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Abstract

GARCH models have been successful in modeling �nancial returns. Still, much is to be gained by

incorporating a realized measure of volatility in these models. In this paper we introduce a new framework

for the joint modeling of returns and realized measures of volatility. The Realized GARCH framework

nests most GARCH models as special cases and is, in many ways, a natural extension of standard GARCH

models. We pay special attention to linear and log-linear Realized GARCH speci�cations. This class of

models has several attractive features. It retains the simplicity and tractability of the classical GARCH

framework; it implies an ARMA structure for the conditional variance and realized measures of volatility;

and models in this class are parsimonious and simple to estimate. A key feature of the Realized GARCH

framework is a measurement equation that relates the observed realized measure to latent volatility. This

equation facilitates a simple modeling of the dependence between returns and future volatility that is

commonly referred to as the leverage e�ect. An empirical application with DJIA stocks and an exchange

traded index fund shows that a simple Realized GARCH structure leads to substantial improvements in

the empirical �t over to the standard GARCH model. This is true in-sample as well as out-of-sample.

Moreover, the point estimates are remarkably similar across the di�erent time series.
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1 Introduction

The latent volatility process of asset returns are relevant to a wide variety of applications, such as option

pricing and risk management, and GARCH models are widely used to model the dynamic features of volatility.

This has sparked the development of a large number of ARCH and GARCH models since the seminal paper

by Engle (1982). Within the GARCH framework, the key element is the speci�cation for the conditional

variance. GARCH models utilize daily returns (typically squared returns) to extract information about

the current level of volatility, and this information is used to form expectations about the next period's

volatility. A single return is unable to o�er more than a weak signal about the current level of volatility. The

implication is that GARCH models are poorly suited for situations where volatility changes rapidly to a new

level, because the GARCH model is slow at �catching up� and it will take many periods for the conditional

variance (implied by the GARCH model) to reach its new level.

High-frequency �nancial data are now readily available and the literature has recently introduce a number

of realized measures of volatility, including the realized variance, the bipower variation, the realized kernel,

and many related quantities, see Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys

(2001), Barndor�-Nielsen and Shephard (2002), Barndor�-Nielsen and Shephard (2004), Barndor�-Nielsen,

Hansen, Lunde, and Shephard (2008a), Hansen and Horel (2009), and references therein. Any of these

measures is far more informative about the current level of volatility than is the squared return. This makes

realized measures very useful for modeling and forecasting future volatility. Estimating a GARCH-X model

that includes a realized measure in the GARCH equation provides a good illustration of this point. Such

models were estimated by Engle (2002) who used the realized variance and by Barndor�-Nielsen and Shephard

(2007) who used both the realized variance and the bipower variation. Within the GARCH-X framework

no e�ort is paid to explain the variation in the realized measures, so these GARCH-X models are partial

(incomplete) models that have nothing to say about returns and volatility beyond a single period into the

future.

Engle and Gallo (2006) introduced the �rst �complete� model in this context. Their model speci�es a

GARCH structure for each of the realized measures, so that an additional latent volatility process is introduced

for each realized measure in the model. The model by Engle and Gallo (2006) is known as the Multiplicative

Error Model (MEM), because it builds on the MEM structure proposed by Engle (2002). Another complete

model is the HEAVY model by Shephard and Sheppard (2010) that, in terms of its mathematical structure, is

nested in the MEM framework. Unlike the traditional GARCH models, these models operate with multiple

latent volatility processes. For instance, the MEM by Engle and Gallo (2006) has a total of three latent

volatility processes and the HEAVY model by Shephard and Sheppard (2010) has two (or more) latent

volatility processes.

In this paper we introduce a new framework that combines a GARCH structure for returns with a model

for realized measures of volatility. Models within our framework are called Realized GARCH models, a name

that transpires both the objective of these models (similar to GARCH) and the means by which these models
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operate (using realized measures). A Realized GARCH model maintains the single volatility-factor structure

of the traditional GARCH framework. Instead of introducing additional latent factors, we take advantage of

the natural relationship between the realized measure and the conditional variance, and we will argue that

there is no need for additional factors in many cases. Consider the case where the realized measure, xt, is a

consistent estimator of the integrated variance. Now write the integrated variance as a linear combination

of the conditional variance and a random innovation, and we obtain the relation xt = ξ + ϕht + εt. We do

not impose ϕ = 1 so that this approach also applies when the realized measure is compute from a shorter

period (e.g. 6.5 hours) than the interval that the conditional variance refers to (e.g. 24 hours). Having a

measurement equation that ties xt to ht has several advantages. First, it induces a simple and tractable

structure that is similar to that of the classical GARCH framework. For instance, the conditional variance,

the realized measure, and the squared return, all have ARMA representations. Second, the measurement

equation makes it simple to model the dependence between shocks to returns and shocks to volatility, that

is commonly referred to as a leverage e�ect. Third, the measurement equation induces a structure that is

convenient for prediction. Once the model is estimated it is simple to compute distributional predictions for

the future path of volatilities and returns, and these predictions do not require one to introduce auxiliary

future values for the realized measure.

To illustrate our framework and �x ideas, consider a canonical version of the Realized GARCH model

that will be referred to as the RealGARCH(1,1) model with a linear speci�cation. This model is given by

the following three equations

rt =
√
htzt,

ht = ω + βht−1 + γxt−1,

xt = ξ + ϕht + τ(zt) + ut,

where rt is the return, zt ∼ iid(0, 1), ut ∼ iid(0, σ2
u), and ht = var(rt|Ft−1) with Ft = σ(rt, xt, rt−1, xt−1, . . .).

The last equation relates the observed realized measure to the latent volatility, and is therefore called the

measurement equation. It is easy to verify that ht is an autoregressive process of order one, ht = µ +

πht−1 + wt−1, where µ = ω + γξ, π = β + ϕγ, and wt = γτ(zt) + γut. So it is natural to adopt the

nomenclature of GARCH (generalized autoregressive conditional heteroskedasticity) models. The inclusion

of the realized measure in the model and the fact that xt has an autoregressive moving average (ARMA)

representation motivate the name Realized GARCH. A simple, yet potent speci�cation of the leverage function

is τ(z) = τ1z + τ2(z2 − 1), which can generate an asymmetric response in volatility to return shocks. The

simple structure of the model makes the model easy to estimate and interpret, and leads to a tractable

analysis of the quasi maximum likelihood estimator.

We apply the Realized GARCH framework to the DJIA stocks and an exchange traded index fund,

SPY. We �nd, in all cases, substantial improvements in the log-likelihood function when benchmarked to

a standard GARCH model. Substantial improvements are found in-sample as well as out-of-sample. The
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empirical evidence also strongly favors inclusion of the leverage function, and the parameter estimates are

remarkably similar across stocks.

The paper is organized as follows. Section 2 introduces the Realized GARCH framework as a natural

extension to GARCH. We focus on linear and log-linear speci�cation and show that squared returns, the

conditional variance, and realized measures have ARMA representations in this class of Realized GARCH

models. Our Realized GARCH framework is compared to MEM and some related models in Section 3.

Likelihood-based inference is analyzed in Section 4, where we derive the asymptotic properties of the QMLE

estimator. Our empirical analysis is given in Section 5. We estimate a range of Realized GARCH models

using time series for 28 stocks and an exchange traded index fund. Additional results and some extensions

are presented in Section 6. For instance, we derive the skewness and kurtosis of returns over one or more

periods, and show that the Realized GARCH is capable of generating substantial skewness and kurtosis.

Concluding remarks are given in Section 7, and Appendix A presents all proofs.

2 Realized GARCH

In this section we introduce the Realized GARCH model. The key variable of interest is the conditional

variance, ht = var(rt|Ft−1), where {rt} is a time series of returns. In the GARCH(1,1) model the conditional

variance, ht, is a function of ht−1 and r2t−1. In the present framework, ht will also depend on xt−1, that

represents a realized measure of volatility, such as the realized variance. More generally, xt will denote a

vector of realized measures, such as the realized variance, the bipower variation, the intraday range, and the

squared return. A measurement equation, that ties the realized measure to the latent volatility �completes�

the model. So the Realized GARCH model fully speci�es the dynamic properties of both returns and the

realized measure.

To simplify the exposition we will assume E(rt|Ft−1) = 0. A more general speci�cations for the conditional

mean, such as a constant or the GARCH-in-mean by Engle et al. (1987), is accommodated by reinterpreting

rt as the return less its conditional mean. The general framework for the Realized GARCH model is presented

next.

2.1 The General Formulation

The general structure of the RealGARCH(p,q) model is given by

rt =
√
htzt, (1)

ht = v(ht−1, . . . , ht−p, xt−1, . . . , xt−q), (2)

xt = m(ht, zt, ut), (3)

where zt ∼ iid (0, 1) and ut ∼ iid (0, σ2
u), with zt and ut being mutually independent.
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We refer to the �rst two equations as the return equation and the GARCH equation, and these de�ne

a class of GARCH-X models, including those that were estimated by Engle (2002), Barndor�-Nielsen and

Shephard (2007), and Visser (2008). The GARCH-X acronym refers to the the fact that xt is treated as

an exogenous variable. The HYBRID GARCH framework by Chen et al. (2009) includes variants of the

GARCH-X models and some related models.

We shall refer to (3) as the measurement equation, because the realized measure, xt, can often be in-

terpreted as a measurement of ht. The simplest example of a measurement equation is: xt = ht + ut. The

measurement equation is an important component because it �completes� the model. Moreover, the measure-

ment equation provides a simple way to model the joint dependence between rt and xt, which is known to be

empirically important. This dependence is modeled though the presence of zt in the measurement equation,

which we �nd to be highly signi�cant in our empirical analysis.

It is worth noting that most (if not all) variants of ARCH and GARCH models are nested in the Realized

GARCH framework. See Bollerslev (2009) for a comprehensive list of such models. The nesting can be

achieved by setting xt = rt or xt = r2t , and the measurement equation is redundant for such models, because

it is reduced to a simple identity. This is illustrated in the following two examples.

Example 1. By setting xt = r2t , it is easy to verify that the RealGARCH(p,q) nests the GARCH(p,q) model.

For instance with p = q = 1 we obtain the GARCH(1,1) structure with

v(ht−1, r
2
t−1) = ω + αr2t−1 + βht−1,

m(ht, zt, ut) = htz
2
t .

The measurement equation is simply an identity in this case, so that we can take ut = 0 for all t.

Example 2. If we set xt = rt, then we obtain the EGARCH(1,1) model by Nelson (1991) with

v(ht−1, rt−1) = exp {ω + α|zt−1|+ θzt−1 + β log ht−1} , since zt−1 = rt−1/
√
ht−1,

m(ht, zt, ut) =
√
htzt.

Naturally, the interesting case is when xt is a high-frequency based realized measure, or a vector containing

several realized measures. Next we consider some particular variants of the Realized GARCH model.

2.2 Realized GARCH with a Log-Linear Speci�cation

The Realized GARCH model with a simple log-linear speci�cation is characterized by the following GARCH

and measurement equations.

log ht = ω +
∑p

i=1
βi log ht−i +

∑q

j=1
γj log xt−j , (4)

log xt = ξ + ϕ log ht + τ(zt) + ut, (5)
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where zt = rt/
√
ht ∼ iid (0, 1), ut ∼ iid (0, σ2

u), and τ(z) is called the leverage function.

Remark 1. A logarithmic speci�cation for the measurement equation seems natural in this context. The

reason is that (1) implies that

log r2t = log ht + log z2t , (6)

and a realized measure is in many ways similar to the squared return, r2t , albeit a more accurate measure

of ht. It is therefore natural to explore speci�cations where log xt is expressed as a function of log ht and zt,

such as (5). Having chosen a logarithmic form for the measurement equation, makes it convenient to specify

the GARCH equation with a logarithmic form, because this induces a nice ARMA structure, as we shall see

below.

Remark 2. In our empirical application we adopt a quadratic speci�cation for the leverage function, τ(zt).

The identity (6) motivated us to explore expressions that involves log z2t , but these were inferior to the

quadratic expression, and resulted in numerical issues because zero returns are occasionally observed in

practice. Additional details about the leverage function is given in Section 2.2.1.

Remark 3. The conditional variance, ht is, by de�nition, adapted to Ft−1. Therefore, if γ 6= 0 then xt must

also be adapted to Ft. A �ltration that would satisfy this requirement is Ft = σ(rt, xt, rt−1, xt−1, . . .), but

Ft could in principle be an even richer σ-�eld.

Remark 4. Note that the measurement equation does not require xt to be an unbiased measure of ht. For

instance, xt could be a realized measure that is computed with high-frequency data from a period that only

spans a fraction of the period that rt is computed over. E.g. xt could be the realized variance for a 6.5

hour long period whereas the return, rt, is a close-to-close return that spans 24 hours. When xt is roughly

proportional to ht, then we should expect ϕ ≈ 1, and that is indeed what we �nd empirically. Both when we

use open-to-close returns and close-to-close returns.

An attractive feature of the log-linear Realized GARCH model is that it preserves the ARMA structure

that characterizes some of the standard GARCH models. This shows that the �ARCH� nomenclature is

appropriate for the Realized GARCH model. For the sake of generality we derive the result for the case

where the GARCH equation includes lagged squared returns. Thus consider the following GARCH equation,

log ht = ω +
∑p

i=1
βi log ht−i +

∑q

j=1
γj log xt−j +

∑q

j=1
αj log r2t−j , (7)

where q = maxi{(αi, γi) 6= (0, 0)}.

Proposition 1. De�ne wt = τ(zt) +ut and vt = log z2t −κ, where κ = E log z2t . The Realized GARCH model
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de�ned by (5) and (7) implies

log ht = µh +

p∨q∑
i=1

(αi + βi + ϕγi) log ht−i +

q∑
j=1

(γjwt−j + αjvt−j),

log xt = µx +

p∨q∑
i=1

(αi + βi + ϕγi) log xt−i + wt +

p∨q∑
j=1

{−(αj + βj)wt−j + ϕαjvt−j} ,

log r2t = µr +

p∨q∑
i=1

(αi + βi + ϕγi) log r2t−i + vt +

p∨q∑
j=1

{γi(wt−j − ϕvt−j)− βjvt−j} ,

where µh = ω + γ•ξ + α•κ, µx = ϕ(ω + α•κ) + (1− α• − β•)ξ, and µr = ω + γ•ξ + (1− β• − ϕγ•)κ, with

α• =
∑q

j=1
αj , β• =

∑p

i=1
βi, and γ• =

∑q

j=1
γj ,

using the conventions βi = γj = αj = 0 for i > p and j > q.

So the log-linear Realized GARCH model implies that log ht is ARMA(p ∨ q, q − 1), whereas log r2t and

log xt are ARMA(p ∨ q, p ∨ q). If α1 = · · · = αq = 0, then log xt is ARMA(p ∨ q, p).

From Proposition 1 we see that the persistence of volatility is summarized by a persistence parameter

π =

p∨q∑
i=1

(αi + βi + ϕγi) = α• + β• + ϕγ•.

Example 3. For the case p = q = 1 we have

log ht = ω + β log ht−1 + γ log xt−1 and log xt = ξ + ϕ log ht + τ(zt) + ut,

so that log ht ∼AR(1) and log xt ∼ARMA(1,1). Speci�cally

log ht = µh + π log ht−1 + γwt−1 and log xt = µx + π log xt−1 + wt − βwt−1,

where π = β + ϕγ.

Remark 5. The measurement equation induces a GARCH structure that is similar to an EGARCH with a

stochastic volatility component. Take the case in Example 3 where log ht = µh+π log ht−1+γτ(zt−1)+γut−1.

Note that γτ(zt−1) captures the leverage e�ects whereas γut−1 adds an additional stochastic component that

resembles that of stochastic volatility models. So the Realized GARCH model can induce a �exible stochastic

volatility structure, similar to that in Yu (2008), but does in fact have a GARCH structure because ut−1

is Ft−1-measurable. Interestingly, for the purpose of forecasting (beyond one-step ahead predictions), the

Realized GARCH is much like a stochastic volatility model since future values of ut are unknown. This

analogy does not apply to one-step ahead predictions because the lagged values, τ(zt−1) and ut−1, are known

at time t− 1.
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An obvious advantage of using a logarithmic speci�cation is that it automatically ensures a positive vari-

ance. Here it should be noted that the GARCH model with a logarithmic speci�cation, known as LGARCH,

see Geweke (1986), Pantula (1986), and Milhøj (1987), has some practical drawbacks. These drawbacks may

explain that the LGARCH is less popular in applied work than the conventional GARCH model that uses a

speci�cation for the level of volatility, see Teräsvirta (2009). One drawback is that zero returns occasionally

are observed, and such will cause havoc for the log-speci�cation unless we impose some ad-hoc censoring.

Within the Realized GARCH framework, zero returns are not problematic, because log r2t−1 does not appear

in its GARCH equation.

2.2.1 The Leverage Function

The function τ(z) is called the leverage function because it captures the dependence between returns and

future volatility, a phenomenon that is referred to as the leverage e�ect. We normalized such functions by

Eτ(zt) = 0, and we focus on those that have the form

τ(zt) = τ1a1(zt) + · · ·+ τkak(zt), where Eak(zt) = 0, for all k,

so that the function is linear in the unknown parameters. We shall see that the leverage function induces

an EGARCH type structure in the GARCH equation, and we note that the functional form used in Nelson

(1991), τ(zt) = τ1z + τ+(|zt| − E|zt|) is within the class of leverage functions we consider. We shall mainly

consider leverage functions that are constructed from Hermite polynomials

τ(z) = τ1z + τ2(z2 − 1) + τ3(z3 − 3z) + τ4(z4 − 6z2 + 3) + · · · ,

and our baseline choice for the leverage function is a simple quadratic form τ(zt) = τ1zt + τ2(z2t − 1). This

choice is convenient because it ensures that Eτ(zt) = 0, for any distribution of zt, so long as Ezt = 0 and

var(zt) = 1. The polynomial form is also convenient in our quasi likelihood analysis, and in our derivations

of the kurtosis of returns generated by this model.

The leverage function τ(z) is closely related to the news impact curve, see Engle and Ng (1993), that maps

out how positive and negative shocks to the price a�ect future volatility. We can de�ne the news impact

curve by

ν(z) = E(log ht+1|zt = z)− E(log ht+1),

so that 100ν(z) measures the percentage impact on volatility as a function of the studentized return. From

the ARMA representation in Proposition 1 it follows that ν(z) = γ1τ(z).

2.2.2 Multiple Realized Measurements

The Realized GARCH framework makes it simple to utilize multiple realized measures. For instance, let

xt = (r2t ,Rt,RVt)
′, where R is the intraday range (high minus low) and RV is the realized variance. Then
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we could consider the following model,

ht = ω + βht−1 + γ′xt, and xt = m(ht, zt, ut) =


htz

2
t

exp{ξR + ϕR log ht + uR,t}

exp{ξRV + ϕRV log ht + uRV,t}

 ,

which has a structure that is similar to the MEM by Engle and Gallo (2006). A key di�erence between the

Realized GARCH structure and the MEM is that we only have one latent variable for volatility, ht. The

MEM has one for each of the three variables in xt. Both RV and R are naturally tied to ht, so it is perhaps

more natural to use two measurement errors instead of two additional latent volatility variables. We revisit

this issue in Section 3.

2.3 Realized GARCH with a Linear Speci�cation

In this section we adopt a linear structure that is more similar to the original GARCH model, by Bollerslev

(1986). One advantage of this formulation is that the measurement equation is simple to interpret in this

model. For instance if xt is computed from intermittent high-frequency data (i.e. over 6.5 hours) whereas rt

is a close-to-close return that spans 24 hours. Then we would expect ϕ to re�ect how much of daily volatility

that occurs during the trading hours. The linear Realized GARCH model is de�ned by,

ht = ω +
∑p

i=1
βiht−i +

∑q

j=1
γjxt−j ,

xt = ξ + ϕht + τ(zt) + ut,

As is the case for the GARCH(1,1) model the RealGARCH(1,1) model with the linear speci�cation implies

that ht has an AR(1) representation

ht = (ω + γξ) + (β + γϕ)ht−1 + γwt−1,

where wt = ut + τ(zt) is an iid process.

Analogous to the properties of squared returns in a GARCH(1,1) model, the realized measure, xt, will

have an ARMA(1,1) representation,

xt = ϕω + (1− β)ξ + (β + ϕγ)xt−1 + wt − βwt−1,

which is consistent with the time-series properties of realized measures in this context, see Meddahi (2003).

In this linear model, it may be more appropriate to scale the leverage function by ht, i.e. substitute

htτ(zt) for τ(zt). The reason is that the asymptotic variance for many realized measures is known to be

roughly proportional to h2t . Alternatively, we could use the return as the argument, i.e. τ(rt). We have

experimented with measurement equations of this type, but did not �nd a version of the linear model that
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we preferred to the simple log-linear speci�cation.

3 Comparison to MEM and HEAVY

In this section we relate the Realized GARCH model to the Multiplicative Error Model (MEM) by Engle

and Gallo (2006) and the HEAVY model by Shephard and Sheppard (2010).1

The MEM by Engle and Gallo (2006) utilizes two realized measures in addition to the squared returns.

These are the intraday range (high minus low) and the realized variance, whereas the HEAVY model by

Shephard and Sheppard (2010) uses the realized kernel (RK) by Barndor�-Nielsen et al. (2008a). These

models introduce an additional latent volatility process for each of the realized measures. So the MEM and

the HEAVY digress from the traditional GARCH models that only have a single latent volatility factor.

In comparison to the MEM by Engle and Gallo (2006) and the HEAVY model by Shephard and Sheppard

(2010), the Realized GARCH has the following characteristics.

• Maintains the single factor structure of latent volatility.

• Ties the realized measure directly to the conditional variance.

• Explicit modeling of the return-volatility dependence (leverage e�ect).

• Implies a simple reduced-form model for {rt, ht} that is useful for forecasting, see Section 6.2.

• The Realized EGARCH model, developed in Section 6.5.1, takes one step further and decomposes the

contributions from the realized measure in the GARCH equation, that yields important insight about

the merits of this type of models.

Key model features are given in Table 1. We have included the level speci�cation of the Realized GARCH

model because it is most similar to the GARCH, MEM, and HEAVY models. Based on our empirical analysis

in Section 5 we recommend the log-linear speci�cation in practice.

Brownless and Gallo (2010) estimates a restricted MEM model that is closely related to the Realized

GARCH with the linear speci�cation. They utilize a single realized measure, the realized kernel by Barndor�-

Nielsen et al. (2008a), so that they have two latent volatility processes, ht = E(r2t |Ft−1) and µt = E(xt|Ft−1).

However, their model is e�ectively reduced to a single factor model as they introduce the constraint, ht =

c + dµt, see Brownless and Gallo (2010, eqs.6-7). This structure is also implied by the linear version of our

measurement equation. However, they do not formulate a measurement equation or relate xt−µt to a leverage

function. Instead they, for the purpose of simplifying the prediction problem, adopt a simple time-varying

structure, µt = at + btxt−1, where at and bt are de�ned by spline methods. Spline methods were introduced

in this context by Engle and Rangel (2008) to capture the low-frequency variation in the volatility.

1The Realized GARCH model was conceptualized and developed concurrently and independently of Shephard and Sheppard
(2010). However, in our current presentation of the model we have adopted some terminology from Shephard and Sheppard
(2010).

10



L
a
te
n
t
V
a
ri
a
b
le
s†

O
b
se
rv
a
b
le
s

D
is
tr
ib
u
ti
o
n
‡

G
A
R
C
H
(1
,1
)

(B
o
ll
er
sl
ev
,
1
9
8
6
)

h
t

=
ω

+
α
r2 t
−
1

+
β
h
t−

1
r t

=
√
h
t
z t

z t
∼

ii
d
N

(0
,1

)

M
E
M

(E
n
g
le
&
G
a
ll
o
,
2
0
0
6
)

h
t

=
ω

+
α
r2 t
−
1

+
β
h
t−

1
+
δr
t−

1
+
ϕ
R

2 t−
1

h
R
,t

=
ω
R

+
α
R
R

2 t−
1

+
β
R
h
R
,t
−
1

+
δ R
r t
−
1

h
R
V
,t

=
ω
R
V

+
α
R
V
R
V
t−

1
+
β
R
V
h
R
V
,t
−
1

+
δ R
V
r t
−
1

+
ϑ
R
V
R
V
t−

1
1 (
r
t
−

1
<
0
)

+
ϕ
R
V
r2 t
−
1

r2 t
=

h
t
z
2 t

R
2 t

=
h
R
,t
z
2 R
,t

R
V
t

=
h
R
V
,t
z
2 R
V
,t

 
z t z R
,t

z R
V
,t

  ∼
ii

d
N

(0
,I

)

H
E
A
V
Y

(S
h
ep
h
a
rd

&
S
h
ep
p
a
rd
,
2
0
0
9
)

h
t

=
ω

+
α
r2 t
−
1

+
β
h
t−

1
+
γ
x
t−

1

µ
t

=
ω
R

+
α
R
x
t−

1
+
β
R
µ
t−

1

r t
=

√
h
t
z t

x
t

=
µ
t
z
2 R
K
,t

(
z t

z R
K
,t

) ∼
ii

d
N

(0
,I

)

R
ea
li
ze
d
G
A
R
C
H

(l
in
ea
r
sp
ec
i�
ca
ti
o
n
)

h
t

=
ω

+
β
h
t−

1
+
γ
x
t−

1
r t

=
√
h
t
z t

x
t

=
ξ

+
ϕ
h
t

+
τ
(z
t
)

+
u
t

( z
t
u
t

σ
u

) ∼
ii

d
N

(0
,I

)

R
ea
li
ze
d
G
A
R
C
H

(l
o
g
-l
in
ea
r
sp
ec
i�
ca
ti
o
n
)

h
t

=
ex

p
{ω

+
β

lo
g
h
t−

1
+
γ

lo
g
x
t−

1
}

r t
=
√
h
t
z t

lo
g
x
t

=
ξ

+
ϕ

lo
g
h
t

+
τ
(z
t
)

+
u
t

( z
t
u
t

σ
u

) ∼
ii

d
N

(0
,I

)

R
ea
li
ze
d
E
G
A
R
C
H

(S
ec
ti
o
n
6
.5
.1
)

h
t

=
ex

p
{ω

+
β

lo
g
h
t−

1
+
τ
(z
t−

1
)

+
δε
t−

1
}

r t
=
√
h
t
z t

lo
g
x
t

=
ξ

+
lo

g
h
t+

1
+
ε t

( z t ε t σ ε
) ∼

ii
d
N

(0
,I

)

T
a
b
le
1
:
K
ey

m
o
d
el
fe
a
tu
re
s
a
t
a
g
la
n
ce
:
T
h
e
re
a
li
ze
d
m
ea
su
re
s,
R
t
,
R
V
t
,
a
n
d
x
t
d
en
o
te

th
e
in
tr
a
d
ay

ra
n
g
e,
th
e
re
a
li
ze
d
va
ri
a
n
ce
,
a
n
d
th
e
re
a
li
ze
d
ke
rn
el
,

re
sp
ec
ti
ve
ly
.
In

th
e
R
ea
li
ze
d
G
A
R
C
H
m
o
d
el
,
th
e
d
ep
en
d
en
ce

b
et
w
ee
n
re
tu
rn
s
an
d
in
n
ov
a
ti
o
n
s
to

th
e
vo
la
ti
li
ty

(l
ev
er
a
g
e
e�
ec
t)

is
m
o
d
el
ed

w
it
h
τ
(z
t
),
su
ch

a
s
τ
(z

)
=
τ 1
z

+
τ 2

(z
2
−

1)
,
so

th
a
t

E
τ
(z
t
)

=
0,
w
h
en

z t
∼

(0
,1

).
† T

h
e
M
E
M

sp
ec
i�
ca
ti
o
n
li
st
ed

h
er
e
is
th
a
t
se
le
ct
ed

b
y
E
n
g
le
&
G
a
ll
o
(2
0
0
6
)
u
si
n
g
B
IC

(s
ee

th
ei
r
ta
b
le
4
).

T
h
e
M
E
M

fr
a
m
ew

o
rk

p
er
m
it
s
m
o
re

co
m
p
le
x
sp
ec
i�
ca
ti
o
n
s.
‡ T

h
e
d
is
tr
ib
u
ti
o
n
a
l
a
ss
u
m
p
ti
o
n
s
li
st
ed

h
er
e
a
re

th
o
se

u
se
d
to

sp
ec
if
y
th
e
q
u
a
si

lo
g
-l
ik
el
ih
o
o
d
fu
n
ct
io
n
.
(G

a
u
ss
ia
n
in
n
ov
a
ti
o
n
s
a
re

n
o
t
es
se
n
ti
a
l
fo
r
a
n
y
o
f
th
e
m
o
d
el
s)
.
T
h
e
R
ea
li
ze
d
E
G
A
R
C
H
is
in
tr
o
d
u
ce

in
S
ec
ti
o
n
6
.5
.1
.

11



One of the main advantages of Realized GARCH framework is the simplicity by which dependence between

return-shocks and volatility-shocks is modeled with the leverage function. The MEM is formulated with a

general dependence structure for the innovations that drive the latent volatility processes. The usual MEM

formulation is based on a vector of non-negative random innovations, ηt, that are required to have mean

E(ηt) = (1, . . . , 1)′. The literature has explored distributions with this property such as certain multivariate

Gamma distributions, and Cipollini, Engle, and Gallo (2009) use copula methods that entail a very �exible

class of distributions with the required structure. Some drawbacks of this approach are that estimation is

rather complex and a rigorous analysis of the asymptotic properties of these estimators seems intractable. A

perhaps simpler way to achieve the structure in the multiplicative error distribution is by setting ηt = Zt�Zt,

and work with the vector of random variables random variables, Zt, instead. The required structure can be

obtained with a more traditional error structure, where each element of Zt is required to have zero mean

and unit variance. This alternative formulation can be adopted without any loss of generality, since the

dependence between the elements of Zt can take any form. The estimates in Engle and Gallo (2006) and

Shephard and Sheppard (2010) are based on a likelihood where the elements of ηt are independent χ2-

distributed random variables with one degree of freedom. We have used the alternative formulation in Table

1 where (z2t , z
2
R,t, z

2
RV,t)

′ corresponds to ηt in the MEM by Engle and Gallo (2006).

A related framework that is currently under development is the HYBRID GARCH models by Chen et al.

(2009).

3.1 Realized GARCH Nomenclature

The Realized GARCH framework can be extended to a multi-factor structure. For instance with m realized

measures (including the squared return) we could specify a model with k ≤ m latent volatility factors.

The Realized GARCH model introduced in this paper has k = 1 whereas the MEM has m = k. This hybrid

framework with 1 ≤ k ≤ m, provides a way to bridge the Realized GARCH models with the MEM framework.

All these models can be viewed as extensions of standard GARCH models, where the extensions are

achieved by incorporating realized measures into the model in various ways.2 For this reason we suggest that

all such models be called Realized GARCH models. This name transpires both the objective of these models

(similar to GARCH) and the means by which these models operate (using realized measures).

4 Quasi-Maximum Likelihood Analysis

In this section we discuss the asymptotic properties of the quasi-maximum likelihood estimator within the

Realized GARCH(p, q) model. The structure of the QMLE analysis is very similar to that of the standard

GARCH model, see Bollerslev and Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996), Jensen

and Rahbek (2004a,b), and Straumann and Mikosch (2006). Both Engle and Gallo (2006) and Shephard and

2A realized measure is here used a generic for statistics that are constructed from high-frequency data, such as the realized
variance, the realized kernel, intraday range, the number of transactions, and volume.
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Sheppard (2010) justify the standard errors they report, by referencing existing QMLE results for GARCH

models. This argument hinges on the fact that the joint log-likelihood in Engle and Gallo (2006) and

Shephard and Sheppard (2010) is decomposed into a sum of univariate GARCH-X models, whose likelihood

can be maximized separately. The factorization of the likelihood is achieved by two facets of these models:

One is that all observables (i.e. squared return and each of the realized measures) are being tied to their

individual latent volatility process. The other is that the primitive innovations in these models are taken to

be independent in the formulation of the likelihood function. The latter inhibits a direct modeling of leverage

e�ect with a function such as τ(zt), which is one of the traits of the Realized GARCH model. However,

in the MEM framework leverage type dependencies can be achieved indirectly by including suitable realized

measures in various GARCH equations, such as the realized semivariance, see Barndor�-Nielsen et al. (2009b),

or by introducing suitable indicator functions as in Engle and Gallo (2006).

In this section we will derive the underlying QMLE structure for the log-linear Realized GARCH model.

The structure of the linear Realized GARCH model is similar. We provide closed-form expressions for the

�rst and second derivatives of the log-likelihood function. These expressions facilitate direct computation of

robust standard errors, and provide insight about regularity conditions that would justify QMLE inference.

For instance, the �rst derivative will unearth regularity conditions that enable a central limit theorem be

applied to the score function.

For the purpose of estimation, we adopt a Gaussian speci�cation, so that the log likelihood function is

given by

`(r, x; θ) = −1

2

n∑
t=1

[log(ht) + r2t /ht + log(σ2
u) + u2t/σ

2
u].

We write the leverage function as τ ′at = τ1a1(zt) + · · · + τ ′kak(zt), and denote the parameters in the model

by

θ = (λ′, ψ′, σ2
u)′, where λ = (ω, β1, . . . , βp, γ1, . . . , γq)

′, ψ = (ξ, ϕ, τ ′)′.

To simplify the notation we write h̃t = log ht and x̃t = log xt, and de�ne

gt = (1, h̃t−1, . . . , h̃t−p, x̃t−1, . . . , x̃t−q)
′, mt = (1, h̃t, a

′
t)
′.

So the GARCH and measurement equations can be expresses as

h̃t = λ′gt and x̃t = ψ′mt + ut,

The dynamics that underlies the score and Hessian are driven by ht and its derivatives with respect to λ.

The properties of these derivatives are stated next.
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Lemma 1. De�ne ḣt = ∂h̃t
∂λ and ḧt = ∂2h̃t

∂λ∂λ′ . Then ḣs = 0 and ḧs = 0 for s ≤ 0, and

ḣt =

p∑
i=1

βiḣt−i + gt and ḧt =

p∑
i=1

βiḧt−i + (Ḣt−1 + Ḣ ′t−1),

where Ḣt−1 =
(

01+p+q×1, ḣt−1, . . . , ḣt−p, 01+p+q×q

)
is an p+ q + 1× p+ q + 1 matrix.

(ii) When p = q = 1 we have with β = β1 that

ḣt =

t−1∑
j=0

βjgt−j and ḧt =

t−1∑
k=1

kβk−1(Gt−k +G′t−k),

where Gt = (03×1, gt, 03×1).

Proposition 2. (i) The score, ∂`
∂θ =

n∑
t=1

∂`t
∂θ , is given by

∂`t
∂θ

= −1

2


(1− z2t + 2ut

σ2
u
u̇t)ḣt

− 2ut
σ2
u
mt

σ2
u−u

2
t

σ4
u

 ,

where u̇t = ∂ut/∂ log ht = −ϕ+ 1
2ztτ

′ȧt with ȧt = ∂a(zt)/∂zt.

(ii) The second derivative, ∂2`
∂θ∂θ′ =

n∑
t=1

∂2`t
∂θ∂θ′ , is given by

∂2`t
∂θ∂θ′

=


− 1

2

{
z2t +

2(u̇2
t+utüt)
σ2
u

}
ḣtḣ
′
t − 1

2

{
1− z2t + 2utu̇t

σ2
u

}
ḧt • •

u̇t
σ2
u
mtḣ

′
t + ut

σ2
u
btḣ
′
t − 1

σ2
u
mtm

′
t •

utu̇t
σ4
u
ḣ′t

ut
σ4
u
m′t

1
2
σ2
u−2u

2
t

σ6
u

 ,

where bt = (0, 1,− 1
2ztȧ

′
t)
′ and üt = − 1

4τ
′ {ztȧt + z2t ät

}
with ät = ∂2a(zt)/∂z

2
t .

An advantage of our framework is that we can draw upon results for generalized hidden Markov models.

Consider the case p = q = 1: From Carrasco and Chen (2002, Proposition 2) it follows that h̃t has a

stationary representation provided that π = β+ϕγ ∈ (−1, 1). If we assign h̃0 its invariant distribution, then

h̃t is strictly stationary and β-mixing with exponential decay, and E|h̃t|s <∞ if E|τ(zt)+ut|s <∞.Moreover,

{(rt, xt), t ≥ 0} is a generalized hidden Markov model, with hidden chain {h̃t, t ≥ 0}, and so by Carrasco

and Chen (2002, Proposition 4) it follows that also {(rt, xt)} is stationary β-mixing with exponentially decay

rate. See also Straumann and Mikosch (2006) who adopt a stochastic recurrence approach to analyze the

QMLE properties for a broad class of GARCH models.

The robustness of the QMLE as de�ned by the Gaussian likelihood is, in part, re�ected by the weak

assumptions that make the score a martingale di�erence sequence. These are stated in the following Propo-

sition.

Proposition 3. (i) Suppose that E(ut|zt,Ft−1) = 0, E(z2t |Ft−1) = 1, and E(u2t |Ft−1) = σ2
u. Then st(θ) =
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∂`t(θ)
∂θ is a martingale di�erence sequence.

(ii) Suppose, in addition, that {(rt, xt, h̃t)} is stationary and ergodic. Then

1√
n

n∑
t=1

∂`t
∂θ

d→ N(0,Jθ) and − 1

n

n∑
t=1

∂2`t
∂θ∂θ′

p→ Iθ,

provided that

Jθ =


1
4E(1− z2t + 2ut

σ2
u
u̇t)

2E
(
ḣtḣ
′
t

)
• •

− 1
σ2
u

E
(
u̇tmtḣ

′
t

)
1
σ2
u

E(mtm
′
t) •

−E(u3
t )E(u̇t)
2σ6
u

E(ḣ′t)
E(u3

t )
2σ6
u
E(m′t)

E(u2
t/σ

2
u−1)

2

4σ4
u

 ,

and

Iθ =


{

1
2 +

E(u̇2
t )

σ2
u

}
E(ḣtḣ

′
t) • 0

− 1
σ2
u

E
{

(u̇tmt + utbt) ḣ
′
t

}
1
σ2
u

E(mtm
′
t) 0

0 0 1
2σ4
u

 ,

are �nite.

Note that in the stationary case we have Jθ = E
(
∂`t
∂θ

∂`t
∂θ′

)
, so a necessary condition for |Jθ| <∞ is that

zt and ut have �nite forth moments. Additional moments may be required for zt, depending on the complexity

of the leverage function τ(z), because u̇t depends on τ(zt).

Straumann and Mikosch (2006) established conventional QMLE results for a broad class of GARCH

models. The mathematical structure of the Gaussian quasi log-likelihood function for the Realized GARCH

model is quite similar to the structure analyzed in Straumann and Mikosch (2006). So we conjecture that

Straumann and Mikosch (2006, theorem 7.1) can be adapted to the present framework, so that

√
n
(
θ̂n − θ

)
→ N

(
0, I−1θ JθI

−1
θ

)
.

To make this result rigorous we would need to adapt and verify conditions N.1-N.4 in Straumann and

Mikosch (2006). This is not straightforward and would take up much space, so we leave this for future

research. Moreover, the results in Straumann and Mikosch (2006) only applies to the stationary case, π < 1,

so the non-stationary case would have to be analyzed separately using methods similar to those in Jensen

and Rahbek (2004a,b).

In the context of ARCH and GARCH models, it has been shown that the QMLE estimator is consistent

with an Gaussian limit distribution regardless of the process being stationary or non-stationary. The latter

was established in Jensen and Rahbek (2004a,b). So unlike the case for autoregressive processes, we need

not have a discontinuity of the limit distribution at the knife-edge in the parameter space that separates

stationary and non-stationary processes. This is an important result for empirical applications, because the

point estimates are typically found to be very close to the boundary.

Notice that the martingale di�erence result for the score, Proposition 3(i), does not rely on stationarity.

So a suitable central limit theorem for martingale di�erence processes may be applicable even if the process
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is non-stationary, as is the case in Jensen and Rahbek (2004a,b).

Finally, we observe that the estimator of the parameters in the GARCH equation, λ, and those of the

measurement equation, ψ, are not asymptotically independent. This asymptotic correlation is induced by the

leverage function in our model, and the fact that we link the realized measure, xt, to ht with a measurement

equation.

4.1 Computational issues

While standard errors for θ̂ may be compute from numerical derivatives, these can also be computed directly

using the following expressions

Ĵ =
1

n

n∑
t=1

ŝtŝ
′
t, where ŝt =

{
1
2 (1− ẑ2t +

2ût
σ̂2
u

ˆ̇ut)
ˆ̇
h′t,−

ût
σ̂2
u

m̂′t,
σ̂2
u − û2t
2σ̂4

u

)

}′
,

and

Î =
1

n

n∑
t=1


1
2

{
ẑ2t +

2(ˆ̇u2
t+ût

ˆ̈ut)
σ̂2
u

}
ˆ̇
ht

ˆ̇
h′t + 1

2

{
1− ẑ2t + 2ût ˆ̇ut

σ̂2
u

}
ˆ̈
ht • •

−σ̂−2u
(

ˆ̇utm̂t + ûtb̂t

)
ˆ̇
h′t

1
σ̂2
u
m̂tm̂

′
t •

− ût ˆ̇utσ̂4
u

ˆ̇
h′t − ût

σ̂4
u
m̂′t

1
2
2û2
t−σ̂

2
u

σ̂6
u



=
1

n

n∑
t=1


1
2

{
ẑ2t +

2(ˆ̇u2
t+ût

ˆ̈ut)
σ̂2
u

}
ˆ̇
ht

ˆ̇
h′t + 1

2

{
1− ẑ2t + 2ût ˆ̇ut

σ̂2
u

}
ˆ̈
ht • •

−σ̂−2u
(

ˆ̇utm̂t + ûtb̂t

)
ˆ̇
h′t − 1

σ̂2
u
m̂tm̂

′
t •

− ût ˆ̇utσ̂4
u

ˆ̇
h′t 0 1

σ̂4
u


where the zero follows from the �rst order condition:

∑n
t=1 ûtm̂

′
t = 0. Moreover, the �rst-order conditions

for λ implies that −
∑n
t=1

ût ˆ̇ut
σ̂4
u

ˆ̇
h′ =

∑n
t=1

1−ẑ2t
2σ̂2
u

ˆ̇
ht.

For our baseline leverage function, τ1zt + τ2(z2t − 1), we have

mt =



1

log ht

zt

z2t − 1


, bt =



0

1

− 1
2zt

−z2t


, u̇t = −ϕ+

1

2
τ1zt + τ2z

2
t , üt = −1

4
τ1zt − τ2z2t .

The results in this section is easily generalized to speci�cations that include the squared return (or log-squared

return) in the GARCH equation. This is achieved by stacking the appropriate lags of r2t (or log r2t ) to the

vector gt.

16



5 Empirical Analysis

In this section we present empirical results using returns and realized measures for 28 stocks and and exchange-

traded index fund, SPY, that tracks the S&P 500 index. Detailed results are presented for SPY, whereas

our results for the 28 other time series are less detailed to conserve space. We adopt the realized kernel,

introduced by Barndor�-Nielsen et al. (2008a), as the realized measure, xt.We estimate the realized GARCH

models using both open-to-close returns and close-to-close returns. High-frequency prices are only available

between �open� and �close�, so the population quantity that is estimated by the realized kernel is directly

related to the volatility of open-to-close returns, but only captures a fraction of the volatility of close-to-close

returns.

The results for the linear and log-linear Realized GARCH models are presented in Tables 3 and 4,

respectively. Our empirical results with the level speci�cation suggest that open-to-close volatility (the

period with high-frequency prices) is about 75% of daily volatility. Then we compare the linear and log-linear

speci�cations and argue that the latter is better suited for the problem at hand. We report empirical results

for all 29 assets in Table 5 and �nd the point estimates to be remarkable similar across the many time series.

In-sample and out-of-sample likelihood ratio statistics are computed in Table 6. These results strongly favor

the inclusion of the leverage function and show that the realized GARCH framework is superior to standard

GARCH models, because the partial log-likelihood of any Realized GARCH models is substantially better

than that of a standard GARCH(1,1). This is found to be the case in-sample, as well as out-of-sample.

5.1 Data Description

Our sample spans the period from January 1, 2002 to August 31, 2008, which we divide into an in-sample

period: January 1, 2002 to December 31, 2007; leaving the eight months, 2008-01-02 and 2008-08-31, for

out-of-sample analysis.3 We adopt the realized kernel as the realized measure, xt, using the Parzen kernel

function. This estimator is similar to the well known realized variance, but is robust to market microstructure

noise and is a more accurate estimator of the quadratic variation. Our implementation of the realized kernel

follows Barndor�-Nielsen, Hansen, Lunde, and Shephard (2008b) that guarantees a positive estimate, which

is important for our log-linear speci�cation. The exact computation is explained in great details in Barndor�-

Nielsen, Hansen, Lunde, and Shephard (2009a). When we estimate a Realized GARCH model using open-to-

close returns we should expect xt ≈ ht, whereas with close-to-close returns we should expect xt to be smaller

than ht on average.

To avoid outliers that would result from half trading days, we removed days where high-frequency data

spanned less than 90% of the o�cial 6.5 hours between 9:30am and 4:00pm. This removes about three daily

observation per year, such as the day after Thanksgiving and days around Christmas. When we estimate a

model that involves log r2t , we deal with zero returns by the truncation max(log r2t , ε) with ε = 10−20.

3So our sample does not include the very volatile period during the �nancial crisis, because these data were not available
when we initiated the empirical analysis.
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Symbol roc min roc max roc r2oc rcc min rcc max rcc r2cc RK min RK max RK

AA -0.12 -8.09 8.49 3.17 -0.01 -10.91 9.24 4.44 3.56 0.49 40.52
AIG -0.08 -12.06 11.16 3.14 -0.08 -19.90 12.04 4.43 3.00 0.13 53.44
AXP 0.03 -8.50 9.42 2.63 0.01 -10.60 10.41 3.53 2.82 0.07 57.60
BA -0.01 -6.97 9.39 2.18 0.04 -8.41 6.78 2.91 2.46 0.21 33.92
BAC 0.02 -12.50 15.87 2.45 0.01 -10.66 20.22 3.08 2.24 0.13 62.72
C -0.09 -12.84 16.23 2.99 0.07 -15.69 8.63 3.09 3.28 0.17 89.01

CAT 0.00 -5.52 8.18 2.23 0.07 -15.69 8.63 3.09 2.32 0.30 27.93
CVX 0.00 -6.08 5.46 1.58 0.05 -6.93 5.27 1.97 1.81 0.22 18.60
DD -0.02 -5.96 9.84 1.65 0.01 -6.78 9.42 2.13 2.03 0.28 36.99
DIS 0.05 -6.50 8.11 2.24 0.03 -9.45 13.66 3.14 2.66 0.23 45.96
GE -0.05 -8.38 9.90 1.77 -0.01 -13.71 9.08 2.41 1.97 0.08 36.70
GM -0.23 -12.76 13.64 4.98 -0.07 -16.33 16.64 6.64 4.49 0.22 112.63
HD -0.03 -5.89 11.14 2.62 -0.04 -15.18 10.20 3.62 2.88 0.18 39.69
IBM 0.06 -6.39 5.95 1.52 0.00 -10.67 10.67 2.31 1.63 0.14 19.44
INTC -0.04 -8.22 8.82 3.68 -0.02 -20.48 10.29 5.55 3.65 0.45 44.89
JNJ 0.02 -4.68 7.92 0.95 0.02 -17.25 7.91 1.37 1.29 0.07 36.63
JPM -0.01 -16.41 25.28 3.58 0.01 -19.95 14.88 4.61 3.74 0.10 224.45
KO 0.04 -4.39 7.51 1.00 0.01 -10.62 5.33 1.35 1.29 0.04 25.21
MCD 0.09 -11.33 6.01 1.93 0.06 -13.72 8.85 2.59 2.24 0.24 37.65
MMM -0.01 -7.14 6.86 1.20 0.02 -9.37 6.89 1.65 1.40 0.08 17.96
MRK 0.03 -11.13 9.75 1.92 -0.02 -31.15 12.22 3.51 2.30 0.14 63.78
MSFT -0.02 -7.71 10.98 2.04 0.00 -12.07 10.55 2.85 2.14 0.14 35.54
PG 0.11 -5.94 5.17 0.83 0.04 -7.66 4.43 1.06 1.07 0.04 12.88
T -0.03 -11.46 8.99 2.82 0.00 -10.76 8.71 2.91 2.78 0.12 54.01

UTX -0.02 -7.99 6.88 1.68 0.05 -9.16 9.38 2.23 1.81 0.23 25.93
VZ -0.02 -7.63 7.12 2.03 0.00 -12.57 8.87 2.58 2.41 0.16 39.50

WMT -0.01 -4.77 7.88 1.36 0.01 -6.89 7.73 1.87 1.75 0.16 28.78
XOM 0.03 -6.83 10.62 1.64 0.05 -8.86 9.30 2.10 1.87 0.19 26.00
SPY -0.02 -3.98 8.19 0.88 0.01 -3.98 5.80 1.09 0.80 0.06 13.14

Table 2: Summary statistics. The sample period is January 1, 2002 to August 31, 2008. Subscript-oc and
subscript-cc refer to open-to-close and close-to-close returns, respectively. The realized kernel, RK, is used
as our realized measure of volatility.
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5.2 Some Notation related to the Likelihood and Leverage E�ect

The log-likelihood function is (conditionally on F0 = σ({rt, xt, ht}, t ≤ 0)) given by

logL({rt, xt}nt=1; θ) =

n∑
t=1

log f(rt, xt|Ft−1).

Standard GARCH models do not model xt, so the log-likelihood we obtain for these models cannot be

compared to those of the Realized GARCH model. However, we can factorize the joint conditional density

for (rt, xt) by

f(rt, xt|Ft−1) = f(rt|Ft−1)f(xt|rt,Ft−1),

and compare the partial log-likelihood, `(r) :=
n∑
t=1

log f(rt|Ft−1), with that of a standard GARCH model.

Speci�cally for the Gaussian speci�cation for zt and ut, we split the joint likelihood, into the sum

`(r, x) = −1

2

n∑
t=1

[log(2π) + log(ht) + r2t /ht]︸ ︷︷ ︸
=`(r)

+−1

2

n∑
t=1

[log(2π) + log(σ2
u) + u2t/σ

2
u]︸ ︷︷ ︸

=`(x|r)

.

Asymmetries in the leverage function are summarized by the following two statistics,

ρ− = corr{τ(zt) + ut, zt|zt < 0} and ρ+ = corr{τ(zt) + ut, zt|zt > 0}.

These capture the slope of a piecewise linear news impact curve for negative and positive returns, such as

that implied by the EGARCH model.

5.3 Empirical Results for the Linear Realized GARCH Model

First we consider Realized GARCHmodels with the linear speci�cation. We estimate a standard GARCH(1,1)

model and six Realized GARCH models using both open-to-close and close-to-close returns for SPY. We use

RG(p,q) to denote the Realized GARCH model with p lags of ht and q lags of xt. We estimate three models

with p = q = 2. In addition to the standard RG(2, 2) model we estimate a model without the leverage

function (denoted RG(2, 2)†) and an extended model, RG(2, 2)
∗
, that also includes a lag of the squared

return it the GARCH equation. The results for open-to-close returns are given in the left panel of Table 3,

and the corresponding results for close-to-close returns are presented in the right panel of Table 3.

First we discuss the empirical results for open-to-close returns in the left half of Table 3. First we know

that the empirical estimates of ϕ and ξ in the measurement equation are roughly ϕ̂ ' 1 and ξ̂ ≈ 0, which

shows that the realized kernel, which is used as the realized measure of volatility, xt, is roughly unbiased as

a measure of open-to-close volatility. Comparing RG(2, 2) with RG(2, 2)† shows that the leverage function is

highly signi�cant. Omitting the two τ -parameters leads to a rather large drop in the log-likelihood function.

Next, if we compare the extended model RG(2, 2)∗ with the standard model RG(2, 2) we see that the ARCH
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parameter is insigni�cant. Consider now the auxiliary statistics in Panel B. The persistence parameter π

is estimated to be close to one in all models, and the models with a leverage function all suggest a rather

strong asymmetry in the new impact curve, as summarized by ρ− and ρ+. The partial likelihood statistic

`(r) is the likelihood for the returns alone. For the case of the Realized GARCH models this amounts to the

likelihood for the GARCH-X model arising from the the return and GARCH equations alone. Note that the

Realized GARCH models do not maximize this term, yet the model still produces a better empirical �t than

the GARCH(1,1) model.

The empirical results for the close-to-close returns in the right half of Table 3 are quite similar. Not

surprisingly are the estimates of ϕ smaller which re�ect the fact that the realized measure only measures

volatility over the open-to-close period. The point estimates are ϕ ' 0.75, which suggests that volatility

during the �open period� amounts to about 75% of daily volatility. Interestingly, the ARCH parameter is

found to be signi�cant in the analysis of close-to-close returns. This �nding should be taken with a grain of

salt, because the linear model is grossly misspeci�ed, as we shall see in Section 5.5, and the estimate of α

in the linear model is sensitive to outliers. Note that the inclusion of α causes a large decline in the partial

log-likelihood for returns, `(r). Moreover, the estimated model suggests that volatility is far less persistent

than is usually found in practice, in part because the estimates of the β-parameters are unusually small.

5.4 Empirical Results for the Log-Linear Realized GARCH Model

In this section we present detailed results for Realized GARCH models with a log-linear speci�cation of

the GARCH and measurement equations. We strongly favor the log-linear speci�cation over the linear

speci�cation for reasons that will be evident in Section 5.5 where we compare empirical aspects of the two

speci�cations.

5.4.1 Log-Linear Models for SPY (Table 4)

Table 4 is analogous to Table 3, except that we use the log-linear speci�cation for the Realized GARCH mod-

els. For the sake of comparison we use the logarithmic GARCH(1,1) model and the conventional benchmark,

when comparing the empirical �t of the partial likelihood (for returns). Again we report results for both

open-to-close returns and close-to-close returns for SPY.

From Table 4 we see that the extended model RG(2, 2)∗, which includes the squared return in the GARCH

equation, results in very marginal improvements over the standard model RG(2, 2), and the ARCH parameter,

α, is clearly insigni�cant. Comparing the RG(2, 2)† with the standard model shows that the leverage function

is highly signi�cant. The improvement in the log-likelihood function is almost 100 units.

The robust standard errors suggest that β2 is signi�cant, when it is actually not the case. This is simply

a manifestation of a common problem with standard errors and t-statistics in the context with collinearity.

In this case, log ht−1 and log ht−2 are highly collinear which causes the likelihood surface to be almost �at

along lines where β1 + β2 is constant, while there is su�cient curvature along the axis to make the standard

21



O
p
en
-t
o
-C
lo
se

R
et
u
rn
s

C
lo
se
-t
o
-C
lo
se

R
et
u
rn
s

M
o
d
el

G
(1
,1
)

R
G
(1
,1
)

R
G
(1
,2
)

R
G
(2
,1
)

R
G
(2
,2
)

R
G
(2
,2
)†

R
G
(2
,2
)∗

G
(1
,1
)

R
G
(1
,1
)

R
G
(1
,2
)

R
G
(2
,1
)

R
G
(2
,2
)

R
G
(2
,2
)†

R
G
(2
,2
)∗

P
a
n
el
A
:
P
o
in
t
E
st
im

a
te
s
an
d
L
o
g
-L
ik
el
ih
o
o
d

ω
0.

04
(0
.0
1
)

0.
06

(0
.0
2
)

0.
04

(0
.0
2
)

0.
06

(0
.0
2
)

0.
0
0

(0
.0
0
)

0.
0
0

(0
.0
0
)

0
.0

0
(0
.0
0
)

0.
0
5

(0
.0
0
)

0
.1

8
(0
.0
3
)

0.
1
1

(0
.0
2
)

0
.1

9
(0
.0
3
)

0.
0
1

(0
.0
1
)

0.
0
1

(0
.0
1
)

0.
0
4

(0
.0
5
)

α
0
.0

3
(0
.0
1
)

0
.0

0
(0
.0
0
)

0.
0
3

(0
.0
0
)

0.
0
0

(0
.0
0
)

β
1

0.
96

(0
.0
1
)

0.
55

(0
.0
3
)

0
.7

0
(0
.0
5
)

0.
40

(0
.0
5
)

1
.4

3
(0
.0
4
)

1.
4
2

(0
.0
9
)

1
.4

5
(0
.0
5
)

0.
9
6

(0
.0
1
)

0
.5

4
(0
.0
3
)

0.
7
2

(0
.0
5
)

0
.3

7
(0
.0
5
)

1.
4
0

(0
.0
7
)

1.
4
0

(0
.1
0
)

1.
3
5

(0
.4
2
)

β
2

0.
13

(0
.0
5
)
−

0
.4

4
(0
.0
4
)

−
0.

4
4

(0
.0
7
)

−
0
.4

6
(0
.0
4
)

0
.1

5
(0
.0
5
)
−

0.
4
2

(0
.0
6
)

−
0.

4
3

(0
.0
8
)

−
0.

3
9

(0
.3
0
)

γ
1

0.
41

(0
.0
3
)

0
.4

5
(0
.0
4
)

0.
43

(0
.0
4
)

0
.4

6
(0
.0
4
)

0.
4
0

(0
.0
5
)

0
.4

2
(0
.0
4
)

0.
4
3

(0
.0
5
)

0.
4
8

(0
.0
6
)

0.
4
6

(0
.0
5
)

0.
4
5

(0
.0
6
)

0.
4
2

(0
.0
5
)

0.
4
6

(0
.0
7
)

γ
2

−
0
.1

8
(0
.0
6
)

−
0
.4

4
(0
.0
4
)

−
0
.3

8
(0
.0
4
)

−
0
.4

1
(0
.0
4
)

−
0.

2
1

(0
.0
7
)

−
0.

4
3

(0
.0
5
)

−
0.

4
0

(0
.0
4
)

−
0.

4
2

(0
.0
8
)

ξ
−

0.
18

(0
.0
5
)

−
0.

18
(0
.0
5
)

−
0.

18
(0
.0
5
)

−
0.

2
3

(0
.0
5
)

−
0.

1
6

(0
.0
5
)

−
0.

1
8

(0
.0
5
)

−
0.

4
2

(0
.0
6
)
−

0
.4

2
(0
.0
6
)
−

0.
4
2

(0
.0
6
)
−

0
.4

2
(0
.0
5
)

−
0.

4
1

(0
.0
4
)

−
0
.4

2
(0
.0
4
)

ϕ
1.

04
(0
.0
6
)

1.
04

(0
.0
7
)

1.
04

(0
.0
7
)

0.
9
6

(0
.0
8
)

1
.0

7
(0
.0
8
)

1.
0
3

(0
.0
7
)

0.
9
9

(0
.1
0
)

1
.0

0
(0
.1
0
)

0.
9
9

(0
.1
0
)

0
.9

9
(0
.1
0
)

1.
0
3

(0
.0
8
)

0
.9

9
(0
.0
8
)

σ
u

0
.3

8
(0
.0
8
)

0.
38

(0
.0
8
)

0
.3

8
(0
.0
8
)

0.
3
8

(0
.0
8
)

0
.4

1
(0
.0
8
)

0.
3
8

(0
.0
8
)

0.
3
9

(0
.0
8
)

0
.3

8
(0
.0
8
)

0.
3
9

(0
.0
8
)

0
.3

8
(0
.0
8
)

0.
4
1

(0
.0
8
)

0
.3

8
(0
.0
8
)

τ 1
−

0
.0

7
(0
.0
1
)
−

0.
07

(0
.0
1
)
−

0
.0

7
(0
.0
1
)
−

0.
0
7

(0
.0
1
)

−
0.

0
7

(0
.0
1
)

−
0.

1
1

(0
.0
1
)
−

0
.1

1
(0
..
0
1
)
−

0.
1
1

(0
..
0
1
)
−

0
.1

1
(0
..
0
1
)

−
0
.1

1
(0
..
0
1
)

τ 2
0
.0

7
(0
.0
1
)

0.
07

(0
.0
1
)

0
.0

7
(0
.0
1
)

0.
0
7

(0
.0
1
)

0.
0
7

(0
.0
1
)

0.
0
4

(0
.0
1
)

0.
0
4

(0
.0
1
)

0.
0
4

(0
.0
1
)

0.
0
4

(0
.0
1
)

0.
0
4

(0
.0
1
)

`
(r
,x

)
-2
3
9
5
.6

-2
3
8
8
.8

-2
3
9
1
.9

-2
3
8
5
.1

-2
4
9
5
.7

-2
3
8
2
.9

-2
5
7
6
.9

-2
5
6
7
.2

-2
5
7
1
.7

-2
5
6
3
.9

-2
6
6
1
.7

-2
5
6
3
.5

P
a
n
el
B
:
A
u
x
il
ia
ry

S
ta
ti
st
ic
s

π
0
.9
8
8

0
.9
7
5

0
.9
8
6

0
.9
7
6

0
.9
9
9

0
.9
9
9

0
.9
9
9

0
.9
8
8

0
.9
7
4

0
.9
8
7

0
.9
7
5

0
.9
9
9

0
.9
9
9

0
.9
9
9

ρ
-0
.1
8

-0
.1
8

-0
.1
6

-0
.1
9

-0
.1
6

-0
.2
7

-0
.2
5

-0
.2
5

-0
.2
5

-0
.2
8

ρ
−

-0
.3
3

-0
.3
2

-0
.3
2

-0
.3
5

-0
.3
5

-0
.3
1

-0
.2
9

-0
.2
8

-0
.2
8

-0
.3
1

ρ
+

0
.1
2

0
.1
2

0
.1
3

0
.1
3

0
.1
4

-0
.0
1

-0
.0
3

-0
.0
3

0
.0
3

-0
.0
2

`
(r

)
-1
7
5
2
.7

-1
7
1
2
.0

-1
7
1
0
.3

-1
7
1
1
.4

-1
7
1
2
.3

-1
7
0
8
.9

-1
7
0
9
.6

-1
9
3
8
.2

-1
8
7
6
.5

-1
8
7
5
.5

-1
8
7
6
.1

-1
8
7
5
.7

-1
8
7
4
.9

-1
8
7
6
.1

T
a
b
le

4
:
R
es
u
lt
s
fo
r
th
e
lo
g
-l
in
ea
r
sp
ec
i�
ca
ti
o
n
:
G
(1
,1
)
d
en
o
te
s
th
e
L
G
A
R
C
H
(1
,1
)
m
o
d
el

th
a
t
d
o
es

n
o
t
u
ti
li
ze

a
re
a
li
ze
d
m
ea
su
re

o
f
vo
la
ti
li
ty
.
R
G
(2
,2
)†

d
en
o
te
s
th
e
R
ea
li
ze
d
G
A
R
C
H
(2
,2
)
m
o
d
el
w
it
h
o
u
t
th
e
τ
(z

)
fu
n
ct
io
n
th
a
t
ca
p
tu
re
s
th
e
d
ep
en
d
en
ce

b
et
w
ee
n
re
tu
rn
s
a
n
d
in
n
ov
a
ti
o
n
s
in

vo
la
ti
li
ty
.
R
G
(2
,2
)∗

is
th
e
R
G
(2
,2
)
ex
te
n
d
ed

to
in
cl
u
d
e
th
e
A
R
C
H
-t
er
m
α

lo
g
r2 t
−
1
.
T
h
e
la
tt
er

b
ei
n
g
in
si
g
n
i�
ca
n
t.

T
h
e
st
a
n
d
a
rd

er
ro
rs

(i
n
b
ra
ck
et
s)

a
re

ro
b
u
st

st
a
n
d
a
rd

er
ro
rs

b
a
se
d
o
n
th
e
sa
n
d
w
ic
h
es
ti
m
a
to
r
I−

1
J
I−

1
.

22



errors small.

The empirical estimates of ϕ are close to unity, ϕ̂ ' 1, for both open-to-close and close-to-close returns.

This suggests that the realized measure, xt, is roughly proportional to the conditional variance for both

open-to-close returns and close-to-close returns. The fact that ξ is estimated to be smaller (more negative)

for close-to-close returns that for open-to-close returns simply re�ects that the realized measure is computed

over an interval that spans a shorter period than close-to-close returns.

In terms of partial log-likelihood function, `(r), the log-linear speci�cation leads to an even better �t

than the linear speci�cations, whereas the logarithmic GARCH(1,1) model leads to a worse �t than the

GARCH(1,1) model, see Table 3. The joint log-likelihood function, `(r, x), for the log-linear model is not

directly comparable to that of the linear model (because we are modeling log xt as oppose to xt).

The standard errors of the extended model, RG(2, 2)∗, for close-to-close returns are rather sensitive to

the truncation parameter, ε, we use to avoid the problem of taking the logarithm to (a squared) zero. There

are about 10 days with zero returns in the sample. The problem disappears if we use a smaller truncation

parameter, but the smaller truncation parameter also causes the performance of the LGARCH to deteriorate

substantially.

5.4.2 Log-Linear RealGARCH(1,2) for All Stocks (Table 5)

Table 5 shows the parameter estimates for the log-linear Realized GARCH(1,2) model for all 29 assets. The

empirical results are based on open-to-close returns. We observe that the estimates are remarkably similar

across the stocks that span di�erent sectors and have varying market dynamics. An interesting observation

is observed from the conditional correlations, ρ− and ρ+. The index fund, SPY, is found to have a strong

asymmetry, since ρ̂− = −0.32 and ρ̂+ = 0.13. This is consistent with the existing literature. Also consistent

with the existing literature, see e.g. Yu (2008) and reference therein, is that fact that the two conditional

correlations are more balanced for the individual stocks. However, two stocks, CVX and XOM have strong

asymmetries of the same magnitude as the index fund, SPY. These two stocks are both are oil companies,

so a possible explanation is that the valuations of CVX and XOM were strongly in�uenced by the volatility

of oil prices in the sample period.

5.4.3 News Impact Curve (Figure 1)

The leverage function, τ(z) is closely related to the news impact curve that was introduced by Engle and Ng

(1993). High frequency data enable are more more detailed study of the news impact curve than is possible

with daily returns. A detailed study of the news impact curve that utilizes high frequency data is Ghysels

and Chen (2010). Their approach is very di�erent from ours, yet the shape of the news impact curve they

estimate is very similar to ours. The news impact curve shows how volatility is impacted by a shock to the

price, and our Hermite speci�cation for the leverage function presents a very �exible framework for estimating
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Figure 1: News impact curve for IBM and SPY

the news impact curve. In the log-linear speci�cation we de�ne the new impact curve by

ν(z) = E(log ht+1|zt = z)− E(log ht+1),

so that 100ν(z) measures the percentage impact on volatility as a function of return-shock measures in units

of standard deviations. As shown in Section 2 we have ν(z) = γ1τ(z). We have estimate the log-linear

RealGARCH(1,2) model for both IBM and SPY using a �exible leverage function based on the �rst four

Hermite polynomials. The point estimates were (τ̂1, τ̂2, τ̂3, τ̂4) = (−0.036, 0.090, 0.001,−0.003) for IBM and

(τ̂1, τ̂2, τ̂3, τ̂4) = (−0.068, 0.081, 0.014, 0.002) for SPY. Note that the Hermite polynomials of orders three and

four add little beyond the �rst two polynomials. The news impact curves implied by these estimates are

presented in Figure 1. The fact that ν(z) is smaller than zero for some (small) values of z is an implication

of its de�nition that implies, E[ν(z)] = 0.

The estimated news impact curve for IBM is more symmetric about zero than that of SPY, and this

empirical result is fully consistent with the existing literature. The most common approach to model the news

impact curve is to adopt a speci�cation with a discontinuity at zero, such as that used in the EGARCH model

by Nelson (1991), τ(z) = τ1z+τ+(|z|−E|z|).We also estimated the leverage functions with the piecewise linear

function that leads to similar empirical results. Speci�cally, the implied news impact curves have the most

pronounced asymmetry for the index fund, SPY, and the two oil related stocks, CVX and XOM. However,

the likelihood function tends to be larger with the polynomial leverage function, τ(z) = τ1z+ τ2(z2− 1), and

the polynomial speci�cation simpli�es aspects of the likelihood analysis.
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5.4.4 In-Sample and Out-of-Sample Log-Likelihood Results

Table 6 shows the likelihood ratios for both in-sample and out-of-sample period. The statistics are based

on our analysis with open-to-close returns. The statistics in Panel A are the conventional likelihood ratio

statistics, where each of the �ve smaller models are benchmarked against the largest model. The largest

model is labeled (2,2). This is the log-linear RealGARCH(2,2) model that has the squared return r2t in the

GARCH equation in addition to the realized measure. Thus the likelihood ratio statistics are in Panel A are

de�ned by

LRi = 2
{
`RG(2,2)∗(r, x)− `i(r, x)

}
,

where i represents one of the �ve other Realized GARCH models. In the QMLE framework the limit

distribution of likelihood ratio statistic, LRi, is usually given as a weighted sum of χ2-distributions. Thus

comparing the LRi to the usual critical value of a χ2-distribution is only indicative of signi�cance.

Comparing the RealGARCH(2,2)∗ to RealGARCH(2,2) leads to small LR statistics in most cases. So α

tends to be insigni�cant in our sample. This is consistent with the existing literature that �nds that squared

returns adds little to the model, once a more accurate realized measure is used in the GARCH equation.

The leverage function, τ(zt), is highly signi�cant in all cases. The LR statistics associated with the

hypothesis that τ1 = τ2 = 0 are well over 100 in all cases. These statistics can be computed by subtracting

the statistics in the column labeled (2,2) from those in the column labeled (2,2)†. The joint hypothesis,

β2 = γ2 = 0 is rejected in most cases, and so the empirical evidence does not support a simpli�cation of the

model to the RealGARCH(1,1). The results for the two hypotheses β2 = 0 and γ2 = 0 are less conclusive. The

likelihood ratio statistics for the hypothesis, β2 = 0 are, on average, 5.7 = 9.6−3.9, which would be borderline

signi�cant when compared to conventional critical values from a χ2
(1)-distribution. The LR statistics for the

hypothesis, γ2 = 0, tend to be larger with an average value of 16.6. So the empirical evidence favors the

RealGARCH(1,2) model over the RealGARCH(2,1) model.

Consider next the out-of-sample statistics in Panel B. These likelihood ratio statistics are computed

as
√

n
m{`RG(2,2)(r, x) − `j(r, x)}, where n and m denote the sample sizes, in-sample and out-of-sample,

respectively. The in-sample parameter estimates are simply plugged into the out-of-sample log-likelihood,

and the asymptotic distribution of these statistics are non-standard because the in-sample estimates do

not solve the �rst-order conditions out-of-sample, see Hansen (2009). The RealGARCH(2,2) model nests,

or is nested in, all other models. For nested and correctly speci�ed models where the larger model has k

additional parameters that are all zero (under the null hypothesis) the out-of-sample likelihood ratio statistic

is asymptotically distributed as

√
n

m
{`i(r, x)− `j(r, x)} d→ Z ′1Z2, as m,n→∞ with m/n→ 0,

where Z1 and Z2 are independent Zi ∼ Nk(0, I). This follows from, for instance, Hansen (2009, corollary 2),

and the (two-sided) critical values can be inferred from the distribution of |Z ′1Z2|. For k = 1 the 5% and 1%
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Figure 2: Heteroskedasticity in measurement equation

critical values are 2.25 and 3.67, respectively, and for two degrees of freedom (k = 2), these are 3.05 and 4.83,

respectively. Compared to these critical values we �nd, on average, signi�cant evidence in favor of a model

with more lags than RealGARCH(1,1). The statistical evidence in favor of a leverage function is very strong.

Adding the ARCH parameter, α, will (on average) result in a worse out-of-sample log-likelihood. As for the

choice between the RealGARCH(1,2), RealGARCH(2,1), and RealGARCH(2,2) the evidence is mixed.

In Panel C, we report partial likelihood ratio statistics, that are de�ned by 2{maxi `i(r|x)− `j(r|x)}, so

each model is compared with the model that had the best out-of-sample �t in term of the partial likelihood.

These statistics facilitate a comparison of the Realized GARCH models with the standard GARCH(1,1)

model, and we see that the Realized GARCH models also dominate the standard GARCH model in this

metric. This is made more impressive by the fact that Realized GARCH models are maximizing the joint

likelihood, and not the partial likelihood that is used in these comparisons.4

5.5 A Comparison of the Linear and Log-Linear Speci�cations

In this Section we focus on two empirical aspects that both favor the log-linear model over the linear model:

Heteroskedasticity and the degree of misspeci�cation of the Gaussian likelihood.

The measurement equations for the linear and log-linear model are

xt = ξ + ϕht + τ(zt) + ut and log xt = ξ + ϕ log ht + τ(zt) + ut,

respectively, where τ(zt) + ut is modeled as an iid process, hence homoskedastic.

Figure 2 displays two scatter plots. The left panel plots xt against ĥt, as estimated with the linear

RealGARCH(1,2) model and the right panel plots log xt against log ĥt where the latter is estimated with a log-

linear RealGARCH(1,2) model. The two models produce very similar value for ht, however there is obviously

4There is not a well developed theory for the asymptotic distribution of these statistics, in part because we are comparing
a model that maximizes the partial likelihood (the GARCH(1,1) model) with models that maximizes the joint likelihood (the
Realized GARCH models).
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Standard Errors for the RealGARCH(1,2) Model

Linear Model Log-linear Model

I−1 J−1 I−1J I−1 I−1 J−1 I−1J I−1
ω 0.007 0.004 0.019 0.015 0.015 0.016
β 0.034 0.017 0.125 0.040 0.031 0.053
γ1 0.053 0.040 0.133 0.030 0.025 0.040
γ2 0.054 0.032 0.177 0.046 0.036 0.062
ξ 0.038 0.037 0.096 0.044 0.042 0.051
ϕ 0.080 0.064 0.212 0.044 0.033 0.069
σu 0.009 0.002 0.054 0.005 0.005 0.006
τ1 0.013 0.014 0.016 0.010 0.011 0.011
τ2 0.008 0.013 0.011 0.006 0.008 0.006

Table 7: Conventional and robust standard errors computed for Realized GARCH(1,2) model with a quadratic
leverage function. The data are open-close SPY returns.

a very pronounced degree of heteroskedasticity in the linear models. This suggests we should adopt a di�erent

leverage speci�cation in the linear model, where ht{τ(zt) + ut} is used in place of τ(zt) + ut. This reinforces

the value of modeling the leverage e�ect in this context. Homoskedastic errors are not essential for the quasi

maximum likelihood estimators but causes the QMLE to be ine�cient. Moreover, misspeci�cation causes

the likelihood ratio statistic to have an asymptotic distribution that is a weighted sum of χ2
(1)-distributed

random variables, rather than a pure sum of such. Comparing likelihood ratio statistics to critical values to a

standard χ2-distribution, as an approximation, becomes very dubious when the model is highly misspeci�ed.

In Figure 3 we present scatter plot for four variants of the Realized GARCH model. The residuals,

{ẑt, ût}nt=1, are those for the SPY returns, obtained with the RealGARCH(1,2) model, using the four combi-

nations of linear/log-linear speci�cation and with/without a leverage function. The upper panels in Figure 3

are the residuals for the linear speci�cation and the two lower panels are for the log-linear speci�cation. The

left panels are residuals obtained with out a leverage function (i.e. τ(z) = 0), and those on the right are the

residuals obtained with a quadratic speci�cation for τ(z). The residuals for the linear speci�cation reveals

a great deal of misspeci�cation. The log-linear model with our a leverage function leads to residuals that

strongly indicates the independence assumption between z and u is violated. The log-linear models with the

quadratic leverage function o�ers a much better agreement with the underlying assumptions.

The fact that the log-linear model is far less misspeci�ed than the linear model can also be illustrated

by comparing robust and non-robust standard errors. In Table 7 we have computed standard errors using

those of the two information matrices (the diagonal elements of I−1 and J−1) and the robust standard errors

computed from the diagonal of I−1JI−1.

5.6 The Number of Latent Volatility Factors

To illustrate that a single latent volatility factor may be su�cient in this context, we have estimated the

latent volatility processes for returns, range, and the realized kernel using a simple GARCH(1,1) structure for
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Figure 3: Scatter plots of the residuals, (ẑt, ût), obtained with four di�erent RealGARCH(1,2) models. The
upper panels are for the linear speci�cation and the lower panels are for the log-linear speci�cation. The
left panel are for models without a leverage function the right panels are with a quadratic leverage function.
The log-linear speci�cation with the leverage function is clearly best suited for the Gaussian structure of the
quasi log-likelihood function.
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Figure 4: Scatter plots of latent volatility processes for returns, range, and the realized kernel. Each were
estimated separately using a GARCH(1,1) structure. The co-linearity between these latent processes suggests
that the three processes can be modeled with a single latent process.

each of them. Each of the three volatility processes were extracted by maximizing − 1
2{
∑n
t=1 log(ht)+yi,t/ht}

where ht = ω+αyi,t−1 +βht−1, where yi,t denotes either the squared return, r2t , the squared intraday-range,

R2
t , or the realized kernel, RKt. For each of the three time series we maximize the quasi log-likelihood function

with respect to (ω, α, β, , h0), so the three volatility processes are obtained separately. Figure 4 presents two

scatter plots of the estimated volatility processes, and the pronounced collinearity suggests that a single

latent volatility factor may be su�cient in this context.

6 Moments, Forecasting, and Insight about the Realized Measure

In this section we elaborate on the interpretations that can be deduced from the Realized GARCH model.

Speci�cally in terms of:

• Skewness and kurtosis of cumulative returns as implied by the Realized GARCH model.

• Issues related to multi-period forecasting.

• A decomposition of the realized measure in the GARCH equation that enables us to interpret the

underlying structure of the model. This decomposition motivates a modi�ed GARCH equation that

resembles that of an EGARCH model.

6.1 Properties of Cumulative Returns: Skewness and Kurtosis

We consider the skewness and kurtosis for returns generated by a Realized GARCH model. First an analytical

results for a single period return for the linear Realized GARCH model.
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Proposition 4. Suppose that rt =
√
htzt, where

ht = ω + αr2t−1 + βht−1 + γxt−1,

xt = ξ + ϕht + τ(zt) + ut,

τ(zt) = τ1zt + τ2(z2t − 1) + τ3(z3t − 3zt) + · · ·+ τkHk(zt),

with zt ∼ iidN(0, 1), ut ∼ iid(0, σ2
u), and Hk(zt) being the k-th Hermite polynomial.

De�ne π = α + β + ϕγ, µ = ω + γξ, σ2
τ2 = Eτ(zt)

2, and suppose that π2 + 2α2 < 1. Then the excess

kurtosis of rt is given by

3
(1− π)2

1− π2 − 2α2

(
γ2
σ2
u + σ2

τ2

µ2
+ 4γ ατ2

µ(1−π)

)
+

6α2

1− π2 − 2α2
.

In the special case were α = 0, the excess kurtosis is

3
1− π
1 + π

γ2
σ2
τ2 + σ2

u

(ω + γξ)2
,

and in the special case where γ = 0 we obtain the excess kurtosis for the GARCH(1,1) model,

6α2

1− (α+ β)2 − 2α2
.

When zt ∼ N(0, 1) and the leverage function is constructed from Hermite polynomials, τ(zt) = τ1zt +

τ2(z2t − 1) + τ3(z3t − 3zt) + · · · , then σ2
τ2 = τ21 + 2τ22 + 6τ23 + 4!τ24 + · · · .

For the log-linear Realized GARCH model we have the following results for the kurtosis of a single period

return.

Proposition 5. Consider the log-linear RealGARCH(1,1) model and de�ne π = β + ϕγ and µ = ω + ϕξ, so

that

log ht = π log ht−1 + µ+ γwt−1, where wt = τ1zt + τ2(z2t − 1) + ut,

with zt ∼ iidN(0, 1) and ut ∼ iidN(0, σ2
u). The kurtosis of the return rt =

√
htzt is given by

E(r4t )

E(r2t )
2

= 3

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
exp

{ ∞∑
i=0

π2iγ2τ21
1− 6πiγτ2 + 8π2iγ2τ22

}
exp

{
γ2σ2

u

1− π2

}
. (8)

There does not appear to be a way to further simplify the expression (8), however when γτ2 is small, as

we found it to be empirically, we have the approximation (see the appendix for details)

E(r4t )

E(r2t )
2
' 3 exp

{
γ2τ22
− log π

+
γ2(τ21 + σ2

u)

1− π2

}
. (9)

The skewness for single period returns is non-zero, if and only if the studentized return, zt, has non-zero
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ω = 0.04124604
β1 = 0.70122085
γ1 = 0.45067217
γ2 = -0.17604791
ξ = -0.17999580
ϕ = 1.03749403
σu = 0.38127405
τ1 = -0.06781023
τ2 = 0.07015828

Table 8: Parameter estimates for the log-linear Realized GARCH(1,2) model that is used to simulate cumu-
lative returns.

Figure 5: Skewness and kurtosis of cumulative returns from a Realized GARCH model with the log-linear
speci�cation, see Table 8. The x-axis gives the number of periods that returns are accumulated over.
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skewness. This follows directly from the identity rt =
√
htzt, and the assumption that zt⊥⊥ht, that shows

that,

E(rdt ) = E(h
d/2
t zdt ) = E

{
E(h

d/2
t zdt |Ft−1)

}
= E(h

d/2
t )E(zdt ),

and in particular that E(r3t ) = E(h
3/2
t )E(z3t ). So a symmetric distribution for zt implies that rt has zero

skewness, and this is property that is shared by standard GARCH model and Realized GARCH model alike.

For the skewness and kurtosis of cumulative returns, rt+ · · ·+rt+k, the situation is very di�erent, because

the leverage function induces skewness. For this problem we resort to simulation methods using a design

based on our empirical estimates for log-linear Realized GARCH(1,2) model that we obtained for the SPY

returns. The exact con�guration is given by Table 8, and the skewness and kurtosis of cumulative returns

are shown in Figure 5. From Figure 5 it is evident that the Realized GARCH model can produce strong and

persistent skewness and kurtosis.

6.2 Multi-Period Forecast

One of the main advantages of having a complete speci�cation, i.e., a model that fully describes the dynamic

properties of xt is that multi-period ahead forecasting is feasible. In contrast, the GARCH-X model can

only be used to make one-step ahead predictions. Multi-period ahead predictions are not possible without a

model for xt, such as the one implied by the measurement equation in the Realized GARCH model.

Multi-period ahead predictions with the Realized GARCH model is straightforward for both the linear

and log-linear Realized GARCH models. Let h̃t denote either ht or log ht, and consider �rst the case where

p = q = 1. By substituting the GARCH equation into measurement equation we obtain the VARMA(1,1)

structure  h̃t

x̃t

 =

 β γ

ϕβ ϕγ

 h̃t−1

x̃t−1

+

 ω

ξ + ϕω

+

 0

τ(zt) + ut

 ,
that can be used to generate the predictive distribution of future values of h̃t, x̃t, as well as returns rt, using

 h̃t+h

x̃t+h

 =

 β γ

ϕβ ϕγ

h  h̃t

x̃t

+

h−1∑
j=0

 β γ

ϕβ ϕγ

j
 ω

ξ + ϕω

+

 0

τ(zt+h−j) + ut+h−j

 .

This is easily extended to the general case (p, q ≥ 1) where we have

Yt = AYt−1 + b+ εt,

with the conventions
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Yt =



h̃t
...

h̃t−p+1

x̃t
...

x̃t−q+1


, A =


(β1, . . . , βp) (γ1, . . . , γq)

(Ip−1×p−1, 0p−1×1) 0p−1×q

ϕ(β1, . . . , βp) ϕ(γ1, . . . , γq)

0q−1×p (Iq−1×q−1, 0q−1×1)

 , b =


ω

0p−1×1

ξ + ϕω

0q−1×1

 , εt =


0p×1

τ(zt) + ut

0q×1

 ,

so that

Yt+h = AhYt +

h−1∑
j=0

Aj(b+ εt+h−j).

The predictive distribution for h̃t+h and/or x̃t+h, is given from the distribution of
∑h−1
i=0 A

iεt+h−i, which also

enables us to compute a predictive distribution for rt+h, and cumulative returns rt+1 + · · ·+ rt+h.

The Realized GARCH model can be used to predict both the conditional return-variance and the realized

measure. The latter has been the subject of a very active literature. See e.g. Andersen, Bollerslev, Diebold,

and Labys (2003), Andersen, Bollerslev, and Meddahi (2004, 2005, 2010),Andersen, Bollerslev, and Diebold

(2007).

6.2.1 A Reduced-Form Expression

If it is not an objective to predict future values of the realized measure,x̃t, then the Realized GARCH implies

another structure that is simpler for predicting the future path of volatility and returns. From the ARMA

structure for h̃t we have that

h̃t = µ+ π1h̃t + · · ·+ πp̃h̃t−p̃ + γ1{τ(zt−1) + ut−1}+ · · ·+ γq{τ(zt−q) + ut−q},

where µ = ω + γ•ξ and πj = βj + ϕγj , for j = 1, . . . , p̃ = max(p, q).

Hence, if the objective is to predict the future path of volatility and/or the predictive distribution of

future returns, including multi-period returns such as, rt+1 + · · · + rt+h, then there is no need to consider

axillary future values of the realized measure. Note the mixture of zt and ut innovations that de�nes the

volatility path. This structure resembles the dynamic features of a stochastic volatility model with leverage

e�ect, see e.g. Yu (2008).

6.3 Decomposing the Realized Measure in the GARCH Equation

In this section we provide a more detailed analysis of the leverage term, τ(zt), and its dynamic e�ect on

volatility. First we consider a hypothetical decomposition of the realized measure in the GARCH equation.
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This yields valuable insight about the gains from utilizing realized measures in these models. Then we provide

an alternative (but econometrically equivalent) representation of the GARCH equation. This representation

suggests a simple extension of the Realized GARCH model, that o�ers a more �exible speci�cation of the

leverage e�ect. We also study a di�erent functional form for τ(z), that induces an EGARCH structure on

the GARCH equation.

6.4 A Hypothetical Decomposition

Many realized measures, such as the realized kernel used in our empirical analysis, will be consistent estimators

of the quadratic variation, which is an ex-post measure of volatility.

Consider the case where xt is an estimator of the integrated variance IVt, such as the realized variance

or the realized kernel. For realized measures of this type it is well known that the sampling error,

ηt = log xt − log IVt,

is approximately N(0,Σnt), where Σnt → 0 as the number of intraday observations, nt → ∞. See e.g.

Barndor�-Nielsen and Shephard (2002), Barndor�-Nielsen et al. (2008a), and Barndor�-Nielsen et al. (2008b).

For instance, under weak assumptions about market microstructure noise Barndor�-Nielsen et al. (2008b)

show that the �sampling error� is log xt − log IVt = Op(n
−1/5).

The di�erence between the logarithmically transformed integrated variance and conditional variance is

given by

ζt = log IVt − log ht.

Then ζt captures the news about volatility that accumulated after the conditional expectation, ht, is made

at time t − 1, and we will refer to ζt as the volatility shock. Naturally the expected value of ζt will depend

on whether the integrated variance is measured over the same period as ht, or a fraction thereof.

Suppose for simplicity that ϕ = 1 and p = q = 1, so that the GARCH equation can be expressed as

log ht+1 = µ+ π log ht + δ1ζt + δ2ηt.

Within the Realized GARCH model γ has to represent both δ1 and δ2, so the Realized GARCH model

implicitly imposes the constraint that δ1 = δ2 (= γ).

The sampling error, ηt, will be speci�c to the choice of realized measure (estimator of integrated variance).

Since this term re�ects our inability to perfectly estimate the integrated variance, we should not expect this

term to be important for describing the dynamics of volatility. We should expect the volatility shock, ζt, to

be important. Since neither ζt nor ηt are observed we cannot estimate a model where the realized measure

is decomposed into these two terms. However, we can relate τ(zt) and ut to these terms, as we discuss next.
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6.5 An Alternative Model Representation

An alternative representation for the RealGARCH(1,1) is

rt =
√
htzt,

log ht = µ+ π log ht−1 + γτ(zt−1) + γut−1,

log xt = ξ + ϕ log ht + τ(zt) + ut,

where π = β+ϕγ and µ = ω+γξ. The model de�ned by these equations will generate a process (rt, xt)
′ that

is observationally equivalent to log-linear RealGARCH(1,1). Note that the inclusion of xt in the GARCH

equation implicitly imposes that the coe�cients associated with τ(z) and u be the same. This constraint is

relaxed in the following speci�cation,

log ht = µ+ π log ht−1 + δ1τ(zt−1) + δ2ut−1, (10)

log xt = ξ + ϕ log ht + τ(zt) + ut.

It is natural to associate the leverage function, τ(zt), with ζt, albeit there will be residual randomness in ζt

that cannot be explained by the studentized return, zt, alone. Consequently, ut will be a mixture of pure

sampling error, ηt, and the residual randomness ζt − τ(zt)− ξ.

Since τ(zt) is primarily related to the volatility shock, ζt, we should expect τ(zt) to have a larger coe�cient

in the GARCH equation than ut, and that is indeed what we �nd in a preliminary analysis of this particular

model. Speci�cally we �nd, δ̂1 > δ̂2 > 0, where δ2 is signi�cant. This minor extension of the model leads to

some interesting insight about the channels by which the realized measure in useful for the GARCH equation.

As discussed earlier, when xt is included in the GARCH equation, then it does not distinguish between

τ(zt) and ut, as it implied δ1 = δ2 in (10). The implication is that γ will be indicative of how accurate xt

estimates the integrated variance.

6.5.1 Realized EGARCH

The decomposition of the realized measure in the GARCH equation motivates a Realized GARCH model

with the following EGARCH structure,

log ht = ω + β log ht−1 + τ(zt−1) + δεt−1,

log xt = ξ + ϕ log ht + κτ(zt) + (1 + δ)εt.

Here we have reparametrized the model to simplify the notation. For instance, β in this model maps into

β + ϕγ in the formulation used earlier, and the leverage function has absorbed the scaling γ, and we have

instead introduced the scaling κ in the measurement equation.

The Realized EGARCH model has a particularly interesting structure when β = ϕ/κ. In this case we can
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rewrite the measurement equation as

log xt = ξ̃ + κ log ht+1 + εt, where ξ̃ = ξ − κω,

so that the realized measure is implicitly being tied to the conditional variance for the next period.

The structure of the likelihood function for this model is di�erent from that of our log-linear model, so we

cannot utilize the QMLE results we derived in Section 4 to this model. Therefore, we leave a more detailed

analysis of this model for future research.

7 Conclusion

In this paper we have proposed a complete model for returns and realized measures of volatility, xt, where the

latter is tied directly to the conditional volatility ht. We have demonstrated that the model is straightforward

to estimate and o�ers a substantial improvement in the empirical �t, relative to standard GARCH models.

The model is informative about realized measurement, such as its accuracy.

We have shown that the realized GARCH model induces an interesting reduced-form model for {rt, ht},

that is similar to that of a stochastic volatility model with leverage e�ect.

Our empirical analysis can be extended in a number of ways. For instance, including a jump robust

realized measure of volatility would be an interesting extension, because Bollerslev, Kretschmer, Pigorsch,

and Tauchen (2009) found that the leverage e�ect primarily acts through the continuous volatility component.

Another possible extension is to introduce a bivariate model of open-to-close and close-to-open returns, as

an alternative to modeling close-to-close returns, see Andersen et al. (2008).

In this paper we have mainly focused on linear and log-linear speci�cations of the GARCH equation.

In would be interesting for consider the whole family of speci�cations covered by the Augmented GARCH

model, see Duan (1997).

The Realized GARCH framework is naturally extended to a multi-factor structure. Say m realized

measures and k latent volatility variables. The Realized GARCH model discussed in this paper corresponds

to the case k = 1, whereas the MEM framework corresponds to the case m = k. Such a hybrid framework

would enable us to conduct inference about the number of latent factors, k. We could, in particular, test the

one-factor structure, conjectured to be su�cient for the realized measure used in this paper, against the two-

factor structure implied by MEM. The family of models extents traditional GARCH models by utilized the

additional information provided by variables that are commonly called realized measures, still the objective

of these models is essentially the same as that of GARCH models. For this reason we propose that all such

models be called Realized GARCH models.
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A Appendix of Proofs

Proof. [Proposition 1] The �rst result follows by substituting log xt = ϕ log ht + ξ +wt and log r2t = log ht +

κ+ vt into the GARCH equation and rearranging. Next, we substitute log ht = (log xt − ξ −wt)/ϕ, log r2t =

(log xt − ξ − wt)/ϕ+ κ+ vt, and multiply by ϕ, and �nd

log xt − ξ − wt = ϕω +
∑p∨q

i=1
(βi + αi)(log xt−i − ξ − wt−i) + ϕ

∑q

j=1
γj log xt−j + ϕ

∑q

j=1
αj(κ+ vt−j)

so with πi = αi + βi + γiϕ we have

log xt = ξ(1− β• − α•) + ϕκα• + ϕω +

p∨q∑
i=1

πi log xt−i + wt −
∑p

i=1
(αi + βi)wt−i + ϕ

∑q

j=1
αjvt−j .

When ϕ = 0 the measurement equation shows that log xt is an iid process.

Proof. [Lemma 1] First note that

∂g′t
∂λ

=
(

0, ḣt−1, . . . , ḣt−p, 0p+q+1×q

)
=: Ḣt−1,

Thus from the GARCH equation, h̃t = λ′gt, we have that

ḣt =
∂g′t
∂λ

λ+ gt = Ḣt−1λ+ gt =

p∑
i=1

βiḣt−i + gt.

Similarly, the second order derivative, is given by

ḧt =
∂(gt + Ḣt−1λ)

∂λ′
=
∂gt
∂λ′

+ Ḣt−1 +
Ht−1

∂λ′
λ = Ḣ ′t−1 + Ḣt−1 +

p∑
i=1

βi
∂ḣt−i
∂λ′

=

p∑
i=1

βiḧt−i + Ḣ ′t−1 + Ḣt−1.

For the starting values we observe the following: Regardless of (h0, . . . , hp−1) being treated as �xed or as a

vector of unknown parameters, we have ḣs = ḧs = 0 for . Given the structure of ḧt this implies ḧ1 = 0.

When p = q = 1 it follows immediately that ḣt =
∑t−1
j=0 β

jgt−j . Similarly we have

ḧt =

t−1∑
j=0

βj(Ḣt−1−j + Ḣt−1−j) =

t−2∑
j=0

βj(Ḣt−1−j + Ḣt−1−j)

where Ḣt = (03×1, ḣt, 03×1) and where the second equality follows by Ḣ0 = 0. The results now follows by

t−2∑
i=0

βiḣt−1−i =

t−2∑
i=0

βi
t−1−i−1∑
j=0

βjgt−1−i−j =

t−2∑
i=0

βi
t−i−2∑

k−i−1=0

βk−i−1gt−k =

t−2∑
i=0

t−1∑
k=i+1

βk−1gt−k =

t−1∑
k=1

kβk−1gt−k.
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Proof. [Proposition 2] Recall that ut = x̃t −ψ′mt and h̃t= g′tλ. So derivative with respect to h̃t are given by

∂zt

∂h̃t
=

∂rt exp(− 1
2 h̃t)

∂h̃t
= −1

2
zt so that

∂z2t

∂h̃t
= −z2t ,

u̇t =
∂ut

∂h̃t
= −ϕ+

1

2
ztτ
′ȧt,

üt =
∂u̇t

∂h̃t
=

∂
(
−ϕ+ 1

2ztȧ(zt)
′τ
)

∂h̃t
= −1

4
τ ′
(
ztȧt + z2t ät

)
.

So with `t = − 1
2{h̃t + z2t + log(σ2

u) + u2t/σ
2
u} we have

∂`t
∂ut

= 2
ut
σ2
u

and
∂`t

∂h̃t
= −1

2

{
1 +

∂z2t

∂h̃t
+
∂u2t/∂h̃t
σ2
u

}
= −1

2

{
1− z2t +

2utu̇t
σ2
u

}
.

Derivatives with respect to λ are

∂zt
∂λ

=
∂zt

∂h̃t

∂h̃t
∂λ

= −1

2
ztḣt

∂ut
∂λ

=
∂ut

∂h̃t

∂h̃t
∂λ

= u̇tḣt

∂u̇t
∂λ′

= ütḣ
′
t

∂`t
∂λ

=
∂`t

∂h̃t
ḣt = −1

2

{
1− z2t +

2utu̇t
σ2
u

}
ḣt.

Derivatives with respect to ψ are

∂ut
∂ξ

= −1,
∂u̇t
∂ξ

= 0, and
∂`t
∂ξ

=
∂`t
∂ut

∂ut
∂ξ

= −2
ut
σ2
u

,

∂ut
∂ϕ

= −h̃t,
∂u̇t
∂ϕ

= −1, and
∂`t
∂ϕ

=
∂`t
∂ut

∂ut
∂ϕ

= −2
ut
σ2
u

h̃t,

∂ut
∂τ

= −at,
∂u̇t
∂τ

=
1

2
ztȧt and

∂`t
∂τ

=
∂`t
∂ut

∂ut
∂τ

= −2
ut
σ2
u

at.

Similarly, ∂`t
∂σ2

u
= − 1

2 (σ−2u − u2tσ−4u ). Now we turn to the second order derivatives.

−2
∂2`t
∂λ∂λ′

= ḣt

{
−∂z

2
t

∂λ′
+

2

σ2
u

(
u̇t
∂ut
∂λ′

+ ut
∂u̇t
∂λ′

)}
+ (1− z2t +

2ut
σ2
u

u̇t)
∂ḣt
∂λ′

= ḣt

{
z2t +

2

σ2
u

(
u̇2t + utüt

)
ḣ′t

}
+ (1− z2t +

2ut
σ2
u

u̇t)ḧt.
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Similarly, since ∂zt
∂ψ = 0 we have

−2
∂2`t
∂λ∂ξ

=
∂(1− z2t + 2ut

σ2
u
u̇t)ḣt

∂ξ
= 2ḣt

(
∂ut
∂ψ′

u̇t
σ2
u

+
ut
σ2
u

∂u̇t
∂ξ

)
= 2ḣt

(
− u̇t
σ2
u

+ 0

)
−2

∂2`t
∂λ∂ϕ

=
∂(1− z2t + 2ut

σ2
u
u̇t)ḣt

∂ϕ
= 2ḣt

(
∂ut
∂ϕ

u̇t
σ2
u

+
ut
σ2
u

∂u̇t
∂ϕ

)
= 2ḣt

(
−h̃t

u̇t
σ2
u

− ut
σ2
u

)
−2

∂2`t
∂λ∂τ ′

= 2ḣt

(
∂ut
∂τ ′

u̇t
σ2
u

+
ut
σ2
u

∂u̇t
∂τ ′

)
= 2ḣt

(
−a′t

u̇t
σ2
u

+
ut
σ2
u

1

2
ztȧt

)
,

so that
∂2`t
∂λ∂ψ′

=
u̇t
σ2
u

ḣtm
′
t +

ut
σ2
u

ḣtb
′
t, with bt = (0, 1,−1

2
ztȧ
′
t)
′.

∂2`t
∂λ∂σ2

u

= −1

2

∂(1− z2t + 2ut
σ2
u
u̇t)ḣt

∂σ2
u

=
utu̇tḣt
σ4
u

∂2`t
∂ψ∂ψ′

= − 1

σ2
u

mtm
′
t

∂2`t
∂ψ∂σ2

u

= −1

2
(−2ut

σ4
u

)mt =
ut
σ4
u

mt

∂2`t
∂σ2

u∂σ
2
u

= −1

2

(
−1

σ4
u

+ 2
u2t
σ6
u

)
=

1

2

σ2
u − 2u2t
σ6
u

.

Proof. [Proposition 4] With a Gaussian speci�cation for zt we have E(r2t ) = E(ht) and E(r4t ) = 3E(h2t ). From

the ARMA representation for this process we have with µ = ω + γξ and π = α+ β + ϕγ ∈ (−1, 1), that

ht = µ+ πht−1 + γwt−1 + αvt−1 =

∞∑
i=0

πi(γwt−i−1 + αvt−i−1) + µ
1−π ,

where wt = τ(zt) + ut and vt = ht(z
2
t − 1). So that E(ht) = µ/(1− π). Next we note that E(w2

t ) = σ2
τ2 + σ2

u,

E(v2t ) = 2E(h2t ), and E(wtvt) = γατ2E(z2t −1)2E(ht) = 2γατ2µ/(1−π), where we have used that zt ∼ N(0, 1)

and the Hermite polynomial structure of τ(z). The second moment is given by

E(h2t ) =

∞∑
i=0

π2i
{
γ2(σ2

u + σ2
τ2) + 2α2E(h2t ) + 4γατ2

µ
1−π

}
+ µ2

(1−π)2

so that
(

1− 2α2

1−π2

)
E(h2t ) =

γ2(σ2
u+σ

2
τ2

)+4γατ2
µ

1−π
1−π2 + µ2

(1−π)2 , and hence

E(h2t ) =

(
1− π2

1− π2 − 2α2

)
γ2(σ2

u + σ2
τ2) + 4γατ2

µ
1−π

1− π2
+

(
1− π2

1− π2 − 2α2

)
µ2

(1−π)2
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Hence the excess kurtosis is given by

E(r4t )

E(r2t )
2
− 3 = 3

{
E(h2t )

E(ht)2
− 1

}
= 3

(1− π)2

1− π2 − 2α2

(
γ2
σ2
u + σ2

τ2

µ2
+ 4γ ατ2

µ(1−π)

)
+

6α2

1− π2 − 2α2
,

and the results follow.

Lemma 2. Let W = τ1Z + τ2(Z2 − 1) + U, where Z ∼ N(0, 1) and U ∼ N(0, σ2
u). Then

E
(
exp

{
πiγW

})
=

1√
1− 2πiγτ2

e
π2iγ2τ21

2(1−2πiγτ2)
−πiγτ2+

π2iγ2σ2u
2 .

Proof. We have

E
(
eaZ+ b

2 (Z
2−1)

)
=

ˆ ∞
−∞

eaz+
b
2 (z

2−1) 1√
2π
e
z2

2 dz

=

ˆ ∞
−∞

1√
2π
e

a2

2(1−b)−
b
2−

1
2

(z− a
1−b )

(1−b)−1 )
dz

=
1√

1− b
e

a2

2(1−b)−
b
2 ,

and from the moment generating function for the Gaussian distribution we have E
(
ecU
)

= e
c2σ2u

2 . Since Z

and U are independent, we have

E
(
exp

{
πiγW

})
= E

(
exp

{
πiγτ1Z + πiγτ2(Z2 − 1)

})
E
(
exp

{
πiγU

})
=

1√
1− 2πiγτ2

e
π2iγ2τ21

2(1−2πiγτ2)
−πiγτ2

e
π2iγ2σ2u

2 .

Proof. [Proposition 5] We note that

ht = exp

( ∞∑
i=0

πi(µ+ γwt−1)

)
= e

µ
1−π

∞∏
i=0

E exp
(
γπiτ(zt−i)

)
E
(
exp

{
πiγut−i

})
,

h2t = exp

(
2

∞∑
i=0

πi(µ+ γwt−1)

)
= e

2µ
1−π

∞∏
i=0

E exp
(
2γπiτ(zt−i)

)
E
(
exp

{
2πiγut−i

})
,

and using results, such as

E

( ∞∏
i=0

exp
{
πiγut−i

})
=

∞∏
i=0

E
(
exp

{
πiγut−i

})
=

∞∏
i=0

e
π2iγ2σ2u

2 = e
∑∞
i=0

π2iγ2σ2u
2 = e

γ2σ2u/2

1−π2 ,
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we �nd that

Eh2t
(Eht)2

=
e

2µ
1−π

∏∞
i=0 E exp

(
2γπiwt−1

)
e

2µ
1−π
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i=0 {E exp (γπiwt−1)}2

=

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
e
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i=0

4π2iγ2τ21
2(1−4πiγτ2)

e
2
∑∞
i=0

π2iγ2τ21
2(1−2πiγτ2)

e−
2γτ2
1−π

e−2
γτ2
1−π

e
2γ2σ2u
1−π2

e
γ2σ2u
1−π2

=

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
e
∑∞
i=0

2π2iγ2τ21
(1−4πiγτ2)

− π2iγ2τ21
(1−2πiγτ2) e

γ2σ2u
1−π2

=

( ∞∏
i=0
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1− 4πiγτ2

)
e

∑∞
i=0

π2iγ2τ21
(1−6πiγτ2+8π2iγ2τ22 ) e

γ2σ2u
1−π2

where the last equality uses

2π2iγ2τ21
(1− 4πiγτ2)

− π2iγ2τ21
(1− 2πiγτ2)

=
2π2iγ2τ21 (1− 2πiγτ2)− π2iγ2τ21 (1− 4πiγτ2)

(1− 4πiγτ2)(1− 2πiγτ2)

=
π2iγ2τ21

(1− 4πiγτ2)(1− 2πiγτ2)
=

π2iγ2τ21
(1− 6πiγτ2 + 8π2iγ2τ22 )

.

A.1 Approximate Expression for the Kurtosis

In this subsection we provide a justi�cation for the approximation (9). Recall that

E(r4t )

E(r2t )
2

= 3

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
exp

{ ∞∑
i=0

π2iγ2τ21
1− 6πiγτ2 + 8π2iγ2τ22

}
exp

{
γ2σ2

u

1− π2

}
.

For the �rst term on the right hand side, we have

log

∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

'
ˆ ∞
0

log
1− 2πxγτ2√
1− 4πxγτ2

dx

=
1

log π

{ ∞∑
k=1

(2γτ2)k

k2
− 1

2

(4γτ2)k

k2

}
(1− 2k−1)

=
1

log π
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k=1

(2γτ2)k

k2
(1− 2k−1)

=
γ2τ22

{
1 + 8

3γτ2 + 7(γτ2)2 + 96
5 (γτ2)3 + 496

9 (γτ2)4 + · · ·
}

− log π
.

The second term can be bounded by

γ2τ21
1− π2

≤
∞∑
i=0

π2iγ2τ21
1− 6πiγτ2 + 8π2iγ2τ22

≤ γ2τ21
1− π2

1

1− 6πγτ2
.

So the approximation error is small when γτ2 is small.
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