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Abstract

This paper suggests a new and easy approach to estimate linear and non-linear dynamic term
structure models with latent factors. We impose no distributional assumptions on the factors and
they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields
or bonds prices) in the cross-section dimension. An important bene�t of using many observables
in each time period is that the latent factors can be estimated quite accurately using standard
regressions, and that parameters can be estimated by standard moment matching methods.
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1 Introduction

A key property of all dynamic term structure models is their ability to price bonds with di¤erent
maturities. Following the work of Vasicek (1977) and Cox, Ingersoll & Ross (1985), the dynamics in
these prices are often explained by unobserved or latent factors (see for instance Du¢ e & Kan (1996),
Dai & Singleton (2000), Du¤ee (2002), Diebold & Li (2006), among others). The presence of latent
factors greatly simpli�es dynamic term structure models, but it comes at the cost of making the models
di¢ cult and time consuming to estimate, in particular on a large and highly unbalanced panel of bond
data. To make estimation feasible, it is therefore common practice to �rst extract or estimate 5-10
zero-coupon yields from the available bond data, and then use these yields to estimate the dynamic
term structure model (see Duan & Simonato (1999), de Jong (2000), Du¤ee (2002), among others).

The present paper deviates from the common practice of using relatively few observables each time
period when taking dynamic term structure models to the data. Instead, we suggest using a large
number of observables (yields or bonds prices) for the estimation, and we argue that this, contrary to
the common belief in the literature, simpli�es the estimation process. This is because the latent factors
can be estimated quite accurately by a sequence of standard regressions with many observables. That
is, in each period we set the latent factors to minimize the distance between the observed yields/bond
prices and the model implied yields/bond prices. We refer to this procedure as the "regression �lter"
because it like other �lters such as the Kalman �lter estimates the latent factors.

For non-linear models with normally distributed measurement errors we show analytically that the
estimates from this regression �lter converges to the optimal smoothing estimates when the number of
observables in each period tends to in�nity. In the case of linear and Gaussian models, this means that
the regression �lter converges to the Kalman smoother. We also show how to estimate parameters in
dynamic term structure models using standard moment matching methods and the regression �lter.
Throughout this paper, we refer to the sequential use of regressions to estimate the latent factors and
parameters as the Sequential Regression (SR) approach.

Our second contribution is to show consistency and asymptotic normality of the SR approach.
These results hold for non-linear models with potentially non-Gaussian factor dynamics and they do
so with weaker restrictions than those needed for likelihood inference. This generality and robustness
is the most important advantage of the SR approach because it enables us to estimate a very wide
class of dynamic term structure models in a simple, reliable, and fast manner.

Our approach has at least �ve additional advantages compared to existing estimation methods for
dynamic term structure models. Firstly, the SR approach deals easily with large and potentially highly
unbalanced panel of data. Secondly, the approach is very easy to implement because the �ltering step
only involves standard regressions. Thirdly, no transition function is needed in order to estimate
latent factors and a subset of parameters; not even a parametric family needs to be speci�ed. This
is contrary to the requirements for the Kalman �lter and all non-linear and/or non-normal �lters,
which require a speci�cation of the transition function for the latent factors. Fourthly, by using
many observables in each time period, we use information from �nancial markets more e¢ ciently
than methods estimating dynamic term structure models using just 5-10 observables. Finally, the SR
approach is computationally much faster to use than any likelihood based method.

We emphasize that these advantages hold for all linear and non-linear dynamic term structure
models and with no distributional assumptions on the factors. Two disadvantages of the SR approach
are that we may need to rely on sequential identi�cation of parameters and that the SR approach is not
fully e¢ cient. While acknowledging these disadvantages we do point out that sequential identi�cation
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can be easier to implement in large models with many parameters compared to simultaneous estimation
of all parameters. Moreover, simulation results show that the SR approach based on 25 observables and
sequential identi�cation is just as e¢ cient as Maximum Likelihood (ML) with about 5-10 observables.
Given these results, we argue that estimation of dynamic term structure models could bene�t from
using many observables instead of focusing only on how to do likelihood inference based on relatively
few observables.

The SR approach requires that a large number of observables are available in each time period,
and the bond market is therefore a natural place to look. Another possibility is to include the entire
estimated zero-coupon curve in each period. However, this must be done with some care because
when estimating the zero-coupon yield curve by a model with n parameters, this curve only has an
information content corresponding to these n yields. Viewed from this perspective, the unsmoothed
Fama Bliss interest rates should therefore be preferred to interest rates estimated from, for instance,
the Nielson Siegel curve, because the former contains more information than the latter (Fama & Bliss
(1987), Nelson & Siegel (1987)). With this minor restriction in mind, the SR approach can also be
applied to estimated zero-coupon yields.

The rest of the paper is organized as follows. Section 2 presents the wide class of dynamic term
structure models which can be estimated by the SR approach. The SR approach is formally presented
in section 3, and asymptotic properties for the SR approach are derived and discussed in section 4.
Section 5 examines the �nite sample properties of the SR approach compared to the traditional ML
approach for a linear and Gaussian term structure model. Concluding comments are given in section
6. All proofs are deferred to the appendix.

2 The SR approach

2.1 The state space representation

This section presents the class of dynamic term structure models considered in this paper. We adopt
the notation that yt with dimension ny;t � 1 contains all observed yields or bond prices related to the
model at time t. Note that we explicitly allow for an unbalanced data panel by letting the dimension
of yt be time-dependent. The observable factors driving yt are denoted x1;t and has dimension nx1�1,
and the latent (i.e. unobserved) factors are denoted x2;t, having dimension nx2 � 1. Jointly, we let
xt �

�
x01;t x02;t

�0
which has dimension nx � 1 where nx � nx1 + nx2 .

Given this notation, we consider dynamic term structure models with the following representation

yt = g (xt;�1) + vt: (1)

Here, we account for potential measurement errors in the observables by the vector vt � fvt;igny;ti=1

which has dimension ny;t � 1. When bond prices are used as observables, such measurement errors
can be caused by the presence of i) non-synchronous trading, ii) rounding of market prices, and/or
iii) bid-ask spreads. When extracted or estimated zero-coupon yields are used as observables, the
measurement errors capture any errors involved in constructing these yields. We refer to (1) as the
set of measurement equations.
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To introduce the remaining notation, we also specify a standard markovian law of motion for the
factors even though this assumption is not needed for estimating fx2;tgTt=1 and �1. That is we let

xt+1 = h (xt;wt+1;�1;�2) ; (2)

where wt has dimension nw � 1 and are the IID disturbances to the factors.
The model is parameterized by � with dimension L� 1. We decompose � into

�
�01 �02

�0
, where

�1 and �2 have dimension L1�1 and L2�1, respectively, and L = L1+L2. The elements in �1 can be
identi�ed from the measurement equations whereas �2 must be identi�ed based on the law of motion
for the factors. This explains why �2 do not appear in (1). For reduced form term structure models,
�1 typically contains all the risk neutral parameters and �2 contains the parameters specifying the
market price of risk. For general equilibrium models, the market price of risk is often a function of �1,
and �2 can therefore be expected to be empty in this class of models.

We impose the following assumptions on the considered class of dynamic term structure models:

E [vtjx1;t; zt;j ] = 0 for some �o2 � and xo2;t 2 X2;t for all t = 1; :::; T (3)

V ar (vt) = diag
�
fV ar (vj;t)gny;tj=1

�
where V ar (vj;t) <1 for all t; j (4)

Independence between vt and wt�k for k = 0; 1; 2; ::: (5)

The superscripts denotes "the true value" of the parameter, and the variables in zt;j contains exogenous
variables which we use below to model potential heteroscedasticity at time t across the observables.
Assumption (3) means that the model is correctly speci�ed for the conditional mean in all time periods
and is clearly a very weak assumption which all existing methods also impose (see Durbin & Koopman
(2001), Doucet, de Freitas & Gordon (2001), among others). Our second assumption in (4) allows for
potential time-varying second moments, and this assumption is therefore much less restrictive than
the normal assumption of constant second moments. The third assumption of independence between
vt and wt�k is standard for term structure models and only imposed in our context to facilitate the
estimation of �2.

We do not impose any distributional assumptions on vt and wt or assume that vt is homoscedastic
and uncorrelated across time. On the other hand, most of these assumptions have to be imposed for
likelihood based inference (see Durbin & Koopman (2001), Doucet et al. (2001), among others).

2.2 An illustrative example: The one factor CIR model

We illustrate our general framework by applying it to the standard one-factor model by Cox et al.
(1985). We refer to this model as the CIR model.

The instantaneous interest rate rt is assumed to evolve according to

drt = � (� � rt) dt+ �
p
rtdzt; (6)

where � (� � rt) is the instantaneous drift and dzt is a Brownian motion under the physical probability
measure. The price of a zero-coupon bond with maturity � at time t is given by (see Brown & Dybvig
(1986))

ln p (t; �) = lnA (t; �)�B (t; �) rt (7)
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where

A (t; �) �
�

�1 exp f�2�g
�2 (exp f�1�g � 1) + �1

��3
B (t; �) � exp f�1�g � 1

�2 (exp f�1�g � 1) + �1

�1 �
q
(�+ �)2 + 2�2 �2 �

�+ �+ �1
2

�3 �
2��

�2

The risk premium is speci�ed as �
p
rt=�.

When we apply our framework to this model, equation (7) is the measurement equation with
x2;t � rt and x1;t being empty. The transition equation for factor rt is given by (6). For the parameters
we have �1 �

�
�� (�+ �) �

�
and �2 � �. The somewhat peculiar speci�cation of �1 is due to the

issue of parameter identi�cation which we return to in section 3.5.

3 The SR approach

This section presents the SR approach for estimation of fx2;tgTt=1 and �. In order to place the con-
tribution of the SR approach within the literature, we begin by a brief discussion of existing methods
for estimating dynamic term structure models. Here, focus is given to methods where the factors are
estimated.1 Section 3.2 turns to the estimation of the latent factors in the SR approach, and this
estimator is then related to other methods in section 3.3. Sections 3.4 and 3.5 deal with estimation of
�1 and �2, respectively, in the SR approach. Section 3.6 summarizes the SR approach.

3.1 Existing methods for estimating dynamic term structure models

It is well-known that the Kalman smoother is the optimal solution to the problem of estimating the
latent factors in the special case where i) the functions g (�) and h (�) are both linear in xt, ii) vt
and wt are each independent, normally distributed, and have constant variances, iii) x0 is normally
distributed, and iv) x0, vt, and wt are mutually uncorrelated at all leads and lags. Moreover, the
parameters � can be estimated by ML based on the Kalman �lter. The optimal estimator for the
latent factors or the expressions for the likelihood function do not have a closed form expression when
we deviate from linear and Gaussian term structure models and approximations are therefore needed
in such cases.

For linear and non-Gaussian models, the Kalman �lter and the Kalman smoother can still be used
to estimate fx2;tgTt=1, and � can in most cases be estimated consistently by quasi ML (see Hamilton
(1994) and Duan & Simonato (1999)). However, an important exception is models with time-varying
volatility in the factor dynamics. In this case � cannot be estimated consistently by quasi ML because
the value of the factor in the previous period enter into the expression of the factors� conditional
second moments.2 An attractive alternative in this case is therefore to impose the ad hoc assumption
that as many yields as factors are measure without errors (see for instance Chen & Scott (1993) and

1We refer to Carrasco & Florens (2002) for a brief presentation of simulation based methods (i.e. SMM, Indirect
Inference, and EMM) where the factors are not estimated.

2Nevertheless, we note that the bias in the quasi ML estimator based on the Kalman �lter is generally found to be
small in this case (see Duan & Simonato (1999) and de Jong (2000)).
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Pastorello, Patilea & Renault (2003)). A great disadvantage of this method is that the estimation
results by construction depend on the set of yields which is assumed to be measured without errors.

For non-linear term structure models, a common approximation is to linearize the state space
system in (1) and (2), and apply the Kalman �lter to this approximated system (Jazwinski (1970)).
Another and more accurate approximation is to limit the focus to linear updating rules as in the
Kalman �lter, but to approximate the non-linear moments in the equations up to at least second order
as done in the unscented Kalman �lter or the central di¤erence Kalman �lter (Julier, Uhlmann &
Durrant-Whyte (1995), Norgaard, Poulsen & Ravn (2000)). However, these extensions of the Kalman
�lter cannot evaluate the likelihood function and quasi ML can only be expected to give consistent
and normally distributed estimators in very few cases (see for instance Andreasen (2008)).

Another branch of the literature has therefore developed methods for non-linear and potentially
non-Gaussian models that approximate the likelihood function based on importance sampling. The
drawback of these methods is that they are quite technical to implement and very time-consuming
to use, and this has so far limited their use in the context of dynamic term structure models. For
instance, we are only aware of the papers by Brandt & He (2005) and Rossi (2004) which estimate
dynamic term structure models based on importance sampling.

3.2 Estimation of latent factors

The SR approach is based on the observation that if a large number of observables are available
in each time period, then the optimal estimator of the latent factors may be well approximated by
simply ignoring the time dimension and running a sequence of regressions. That is, we suggest to do
the �ltering in each period by solving the following regression problem where �1 is constant:

x̂2;t (�1) = argmin
x2;t

ny;tX
j=1

(yt;j � gj (x1;t;x2;t;�1))
2V ar (vj;t)

2

: (8)

Here, we use the notation that g (xt;�1) �
�
g1 (xt;�1) g2 (xt;�1) ::: gny;t (xt;�1)

�0
and similarly

for yt. The estimated latent factors from this regression are denoted x̂2;t (�1), because they are a
function of �1. We refer to this repeated use of regressions to recover the latent factors from the
observed yields or bond prices as the regression �lter.

Thus, the estimates of fx2;tgTt=1 in the SR approach do not reply on the transition equations of
the factors. This has at least two interesting implications. Firstly, the estimates of fx2;tgTt=1 are
consistent even if the factors are governed by complicated processes which are i) non-markovian, ii)
fractional integrated, or iii) display jumps. Secondly, the SR approach works equally well for models
set in continuous and discrete time.

Estimates of fV ar (vj;t)gny;tj=1 are necessary to make the regression in (8) feasible. Using standard
results from the cross-section econometric literature, fV ar (vj;t)gny;tj=1 can be estimated by �rst running
an unweighted regression where V ar (vj;t) = 1 for j = 1; 2; :::; ny;t. This produces consistent estimates
of x2;t (�1), which can be used to calculate the estimated residuals v̂t;j . From v̂t;j , we then suggest

to model potential variation in
n
v̂2j;t

ony;t
j=1

based on i) time to maturity, ii) duration, iii) liquidity, etc.

and then run the regression
ln
�
v̂2j;t
�
= 
 0zt;j + "t;j ; (9)
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where zt;j contains the explanatory variables and has dimension n
 � 1. We denote the predicted
variances by V (zt;j ; 
̂) � exp

�

̂ 0zt;j

	
for j = 1; 2; :::; ny;t. Based on these estimates, we can then

perform the weighted regression in (8) by replacing V ar (vj;t) with V (zt;j ; 
̂).

The variance of the measurement errors in the observables at a given point in time can be estimated
with standard methods if the conditional variance function is correctly speci�ed, i.e. if

V ar (yt;j jx1;t; zt;j) = �2t;oV (zt;j ;
o) for some 
o 2 � and �2t;o where 
̂
p�! 
o: (10)

In this case

�̂2t =
1

ny;t

ny;tX
j=1

v̂2t;j
V (zt;j ; 
̂)

; (11)

where v̂t;j � (yt;j � gj (x1;t; x̂2;t (�1) ;�1)). Thus, the SR approach can easily handle potential time-
varying second moments in the measurement errors.

The main advantage of the regression �lter is its simplicity. The �lter is very easy to implement,
even with an unbalanced panel of observables, and the �lter is also fast to calculate. When the function
g (�) is nonlinear in x2;t, fast optimizers such as the Levenberg-Marquardt method, the Gauss-Newton
method or various modi�cations of these routines can be used to solve the optimization problem in
(8). In this case, the estimated factors from the previous period can be used as good starting values
for the optimization. When the function g (�) is linear in x2;t, the problem in (8) reduces to an OLS
regression which has a closed form solution.3

3.3 Relating the regression �lter to other �ltering methods

How does the regression �lter compare with other �ltering techniques? In order to illustrate this, we
impose the standard assumptions that i) vt and wt are each independent, normally distributed, and
have constant variances, ii) x0 is normally distributed, and iii) x0, vt, andwt are mutually uncorrelated
at all leads and lags. To reduce the notational burden in the argument below we assume, without loss
of generality, that there are no observed factors, meaning that x1;t is empty and x2;t = xt. In this
setup, the logarithm of the conditional probability of x1:T � fxtgTt=1 given y1:T � fytgTt=1, denoted
log p (x1:T j y1:T ), is proportional to (see Durbin & Koopman (2001))

~Q = �1
2

TX
t=1

[yt � g (xt;�1)]
0
(V ar (vt))

�1 [yt � g (xt;�1)] (12)

�1
2

TX
t=1

w0t (V ar (wt))
�1wt �

1

2
~x00P

�1
0 ~x0:

Here, ~x0 denotes the estimation error of the initial values of the factors and P0 is the covariance matrix
of ~x0. In the case of a �xed number of observables in each time period, we can scale (12) by �1=ny to

3Note also in relation to (8) that the regression �lter is very easy to implement with mulitprocessing, because n CPU�s
can independently solve n di¤erent optimization problems.
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get

Q =
1

2ny

TX
t=1

nyX
j=1

(yt;j � gj (xt;�1))2

V ar (vj)
+

1

2ny

 
TX
t=1

w0t (V ar (wt))
�1wt + ~x

0
0P

�1
0 ~x0

!
: (13)

We then impose the standard assumption in cross-section regressions that

1

2ny

nyX
j=1

(yt;j � gj (xt;�1))2

V ar (vj)

p�! E

"
(yt;j � gj (xt;�1))2

2V ar (vj)

#
> 0 for ny �!1

for all t = 1; 2; :::; T . So, when ny tends to in�nity, (13) convergence to

Q =
TX
t=1

E

"
(yt;j � gj (xt;�1))2

2V ar (vj)

#
; (14)

because the second part of the expression in (13) does not depend on the number of observables and
therefore tends to zero for ny �!1.

The expression in (14) is exactly the expectation minimized each time period by the regression
�lter. Consequentially, the regression �lter converges to the mode of p (x1:T j y1:T ) as the number of
observables increases.

The values of x1:T which maximizes p (x1:T j y1:T ) are the most probable values of the latent factors
given the observables, and these factor estimates are therefore optimal (Durbin & Koopman (2001)).
Accordingly, the estimated latent factors from the regression �lter converges to the optimal estimates
as the number of observables tends to in�nity. In the case where the assumptions for the Kalman
�lter hold, then the Kalman smoother reports the mode of p (x1:T j y1:T ). Hence, the regression �lter
converges to the Kalman smoother when the number of observables tends to in�nity.

This simple argument also shows what the regression �lter is missing to achieve e¢ ciency, namely
the smoothing of the estimated latent factors according to the transition equations. However, ignoring
this smoothing can be justi�ed if i) there are many observables available and/or ii) the observables
are measured with a small amount of error.

We �nally note for the sake of generality that the normality assumptions for wt and x0 can be
omitted without changing the key implication that the solution of the regression �lter converges to
the mode of p (x1:T j y1:T ).

The SR approach is also related to estimation of the factors in standard or approximated factor
model. For these models, Stock & Watson (2002) show how factors can be estimated consistently using
the method of principal components when a large number of observables are available in each time
period. This implies that the factor dynamics is estimated nonparametrically as in the SR approach.
However, a key di¤erence between the SR approach and the method of principal components is that the
latter only works for linear models with stationary time-series. On the other hand, the SR approach
can easily handle nonlinear models and non-stationary time series.
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3.4 Estimation of �1

We suggest to estimate �1 by pooling all the estimated residuals from (8) and minimize the squared
value of these residuals with respect to �1, i.e.

�̂1 = arg min
�12�1

TX
t=1

ny;tX
j=1

(yt;j � gj (x1;t; x̂2;t (�1) ;�1))2

2V (zt;j ; 
̂)
(15)

This estimator is thus very similar to the standard non-linear regression estimator. The only di¤erence
being that we need to account for the fact that changes in �1 a¤ect the function gj (�;�1) not only
directly but also indirectly through the latent factors x̂2;t (�1). Hence, when solving the problem in
(15), the latent factors need to be recomputed for di¤erent values of �1. As in the case of the estimator
of fx2;tgTt=1, the estimator of �1 also does not use transition equations of the factors and it is therefore
robust to any form of factor dynamics.

It is instructive at this stage to compare our estimator in (15) with the back�tting estimator in
Pastorello et al. (2003). One way to implement this back�tting estimator in our setting is to estimate
the latent factors by the regression �lter in (8), and subsequently let the objective function for �1 be
the sum of squared residuals from these regressions. In the framework of Pastorello et al. (2003), the
estimated factors then appear as the nuisance parameter in the estimation of �1 which is done by

�̂
p+1
1 = arg min

�12�1

TX
t=1

ny;tX
j=1

(yt;j � gj (x1;t; x̂2;t (�p1) ;�1))
2

2V (zt;j ; 
̂)
for p = 1; 2; :::; P: (16)

The important di¤erence between this estimator and the one in (15) is that the estimator in (16) only

accounts for the direct e¤ects of �1 on gj (�;�1) when estimating �̂
p+1
1 . That is, the indirect e¤ects of

�1 on the latent factors are not accounted for when �nding �̂
p+1
1 , and this makes the optimization of

�̂
p+1
1 computationally simple. The estimate �̂

p+1
1 give rise to a new set of factors

n
x̂2;t

�
�p+11

�oT
t=1

which can be substituted into (16) to �nd a new estimate of �1 which is denoted �̂
p+2
1 . The idea

behind the back�tting estimator is then to iterate this procedure until convergence is achieved, i.e.
�̂
p+2
1 ' �̂p+11 .
Pastorello et al. (2003) state conditions to ensure this convergence, and they show that this esti-

mator is consistency and asymptotic normality given su¢ cient regularity conditions. In establishing
these results, Pastorello et al. (2003) face the issue of nonadaptivity which means that the estimate
of the latent factors (which depend on �1) prevents the econometrician from directly estimating �1
consistently. The issue is resolved by assuming that the mapping de�ned by (16), i.e.

�̂
p+1
1 = f (�p1) ;

has a unique �xed point at the true value of �1 and that it is contracting. As pointed out by Pastorello
et al. (2003) and Sherman (2003), the conditions for consistency and asymptotic normality of iterated
estimators are stronger than the conditions for optimization based estimators. In other words, the
estimator suggested in (15) requires weaker assumptions to ensure consistency and asymptotic nor-
mality than the back�tting estimation in (16). This is because our estimation in (15) does not face
the nonadaptivity problem as we account for the dependency of �1 on the latent factor during the
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optimization of �1.

3.5 Estimation of �2

As for the parameters �2, we suggest to estimate them based on the observed factors fx1;tgTt=1 and
the estimated latent factors fx̂2;tgTt=1. Here, we need to take account of the fact that fx̂2;tg

T
t=1 are

generated regressors and therefore contains measurement errors. Ignoring this fact can easily bias the
estimates of �2. As we will shown in section 4, the estimated latent factors are normally distributed
if we have a su¢ cient number of observables, i.e. when ny;t �! 1. By construction, we thus get the
standard additive measurement error case (see for instance Fuller (1987))

x̂2;t = x
o
2;t + ut ut � N (0; V ar (ut)) for t = 1; 2; :::; T (17)

where xo2;t denotes the true but unobserved factor value. We also derive the time series properties of ut
in section 4. For instance, we show that ut is uncorrelated across time if the measurement errors in the
observables, i.e. vt, do not display autocorrelation. At this point we simply note that we can estimate
�2 consistently based on standard moment matching methods because we know the distribution of ut
and its statistical properties. We illustrate this important point by �rst considering a simple VAR(1)
system, before we describe how to estimate systems with nonlinear factor dynamics.

3.5.1 Illustration for a VAR system

For simplicity in this example, let all the factors be unobserved, i.e. xt � x2;t. We consider the
following VAR(1) system

xt+1 = �+ hxxt +wt+1; (18)

where wt � IID (0; V ar (wt)). Hence, �2 � [�;hx; vech (V ar (wt))] in this example. The system in
(18) cannot be used for estimation of �2 because xt is not observed. Instead, we use the following
system

x̂t+1 = �+ hxx̂t + ŵt+1 (19)

based on the estimated factors, x̂t. Notice that ŵt denotes the innovation in (19) using the true values
of �2 and the estimated factors. Let us consider the following moments24 E (ŵt)

vec (E (ŵtx̂
0
t))

vech (V ar (ŵt))

35 (20)

which identi�es �2. Given (17)-(18), the population value of these moments can be readily computed
given the maintained assumptions. To simplify this example, let vt be uncorrelated across time which
means that Cov (ut;ut�1) = 0. As shown in the appendix24 E (ŵt)

vec (E (ŵtx̂
0
t))

vech (V ar (ŵt))

35=
24 0

vec (�hxV ar (ut))
vech (V ar (wt) + V ar (ut+1) + hxV ar (ut)h

0
x)

35 : (21)
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Using these moments, �2 can now be estimated by Generalized Method of Moments (GMM) (Hansen
(1982)) even though the factors are estimated.

3.5.2 Estimation of �2 in the general case

GMM can also be applied without restricting the factor dynamics to be linear. Letm
�
x1;t; x̂2;t; �̂1;�2

�
be a vector of moment conditions which has dimension P �1 where P � L2 and identi�es �2. A vector
r
�
�̂1;�2

�
contains the corresponding population moments which can be computed based on the law

of motion for the factors and the measurement errors in the estimated factors. Let the moments for
the GMM estimation be

E
h
qt

�
�̂1;�2

�i
= 0; (22)

where qt
�
�̂1;�2

�
� m

�
x1;t; x̂2;t; �̂1;�2

�
� r

�
�̂1;�2

�
. The GMM estimator for �2 is therefore given

by

�̂2 = arg min
�22�2

�
qT

�
�̂1;�2

��0
W
�
qT

�
�̂1;�2

��
; (23)

where qT
�
�̂1;�2

�
= 1

T

PT
t=1 qt

�
�̂1;�2

�
andW is some positive de�nite weighting matrix.

This estimator of �2 is very similar to the Implied State (IS) GMM estimator by Pan (2002). In
the IS-GMM estimator, nx factors are backed out from the same number of observables which all are
assumed to be measured without errors. These factors are then used to evaluate a set of GMM moment
conditions along the time series dimension leading to estimates of the parameters in the model. The
estimator of �2 proposed in (23) is thus a generalization of the IS-GMM estimator to the case where
we have more than nx observables measured with errors.

For nonlinear systems we may not have closed form solutions for the population moments, i.e. we

may not be able to �nd r
�
�̂1;�2

�
analytically. This situation often occurs for transition functions set

in continuous time if no discretization scheme is applied. However, even if no analytical solution exist
the value of the population moments can easily be simulated from the transition distribution of the
factors and the measurement errors in the estimated factors. Hence, �2 can in this case be estimated by
Method of Simulated Moments (SMM) (Du¢ e & Singleton (1993)). That is, the population moments

r
�
�̂1;�2

�
in SMM are replaced by

r̂
�
�̂1;�2

�
=

1

�T

P�T
s=1

PT
t=1m

�
x1;t; x̂

s
2;t; �̂1;�2

�
; (24)

where �T denotes the number of simulations. In order to compute (24), we suggest using a conditional
simulator. That is, for each value of t we compute�

xs1;t+1
x̂s2;t+1

�
= h

�
x1;t; x̂2;t � ust ;wst+1;�1;�2

�
+

�
0
ust+1

�
for s = 1; 2; :::; � ; (25)

where
�
wst+1

	�
s=1

and
�
ust+1

	�
s=1

are IID draws from their respective distributions (Carrasco &
Florens (2002)).4 The advantage of this simulator is that it allows us to take time-varying distributions

4For SMM we thus need to draw from the distribution of wt, and this might imply specifying a distribution for wt.
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for the measurement errors into account. This is not possible when using an unconditional simulator
of the form �

xs1;t+1
x̂s2;t+1

�
= h (x1;s; x̂2;s � us;ws+1;�1;�2) +

�
0
us+1

�
for s = 1; 2; :::; �T (26)

because we do not know the distribution of us for an arbitrary value of s. This unconditional simulator
can only be used if it is reasonable to assume that the distributions of futgTt=1 are time-invariant and
thus can be used to generate draws for us.

3.6 An illustrative example: The one factor CIR-model

To illustrate our approach, let us return to standard one-factor CIR model. Here, �1 �
�
�� (�+ �) �

�
is estimated based on (15). As pointed out by Chen & Scott (1993), �, �, and � cannot be identi�ed
because we do not use information from the factors�law of motion when estimating �1. This is seen
directly from the corresponding law of motion for rt under the risk neutral measure Q

drt = (�� � (�+ �) rt) dt+ �
p
rtdz

Q
t ; (27)

which is exactly characterized by the parameters in �1.
Now, let �2 = �. It is straightforward to verify that � is the unconditional mean of rt under the

physical measure. Hence, the mean value of the estimated factor fr̂tgTt=1 can be used to estimate �2
because

E [r̂t] = E [rt + ut] = �;

where ut is the measurement error in r̂t from the regression �lter. Thus, the estimator for �2 is simply

�̂2 =
1

T

TP
t=1
r̂t:

Given this estimate, we can now identify the remaining parameters in CIR model by

�̂ =
c��
�̂2

�̂ = d�+ �� �̂:
Standard errors for �̂ and �̂ can easily be derived by the Delta method based on the distributions for
�̂1.

3.7 Summarizing the SR approach

Before we turn to the asymptotic properties of the SR approach, let us for the sake of clarity brie�y
summarize the two steps in the SR approach. The steps are as follows:

Step 1:

� Use the regression �lter to �nd the latent factors as a function of �1, i.e. fx̂2;t (�1)gTt=1.

12



� Minimize the objective function in (15) with respect to �1 while recomputing fx̂2;t (�1)gTt=1 for
di¤erent values of �1. Denote the optimal value of �1 by �̂1, and the estimated factors are thenn
x̂2;t

�
�̂1

�oT
t=1
.

Step 2:

� From �̂1 and
n
x1;t; x̂2;t

�
�̂1

�oT
t=1
, estimate �2 by GMM or SMM.

The �rst step in the SR approach is similar to the procedure used when �1 is estimated by
any other �lter like the Kalman �lter. That is, we run the �lter to construct the objective func-
tion in the �rst step. The second step in the SR approach is new but for given values of �̂1 andn
x1;t; x̂2;t

�
�̂1

�oT
t=1
computationally and conceptually straightforward.

4 Asymptotic properties of the SR approach

This section derives the asymptotic distributions of the estimated factors and parameters in the SR
approach. For fx̂2;tgTt=1 and �̂1, this is done for a �xed number of time periods where we let the
number of observables tend to in�nity in each period. For �2, inference is conducted by letting the
number of time periods tend to in�nity. Thus, the inference is done by sequentially letting the cross-
sectional dimension tend to in�nity and afterwards letting the time series dimension tend to in�nity.
This sequential inference approach is mainly motivated by the sequential structure of the SR approach.
Connor & Korajczyk (1986) adopt the same approach when estimating a factor model based on the
Arbitrage Pricing Theory.

All the derivations in this section are for dynamic term structure models which are uniquely
identi�ed. For estimation of fx2;tgTt=1 and �1, this means that

TX
t=1

E

"�
gj
�
x1;t;x

o
2;t;�

o
1

�
� gj (x1;tx2;t;�1)

�2
V ar (vj;t)

#
> 0; for all �1 6= �o1 and x2;t 6= xo2;t for all t: (28)

This assumption is fairly weak but, for instance, rules out cases where x2;t and �1 only enter as a prod-
uct. That is, if x2;t �

�
x2;t (1) x2;t (2)

�
and �1 �

�
�1 (1) �1 (2)

�
and if g =

P2
i=1 �1 (i)x2;t (i),

then we cannot identify x2;t and �1. Linear factor models have the same problem, but usually impose
additional assumptions on �1 to ensure identi�cation (see for instance Stock & Watson (2002))

For estimation of �2 we assume that moments for GMM or SMM that uniquely identi�es �2 exist.

We begin by deriving the asymptotic properties of �̂1 and fx̂2;tgTt=1 in section 4.1. The time series
properties of the measurement errors in the estimated factors are derived in section 4.2. Asymptotic
properties of �̂2 are presented in section 4.3.
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4.1 Results for fx̂2;tgTt=1 and �̂1
We begin with the following important proposition:

Proposition 1 The estimators of fx2;tgTt=1 in (8) and �1 in (15) are equivalent to joint estimation
of
�
�1; fx2;tgTt=1

�
from

Qjoint = min
(�1;fx2;tgTt=1)

TX
t=1

ny;tX
j=1

(yt;j � gj (x1;t;x2;t;�1))2

2V (zt;j ; 
̂)
: (29)

Proposition 1 states that the procedure described in the previous section to estimate fx2;tgTt=1
from the regression �lter and �1 from the output of this �lter, is equivalent to a joint estimation of
fx2;tgTt=1 and �1. The SR approach can therefore be considered as a convenient numerical optimization
procedure for optimizing a high dimensional objective function in terms of the latent factors and the
parameters.

Proposition 1 also implies that consistency and normally of fx̂2;tgTt=1 and �̂1 are standard and
follow from properties of the M-estimator. We state conditions for consistency of fx̂2;tgTt=1 and �̂1 in
the next proposition

Proposition 2 Consistency of fx̂2;tgTt=1 and �̂1
Impose the conditions for the uniform weak law of large numbers (UWLLN) to hold for Qjoint

with respect to
�
�1; fx2;tgTt=1

�
as we let the number of observables tend to in�nity in each period.

Assumptions (3) and (28) ensure consistency of fx̂2;tgTt=1 and �̂1 as ny;t �!1 for all t:

Proposition 2 implies that the regression �lter results in the desired value of the latent factors when
there is a su¢ cient number of observables. Note that a corresponding consistency result for fx2;tgTt=1
as the number of time periods tend to in�nity cannot be derived, because then an in�nite number of
factors would have to be estimated.

It is numerical challenging to apply the standard results for the M-estimator to derive the asymp-
totic distributions of fx̂2;tgTt=1 and �̂1 jointly. For instance, in a term structure model with three
latent factors and T = 500, the dimension of the asymptotic covariance matrix would exceed 1500.
When computing the asymptotic covariance matrix, we therefore �nd it numerically more convenient
to exploit the sparsity of this covariance matrix which is due to independence among x̂2;1, x̂2;2, ...
,x̂2;T . This is done by �rst deriving the covariance matrix of �̂1. The covariance matrices of fx̂2;tgTt=1
are then derived afterwards with �̂1 as a nuisance parameter. We therefore start by deriving the
asymptotic distributions of �̂1.

4.1.1 The asymptotic distribution of �̂1

In order to derive the asymptotic distribution of �̂1, we start by stacking the data. For this purpose
de�ne the new index

I =
n
fjgny;1j=1 ; fjg

ny;2
j=1 ; :::; fjg

ny;T
j=1

o
;
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which has N �
PT
t=1 ny;t elements. Similarly, we de�ne

v �
n
fv1;jgny;1j=1 ; fv2;jg

ny;2
j=1 ; :::; fvT;jg

ny;T
j=1

o
z �

n
fz1;jgny;2j=1 ; fz2;jg

ny;2
j=1 ; :::; fzT;jg

ny;T
j=1

o
y �

n
fy1;jgny;1j=1 ; fy2;jg

ny;2
j=1 ; :::; fyT;jg

ny;T
j=1

o
x �

n
fx1gny;1j=1 ; fx2g

ny;2
j=1 ; :::; fxT g

ny;T
j=1

o
and refer to elements in these sets by vi, zi; yi, and xi for i 2 I, respectively. The asymptotic
distribution of �1 then follows from a mean value expansion of the score function in (15). Imposing
standard regularity conditions and N �!1

p
N
�
�̂1 � �o1

�
d�! N

�
0; V ar

�
�̂1

��
; (30)

where
V ar

�
�̂1

�
=
�
A�1o

��1
B�1o

�
A�1o

��1
: (31)

Note that the distribution in (30) is derived for by requiring that ny;t ! 1 in each time period,
implying that N ! 1. This means that that N often will be very large. For instance, with 100
observables in 100 time periods we have N = 10:000. Notice also that uncertainty from estimation
of 
 does not a¤ect the asymptotic distribution of �̂1. This is a well-known result from weighted
nonlinear regression analysis with purely observed regressors (see for instance Wooldridge (2002)).

Before we present estimators of V ar
�
�̂1

�
, consider the expression for the score function in (15)

s�1 = �
NX
i=1

(yi � gi (x1;i;x2;i (�1) ;�1))
V (zi; 
)

@x02;i (�1)

@�1

@gi (x1;i;x2;i (�1) ;�1)

@x2;i (�1)
(32)

�
NX
i=1

(yi � gi (x1;i;x2;i (�1) ;�1))
V (zi; 
)

@gi (x1;i;x2;i (�1) ;�1)

@�1
:

The �rst double sum in (32) captures the indirect e¤ect from changes in �1 that leads to changes in
the latent factors x2;t (�1) which in turn leads to changes in the model implied observables, @gj=@x2;t.
The second double sum in (32) captures the direct e¤ect of changes in �1 on the model implied
observables, @gj=@�1. Imposing conditions for uniform convergence, we therefore suggest the following
heteroscedastic-robust estimator of the variance in the score function

B̂�1 =
1

N

NX
i=1

v̂2i
V (zi; 
̂)

2 [

�
@x̂02;i

@�̂1

@ĝi
@x̂2;i

��
@x̂02;i

@�̂1

@ĝi
@x̂2;i

�0
+2

�
@ĝi

@�̂1

��
@x̂02;i

@�̂1

@ĝi
@x̂2;i

�0
+
@ĝi

@�̂1

�
@ĝi

@�̂1

�0
]; (33)

where ĝi � gi
�
x1;i; x̂2;i; �̂1

�
. A more e¢ cient estimator of B�1o can be constructed if the conditional

variance function is correctly speci�ed, i.e. if (10) holds. In this case, the variance of the score function
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can be estimated by

B̂�1hom =
1

N

NX
i=1

�̂2i
V (zi; 
̂)

[

�
@x̂02;i

@�̂1

@ĝi
@x̂2;i

��
@x̂02;i

@�̂1

@ĝi
@x̂2;i

�0
+ 2

�
@ĝi

@�̂1

��
@x̂02;i

@�̂1

@ĝi
@x̂2;i

�0
+
@ĝi

@�̂1

�
@ĝi

@�̂1

�0
];

(34)
where

�̂2i �
n�
�̂21
	ny;1
j=1

;
�
�̂22
	ny;2
j=1

; :::;
�
�̂2T
	ny;T
j=1

o
:

Here, �̂2t is estimated based on (11) for t = 1; 2; :::; T . Given standard regularity conditions, these
estimates are consistent and asymptotically normal. The asymptotic distribution is given by

p
ny;t

�
�̂2t � �2t

� d�! N

0@0; E
24 vj;tp

V (zt;j ;
o)

!435� �4t
1A (35)

for ny;t !1 for t = 1; 2; :::; T . The asymptotic variance of �̂2t can be estimated by

dV ar ��̂2t � = 1

ny;t

ny;tX
j=1

 
v̂j;tp

V (zt;j ; 
̂)

!4
�

0@ 1

ny;t

ny;tX
j=1

v̂j;tp
V (zt;j ; 
̂)

1A4 : (36)

Hence, the standard result for NLS also holds in our case even though �1 is estimated from fyigNi=1
whereas �̂2t is estimated from fyt;jgny;tj=1. This di¤erence is asymptotically unimportant because ny;t
tending to in�nity for just one value of t, is su¢ cient to make N =

PT
t=1 ny;t tend to in�nity. The

asymptotic distribution of �1 in (30) can therefore be used to derive the asymptotic properties of �̂2t
using standard methods.

Equation (32) shows that the Hessian matrix contains second-order derivatives of x2;t (�1) with
respect to �1. Since these derivatives do not have a closed form solution and must be computed
using numerical procedures, we simply suggest to estimate the Hessian matrix based on numerical
derivatives. One possibility is to approximate the Hessian matrix directly from the second order
numerical derivatives. Another possibility is to use �rst order numerical derivatives of the score
function in (32). In both cases, we end up with the following estimate of the Hessian matrix

Â�1 =
1

N

NX
i=1

Ĥ
�1
�
x1;i; x̂2;i; zi; �̂1; 
̂

�
: (37)

4.1.2 The asymptotic distribution of fx̂2;tgTt=1
Let sx2 (xt; zt;j ; �1;
) and Hx2(xt; zt;j ;�1;
) be the score function and the Hessian matrix of the
objective function in (8), respectively. Under standard regularity conditions and ny;t �! 1 it holds
that p

ny;t
�
x̂2;t � xo2;t

� d�! N (0;V ar (x̂2;t)) (38)
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where
V ar (x̂2;t) =

�
Ax2t;o

��1
Bx2t;o

�
Ax2t;o

��1
+
�
Ax2t;o

��1
Dt;oV ar

�
�̂1

�
D0
t;o

�
Ax2t;o

��1
: (39)

Here, Bx2t;o � V ar
�
sx2
�
x1;t;x

o
2;t; zt;j ;�

o
1;


��� is the variance of the score function and
Dt;o � E

�
@sx2(x1;t;xo2;t;zt;j ;�

o
1;


�)
@(�o1)

0

�
is the Jacobian with dimension nx2 � L1. The matrix Ax2t;o �

E
�
Hx2

�
x1;t;x

o
2;t; zt;j ;�

o
1;


��� is the expected value of the Hessian matrix with respect to x2;t. Note
that all these expectations are evaluated for the cross-section dimension of the set of observables at
time t. Finally, 
� is the limiting value of 
̂, i.e. 
̂

p�! 
�, where 
� does not need to be the true
value of 
 (see Wooldridge (2002) for further details).

In relation to the asymptotic variance of x̂2;t, the �rst term in (38) represents the usual uncer-
tainty when applying regression analysis. The second term in (38) is non-standard and represents the
additional uncertainty in the factor estimates due to estimation of �1. Note also that the uncertainty
of estimating 
 does not appear in the expression for V ar (x̂2;t).

Imposing conditions for uniform convergence, we suggest the following heteroscedastic-robust es-
timators

B̂x2t =
1

ny;t

ny;tX
j=1

v̂2t;j

(V (zt;j ; 
̂))
2

�
@ĝj
@x̂2;t

��
@ĝj
@x̂2;t

�0
(40)

Âx2t =
1

ny;t

ny;tX
j=1

1

V (zt;j ; 
̂)

�
@ĝj
@x̂2;t

��
@ĝj
@x̂2;t

�0
(41)

D̂t =
1

ny;t

ny;tX
j=1

1

V (zt;j ;
�)

@ĝj
@x̂2;t

�
@x̂02;t

@�̂1

@ĝj
@x̂2;t

+
@ĝj

@�̂1

�0
: (42)

where ĝj � gj
�
x1;t; x̂2;t; �̂1

�
.

Further e¢ ciency can be gained in the estimate of V ar (x̂2;t) if the conditional variance function
for the observables is correctly speci�ed, i.e. if (10) holds. Given this assumption, the variance of the
score function can be estimated by

B̂x2t;hom =
�̂2t
ny;t

ny;tX
j=1

1

V (zt;j ; 
̂)

�
@ĝj
@x̂2;t

��
@ĝj
@x̂2;t

�0
; (43)

and the expression of V ar (x̂2;t) reduces to

V ar (x̂2;t) = �̂
2
t

�
Ax2t;o

��1
+
�
Ax2t;o

��1
Dt;oV ar

�
�̂1

�
D0
t;o

�
Ax2t;o

��1
: (44)

4.2 The time series properties of ut

The time series properties of the measurement errors in the estimated factors can be derived from the
asymptotic linearity of x̂2;t. As shown in the appendix,

ut =
�
Ax2t;o

��1
Ztvt (45)
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when ny;t is su¢ ciently large. Here

Zt �
�1
ny;t

248<:@gj
�
x1;t;x

o
2;t; �̂1

�
@xo2;t

1

V (zt;j ;
�)

9=;
ny;t

j=1

35 (46)

has dimension nx2 � ny;t and

vt �

2664
vt;1
vt;2
:::

vt;ny;t

3775 :
The conditional autocorrelation in ut at time t is therefore

Cov (ut;ut�k jx1;t; zt;j ) =
�
Ax2t;o

��1
Zt
vv;�k (x1;t; zt;j)Z

0
t�k

�
Ax2t�k;o

��1
(47)

where E
���vtv0t�k x1;t; zt;j� � 
vv;�k (x1;t; zt;j) which may be time-varying from variation in x1;t

and/or zt;j . This implies that the conditional autocorrelation in ut may be time-varying due to varia-
tion in

�
Ax2t;o

��1
Zt across time and/or due to variation in 
vv;�k (x1;t; zt;j) across time. Note also that

if the measurement errors in the observables do not display autocorrelation, i.e. 
vv;�k (x1;t; zt;j) = 0,
then ut does not display any autocorrelation as argued in section 3.5.

If we impose a homoscedasticity assumption on the second moments for the measurement errors in
the observables, i.e. 
vv;�k (x1;t; zt;j) = 
vv;�k, then the conditional autocorrelation in ut simpli�es
to

Cov (ut;ut�k jx1;t; zt;j ) =
�
Ax2t;o

��1
Zt
vv;�kZ

0
t�k

�
Ax2t�k;o

��1
(48)

Note that this conditional autocorrelation may still be time-varying if there is time-variation in�
Ax2t;o

��1
Zt. Finally, the unconditional autocorrelation has the following expression

Cov (ut;ut�k) = E

��
Ax2t;o

��1
Zt
vv;�kZ

0
t�k

�
Ax2t�k;o

��1�
; (49)

given 
vv;�k (x1;t; zt;j) = 
vv;�k.

Imposing the standard regularity conditions, the most general version of the conditional autocor-
relation in (47) can be estimated consistently by

dCov (ut;ut�k jx1;t; zt;j ) = �Âx2t ��1 Ẑt
̂vv;�k (x1;t; zt;j) Ẑ0t�k �Âx2t�k��1 ; (50)

where Âx2t in (41) and Ẑt = 1
ny;t

"�
@gj(x1;t;x̂2;t;�̂1)

@x̂2;t
1

V (zt;j ;
̂)

�ny;t
j=1

#
are consistent estimators of Ax2t;o and

Zt, respectively. It is more di¢ cult to get a consistent estimator of 
vv;�k (x1;t; zt;j), and it will in
general be necessary to impose some structure on 
vv;�k (x1;t; zt;j) due to its large dimension. One
solution may be to use a multivariate GARCH model, and yields or bonds within certain maturities
ranges such as 0-2 years, 2-4 years, etc. can be assumed to have the same properties.5

5See Bauwens, Laurent & Rombouts (2006) for a survey of multivariate GARCH models.
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The estimation of the conditional autocorrelation greatly simpli�es if it is reasonable to impose a
homoscedasticity assumption on the covariance between vt and vt�k. The empirical support for this
assumption can be examined using tests for multivariate GARCH e¤ects in vt (see Bauwens et al.
(2006)). Given the homoscedasticity assumption of 
vv;�k (x1;t; zt;j), the conditional autocorrelation
in (48) can be estimated consistently by

dCov (ut;ut�k jx1;t; zt;j ) = �Âx2t ��1 Ẑt
̂vv;�kẐ0t�k �Âx2t�k��1 ; (51)

where 
̂vv;�k = 1
T�k

PT
t=k+1 v̂tv̂

0
t�k.

Given E
�
vtv

0
t�k
�
� 
vv;�k, the unconditional autocorrelation can be estimated by

dCov (ut;ut�k) = d
(Ax2)�1 Z
̂vv;�k

d
(Ax2)�1 Z

0
; (52)

where d
(Ax2)�1 Z = 1

T�k
PT
t=k+1

�
Âx2t

��1
Ẑt:

Finally, we note that empirical support for the independence assumption between vt and wt�k can
be tested in a standard manner using v̂t and b̂wt. Here, b̂wt is the innovation to the factors using the
estimated factors and the estimated parameters in the model, i.e.

x̂t+1 = h
�
x1;t; x̂2;t; b̂wt+1; �̂1; �̂2� :

4.3 Results for �̂2

When deriving the asymptotic properties of �̂2, we must deal with two non-standard features. Firstly,
measurement errors are present in the estimated latent factors. Fortunately, the SR approach provides
an estimate of these errors, and it is therefore straightforward to correct for the measurement errors
when setting up the moment condition as we showed in section 3.5. In other words, the �rst non-
standard feature is dealt with in the moment conditions.

The second non-standard feature is the presence of an estimated value of �1 in the moment con-
ditions instead of the true value of the parameter. Fortunately, it turns out that we do not need
to correct for the fact that �1 is estimated. This is because inference for �2 is undertaken in the
time-series dimension (T �!1) whereas inference for �1 is carried out in the cross-section dimension
(nyt !1 for all t implying N �

PT
t=1 nyt !1). Hence, when T tends to in�nity, N tends faster to

in�nity, and as a result, �1 is estimated superconsistently. This means that we can treat �̂1 as known
when we derive the asymptotic distribution of �̂2.

As a result, the conditions stated in Hansen (1982) and Du¢ e & Singleton (1993) for consistency
and asymptotic normally of GMM and SMM, respectively, also apply in our case. For completeness,
the asymptotic distribution of �̂2 are stated below.

When �2 is estimated by GMM and T tends to in�nity

p
T
�
�̂2 � �o2

�
d�! N

�
0; V ar

�
�̂2

��
: (53)
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For the optimal weighting matrix, i.e. W = [V ar (qt (�
o
1;�

o
2))]

�1, it holds that

V ar
�
�̂2

�
=
h�
Qo�2

�0
WQo�2

i�1
; (54)

where Qo�2 � E
h
@qt(�

o
1;�

o
2)

@(�o2)
0

i
and has dimension P � L2.

When �2 is estimated by SMM and T tends to in�nity

p
T
�
�̂2 � �o2

�
d�! N

�
0; V ar

�
�̂2

��
:

For the optimal weighting matrix is used, i.e. W = [V ar (qt (�
o
1;�

o
2))]

�1, then

V ar
�
�̂2

�
=

�
1 +

1

�

�h�
Qo�2

�0
[V ar (qt (�

o
1;�

o
2))]

�1Qo�2

i�1
:

Note that these results for GMM and SMM only apply for stationary and ergodic processes. Thus,
if data series are non-stationary, these series must be transformed to become stationary and moments
must be set up based on the transformed series.6

5 A Monte Carlo study

This section studies the �nite sample properties of the SR approach and compares it with the standard
ML approach. We begin by outlining the study design for the Monte Carlo study in section 5.1. In
section 5.2 we compare the precision of the regression �lter with the optimal estimator. The �nite
sample distributions of �1 and �2 are examined in sections 5.3 and 5.4, respectively.

5.1 The study design

Throughout the Monte Carlo study we focus on a linear and Gaussian dynamic term structure model
because its likelihood function can be evaluated by the Kalman �lter, and the optimal estimator for the
latent factors is given by the Kalman smoother. In particular, we choose to consider the three factor
model by Diebold, Rudebusch & Aruoba (2006) which is a dynamic interpretation of the static yield
curve model by Nelson & Siegel (1987). We therefore refer to the model by Diebold et al. (2006) as the
dynamic Nelson-Siegel model. Two considerations motivate our choice of model. Firstly, the dynamic
Nelson-Siegel model only has one element in the parameter vector �1, and an extensive comparison
between the properties of the SR estimator with respect to �1 and the corresponding properties of the
ML estimator can therefore be undertaken. Such a comparison would be di¢ cult to do in a model
with many elements in �1because in this case the ML estimator would be numerical challenging to
compute with many observables. Secondly, the dynamic Nelson-Siegel model provides a hard test of
the second step in the SR approach because �2 contains many parameters.

6The case with deterministic trends is an exception (see for instance Hamilton (1994)).
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In the dynamic Nelson-Siegel model the interest rate at time t with maturity � is given by

yt (�) = x1;t + x2;t

�
1� e���
��

�
+ x3;t

�
1� e���
��

� e���
�
+ vt (�) ; (55)

where vt � NID (0; V ar (vt)). A VAR(1) model is used for the factors, i.e.

xt+1 = �+ hxxt +wt+1; (56)

where wt � NID (0; V ar (wt)). The latent factors xt �
�
x1;t x2;t x3;t

�0
determine the level, slope,

and curvature of the yield curve, respectively. Diebold et al. (2006) estimate the model on monthly
US data from January 1972 to December 2000 using the 10 year yield curve. We use their estimates
of �, �, hx, and V ar (wt) in the Monte Carlo study.7

The simulated time series of bond prices are obtained from simulated values of xt from (56)
and adding measurement errors vt (�) to the value of yt (�) implied by xt. The corresponding log-
transformed zero-coupon bond prices are then given by lnPt (�) = �yt (�) � . Note that this simulation
procedure induces larger measurement errors in bonds with long maturities than in bonds with short
maturities. To keep the simulation study as simple as possible, we take the structure of this het-
eroscedasticity to be known. This implies that the subsequent results based on bonds are equivalent
to using interest rates yt (�) directly.

To make the study design as realistic as possible, we allow the maturities of these zero-coupon bonds
to vary between time periods. That is, at one point in time we may have zero-coupon bonds with
maturities (5, 20, 60, 80, 120), whereas in the next time period we may have zero-coupon bonds with
maturities (6, 10, 50, 80, 100). The speci�c maturities available at a given point in time are derivied
by partitioning the 10 year yield curve into three equally sized segments according to maturity, and
then sampling randomly from each of these segments. This sampling procedure ensures that we always
have bonds with short, medium, and long maturities which is the case in empirical data.

The length of the simulated time series is set to 480 periods, corresponding to 40 years of monthly
data. As for the number of bonds in each time period, we examine the performance of the Kalman
�lter by starting with a minimum of 5 bonds and then gradually increasing this number. For the SR
approach, we start with a minimum of 10 bonds.

We consider two scenarios in this stimulation study. In the �rst scenario (Case 1), all bond prices
are generated from interest rates where measurement errors have a standard deviation of 10 basis
points. In the second scenario (Case 2), all interest rates have measurement errors with a standard
deviation of 20 basis points. Given that the average measurement errors for interest rates in Diebold
et al. (2006) have a standard deviation of 10.5 basis points, we consider Case 1 the most realistic
scenario.

5.2 Factor estimation

This section examines how fast the regression �lter converges to the optimal estimates as given by the
Kalman smoother. The root mean squared errors (RMSE) for the regression �lter and the Kalman
smoother are shown in Figure 1 for each of the three factors. The red lines with a circle denote the
estimates from the SR approach, and the black lines with a star denotes the estimates from the ML

7These estimates are reported in the appendix.
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approach. 500 repetitions are used to generate each of the point estimates of the RMSE for the various
number of bonds.

< Figure 1 about here >

Starting with Case 1, we see that as the number of bonds increases the regression �lter converges
relatively fast to the Kalman smoother. The performance of the regression �lter based on just 25
bonds is close to that of the Kalman smoother, and the RMSE of the regression �lter is basically
identical to the RMSE of the Kalman smoother with 50 bonds.

It is even more interesting to compare the RMSE from the Kalman smoother based on 5-10 bonds
with the RMSE from the regression �lter based on 50-100 bonds. Such a comparison shows that the
regression �lter clearly outperforms the Kalman smoother, and that the gain in precision corresponds
approximately to a 50% reduction in the RMSE. Hence, factor estimation in dynamic term structure
models using many observables and a non-optimal estimator is clearly prefered to using just 5-10
observables and the optimal estimator. The latter, of course, is the current common practice in the
literature.

Turning to Case 2 where all bond prices are measured less precisely than in Case 1, convergence
of the regression �lter to the Kalman smoother is slower than in Case 1. Now, about 100 bonds
are needed for convergence of the regression �lter to the Kalman smoother. Hence, the speed of
convergence for the regression �lter to the optimal estimates is faster when bonds are measured more
precisely as argued in section 2.2.

The average number of seconds it takes to evaluate the regression �lter and the Kalman �lter is
displayed in Figure 2.8 Here, we choose to report the performance of the Kalman �lter and not the
Kalman smoother because the likelihood function is evaluated by the former.9 The regression �lter
is in all cases much faster to compute than the Kalman �lter. We also note that the computational
gains of using the regression �lter increases rapidly with 50 or more observables. This is shown by the
bottom graph in Figure 2, which displays the ratio of the computing time for the Kalman �lter to the
computing time for the regression �lter.

< Figure 2 about here >

The results reported in Figure 2 are calculated based on the standard algorithm for computing
the Kalman �lter (see Durbin & Koopman (2001)). However, Jungbacker & Koopman (2008) have
recently shown that the computational time of a Kalman �lter with a large number of observables
can be substantially reduced by introducing a transformation of the state space system. Thus, the
steep increase in cumputational time for the Kalman �lter can probably be eliminated if the method
by Jungbacker & Koopman (2008) is applied in our case.

For non-linear and/or non-Gaussian state space models, we conjecture that the computational
gains associated with using the regression �lter instead of importance sampling to approximate the
likelihood function would be even greater than the results shown in Figure 2. This is partly because
nonlinear regressions problems are very fast to solve and the estimated factors from the previous
period operate as good starting values. Furthermore, the computational requirements for importance
sampling increase rapidly as the number of observables increases each period.

8This comparision was done in Matlab on a standard desktop machine.
9 If the likelihood function is optimized by the EM-algorithm, then it might be reasonable to report the computing

time for the Kalman smoother which is higher than the computing time for the Kalman �lter.
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This simulation study therefore leads to the conclusion that the regression �lter converges relatively
fast to the optimal estimator. In the most realistic case where all bond prices are generated from
interest rates with measurement errors having a standard deviation of 10 basis points (Case 1), just 50
observables are needed. We also conclude that the regression �lter with just 50 observables actually
outperforms a Kalman smoother based on 5-10 observables. We therefore argue that factor estimation
in dynamic term structure models could bene�t from using many observables instead of focusing only
on how to compute the optimal estimator based on 5-10 observables.

5.3 Parameter estimation

This section examines �nite sample properties when estimating parameters in the dynamic Nelson-
Siegel model using the SR approach and the ML approach respectively. As mentioned earlier, the
parameter � can be identi�ed in this model from the set of measurement equations. That is, we let
�1 = [�] in the �rst estimation step of the SR approach. The remaining parameters in the dynamic
Nelson-Siegel model, i.e. [�;hx; vech (V ar (wt))] ; are elements of �2 which are estimated in the second
step of the SR approach.

We start by studying the �nite sample properties of �1 in the SR approach which we compare to
the ML estimates of �1. When deriving these ML estimates, we let all parameters in �2 be �xed at
their true values. The subsequent section extends the set of parameters to be estimated by �2.

5.3.1 Estimates of �1

Figure 3 reports biases when estimating � by the SR approach and by the ML approach respectively. In
Case 1 with small measurement errors, the SR estimates of � are completely unbiased, even when just
10 bonds are available each period. Small biases are present in the ML estimates using 5-25 bonds in
each period, but these biases disappear when the number of bonds increase. Note in relation to Figure
3 that the ML estimates are unavailable beyond 100 observables due to numerical problems when
calculating the logarithm of the determinant for the one-step ahead prediction co-variance matrix.

Turning to Case 2 where measurement errors in the bond prices are larger, we see that the SR
estimates of � are still unbiased while biases in the ML estimates increase slightly compared to Case
1.

< Figure 3 about here >

The true standard errors of �̂1 as measured by the standard deviation of the Monte Carlo estimates
are reported in Figure 4. For Case 1 and 2, the precision of the SR estimates with 15 bonds or more
is very close to the precision of the ML estimates.

< Figure 4 about here >

Biases from the estimation of standard errors for �̂1 are displayed in Figure 5. The red lines
with circles represents the heteroscedastic robust estimates from the SR approach, and the green lines
with squares refer to the non-heteroscedastic robust estimates from the SR approach. As before, the
black lines with stars denote the ML estimates. All these estimates of standard errors are basically
unbiased, and this holds even when only a few bonds are available in each time period and with large
measurement errors (i.e. in Case 2).
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< Figure 5 about here >

To summarize, the �nite sample properties of �̂1 are well approximated by the asymptotic distri-
bution derived in section 4. This is the case even with a small number of observables in each time
period. Moreover, the SR estimator and the ML estimator exhibit a similar degree of precision. This
suggests that the loss in e¢ ciency of not using a likelihood approach is minimal in this case.

5.3.2 Estimates of �1 and �2

We now turn to estimation of �1 and �2. The ML estimates are obtained in the standard way by
maximizing the likelihood function across all parameters. For the SR approach, �1 is estimated as in
the previous section and �2 is estimated based on the moments chosen in section 3.5, equation (21).
This gives 18 moments which exactly identi�es the 18 parameters in �2. To make the simulation study
numerically feasible, we only consider Case 1 where all bond prices are generated from interest rates
with measurement errors having a standard deviation of 10 basis points. For a similar reason, we only
compute ML estimates up to the case where 25 observables are available each time period.

The biases for the two estimators are reported in Figure 6. We �rst note that biases in the
SR approach are small and decrease when the number of bonds increases. The latter result is very
intuitive because more bonds reduce the measurement errors in the estimated factors and give more
precise estimates of the size of the measurement error. We also observe that the performance of the
SR approach with just 25 bonds is similar to the performance of the ML approach. On the other
hand, the performance of the ML approach does not improve much when we increase the number of
observables from 5 to 25 in each time period.

Figure 6 also reports the ML estimates when the factors are observed, or equivalently, when there
are an in�nite number of observables in each time period. These ML estimates for a standard VAR(1)
model are denoted by thick pluses in Figure 6. Comparing the SR approach to these estimates, we
see that the SR estimates at about 25 bonds already have converged to these optimal estimates.

< Figure 6 about here >

The true standard errors for the estimates are displayed in Figure 7. Here we �nd that the SR
approach with just 25 bonds in each time period achieves the same precision as the ML approach
based on 5-10 observables. Note also that the precision of the SR approach with about 25 bonds is
very similar to the precision of the optimal (but infeasible) ML estimates in a VAR model where all
factors are observed.

< Figure 7 about here >

Figure 8 illustrates biases when estimating the standard errors. When calculating the standard

errors for the SR approach we use one lag in the Newey-West estimator of E
h
@qt(�

o
1;�

o
2)

@(�o2)
0

i
because only

Cov (ŵt+1; ŵt) 6= 0. Also in terms of estimating the standard errors does the SR approach do well
with only small biases in the estimated standard errors. Compared to the ML approach with 5-10
bonds, we once again �nd that the SR approach is performing equally well with just 25 bonds.

< Figure 8 about here >
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To summarize, the �nite sample distribution of �̂2 is well approximated by the asymptotic distri-
bution derived in section 4.2. A second key �nding is that the �nite sample performance of the SR
approach with just 25 bonds is similar to that of the ML approach with 5-10 bonds. These results
hold in terms of unbiasness and e¢ ciency.

6 Conclusion

This paper presents a new and simple estimation approach for a wide class of non-linear dynamic
term structure models with potentially latent variables. The latent variables may have a Gaussian or
non-Gaussian probability distribution. The novelty of our approach is the use of many observables
(yields or bonds prices) in the cross-section dimension instead of just a few observables. We argue
that this actually simpli�es the estimation process, contrary to the common belief in the literature.
An important bene�t of using many observables in each time period is to realize that an accurate and
very fast estimator of the latent factors is to minimize the distance between the observed yields/bond
prices and the model implied yields/bond prices. The performance of this regression �lter is shown to
converge to the optimal smoothing estimator when the number of observables tends to in�nity. We
also show how parameters in dynamic term structure models can be estimated consistently under very
weak restrictions from the output of the regression �lter.

We hope that the introduction of the SR approach will generate more research in the exciting
�eld of non-linear and non-Gaussian dynamic term structure models. More careful examining of the
empirical implications of quadratic term structure models as presented by Ahn, Dittmar & Gallant
(2002) and Realdon (2006) seem to be a natural starting point for future research. Further research
could also focus on tests for non-linearities in the market price of risk and thus allow for strong non-
linearities in the factor dynamics. We thus conjecture that the SR approach could have important
applications in future research.
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A Condition for identi�cation

Consider
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V ar(vj;t)
=
(yt;j�gj(x1;t;xo2;t;�o1)+gj(x1;t;xo2;t;�o1)�gj(x1;t;x2;t;�1))

2

V ar(vj;t)

=
(yt;j�gj(x1;t;xo2;t;�o1))

2
+(gj(x1;t;xo2;t;�

o
1)�gj(x1;t;x2;t;�1))

2

V ar(vj;t)

+
2(yt;j�gj(x1;t;xo2;t;�o1))(gj(x1;t;xo2;t;�o1)�gj(x1;t;x2;t;�1))

V ar(vj;t)

Thus

E

�
TP
t=1

(yt;j�gj(x1;t;x2;t;�1))2
V ar(vj;t)

�

= E

�
E

�
TP
t=1

(yt;j�gj(x1;t;x2;t;�1))2
V ar(vj;t)

����x1;t; zt��

= E

�
TP
t=1

(yt;j�gj(x1;t;xo2;t;�o1))
2
+(gj(x1;t;xo2;t;�

o
1)�gj(x1;t;x2;t;�1))

2

V ar(vj;t)

�

Since the term E

�
(gj(x1;t;xo2;t;�

o
1)�gj(x1;t;x2;t;�1))

2

V ar(vj;t)

�
is nonnegative, it follows that

TX
t=1

E

"
(yt;j � gj (x1;t;x2;t;�1))2

V ar (vj;t)

#
�

TX
t=1

E

"�
yt;j � gj

�
x1;t;x

o
2;t;�

o
1

��2
V ar (vj;t)

#
:

This inequality is strict and the model is uniquely identi�ed when
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#
> 0 for all �1 6= �o1 and x1;t 6= xo1;t for all t

B Computing moments for the illustration of GMM

This section computes the moments used in the illustration of GMM. The infeasible model for the
factors is

xt+1 = �+ hxxt +wt+1

where wt � IID (0; V ar (wt)). The observed and feasible model for the factors is

x̂t+1 = �+ hxx̂t + ŵt+1

where
x̂t = x

o
t + ut ut � NID (0; V ar (x̂t)) for t = 1; 2; :::; T

Note then that
E (ŵt+1) = E [x̂t+1 ��� hxx̂t]
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= E
�
xot+1 + ut+1 ��� hx (xot + ut)

�
= E

�
xot+1 ��� hxxot

�
= E [wt+1]

= 0

E (ŵt+1x̂
0
t) = E [(x̂t+1 ��� hxx̂t) x̂0t]

= E
��
xot+1 + ut+1 ��� hx (xot + ut)

�
(xot + ut)

0�
= E

��
xot+1 + ut+1 ��� hx (xot + ut)

�
(xot )

0 +
�
xot+1 + ut+1 ��� hx (xot + ut)

�
u0t
�

= E
��
xot+1 ��� hxxot + ut+1 � hxut

�
(xot )

0 +
�
xot+1 ��� hxxot + ut+1 � hxut

�
u0t
�

= E
�
(wt+1 + ut+1 � hxut) (xot )

0 + (wt+1 + ut+1 � hxut)u0t
�

= E
�
wt+1 (x

o
t )
0 + ut+1 (xot )

0 � hxut (xot )
0 + (wt+1u0t + ut+1u

0
t � hxutu0t)

�
= E

�
ut+1 (x

o
t )
0 � hxut (xot )

0 + (wt+1u0t + ut+1u
0
t � hxutu0t)

�
since wt+1 is iid. and thus independent of xot

= E
�
�hxut (xot )

0 + (wt+1u0t + ut+1u
0
t � hxutu0t)

�
since ut+1 is a function of vt+1 and xot is a function of fwig

t
i=1,

which imply independence of ut+1 and xot due to the independence of vt and wt

= E [(wt+1u
0
t + ut+1u

0
t � hxutu0t)]

as above because vt and wt are independent

= E [ut+1u
0
t � hxutu0t]

because ut is a function of vt and vt and wt are independent

= E [�hxutu0t]
ut is iid.

= � (hxE [utu0t])

= �hxV ar (ut)

V ar (ŵt+1) = V ar (x̂t+1 ��� hxx̂t)

= V ar (wt+1 � ut+1 + hxut)

= V ar (wt+1) + V ar (ut+1) + hxV ar (ut)h
0
x

since Cov (wt+1;ut+1), Cov (wt+1;hxut), Cov (�ut+1;hxut) are zero

Thus24 E (ŵt)
vec (E (ŵtx̂

0
t))

vech (V ar (ŵt))

35=
24 0

vec (�hxV ar (ut))
vech (V ar (wt) + V ar (ut) + hxV ar (ut)h

0
x)

35
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C Proof of proposition 1

The �rst-order conditions for fx̂2;tgTt=1 and �̂1 are

@Qt
@x2;t

= �
ny;tX
j=1

�
yt;j � gj

�
x1;t; x̂2;t; �̂1

��
V (zt;j ; 
�)

@gj

�
x1;t; x̂2;t; �̂1

�
@x̂2;t

= 0 for t = 1; 2; :::; T (57)

@Q (�1)

@�1
= �

TX
t=1

ny;tX
j=1

�
yt;j � gj

�
x1;t; x̂2;t

�
�̂1

�
; �̂1

��
V (zt;j ; 
̂)

� (58)

0@@x̂02;t
�
�̂1

�
@�̂1

@gj

�
x1;t; x̂2;t

�
�̂1

�
; �̂1

�
@x̂2;t

�
�̂1

� +
@gj

�
x1;t; x̂2;t

�
�̂1

�
; �̂1

�
@�̂1

1A
= 0

Note then that
@Q(�1)
@�1

= �
TP
t=1

@x̂02;t(�̂1)
@�̂1

ny;tP
j=1

(yt;j�gj(x1;t;x̂2;t(�̂1);�̂1))
V (zt;j ;
̂)

@gj(x1;t;x̂2;t(�̂1);�̂1)
@x̂2;t(�̂1)

�
TP
t=1

ny;tP
j=1

@gj(x1;t;x̂2;t(�̂1);�̂1)
@�̂1

= �
TP
t=1

@x̂02;t(�̂1)
@�̂1

ny;tX
j=1

�
yt;j � gj

�
x1;t; x̂2;t

�
�̂1

�
; �̂1

��
V (zt;j ; 
̂)

@gj

�
x1;t; x̂2;t

�
�̂1

�
; �̂1

�
@x̂2;t

�
�̂1

�
| {z }

0 using (57)

�
TP
t=1

ny;tP
j=1

@gj(x1;t;x̂2;t(�̂1);�̂1)
@�̂1

m
@Q(�1)
@�1

= �
TP
t=1

ny;tP
j=1

@gj(x1;t;x̂2;t(�̂1);�̂1)
@�̂1

= 0

But (57) and (58) are also the �rst-order conditions to the joint estimation problem

�
�̂1; fx̂2;tgTt=1

�
= arg min

(�1;fx2;tgTt=1)

TX
t=1

ny;tX
j=1

(yt;j � gj (x1;t;x2;t;�1))2

V (zt;j ; 
̂)

Q.E.D.

D The asymptotic distribution of �̂1

In addition to the assumptions in Proposition 2, let: i) �o1 be in the interior of�1, ii) s�1 (xt; zt;j ;�1;
)
be continuously di¤erentiable on the interior of

�
X2;t;�1;�

�
for all (x1;t; zt;j) 2 (X1;t;Zt), iii)���H�1 (xt; zt;j ;�1;
)k;l

��� � b (x1;t; zt;j) for k; l = 1; 2; :::; L1 where E [b (x1;t; zt;j)] < 1, iv) A�1o �
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E
�
H�1

�
x1;t;x

o
2;t; zt;j ;�

o
1;


��� be positive de�nite, and v) s�1 �x1;t;xo2;t; zt;j ;�o1;
�� be i.i.d. with �nite
second moments. Then for N �!1

p
N
�
�̂1 � �o1

�
d�! N

�
0; V ar

�
�̂1

��
(59)

where
V ar

�
�̂1

�
=
�
A�1o

��1
B�1o

�
A�1o

��1
(60)

Proof:

Let Q (�1) � 1
2

TP
t=1

ny;tP
j=1

(yt;j�gj(x1;t;x̂2;t(�1);�1))2
V (zt;j ;
̂)

. The �rst-order derivative with respect to �1 is

@Q(�1)
@�1

= �
TP
t=1

ny;tP
j=1

(yt;j�gj(x1;t;x̂2;t(�1);�1))
V (zt;j ;
̂)

�
@x̂02;t(�1)

@�1

@gj(x1;t;x̂2;t(�1);�1)
@x̂2;t(�1)

+
@gj(x1;t;x̂2;t(�1);�1)

@�1

�
@Q(�1)
@�1

= �
TP
t=1
(
ny;tP
j=1

(yt;j�gj(x1;t;x̂2;t(�1);�1))
V (zt;j ;
̂)

@x̂02;t(�1)

@�1

@gj(x1;t;x̂2;t(�1);�1)
@x̂2;t(�1)

+
ny;tP
j=1

(yt;j�gj(x1;t;x̂2;t(�1);�1))
V (zt;j ;
̂)

@gj(x1;t;x̂2;t(�1);�1)
@�1

)

=
TP
t=1

ny;tP
j=1

s�1 (x1;t; x̂2;t (�1) ; zt;j ;�1; 
̂)

where we have de�ned

s�1 (x1;t;x2;t (�1) ; zt;j ;�1; 
̂) � �(yt;j � gj (x1;t;x2;t (�1) ;�1))
V (zt;j ; 
̂)

@gj (x1;t;x2;t (�1) ;�1)

@�1
(61)

�(yt;j � gj (x1;t;x2;t (�1) ;�1))
V (zt;j ; 
̂)

@x02;t (�
o
1)

@�o1

@gi (x1;t;x2;t (�
o
1) ;�

o
1)

@x2;t (�
o
1)

to be the score vector for �1 at time t for observable number j. Note that
@gj(x1;t;x̂2;t(�1);�1)

@�1
has

dimension L1�1,
@x̂02;i(�

o
1)

@�o1
has dimension L1�nx2 , and

@gi(x1;i;x̂2;i(�
o
1);�

o
1)

@x̂2;i(�
o
1)

has dimension nx2�1. Thus,
s�1 (x1;t; x̂2;t (�1) ; zt;j ;�1; 
̂) has dimension L1 � 1. We may therefore write the �rst-order condition
for �̂1 as

NX
i=1

s�1
�
ui; �̂1; 
̂

�
= 0 (62)

where we have set up the pooled sample, i.e.

I =
n
fjgny;1j=1 ; fjg

ny;2
j=1 ; :::; fjg

ny;T
j=1

o
with N �

TP
t=1
ny;t elements.

v �
n
fv1;jgny;1j=1 ; fv2;jg

ny;2
j=1 ; :::; fvT;jg

ny;T
j=1

o
which has dimension 1�N

z �
n
fz1;jgny;1j=1 ; fz2;jg

ny;2
j=1 ; :::; fzT;jg

ny;T
j=1

o
which has dimension 1�N

y �
n
fy1;jgny;1j=1 ; fy2;jg

ny;2
j=1 ; :::; fyT;jg

ny;T
j=1

o
which has dimension 1�N

x �
n
fx1gny;1j=1 ; fx2g

ny;2
j=1 ; :::; fxT g

ny;T
j=1

o
which has dimension nx �N

32



We refer to the elements in v, z, y, and x by vi, zi; yi, and xi, respectively. For notational
convenience let ui �

�
x1;i;x2;i

�
�̂1

�
; zi

�
.

We now do a mean value expansion of
NP
i=1
s�1
�
ui; �̂1; 
̂

�
around �o1 (the true value of �

o
1) and 


�,

where 
̂
p�! 
� but 
� does not need to be the true value of 
. This implies

NX
i=1

s�1
�
ui; �̂1; 
̂

�
=

NX
i=1

s�1 (ui;�
o
1;


�)+
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�
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�
�

@~�1

�
�̂1 � �o1

�
+

NX
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�)

@
�
(
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�)

(63)

Next, let H�1
�
ui; ~�1;


�
�
� @s�1(ui;~�1;
�)

@~�1
be a L1 � L1 Hessian matrix for the object function in

terms of �1 evaluated at ~�1 where ~�1;i = �i�̂1;i+(1� �i) �o1;i for i = 1; 2; :::L1 and �i 2 (0; 1). This
notation indicates that each row of the Hessian matrix is evaluated at a potentially di¤erent mean,

but since �̂1
p! �o1 it follows that ~�1

p! �o1. We also let J
�
ui; ~�1;


�
�
�@s�1(ui;~�1;
�)

@(
�)0
be the Jacobian

of dimension L1 � n
 where n
 is the size of 
.
Using (62), (63) reduces to
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For N ! 1 we have 1
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so
E
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o
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1 for l = 1; 2; :::; L1. It therefore follows by the central limit theorem (The Lindeberg-Levy) for
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and A�1o � E
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�)
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�)
�

We estimate V ar
�
�̂1

�
as follows.

1. The variance of the score function, robust version
For notational convenience, let

s�1 (ui;�
o
1;


�) = �( (yi�gi(x1;i;x2;i(�
o
1);�

o
1))

V (zi;
�)

@x02;i(�
o
1)

@�o1

@gi(x1;i;x2;i(�
o
1);�

o
1)

@x2;i(�
o
1)

+
(yi�gi(x1;i;x2;i(�o1);�o1))

V (zi;
�)
@gi(x1;i;x2;i(�

o
1);�

o
1)

@�o1
)

= (m1;i +m2;i)
where
m1;i � � (yi�gi(x1;i;x2;i(�o1);�o1))

V (zi;
�)

@x02;i(�
o
1)

@�o1

@gi(x1;i;x2;i(�
o
1);�

o
1)

@x2;i(�
o
1)

= � vi
V (zi;
�)

@x02;i(�
o
1)

@�o1

@gi(x1;i;x2;i(�
o
1);�

o
1)

@x2;i(�
o
1)

m2;i � � (yi�gi(x1;i;x2;i(�o1);�o1))
V (zi;
�)

@gi(x1;i;x2;i(�
o
1);�

o
1)

@�o1
= � vi

V (zi;
�)
@gi(x1;i;x2;i(�

o
1);�

o
1)

@�o1

Hence,
E
�
s�1 (ui;�

o
1;


�) s�1 (ui;�
o
1;


�)0
�

= E
�
(m1;i +m2;i) (m1;i +m2;i)

0�
= E

h
m1;im

0
1;i +m1;im

0
2;i +m2;im

0
1;i +m2;im

0
2;i

i
= E

h
m1;im

0
1;i + 2m2;im

0
1;i +m2;im

0
2;i

i
= E[

v2i
V (zi;
�)

2

�
@x02;i(�

o
1)

@�o1

@gi(x1;i;x2;i(�
o
1);�

o
1)

@x2;i(�
o
1)

��
@x02;i(�

o
1)

@�o1

@gi(x1;i;x2;i(�
o
1);�

o
1)

@x2;i(�
o
1)

�0
+2

v2i
V (zi;
�)

2

�
@gi(x1;i;x2;i(�

o
1);�

o
1)

@�o1

��
@x02;i(�

o
1)

@�o1

@gi(x1;i;x2;i(�
o
1);�

o
1)

@x2;i(�
o
1)

�0

34



+
v2i

V (zi;
�)
2

@gi(x1;i;x2;i(�
o
1);�

o
1)

@�o1

�
@gi(x1;i;x2;i(�

o
1);�

o
1)

@�o1

�0
]

Imposing conditions for uniform convergence, we have
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2. The variance of the score function, homoscedastic version
If the conditional variance is correctly speci�ed, then the estimator of B̂�1o can be simpli�ed as

follows. I.e. we assume: for some 
o 2 � and �2i;o, V ar (vijx1;i; zi) = �2i;oV (zi;
o). From this
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3. The Hessian matrix
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E The asymptotic distribution of the latent factors, x2;t

In addition to the assumptions in Proposition 2, let: i) xo2;t be in the interior of X2;t, ii) sx2 (xt; zt;j ;�1;
)
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v2t;j

���x1;t; zt;ji 1
V (zt;j ;
�)

2

@gj(x1;txo2;t;�
o
1)

@xo2;t

�
@gj(x1;txo2;t;�

o
1)

@xo2;t

�0

=
�2t

V (zt;j ;
�)
2

@gj(x1;txo2;t;�
o
1)

@xo2;t

�
@gj(x1;txo2;t;�

o
1)

@xo2;t

�0
Imposing conditions for uniform convergence, we have

40



B̂xtt;hom =
�̂2t
ny;t

ny;tP
j=1

1
(V (zt;j ;
̂))

2

�
@gj(x1;t;x̂2;t;�̂1)

@x̂2;t

��
@gj(x1;t;x̂2;t;�̂1)

@x̂2;t

�0
p�! V ar

�
sx2
�
x1;t;x

o
2;t; zt;j ;�

o
1;


��� for ny;t !1
where �̂2t = 1=ny;t

Pny;t
j=1 v̂

2
j;t

4. The Jacobian
Recall that D

�
x1;t;x

o
2;t; zt;j ;�

o
1;


�� � @sx2(x1;t;xo2;t;zt;j ;�
o
1;


�)
@(�o1)

0

= �
@

 
(yt;j�gj(x1;t;xo2;t;�o1))

V (zt;j ;
�)
@gj(x1;t;xo2;t;�o1)

@xo2;t

!
@(�o1)

0

= 1
V (zt;j ;
�)

@gj(x1;t;xo2;t;�
o
1)

@xo2;t

�
@x02;t(�

o
1)

@�o1

@gj(x1;t;xo2;t;�
o
1)

@xo2;t
+

gj(x1;t;xo2;t;�
o
1)

@�o1

�0
� vt;j
V (zt;j ;
�)

@2gj(x1;t;xo2;t;�
o
1)

@(�o1)
0@xo2;t

E
�
D
�
x1;t;x

o
2;t; zt;j ;�

o
1;


����x1;t; zt;j� = �@2gj(x1;t;xo2;t;�
o
1)

@(�o1)
0@xo2;t

E
h

vt;j
V (zt;j ;
�)

���x1;t; zt;ji
+E

�
1

V (zt;j ;
�)

@gj(x1;t;xo2;t;�
o
1)

@xo2;t

�
@x02;t(�

o
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@�o1

@gj(x1;t;xo2;t;�
o
1)

@xo2;t
+

gj(x1;t;xo2;t;�
o
1)

@�o1

�0����x1;t; zt;j�

= E

�
1

V (zt;j ;
�)

@gj(x1;t;xo2;t;�
o
1)

@xo2;t

�
@x02;t(�

o
1)

@�o1

@gj(x1;t;xo2;t;�
o
1)

@xo2;t
+

gj(x1;t;xo2;t;�
o
1)

@�o1

�0����x1;t; zt;j�
and
E
�
D
�
x1;t;x

o
2;t; zt;j ;�

o
1;


��� = E �E �D �x1;t;xo2;t; zt;j ;�o1;
����x1;t; zt;j��
Imposing conditions for uniform convergence, we have

D̂t =
1
ny;t

ny;tP
j=1

1
V (zt;j ;
�)

@gj(x1;t;x̂2;t;�̂1)
@x̂2;t

�
@x02;t(�̂1)
@�̂1

@gj(x1;t;x̂2;t;�̂1)
@(x̂2;t)

+
gj(x1;t;x̂2;t;�̂1)

@�̂1

�0
p�! E

�
D
�
x1;t;x

o
2;t; zt;j ;�

o
1;


��� for ny;t !1

F The asymptotic properties of �̂2t
This section shows consistency and asymptotic normality of �̂2t . In addition to the conditions ensuring
consistency and normality of of �̂1 and fx̂2;tgTt=1, we impose:

1. V ar (yt;j jx1;t; zt;j) = �2t;oV (zt;j ;
o) for some 
o 2 � and �2t;o where 
̂
p�! 
o

2. E
h

1
V (zt;j :
o)

gj;x2
�
x1;t;x

o
2;t;�

o
1

�0
gj;x2

�
x1;t;x

o
2;t;�

o
1

�i
<1
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3. E
h

1
V (zt;j :
o)

gj;�1
�
x1;t;x

o
2;t;�

o
1

�0
gj;�1

�
x1;t;x

o
2;t;�

o
1

�i
<1

4. E
h

1
V (zt;j :
o)

gj;x2
�
x1;t;x

o
2;t;�

o
1

�0
gj;�1

�
x1;t;x

o
2;t;�

o
1

�i
<1

5. E

"�
vj;tp

V (zt;j :
o)

�4#
<1

F.1 Proof of consistency for �̂2t
We begin by de�ning:

v0t � fvt;jg
ny;t
j=1 which has dimension 1� ny;t

z0t � fzt;jg
ny;t
j=1 which has dimension 1� ny;t

y0t�fyt;jg
ny;t
j=1 which has dimension 1� ny;t

x0t�fxtg
ny;t
j=1 which has dimension nx � ny;t

We also need the mean value expansion of g
�
x1;t; x̂2;t; �̂1

�
in x2;t and �1, that is

g
�
x1;t; x̂2;t; �̂1

�
= g

�
x1;t;x

o
2;t;�

o
1

�
+gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
Here, gx2

�
x1;t; ~x2;t; ~�1

�
� @g(x1;t;~x2;t;~�1)

@x02;t
has dimension ny;t�nx2 and g�1

�
x1;t; ~x2;t; ~�1

�
� @g(x1;t;~x2;t;~�1)

@�01

has dimension ny;t � L1. All these matrices are evaluated at
�
~�1; ~x2;t

�
which is on the line seg-

ment between
�
�̂1; x̂2;t

�
and

�
�o1;x

o
2;t

�
. Thus for �̂1

p! �o1 and x̂2;t
p! xo2;t it follows that ~�1

p! �o1

and ~x2;t
p! xo2;t. Variables scaled by

p
V (zt;j ; 
̂) are denoted by a bar, i.e. �g

�
x1;t; x̂2;t; �̂1

�
�

g
�
x1;t; x̂2;t; �̂1

�
=
p
V (zt; 
̂) =

Pny;t
j=1 gj

�
x1;t; x̂2;t; �̂1

�
=
p
V (zt;j ;
o), etc.

Now consider
�v0t�vt =

�
�yt � �g

�
x1;t;x

o
2;t;�

o
1

��0 �
�yt � �g

�
x1;t;x

o
2;t;�

o
1

��
=
�
�yt � �g

�
x1;t;x

o
2;t;�

o
1

�
+ �g

�
x1;t; x̂2;t; �̂1

�
� �g

�
x1;t; x̂2;t; �̂1

��0
�
�
�yt � �g

�
x1;t;x

o
2;t;�

o
1

�
+ �g

�
x1;t; x̂2;t; �̂1

�
� �g

�
x1;t; x̂2;t; �̂1

��
= (�yt � �g

�
x1;t;x

o
2;t;�

o
1

�
+ �g

�
x1;t;x

o
2;t;�

o
1

�
+ �gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
� �g

�
x1;t; x̂2;t; �̂1

�
)0

�(�yt � �g
�
x1;t;x

o
2;t;�

o
1

�
+ �g

�
x1;t;x

o
2;t;�

o
1

�
+ �gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
� �g

�
x1;t; x̂2;t; �̂1

�
)

using the mean value expansion from above

=
�
�yt � �g

�
x1;t; x̂2;t; �̂1

�
+ �gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+ �g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

��0
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�
�
�yt � �g

�
x1;t; x̂2;t; �̂1

�
+ �gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+ �g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

��
=
� b�vt + �gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�+ �g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1��0

�
� b�vt + �gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�+ �g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1��

because b�vt = �yt � �g �x1;t; x̂2;t; �̂1�
=

�b�vt0 + �x̂2;t � xo2;t�0 �gx2 �x1;t; ~x2;t; ~�1�0 + ��̂1 � �o1�0 �g�1 �x1;t; ~x2;t; ~�1�0�
�
� b�vt + �gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�+ �g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1��

= b�vt0 b�vt + b�vt0�gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�+ b�vt0�g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1�
+
�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0 b�vt+�x̂2;t � xo2;t�0 �gx2 �x1;t; ~x2;t; ~�1�0 �gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�
+
�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
+
�
�̂1 � �o1

�0
�g�1

�
x1;t; ~x2;t; ~�1

�0 b�vt+��̂1 � �o1�0 �g�1 �x1;t; ~x2;t; ~�1�0 �gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�
+
�
�̂1 � �o1

�0
�g�1

�
x1;t; ~x2;t; ~�1

�0
�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�

= b�vt0 b�vt
+2 b�vt0�gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�
+2 b�vt0�g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1�
+
�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+2
�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
+
�
�̂1 � �o1

�0
�g�1

�
x1;t; x̂2;t; �̂1

�0
�g�1

�
x1;t; x̂2;t; �̂1

��
�̂1 � �o1

�
m

1
ny;t
�v0t�vt =

1
ny;t

b�vt0 b�vt
+ 2
ny;t

b�vt0�gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�
+ 2
ny;t

b�vt0�g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1�
+ 1
ny;t

�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
+ 2
ny;t

�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
+ 1
ny;t

�
�̂1 � �o1

�0
�g�1

�
x1;t; x̂2;t; �̂1

�0
�g�1

�
x1;t; x̂2;t; �̂1

��
�̂1 � �o1

�
m

1
ny;t

b�vt0 b�vt = 1
ny;t
�v0t�vt
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� 2
ny;t

b�vt0�gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t�
� 2
ny;t

b�vt0�g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1�
� 1
ny;t

�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
� 2
ny;t

�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�g�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
� 1
ny;t

�
�̂1 � �o1

�0
�g�1

�
x1;t; x̂2;t; �̂1

�0
�g�1

�
x1;t; x̂2;t; �̂1

��
�̂1 � �o1

�
We now consider each of the terms on the left hand side in turn

Term 1
1
ny;t
�v0t�vt =

1
ny;t

Pny;t
j=1

v2t;j
V (zt;j ;
o)

where
�

v2t;j
V (zt;j ;
o)

�ny;t
j=1

is a sequence with mean �2t;o. Hence the law of large numbers imply

1
ny;t
�v0t�vt

p�! �2t;o for ny;t �!1.

Term 2
2
ny;t

b�vt0�gx2 �x1;t; ~x2;t; ~�1� �x̂2;t � xo2;t� = 2
ny;t

Pny;t
j=1

v̂t;j
V (zt;j ;
o)

gj;x2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
p�! 2E

h
vt;j

V (zt;j ;
o)
gj;x2

�
x1;t;x

o
2;t;�

o
1

�i �
xo2;t � xo2;t

�
= 0 for ny;t �!1

because
E
h

vj;t
V (zt;j ;
o)

gj;x2
�
x1;t;x

o
2;t;�

o
1

�
jx1;t; zt;j

i

= E [vj;t jx1;t; zt;j ]
gj;x2(x1;t;x

o
2;t;�

o
1)

V (zt;j ;
o)

= 0

So E
h

vj;t
V (zt;j ;
o)

gj;x2
�
x1;t;x

o
2;t;�

o
1

�i
= E

h
E
h

vj;t
V (zt;j ;
o)

gj;x2
�
x1;t;x

o
2;t;�

o
1

�
jx1;t; zt;j

ii
= 0

Term 3
2
ny;t

b�vt0�g�1 �x1;t; ~x2;t; ~�1���̂1 � �o1� = 2
ny;t

Pny;t
j=1

v̂t;j
V (zt;j ;
o)

gj;�1

�
x1;t; ~x2;t; ~�1

��
�̂1 � �o1

�
p�! 2E

h
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V (zt;j ;
o)
gj;�1

�
x1;t;x

o
2;t;�

o
1

�i
(�o1 � �o1) = 0

for ny;t �!1 because this implies N �!1 and

E
h

vj;t
V (zt;j ;
o)

gj;�1
�
x1;t;x

o
2;t;�

o
1

�
jx1;t; zt;j

i

= E [vj;t jx1;t; zt;j ]
gj;�1(x1;t;x

o
2;t;�

o
1)

V (zt;j ;
o)
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= 0

So E
h

vj;t
V (zt;j ;
o)

g�1;j
�
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o
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1
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h
E
h
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�
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o
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o
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�
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Term 4
1
ny;t

�
x̂2;t � xo2;t

�0
�gx2

�
x1;t; ~x2;t; ~�1

�0
�gx2

�
x1;t; ~x2;t; ~�1

� �
x̂2;t � xo2;t

�
= 1

ny;t

�
x̂2;t � xo2;t

�0Pny;t
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1
V (zt;j ;
o)

gj;x2

�
x1;t; ~x2;t; ~�1

�0
gj;x2

�
x1;t; ~x2;t; ~�1

� �
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�
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�
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gj;x2

�
x1;t;x

o
2;t;�
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for ny;t �!1 provided E
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� 2
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�gx2

�
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for ny;t �!1 because this implies N �!1 provided
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Term 6
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for ny;t �!1 due to consistency of 
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G The time series properties of ut

This section derives the time series properties of ut which denotes the measurement errors in the
estimated latent factors. We have from abovep
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The mean and the variance of ut are stated above. The expression for conditional autocorrelation
in ut is
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̂vv;�kẐ0t�k �Âx2t�k��1
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H The dynamic term structure model for the Monte Carlo study

We use the following linear and Gaussian term structure model for our Monte Carlo study
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�0 � NID (0; V ar (wt)). Moreover, x0,
vt, and wt are mutually uncorrelated at all leads and lags. Diebold et al. (2006) estimate this model
based on US data (Jan. 1972 - 2000 Dec.) for 15 zero-coupon yields with maturities between 3 and
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Figure 1: The RMSE for the estimates of the latent factors
This �gure reports the RMSE for the estimates of the three latent factors in the dynamic Nelson-Siegel model.
These RMSE are calculated based on 500 repetitions of a sample of 480 observations. The black lines with
stars refer to the Kalman smoother and are computed for 5, 10, 15, 20, 25, 50, 100, 150, and 200 bonds. The
red lines with circle refer to the regression �lter and are computed for 10, 15, 20, 25, 50, 100, 150, and 200
bonds. Case 1 refers to the scenario with measurement errors of 10 basis points along the yield curve, and
Case 2 refers to the scenario with measurement errors of 20 basis points along the yield curve.
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Figure 2: The computing time
This top graph reports the average number of seconds used to calculate the Kalman smoother (the black line
with stars) and the regression �lter (the red line with circles). The buttom graph displays the computational
gain of using the regression �lter instead of the Kalman smoother. That is we report the ratio of the average
number of seconds for the Kalman smoother to the average number of seconds for the regression �lter.
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Figure 3: Biases when estimating lambda
This �gure reports the biases when estimating lambda in the dynamic Nelson-Siegel model. These results are
calculated based on 1000 repetitions of a sample of 480 observations. The black lines with stars refer to the
ML estimates and are computed for 5, 10, 15, 20, 25, 50, and 100 bonds. The red lines with circles refer to the
SR estimates and are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. Case 1 refers to the scenario
with measurement errors of 10 basis points along the yield curve, and Case 2 refers to the scenario with
measurement errors of 20 basis points along the yield curve.
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Figure 4: The true standard error when estimating lambda
This �gure reports the true standard errors when estimating lambda in the dynamic Nelson-Siegel model.
These results are calculated based on 1000 repetitions of a sample of 480 observations. The black lines with
stars refer to the ML estimates and are computed for 5, 10, 15, 20, 25, 50, and 100 bonds. The red lines with
circles refer to the SR estimates and are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. Case 1 is to
the scenario with measurement errors of 10 basis points along the yield curve, and Case 2 is to the scenario
with measurement errors of 20 basis points along the yield curve.
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Figure 5: The biases in estimating the standard error of lambda
This �gure reports biases in estimating the standard error of lambda in the dynamic Nelson-Siegel model.
These results are calculated based on 1000 repetitions of a sample of 480 observations. The black lines with
star refer to the ML estimates using the outer product of the score function and are computed for 5, 10, 15,
20, 25, 50, and 100 bonds. The red lines with circles refer to the heteroskedastic robust estimates in the SR
approach. The green lines with squares refer to the non-heteroskedastic robust estimates in the SR approach.
The SR estimates are are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. Case 1 is to the scenario
with measurement errors of 10 basis points along the yield curve, and Case 2 is to the scenario with
measurement errors of 20 basis points along the yield curve.
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Figure 6: Biases when estimating the Dynamic Nelson-Siegel model
This �gure reports biases when estimating all the parameters in the dynamic Nelson-Siegel model. These
results are calculated based on 1000 repetitions of a sample of 480 observations and with measurement errors
of 10 basis points along the yield curve. The black lines with stars refer to the ML estimates and are computed
for 5, 10, 15, 20, and 25 bonds. The red lines with circles refer to the SR estimates and are computed for 10,
15, 20, 25, 50, 100, 150, and 200 bonds. The black pluses refer to the infeasible ML estimates when the factors
are observed, or equivalently, when there are an in�nite number of observables each time period.
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Figure 6: Continued
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Figure 7: The true standard errors for the estimates in the Dynamic Nelson-Siegel model
This �gure reports true standard errors for the estimates in the dynamic Nelson-Siegel model. These results
are calculated based on 1000 repetitions of a sample of 480 observations and with measurement errors of 10
basis points along the yield curve. The black lines with stars refer to the ML estimates and are computed for
5, 10, 15, 20, and 25 bonds. The red lines with circles refer to the SR estimates and are computed for 10, 15,
20, 25, 50, 100, 150, and 200 bonds. The black pluses refer to the infeasible ML estimates when the factors are
observed, or equivalently, when there are an in�nite number of observables each time period.
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Figure 7: Continued
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Figure 8: Biases in the estimates of standard errors in the Dynamic Nelson-Siegel model
This �gure reports biases when estimating the standard errors for the estimates in the dynamic Nelson-Siegel
model. These results are calculated based on 1000 repetitions of a sample of 480 observations and with
measurement errors of 10 basis points along the yield curve. The black lines with stars refer to the ML
estimates and are computed for 5, 10, 15, 20, and 25 bonds. The red lines with circles refer to the SR
estimates and are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. The black pluses refer to the
infeasible ML estimates when the factors are observed, or equivalently, when there are an in�nite number of
observables each time period.
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Figure 8: Continued
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