on

the GARCH equation.

6.4 A Hypothetical Decomposition

Many realized measures, such as the realized kernel used in our empirical analysis, will be consistent estimators
of the quadratic variation, which is an ex-post measure of volatility.
Consider the case where z; is an estimator of the integrated variance IV,, such as the realized variance

or the realized kernel. For realized measures of this type it is well known that the sampling error,
ny = log xy — log IVy,

is approximately N(0,%,,), where ¥,, — 0 as the number of intraday observations, n; — oo. See e.g.
Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen et al. (2008a), and Barndorff-Nielsen et al. (2008b).
For instance, under weak assumptions about market microstructure noise Barndorff-Nielsen et al. (2008Db)
show that the “sampling error” is log z; — log TV, = O, (n=1/%).
The difference between the logarithmically transformed integrated variance and conditional variance is
given by
(¢ = logIVy — log hy.

Then (; captures the news about volatility that accumulated after the conditional expectation, h;, is made
at time ¢ — 1, and we will refer to (; as the wvolatility shock. Naturally the expected value of {; will depend
on whether the integrated variance is measured over the same period as h;, or a fraction thereof.

Suppose for simplicity that ¢ =1 and p = g = 1, so that the GARCH equation can be expressed as
loghi1 = p+ wloghy + §1¢; + damy-

Within the Realized GARCH model v has to represent both é; and d5, so the Realized GARCH model
implicitly imposes the constraint that 6; = d2 (= 7).

The sampling error, 7;, will be specific to the choice of realized measure (estimator of integrated variance).
Since this term reflects our inability to perfectly estimate the integrated variance, we should not expect this
term to be important for describing the dynamics of volatility. We should expect the volatility shock, (;, to
be important. Since neither (; nor 7; are observed we cannot estimate a model where the realized measure

is decomposed into these two terms. However, we can relate 7(z;) and u; to these terms, as we discuss next.
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6.5 An Alternative Model Representation

An alternative representation for the RealGARCH(1,1) is

. = m2t7

loghy = p+wloghi—1 +y7(ze—1) + YUr—1,

log x; &+ ploghy + 7(z) + uy,

where 7 = 8+ ¢ and p = w+~v€. The model defined by these equations will generate a process (r¢, z;)" that
is observationally equivalent to log-linear Real GARCH(1,1). Note that the inclusion of z; in the GARCH
equation implicitly imposes that the coefficients associated with 7(z) and u be the same. This constraint is

relaxed in the following specification,

loghy = p+mloghi_1 +0617(2—1) + doup—1, (10)

logxy = &+ ploghy +7(2) + uyg.

It is natural to associate the leverage function, 7(z;), with (;, albeit there will be residual randomness in ¢,
that cannot be explained by the studentized return, z;, alone. Consequently, u; will be a mixture of pure
sampling error, 7;, and the residual randomness ; — 7(z;) — €.

Since 7(z:) is primarily related to the volatility shock, (;, we should expect 7(z;) to have a larger coefficient
in the GARCH equation than u;, and that is indeed what we find in a preliminary analysis of this particular
model. Specifically we find, 61 > 02 > 0, where d5 is significant. This minor extension of the model leads to
some interesting insight about the channels by which the realized measure in useful for the GARCH equation.

As discussed earlier, when x; is included in the GARCH equation, then it does not distinguish between
7(z:) and wuy, as it implied 6; = d in (10). The implication is that v will be indicative of how accurate x;

estimates the integrated variance.

6.5.1 Realized EGARCH
The decomposition of the realized measure in the GARCH equation motivates a Realized GARCH model

with the following EGARCH structure,

10g ht = w+ Blog ht—l —+ T(Zt_l) —+ 56,5_1,

E+ploghy + k7(ze) + (1 4 0)eq.

log x4

Here we have reparametrized the model to simplify the notation. For instance, 5 in this model maps into
B + ¢y in the formulation used earlier, and the leverage function has absorbed the scaling v, and we have
instead introduced the scaling x in the measurement equation.

The Realized EGARCH model has a particularly interesting structure when 5 = ¢/k. In this case we can
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rewrite the measurement equation as

log xy = £+ kloghiy1 + €, where & =¢ — kw,

so that the realized measure is implicitly being tied to the conditional variance for the next period.
The structure of the likelihood function for this model is different from that of our log-linear model, so we
cannot utilize the QMLE results we derived in Section 4 to this model. Therefore, we leave a more detailed

analysis of this model for future research.

7 Conclusion

In this paper we have proposed a complete model for returns and realized measures of volatility, x;, where the
latter is tied directly to the conditional volatility h;. We have demonstrated that the model is straightforward
to estimate and offers a substantial improvement in the empirical fit, relative to standard GARCH models.
The model is informative about realized measurement, such as its accuracy.

We have shown that the realized GARCH model induces an interesting reduced-form model for {r, h:},
that is similar to that of a stochastic volatility model with leverage effect.

Our empirical analysis can be extended in a number of ways. For instance, including a jump robust
realized measure of volatility would be an interesting extension, because Bollerslev, Kretschmer, Pigorsch,
and Tauchen (2009) found that the leverage effect primarily acts through the continuous volatility component.
Another possible extension is to introduce a bivariate model of open-to-close and close-to-open returns, as
an alternative to modeling close-to-close returns, see Andersen et al. (2008).

In this paper we have mainly focused on linear and log-linear specifications of the GARCH equation.
In would be interesting for consider the whole family of specifications covered by the Augmented GARCH
model, see Duan (1997).

The Realized GARCH framework is naturally extended to a multi-factor structure. Say m realized
measures and k latent volatility variables. The Realized GARCH model discussed in this paper corresponds
to the case k = 1, whereas the MEM framework corresponds to the case m = k. Such a hybrid framework
would enable us to conduct inference about the number of latent factors, k. We could, in particular, test the
one-factor structure, conjectured to be sufficient for the realized measure used in this paper, against the two-
factor structure implied by MEM. The family of models extents traditional GARCH models by utilized the
additional information provided by variables that are commonly called realized measures, still the objective
of these models is essentially the same as that of GARCH models. For this reason we propose that all such

models be called Realized GARCH models.
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A Appendix of Proofs

Proof. |Proposition 1] The first result follows by substituting log x; = ploghy + € + w, and logr? = logh; +
x + v; into the GARCH equation and rearranging. Next, we substitute log hy = (logzy — & —wy) /¢, logr? =
(logxy — & — wy) /@ + k + v¢, and multiply by ¢, and find

logzy — & —wy = <pw+z (Bi + a;)(logxs—; — & —we—; +<pz *y]logxt J+<pz (K +vij)

so with m; = a; + B; + 7i we have

pVg
P q
logz: = &(1 — e — te) + prte + pw + z; 7 log xs—; + wy — Zizl(ai + Biwi—; + @ ijl QU
=
When ¢ = 0 the measurement equation shows that log x; is an iid process. O

Proof. [Lemma 1] First note that

dy; : . .
87; = (th—l, ceey ht—p30p+q+1><q) = Hy_4,

Thus from the GARCH equation, h; = X g;, we have that

hi = )\+gt H; A+ g = Zﬂzht i+ g

i=1

oA

Similarly, the second order derivative, is given by

7 8(915 + Ht71>\) 3975 . Ht 1 , aht i p . - .
ht:T—Wﬂ‘Ht—l'F 8)\ )\ H 1+Ht 1+Zﬁz 8)\/ _;6iht7i+Ht71+Ht—1«
For the starting values we observe the following: Regardless of (ho, ..., h,—1) being treated as fixed or as a

vector of unknown parameters, we have hs = hy = 0 for . Given the structure of ; this implies hy = 0.
When p = ¢ = 1 it follows immediately that h, = Z;;é (7 g;—;. Similarly we have
t—1 t—2
=> B(Hij+Hea )= B (Hiaj+H 1)
§=0 j=0
where H; = (03x1, ht, 03x1) and where the second equality follows by Hy = 0. The results now follows by
-2 t—1-i-1 t—2 t—i—2 -2 t-1

t—2 t—1
> Blhuai= Zﬁ’ Z Foaiyj=> 8 Y Bl Z Z gk =Y kB gk
=0 =0 k k=1

=0 k—i—1=0
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Proof. |Proposition 2| Recall that u; = #; — ¢'m; and hy= g A\. So derivative with respect to hy are given by

b _1p 2
8? = m = flzt so that aft =22,
3ht aht 2 aht
a=2" - oyl
t ({ﬁLt ¥ o4t dt
L O(—p+gzmalz)r) 1, . .
i = — — 2 = ——7 (2ta¢ + zjay) .
t i i 1 (200 + 27 di)
So with £, = —1{h; + 27 +log(c2) + u?/o2} we have
oy oy o, 1 022 Ou?/oh, 1 5 2ty
— =2— d — =—— 14+ =4+ —"— 1 =—=d1- .
ou oz M Gh T T2 { Y on T o2 2 T 2
Derivatives with respect to A\ are
9% _ Omdh _ 1 i
)N V) W
Qup _ Qudhy _ ¢
ox o, on
ou .o
o = i
8€t (%t . 1 2 2utzlt .
— = ——h=——-<91- hi.
oA Ohy k 2{ %t o2 K
Derivatives with respect to 1 are
6Ut 8“,5 86,5 8€t 8ut Ut
— = -1, — =0, and — = = —2—,
23 23 9 Ouy 9¢ 2
8ut = 8ut Gﬁt 8&5 8ut Ut >
— = —h — =-1 d — =——=-2—h
Ay b %) ’ an dp  Ous Op 27
Ou 0 O L g Y 040w pu
or v or 27 or  Ou, or o2 "
Similarly, 2% = —1(0;2 — w0, ). Now we turn to the second order derivatives.
62€t . 623 2 . 3ut 8Ut 2 2ut . aht
oo T M {_ax t o <“m +“m)} et gy

u u

40

hy {zf +— (47 + wyiiy) h;} +(1—22 + U—JUt)ht.



Similarly, since %Zj = 0 we have

L 32& _ 3(1 — Zt2 + 2UtUt)h _ 2h aut & 4 Ut a'LLt _ 2h _ﬁ 10
ONOE B3 “\oy' o2 02 06 "\ o2
g Ot _ 01 — 2 + S i)l _ojy, (et u Oue\ o g U ur
IMNDp D "\op a2 " 02 9y "\ o2 o2
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Proof. [Proposition 4] With a Gaussian specification for z; we have E(r?) = E(h;) and E(r}}) =

the ARMA representation for this process we have with y =w+v§ and Tt =a+ [+ ¢y € (—

(oo}
he = p+mhi—1 + ywe—1 + ave_g = Zﬂ'i(')/wt—i—l +avi_i—1) + ﬁ,
i=0

where wy = 7(z;) + u; and v, = hy(27 — 1). So that E(h;) = p/(1 — 7). Next we note that E(w?) = 0% + 02
E(v?) = 2E(h?), and E(wsv;) = yamE(22 —1)2E(h;) = 2yarau/(1—7), where we have used that z, ~ N(0,1)

and the Hermite polynomial structure of 7(z). The second moment is given by

2
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so that (1 20 ) E(h?) = T — + (1fi)2, and hence
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Hence the excess kurtosis is given by
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and the results follow. O

Lemma 2. Let W = 11 Z + 172(Z? — 1) + U, where Z ~ N(0,1) and U ~ N(0,02). Then

E (exp {m'7W}) = — a1

V1= 27iyry

Proof. We have
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and from the moment generating function for the Gaussian distribution we have E (eV) = e=2". Since Z

and U are independent, we have
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Proof. [Proposition 5] We note that
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i=0 i=0
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=0 =0

and using results, such as
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we find that
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where the last equality uses
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A.1 Approximate Expression for the Kurtosis

In this subsection we provide a justification for the approximation (9). Recall that

—2xt 1 =271 > 7T21’}/27'1 7205
=3 E 5753 ( eXP 5 (-
t) 1/1_47777—2 1—67r772+87r’772 1—m

For the first term on the right hand side, we have

log ﬁ 1—27iymy o e 1—27%y1y

log ——dxz
5 V1 —4miym 0 V= 4m*yTy
> 2772 1 (4ym)* o1
= - 1-2
log {Z 2 k2 ( )

k=1

1 297m)" k-1
- 1-2
log kzz:l 2 ( )

B y272 {1 + %’Y’TQ +7(ym2)? + %(77—2)3 + %(772)4 + - }
N —log '

The second term can be bounded by

I S NS N
1—n2 — —1- 6miyTe + 8724272 T 1 — 721 — 6myTe

So the approximation error is small when 75 is small.
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