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1 Introduction

A key property of all dynamic term structure models is their ability to price bonds with different
maturities. Following the work of Vasicek (1977) and Cox, Ingersoll & Ross (1985), the dynamics in
these prices are often explained by unobserved or latent factors (see for instance Duffie & Kan (1996),
Dai & Singleton (2000), Duffee (2002), Diebold & Li (2006), among others). The presence of latent
factors greatly simplifies dynamic term structure models, but it comes at the cost of making the models
difficult and time consuming to estimate, in particular on a large and highly unbalanced panel of bond
data. To make estimation feasible, it is therefore common practice to first extract or estimate 5-10
zero-coupon yields from the available bond data, and then use these yields to estimate the dynamic
term structure model (see Duan & Simonato (1999), de Jong (2000), Duffee (2002), among others).

The present paper deviates from the common practice of using relatively few observables each time
period when taking dynamic term structure models to the data. Instead, we suggest using a large
number of observables (yields or bonds prices) for the estimation, and we argue that this, contrary to
the common belief in the literature, simplifies the estimation process. This is because the latent factors
can be estimated quite accurately by a sequence of standard regressions with many observables. That
is, in each period we set the latent factors to minimize the distance between the observed yields/bond
prices and the model implied yields/bond prices. We refer to this procedure as the "regression filter"
because it like other filters such as the Kalman filter estimates the latent factors.

For non-linear models with normally distributed measurement errors we show analytically that the
estimates from this regression filter converges to the optimal smoothing estimates when the number of
observables in each period tends to infinity. In the case of linear and Gaussian models, this means that
the regression filter converges to the Kalman smoother. We also show how to estimate parameters in
dynamic term structure models using standard moment matching methods and the regression filter.
Throughout this paper, we refer to the sequential use of regressions to estimate the latent factors and
parameters as the Sequential Regression (SR) approach.

Our second contribution is to show consistency and asymptotic normality of the SR approach.
These results hold for non-linear models with potentially non-Gaussian factor dynamics and they do
so with weaker restrictions than those needed for likelihood inference. This generality and robustness
is the most important advantage of the SR approach because it enables us to estimate a very wide
class of dynamic term structure models in a simple, reliable, and fast manner.

Our approach has at least five additional advantages compared to existing estimation methods for
dynamic term structure models. Firstly, the SR approach deals easily with large and potentially highly
unbalanced panel of data. Secondly, the approach is very easy to implement because the filtering step
only involves standard regressions. Thirdly, no transition function is needed in order to estimate
latent factors and a subset of parameters; not even a parametric family needs to be specified. This
is contrary to the requirements for the Kalman filter and all non-linear and/or non-normal filters,
which require a specification of the transition function for the latent factors. Fourthly, by using
many observables in each time period, we use information from financial markets more efficiently
than methods estimating dynamic term structure models using just 5-10 observables. Finally, the SR
approach is computationally much faster to use than any likelihood based method.

We emphasize that these advantages hold for all linear and non-linear dynamic term structure
models and with no distributional assumptions on the factors. Two disadvantages of the SR approach
are that we may need to rely on sequential identification of parameters and that the SR approach is not
fully efficient. While acknowledging these disadvantages we do point out that sequential identification



can be easier to implement in large models with many parameters compared to simultaneous estimation
of all parameters. Moreover, simulation results show that the SR approach based on 25 observables and
sequential identification is just as efficient as Maximum Likelihood (ML) with about 5-10 observables.
Given these results, we argue that estimation of dynamic term structure models could benefit from
using many observables instead of focusing only on how to do likelihood inference based on relatively
few observables.

The SR approach requires that a large number of observables are available in each time period,
and the bond market is therefore a natural place to look. Another possibility is to include the entire
estimated zero-coupon curve in each period. However, this must be done with some care because
when estimating the zero-coupon yield curve by a model with n parameters, this curve only has an
information content corresponding to these n yields. Viewed from this perspective, the unsmoothed
Fama Bliss interest rates should therefore be preferred to interest rates estimated from, for instance,
the Nielson Siegel curve, because the former contains more information than the latter (Fama & Bliss
(1987), Nelson & Siegel (1987)). With this minor restriction in mind, the SR approach can also be
applied to estimated zero-coupon yields.

The rest of the paper is organized as follows. Section 2 presents the wide class of dynamic term
structure models which can be estimated by the SR approach. The SR approach is formally presented
in section 3, and asymptotic properties for the SR approach are derived and discussed in section 4.
Section 5 examines the finite sample properties of the SR approach compared to the traditional ML
approach for a linear and Gaussian term structure model. Concluding comments are given in section
6. All proofs are deferred to the appendix.

2 The SR approach

2.1 The state space representation

This section presents the class of dynamic term structure models considered in this paper. We adopt
the notation that y; with dimension n,; x 1 contains all observed yields or bond prices related to the
model at time ¢. Note that we explicitly allow for an unbalanced data panel by letting the dimension
of y; be time-dependent. The observable factors driving y; are denoted x; ; and has dimension n,, x 1,
and the latent (i.e. unobserved) factors are denoted xz;, having dimension n,, x 1. Jointly, we let
x¢ = X}, Xby ]" which has dimension 7, x 1 where 1, = 1, + 7,

Given this notation, we consider dynamic term structure models with the following representation

yi = g (x¢;01) + vi. (1)

. . n.
Here, we account for potential measurement errors in the observables by the vector v; = {vy;},%)

which has dimension n,; x 1. When bond prices are used as observables, such measurement errors
can be caused by the presence of i) non-synchronous trading, ii) rounding of market prices, and/or
iii) bid-ask spreads. When extracted or estimated zero-coupon yields are used as observables, the
measurement errors capture any errors involved in constructing these yields. We refer to (1) as the
set of measurement equations.



To introduce the remaining notation, we also specify a standard markovian law of motion for the
factors even though this assumption is not needed for estimating {XQ,t}tT:l and 6. That is we let

X¢41 = h (x4, Wiy1;601,602), (2)

where w; has dimension n,, x 1 and are the ZZD disturbances to the factors.

The model is parameterized by 6 with dimension L x 1. We decompose 6 into | 67 6 ],, where
61 and 65 have dimension L1 x 1 and Ls X 1, respectively, and L = L1+ Ly. The elements in 81 can be
identified from the measurement equations whereas @2 must be identified based on the law of motion
for the factors. This explains why 65 do not appear in (1). For reduced form term structure models,
01 typically contains all the risk neutral parameters and 05 contains the parameters specifying the
market price of risk. For general equilibrium models, the market price of risk is often a function of 8,
and 05 can therefore be expected to be empty in this class of models.

We impose the following assumptions on the considered class of dynamic term structure models:

E[vi|x14t,2:5] =0 for some 0°€ © and x5, € Ay forallt =1,...,T (3)
Var (v) = diag ({Var (vj,t)}?i’{) where Var (vj;) < oo forallt, j (4)
Independence between vy and w;_j, for £k =0,1,2, ... (5)

The superscripts denotes "the true value" of the parameter, and the variables in z; ; contains exogenous
variables which we use below to model potential heteroscedasticity at time ¢ across the observables.
Assumption (3) means that the model is correctly specified for the conditional mean in all time periods
and is clearly a very weak assumption which all existing methods also impose (see Durbin & Koopman
(2001), Doucet, de Freitas & Gordon (2001), among others). Our second assumption in (4) allows for
potential time-varying second moments, and this assumption is therefore much less restrictive than
the normal assumption of constant second moments. The third assumption of independence between
vy and w;_g is standard for term structure models and only imposed in our context to facilitate the
estimation of 05.

We do not impose any distributional assumptions on v; and w; or assume that v; is homoscedastic
and uncorrelated across time. On the other hand, most of these assumptions have to be imposed for
likelihood based inference (see Durbin & Koopman (2001), Doucet et al. (2001), among others).

2.2 An illustrative example: The one factor CIR model

We illustrate our general framework by applying it to the standard one-factor model by Cox et al.
(1985). We refer to this model as the CIR model.
The instantaneous interest rate r; is assumed to evolve according to

dry = k(0 — 1) dt + ov/redzy, (6)

where k (0 — r¢) is the instantaneous drift and dz; is a Brownian motion under the physical probability
measure. The price of a zero-coupon bond with maturity 7 at time ¢ is given by (see Brown & Dybvig
(1986))

Inp(t,7)=InA(t,7)— B(t,7)r (7)



where

¢y exp {po7} o
¢g (exp {17} — 1) + ¢y

A(t,r)z[

exp{¢7} —1
B =
t7) ¢y (exp {p17} — 1) + &4
K+ X+ ¢ 2RO

b = (/{+)\)2+202 Gy = 5

The risk premium is specified as A\/7¢/0.

When we apply our framework to this model, equation (7) is the measurement equation with
x2¢+ = r¢ and x1 ¢ being empty. The transition equation for factor r is given by (6). For the parameters
we have 01 = [ kO (k+A) o ] and @5 = k. The somewhat peculiar specification of 81 is due to the
issue of parameter identification which we return to in section 3.5.

3 The SR approach

This section presents the SR approach for estimation of {x”}tT:1 and 6. In order to place the con-
tribution of the SR approach within the literature, we begin by a brief discussion of existing methods
for estimating dynamic term structure models. Here, focus is given to methods where the factors are
estimated.! Section 3.2 turns to the estimation of the latent factors in the SR approach, and this
estimator is then related to other methods in section 3.3. Sections 3.4 and 3.5 deal with estimation of
01 and 0, respectively, in the SR approach. Section 3.6 summarizes the SR approach.

3.1 Existing methods for estimating dynamic term structure models

It is well-known that the Kalman smoother is the optimal solution to the problem of estimating the
latent factors in the special case where i) the functions g(-) and h(-) are both linear in x;, ii) v;
and wy are each independent, normally distributed, and have constant variances, iii) xg is normally
distributed, and iv) xg, v¢, and w; are mutually uncorrelated at all leads and lags. Moreover, the
parameters @ can be estimated by ML based on the Kalman filter. The optimal estimator for the
latent factors or the expressions for the likelihood function do not have a closed form expression when
we deviate from linear and Gaussian term structure models and approximations are therefore needed
in such cases.

For linear and non-Gaussian models, the Kalman filter and the Kalman smoother can still be used
to estimate {Xgﬂg}tT:l, and 0 can in most cases be estimated consistently by quasi ML (see Hamilton
(1994) and Duan & Simonato (1999)). However, an important exception is models with time-varying
volatility in the factor dynamics. In this case 8 cannot be estimated consistently by quasi ML because
the value of the factor in the previous period enter into the expression of the factors’ conditional
second moments.? An attractive alternative in this case is therefore to impose the ad hoc assumption
that as many yields as factors are measure without errors (see for instance Chen & Scott (1993) and

'"We refer to Carrasco & Florens (2002) for a brief presentation of simulation based methods (i.e. SMM, Indirect
Inference, and EMM) where the factors are not estimated.

?Nevertheless, we note that the bias in the quasi ML estimator based on the Kalman filter is generally found to be
small in this case (see Duan & Simonato (1999) and de Jong (2000)).



Pastorello, Patilea & Renault (2003)). A great disadvantage of this method is that the estimation
results by construction depend on the set of yields which is assumed to be measured without errors.

For non-linear term structure models, a common approximation is to linearize the state space
system in (1) and (2), and apply the Kalman filter to this approximated system (Jazwinski (1970)).
Another and more accurate approximation is to limit the focus to linear updating rules as in the
Kalman filter, but to approximate the non-linear moments in the equations up to at least second order
as done in the unscented Kalman filter or the central difference Kalman filter (Julier, Uhlmann &
Durrant-Whyte (1995), Norgaard, Poulsen & Ravn (2000)). However, these extensions of the Kalman
filter cannot evaluate the likelihood function and quasi ML can only be expected to give consistent
and normally distributed estimators in very few cases (see for instance Andreasen (2008)).

Another branch of the literature has therefore developed methods for non-linear and potentially
non-Gaussian models that approximate the likelihood function based on importance sampling. The
drawback of these methods is that they are quite technical to implement and very time-consuming
to use, and this has so far limited their use in the context of dynamic term structure models. For
instance, we are only aware of the papers by Brandt & He (2005) and Rossi (2004) which estimate
dynamic term structure models based on importance sampling.

3.2 Estimation of latent factors

The SR approach is based on the observation that if a large number of observables are available
in each time period, then the optimal estimator of the latent factors may be well approximated by
simply ignoring the time dimension and running a sequence of regressions. That is, we suggest to do
the filtering in each period by solving the following regression problem where 85 is constant:

s (0 ) . & (yt,j — gy (Xl,t7 Xo.ts 01))2 (8)
pre = arg min E .
2.t (01 oy = 2Var (vjt)
Here, we use the notation that g (x¢;601) = [ g1 (x¢;01) g2 (x¢,01) .. gn,, (x¢;01) ], and similarly

for y;. The estimated latent factors from this regression are denoted X2:(01), because they are a
function of 81. We refer to this repeated use of regressions to recover the latent factors from the
observed yields or bond prices as the regression filter.

Thus, the estimates of {X27t}?:1 in the SR approach do not reply on the transition equations of
the factors. This has at least two interesting implications. Firstly, the estimates of {x27t}tT:1 are
consistent even if the factors are governed by complicated processes which are i) non-markovian, ii)
fractional integrated, or iii) display jumps. Secondly, the SR approach works equally well for models
set in continuous and discrete time.

Estimates of {Var (vj,t)}?i’{ are necessary to make the regression in (8) feasible. Using standard
results from the cross-section econometric literature, {Var (vj,t)}?i’{ can be estimated by first running
an unweighted regression where Var (vjs) =1 for j =1,2,...,ny. This produces consistent estimates

of X2 (01), which can be used to calculate the estimated residuals o ;. From ¥ ;, we then suggest
Ny, t

to model potential variation in {ﬁ?’t} . based on i) time to maturity, ii) duration, iii) liquidity, etc.

and then run the regression -
n (07;) =21 +erj, (9)



where z;; contains the explanatory variables and has dimension n, x 1. We denote the predicted
variances by V (z.;;%) = exp {’y’zt,j} for j = 1,2,...,ny. Based on these estimates, we can then
perform the weighted regression in (8) by replacing Var (vj;) with V (2 ;9).

The variance of the measurement errors in the observables at a given point in time can be estimated
with standard methods if the conditional variance function is correctly specified, i.e. if

Var (ye ;| X1, 2¢,5) = a,?’OV (z¢,4;7,) for some v, € I" and 0?}0 where 4 2, Yo (10)

In this case
Tyt ~2

1 Vy s
~2 — t,j (11)
nyt = V(25 9)

where 0 = (y1,; — 95 (X1,4, %24 (01);61)). Thus, the SR approach can easily handle potential time-
varying second moments in the measurement errors.

The main advantage of the regression filter is its simplicity. The filter is very easy to implement,
even with an unbalanced panel of observables, and the filter is also fast to calculate. When the function
g (-) is nonlinear in x4, fast optimizers such as the Levenberg-Marquardt method, the Gauss-Newton
method or various modifications of these routines can be used to solve the optimization problem in
(8). In this case, the estimated factors from the previous period can be used as good starting values
for the optimization. When the function g (-) is linear in xg4, the problem in (8) reduces to an OLS
regression which has a closed form solution.?

3.3 Relating the regression filter to other filtering methods

How does the regression filter compare with other filtering techniques? In order to illustrate this, we
impose the standard assumptions that i) v; and wy are each independent, normally distributed, and
have constant variances, ii) X is normally distributed, and iii) xg, v¢, and w; are mutually uncorrelated
at all leads and lags. To reduce the notational burden in the argument below we assume, without loss
of generality, that there are no observed factors, meaning that x;; is empty and x2; = x;. In this
setup, the logarithm of the conditional probability of xi.7 = {xt}thl given y;.7 = {yt}tT:l, denoted
log p (x1.7| y1.7), is proportional to (see Durbin & Koopman (2001))

T
Q = —2 [ye—gx:0)] (Var (vo) 'y — g (xi:61)] (12)

N =
o~
Il
—

_ 1_, 1.
w; (Var (wy)) 1 W — §X6P0 1%0.

ol
M=

~~
Il
—

Here, Xy denotes the estimation error of the initial values of the factors and Py is the covariance matrix
of Xo. In the case of a fixed number of observables in each time period, we can scale (12) by —1/n, to

3Note also in relation to (8) that the regression filter is very easy to implement with mulitprocessing, because n CPU’s
can independently solve n different optimization problems.



get

1 < (xt;61) Py 1%
ZZ (Y15 VZJT t) 1) +o- (Zwt Var (wy))~ 1Wt+X6P01X0>‘ (13)
Y \t=1

yt 1 =1

We then impose the standard assumption in cross-section regressions that

(1 — 9 (x¢:61))
2Var (v))

n
1~ (g — g5 (x461))° g
2n,, = Var (v))

]>Oforny—>oo

forallt =1,2,...,T. So, when n, tends to infinity, (13) convergence to

T
Q=) E

t=1

2Var (vj)

(Yt.; — 95 (Xt 91))2] 7 (14)

because the second part of the expression in (13) does not depend on the number of observables and
therefore tends to zero for n, — oo.

The expression in (14) is exactly the expectation minimized each time period by the regression
filter. Consequentially, the regression filter converges to the mode of p (x1.7|y1.7) as the number of
observables increases.

The values of x;.7 which maximizes p (x1.7| y1.7) are the most probable values of the latent factors
given the observables, and these factor estimates are therefore optimal (Durbin & Koopman (2001)).
Accordingly, the estimated latent factors from the regression filter converges to the optimal estimates
as the number of observables tends to infinity. In the case where the assumptions for the Kalman
filter hold, then the Kalman smoother reports the mode of p (x1.7| y1.7). Hence, the regression filter
converges to the Kalman smoother when the number of observables tends to infinity.

This simple argument also shows what the regression filter is missing to achieve efficiency, namely
the smoothing of the estimated latent factors according to the transition equations. However, ignoring
this smoothing can be justified if i) there are many observables available and/or ii) the observables
are measured with a small amount of error.

We finally note for the sake of generality that the normality assumptions for w; and xg can be
omitted without changing the key implication that the solution of the regression filter converges to
the mode of p (x1.7|y1.7).

The SR approach is also related to estimation of the factors in standard or approximated factor
model. For these models, Stock & Watson (2002) show how factors can be estimated consistently using
the method of principal components when a large number of observables are available in each time
period. This implies that the factor dynamics is estimated nonparametrically as in the SR approach.
However, a key difference between the SR approach and the method of principal components is that the
latter only works for linear models with stationary time-series. On the other hand, the SR approach
can easily handle nonlinear models and non-stationary time series.



3.4 Estimation of 6,

We suggest to estimate 81 by pooling all the estimated residuals from (8) and minimize the squared
value of these residuals with respect to 61, i.e.

T nyt

N — 01):6,))?
6, = arg min ZZ yt,j 9gj X1t7X2t( 1) 1)) (15)

0:€6, 2V (Zt]7 )

This estimator is thus very similar to the standard non-linear regression estimator. The only difference
being that we need to account for the fact that changes in 6; affect the function g; (-;01) not only
directly but also indirectly through the latent factors %o, (61). Hence, when solving the problem in
(15), the latent factors need to be recomputed for different values of €;. As in the case of the estimator
of {x2,t}tT:1, the estimator of 81 also does not use transition equations of the factors and it is therefore
robust to any form of factor dynamics.

It is instructive at this stage to compare our estimator in (15) with the backfitting estimator in
Pastorello et al. (2003). One way to implement this backfitting estimator in our setting is to estimate
the latent factors by the regression filter in (8), and subsequently let the objective function for 8 be
the sum of squared residuals from these regressions. In the framework of Pastorello et al. (2003), the
estimated factors then appear as the nuisance parameter in the estimation of @7 which is done by

épH L nzyf Ytj — 95 (X1 t7X2t(011)>;01))2 £ 1.2 P (16)
= arg min or = 1,4,..., 1"
1 g01€®1t = 2V(Zt], ) p

The important difference between this estimator and the one in (15) is that the estimator in (16) only
~pt1
accounts for the direct effects of 8; on g; (-;01) when estimating 0119+ . That is, the indirect effects of

Ap+1
61 on the latent factors are not accounted for when finding 9]13+ , and this makes the optimization of
Ap+1 Apt1 T
4911j+ computationally simple. The estimate 9‘11)+ give rise to a new set of factors {5(2775 (9713“) }t_l
~p+2 -

which can be substituted into (16) to find a new estimate of 6; which is denoted 0}17+ . The idea
behind the backfitting estimator is then to iterate this procedure until convergence is achieved, i.e.

Apt+2  Ap+l
0, ~6, .

Pastorello et al. (2003) state conditions to ensure this convergence, and they show that this esti-
mator is consistency and asymptotic normality given sufficient regularity conditions. In establishing
these results, Pastorello et al. (2003) face the issue of nonadaptivity which means that the estimate
of the latent factors (which depend on ;) prevents the econometrician from directly estimating 6
consistently. The issue is resolved by assuming that the mapping defined by (16), i.e

o =f(on),

has a unique fixed point at the true value of 81 and that it is contracting. As pointed out by Pastorello
et al. (2003) and Sherman (2003), the conditions for consistency and asymptotic normality of iterated
estimators are stronger than the conditions for optimization based estimators. In other words, the
estimator suggested in (15) requires weaker assumptions to ensure consistency and asymptotic nor-
mality than the backfitting estimation in (16). This is because our estimation in (15) does not face
the nonadaptivity problem as we account for the dependency of @1 on the latent factor during the



optimization of ;.

3.5 Estimation of 0,

As for the parameters 02, we suggest to estimate them based on the observed factors {XLt}tT:l and
the estimated latent factors {)“cg,t}tT:l. Here, we need to take account of the fact that {§<27t}tT:1 are
generated regressors and therefore contains measurement errors. Ignoring this fact can easily bias the
estimates of 05. As we will shown in section 4, the estimated latent factors are normally distributed
if we have a sufficient number of observables, i.e. when n,; — oo. By construction, we thus get the
standard additive measurement error case (see for instance Fuller (1987))

Koy =x9, +u w~N(0,Var(w)) fort=1,2,..,T (17)

where x§ ; denotes the true but unobserved factor value. We also derive the time series properties of uy
in section 4. For instance, we show that u; is uncorrelated across time if the measurement errors in the
observables, i.e. v¢, do not display autocorrelation. At this point we simply note that we can estimate
0> consistently based on standard moment matching methods because we know the distribution of u;
and its statistical properties. We illustrate this important point by first considering a simple VAR(1)
system, before we describe how to estimate systems with nonlinear factor dynamics.

3.5.1 Illustration for a VAR system

For simplicity in this example, let all the factors be unobserved, i.e. x; = x2;. We consider the
following VAR(1) system
Xir1 = @ + hyeXy + Wi, (18)

where wy ~ ZZD (0, Var (w;)). Hence, O3 = [a, hy,vech (Var (wy))] in this example. The system in
(18) cannot be used for estimation of €y because x; is not observed. Instead, we use the following
system

Xir1 = o+ hyXy + Wi (19)

based on the estimated factors, X;. Notice that w; denotes the innovation in (19) using the true values
of 85 and the estimated factors. Let us consider the following moments

E (W)
vec (B (WX})) (20)
vech (Var (Wy))

which identifies 85. Given (17)-(18), the population value of these moments can be readily computed
given the maintained assumptions. To simplify this example, let v; be uncorrelated across time which
means that Cov (ug, us—1) = 0. As shown in the appendix

E (W) 0
vec (B (WiX})) | = vec (—hxVar (ut)) . (21)
vech (Var (Wy)) vech (Var (wy) + Var (ug1) + hxVar (ug) hl)

10



Using these moments, @2 can now be estimated by Generalized Method of Moments (GMM) (Hansen
(1982)) even though the factors are estimated.

3.5.2 Estimation of 05 in the general case

GMM can also be applied without restricting the factor dynamics to be linear. Let m (Xl’t, X2t 91, 02)
be a vector of moment conditions which has dimension P x 1 where P > Lo and identifies 85. A vector
r (él, 02) contains the corresponding population moments which can be computed based on the law

of motion for the factors and the measurement errors in the estimated factors. Let the moments for
the GMM estimation be

E [Qt (91,02)} =0, (22)

where q; (@1, 02) =m <x17t,§<27t; 91, 02) —r <91, 92). The GMM estimator for @ is therefore given
by
N " ’ .
02 = arg min <CIT (91, 92)) W <qT <917 92)) ; (23)
02€02
where qr (@1, 92) = % Zthl q: <91, 02) and W is some positive definite weighting matrix.

This estimator of O is very similar to the Implied State (IS) GMM estimator by Pan (2002). In
the IS-GMM estimator, n, factors are backed out from the same number of observables which all are
assumed to be measured without errors. These factors are then used to evaluate a set of GMM moment
conditions along the time series dimension leading to estimates of the parameters in the model. The
estimator of @5 proposed in (23) is thus a generalization of the IS-GMM estimator to the case where
we have more than n, observables measured with errors.

For nonlinear systems we may not have closed form solutions for the population moments, i.e. we
may not be able to find r (@1, 02> analytically. This situation often occurs for transition functions set

in continuous time if no discretization scheme is applied. However, even if no analytical solution exist
the value of the population moments can easily be simulated from the transition distribution of the
factors and the measurement errors in the estimated factors. Hence, @5 can in this case be estimated by
Method of Simulated Moments (SMM) (Duffie & Singleton (1993)). That is, the population moments

r (él, 02> in SMM are replaced by

~ (A 1 T £S5 . 0
£(01,0:) = — 27 ST m (%10, %5,301,02) (24)

where 71" denotes the number of simulations. In order to compute (24), we suggest using a conditional
simulator. That is, for each value of ¢ we compute

S
[ ;,Hl } —h (x17t7ﬁ27t — uf,WfH;Gl,Bg) + [ u? ] for s =1,2,...,7, (25)
2,t+1 t+1

where {wj,, }Zzl and {uj,, };1 are ZID draws from their respective distributions (Carrasco &
Florens (2002)).* The advantage of this simulator is that it allows us to take time-varying distributions

"For SMM we thus need to draw from the distribution of w;, and this might imply specifying a distribution for w;.
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for the measurement errors into account. This is not possible when using an unconditional simulator
of the form

S
[ ar } =h (x15, X2 — Us, Ws11;01,02) + [ fors=1,2,...7T (26)

S
X2,t+1

Ug+1

because we do not know the distribution of u, for an arbitrary value of s. This unconditional simulator
can only be used if it is reasonable to assume that the distributions of {ut}thl are time-invariant and
thus can be used to generate draws for us.

3.6 An illustrative example: The one factor CIR-model

To illustrate our approach, let us return to standard one-factor CIR model. Here, 8; = [ kO (K+A) o ]
is estimated based on (15). As pointed out by Chen & Scott (1993), d, k, and A cannot be identified
because we do not use information from the factors’ law of motion when estimating ;. This is seen
directly from the corresponding law of motion for r; under the risk neutral measure Q

dry = (k0 — (K + A) 74) dt + o/red22, (27)

which is exactly characterized by the parameters in 6.

Now, let 85 = §. It is straightforward to verify that § is the unconditional mean of r; under the
physical measure. Hence, the mean value of the estimated factor {f’t}thl can be used to estimate 09
because

FE [ft] =F [’I‘t —i—ut] =9,

where u; is the measurement error in 74 from the regression filter. Thus, the estimator for 85 is simply

~

A 1
0, =— > 7.
2 T ; t

Given this estimate, we can now identify the remaining parameters in CIR model by

x>
I

12

5\:/<a/+\)\—/%.

§tandard errors for & and \ can easily be derived by the Delta method based on the distributions for
6.

3.7 Summarizing the SR approach

Before we turn to the asymptotic properties of the SR approach, let us for the sake of clarity briefly
summarize the two steps in the SR approach. The steps are as follows:

Step 1:

e Use the regression filter to find the latent factors as a function of 6, i.e. {X2; (01)}3:1.

12



e Minimize the objective function in (15) with respect to 61 while recomputing {Xs ; (01)}?:1 for
different values of 1. Denote the optimal value of 81 by 91, and the estimated factors are then

{ras (81)}_,

Step 2:

R R T
e From 6 and {XLt,)‘czt (01>} , estimate 65 by GMM or SMM.

t=1

The first step in the SR approach is similar to the procedure used when 6; is estimated by
any other filter like the Kalman filter. That is, we run the filter to construct the objective func-
tion in the first step. The second step in the SR approach is new but for given values of 8; and

~ T
{X1,t, Xo ¢ (01)} computationally and conceptually straightforward.
t=1

4 Asymptotic properties of the SR approach

This section derives the asymptotic distributions of the estimated factors and parameters in the SR
approach. For {ﬁ27t}?:1 and 61, this is done for a fixed number of time periods where we let the
number of observables tend to infinity in each period. For 65, inference is conducted by letting the
number of time periods tend to infinity. Thus, the inference is done by sequentially letting the cross-
sectional dimension tend to infinity and afterwards letting the time series dimension tend to infinity.
This sequential inference approach is mainly motivated by the sequential structure of the SR approach.
Connor & Korajczyk (1986) adopt the same approach when estimating a factor model based on the
Arbitrage Pricing Theory.

All the derivations in this section are for dynamic term structure models which are uniquely
identified. For estimation of {Xg,t};‘rzl and 61, this means that

ZE (gj (Xl,taxg,ﬁai’) —gj (Xl,tXQ,t;el))

2
Var (v;y) >0, for all @1 # 07 and x2; # x5, for all t.  (28)

t=1

This assumption is fairly weak but, for instance, rules out cases where x5 ; and 61 only enter as a prod-
uct. That is, if xo; = [ 224 (1) @24(2) | and 1 = [ 61(1) 6,(2) | and if g = 25:1 01 () z24 (),
then we cannot identify x2; and 6;. Linear factor models have the same problem, but usually impose
additional assumptions on 6; to ensure identification (see for instance Stock & Watson (2002))

For estimation of 82 we assume that moments for GMM or SMM that uniquely identifies 82 exist.

We begin by deriving the asymptotic properties of 6 and {iZ,t}tT:1 in section 4.1. The time series

properties of the measurement errors in the estimated factors are derived in section 4.2. Asymptotic
properties of 85 are presented in section 4.3.
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4.1 Results for {5(27,5}?:1 and 0,
We begin with the following important proposition:

Proposition 1 The estimators of {xz,t}tT:l in (8) and 01 in (15) are equivalent to joint estimation

of (917 {X2,t}f:1) from

T nyt

. 0
Q]oznt min ZZ yt,] gj Xlt?th? 1)) ) (29)

(917{X2t}t 1) =1 j=1 2V Zt]a y)

Proposition 1 states that the procedure described in the previous section to estimate {XQ,t};f:l
from the regression filter and 61 from the output of this filter, is equivalent to a joint estimation of
{X27t};/,r:1 and 61. The SR approach can therefore be considered as a convenient numerical optimization
procedure for optimizing a high dimensional objective function in terms of the latent factors and the
parameters.

Proposition 1 also implies that consistency and normally of {5(2,16}?:1 and 6, are standard and
follow from properties of the M-estimator. We state conditions for consistency of {)A(Q’t}z;l and 6, in
the next proposition

Proposition 2 Consistency of {iz,t}thl and 6,
Impose the conditions for the uniform weak law of large numbers (UWLLN) to hold for Q7o

with respect to (01,{x2,t}?:1> as we let the number of observables tend to infinity in each period.

Assumptions (3) and (28) ensure consistency of {ig,t}thl and 8y as ny; — oo for all t.

Proposition 2 implies that the regression filter results in the desired value of the latent factors when
there is a sufficient number of observables. Note that a corresponding consistency result for {x27t}?:1
as the number of time periods tend to infinity cannot be derived, because then an infinite number of
factors would have to be estimated.

It is numerical challenging to apply the standard results for the M-estimator to derive the asymp-
totic distributions of {5{27,5}?:1 and 6 jointly. For instance, in a term structure model with three
latent factors and 7" = 500, the dimension of the asymptotic covariance matrix would exceed 1500.
When computing the asymptotic covariance matrix, we therefore find it numerically more convenient
to exploit the sparsity of this covariance matrix which is due to independence among X2 1, X292, ...
X2 7. This is done by first deriving the covariance matrix of 91. The covariance matrices of {5(27,5}?:1
are then derived afterwards with 8; as a nuisance parameter. We therefore start by deriving the
asymptotic distributions of 0.

4.1.1 The asymptotic distribution of 0,

In order to derive the asymptotic distribution of 91, we start by stacking the data. For this purpose

define the new index
= {{h b U )
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which has N = Zthl ny¢ elements. Similarly, we define

{o5200 s {va g}t oy {UTJ}%T}

{ aag}jet Lmaahpt oo Lo 52}
y = {{ya il w23 s rsd et }
x={ Gl et (xrd e}

and refer to elements in these sets by v;, z;, y;, and x; for ¢ € Z, respectively. The asymptotic
distribution of € then follows from a mean value expansion of the score function in (15). Imposing
standard regularity conditions and N — oo

VN (él - 0{) Y, (0, Var (él)) : (30)

where . .

Var (8:) = (a2) " BY (A%) (31)
Note that the distribution in (30) is derived for by requiring that n,; — oo in each time period,
implying that N — oo. This means that that N often will be very large. For instance, with 100
observables in 100 time periods we have N = 10.000. Notice also that uncertainty from estimation

of 4 does not affect the asymptotic distribution of @;. This is a well-known result from weighted
nonlinear regression analysis with purely observed regressors (see for instance Wooldridge (2002)).

Before we present estimators of Var <91), consider the expression for the score function in (15)

O EN: (yi — gi (x1,6, %2, (61) ;601)) OX5; (61) Dg; (x1,5,X2,i (61) 5 61) (32)
po Vi (zi37) 06, 0x2,; (61)
_ i (yi — 9i (X1,i, %2, (01) ;01)) 0gi (x1,5,%2,i (61) ;01)
~ V (zi;7) 06, '

1

()

The first double sum in (32) captures the indirect effect from changes in 6, that leads to changes in
the latent factors xa (61) which in turn leads to changes in the model implied observables, 0g;/0x2 ;.
The second double sum in (32) captures the direct effect of changes in 67 on the model implied
observables, dg;/061. Imposing conditions for uniform convergence, we therefore suggest the following
heteroscedastic-robust estimator of the variance in the score function

!/

. N AQ ox! P 0%, . A \' A XL . 95 A 5\
B — i Z [( X9 09 > ( X,,27Z 8’\gz'> 492 <ag1 > < XA2,7, 8]\91'> + a,?z <8?z > ]7 (33)
N ¢ V(z“ ) 091 8X21 004 8X2,z 001 001 8X2,1 001 \ 00

=1

where §; = g; <x17i, X2 91> A more efficient estimator of Bgl can be constructed if the conditional

variance function is correctly specified, i.e. if (10) holds. In this case, the variance of the score function
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can be estimated by

B0 _ Z i (8&’2,Z~ 94 ) (8&’2,Z~ 0 )’H(agi) (ailz,i 0di )’+agi (am)’]
hom N L=V (234) '\ 98, 0%2i/) \ 98, 0% 961) \ 00, 0%, 96, \ 00,/ "

(34)

where
= (e )

Here, (3% is estimated based on (11) for ¢ = 1,2,...,T. Given standard regularity conditions, these
estimates are consistent and asymptotically normal. The asymptotic distribution is given by

4
N Uyt
vny,t( ?_Ut) —>N 0,F (W) —02* (35)

for ny 4 — oo for t = 1,2,...,T. The asymptotic variance of &f can be estimated by

— 9 1 T Vs t ! L o t !
Var(62) = L5 (e TR (36)
ny’t j=1 V (Zt,j; 7) ny’ \/ ztv]7

Hence, the standard result for NLS also holds in our case even though 6, is estimated from {yl}fil

whereas &7 is estimated from {y; J}nyt This difference is asymptotically unimportant because n,

tending to infinity for just one value of ¢, is sufficient to make N = Zthl ny+ tend to infinity. The
asymptotic distribution of €, in (30) can therefore be used to derive the asymptotic properties of (’}%
using standard methods.

Equation (32) shows that the Hessian matrix contains second-order derivatives of x2+(61) with
respect to 61. Since these derivatives do not have a closed form solution and must be computed
using numerical procedures, we simply suggest to estimate the Hessian matrix based on numerical
derivatives. One possibility is to approximate the Hessian matrix directly from the second order
numerical derivatives. Another possibility is to use first order numerical derivatives of the score
function in (32). In both cases, we end up with the following estimate of the Hessian matrix

q° . S
Z ' <X1,iaX2,i72i;01>7) . (37)

4.1.2 The asymptotic distribution of {)?:27,5}3;1

Let s*2 (x¢,2;61,7v) and H*?(x, 2 ; ;601,7) be the score function and the Hessian matrix of the
objective function in (8), respectively. Under standard regularity conditions and n,; — oo it holds
that

Vgt (Rae — x58,) —5 N (0,Var (Ra,)) (38)
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where

Var (%o,) = (A%2) 7 B (A%2) ' + (A1) ' Dy Var (81) Dy, (A7) 7" (39)

Here, Bff) =Var [s"? (X1,t, X9 15 Zt 5 0‘1’,7*)] is the variance of the score function and

0s*2(x1,¢,X9 ;,2¢,5;07,7*
D, = FE ( 8(20’%), 5037°)
E [HX2 (XLt, X9 15 Bt 5} 09, 'y*)] is the expected value of the Hessian matrix with respect to x2;. Note
that all these expectations are evaluated for the cross-section dimension of the set of observables at
time t. Finally, v* is the limiting value of 4, i.e. ¥ 2, ~*, where v* does not need to be the true
value of v (see Wooldridge (2002) for further details).

In relation to the asymptotic variance of Xa;, the first term in (38) represents the usual uncer-
tainty when applying regression analysis. The second term in (38) is non-standard and represents the
additional uncertainty in the factor estimates due to estimation of 81. Note also that the uncertainty
of estimating v does not appear in the expression for Var (Xa,4).

Imposing conditions for uniform convergence, we suggest the following heteroscedastic-robust es-

is the Jacobian with dimension ng;, x L;. The matrix Afi =

timators
B Ly () (Y ()
Nyt = (V (24,539))° \O%2t ) \O%2y
Ao Ly ! <6gj><agj ) "
R = V(z4,j;7) \OXa ) \ OXay
1 Ny,t

D, =

Loy <0>‘<’z,t 99 +agj)’. (12)

nyi V(zt;7*) O%2r \ 08, O%2¢ 00,
where g; = g; (Xl,ufiZt; él)

Further efficiency can be gained in the estimate of Var (Xg,) if the conditional variance function
for the observables is correctly specified, i.e. if (10) holds. Given this assumption, the variance of the
score function can be estimated by

~9 Nyt ~ ~ /
X 1 00 00
Br = OLy ( Ji )( gﬂ) , (43)

Nyt = V (Zt,j;’s’) afizt 85{2,15

and the expression of Var (%X2) reduces to

Var (%) = 67 (A%2) " + (A7) ' Dy Var (8:) Dy, (A7) " (44)

4.2 The time series properties of u;

The time series properties of the measurement errors in the estimated factors can be derived from the
asymptotic linearity of X5;. As shown in the appendix,

uy = (A;{;)_l ZtVt (45)
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when n,; is sufficiently large. Here

o ~ Nyt
z -1 09 (Xl,t7x2,t;01> 1 (46)
= — 46
Tyt %3, V (2t,557%)
i=1
has dimension n,, X n,; and
Ut,1
_ Ut,2
Vi =
Ut,ny’t
The conditional autocorrelation in u; at time ¢ is therefore
x9\—1 X2 -1
Cov (ug, wy_p X1, 215) = (AF2) " ZeQyy,—k (X1,0,20,5) Zy_y, ( AY2 ko0 (47)
where F Hvtvgfk XLt,zm} = Qv (X1,4,2:,;) which may be time-varying from variation in xp

and/or z; ;. This implies that the conditional autocorrelation in us may be time-varying due to varia-

tion in (A;‘g) -t Z, across time and/or due to variation in Qv _j (X1, 2 ;) across time. Note also that
if the measurement errors in the observables do not display autocorrelation, i.e. Qyy _ (X1,4,2¢,;) = 0,
then u; does not display any autocorrelation as argued in section 3.5.

If we impose a homoscedasticity assumption on the second moments for the measurement errors in
the observables, i.e. Qv _k (X1,¢,2¢j) = Qyv,—, then the conditional autocorrelation in u; simplifies

to

_ -1
Cov (ur, Wk %1,,215) = (A32) " ZeQov, 1201 (A, (48)

Note that this conditional autocorrelation may still be time-varying if there is time-variation in
(Al’;g)fl Z,. Finally, the unconditional autocorrelation has the following expression

_ -1
Cov (ut,utk):E[(Aig) 7 7 (A7) } (49)

given vi,—k (Xl,t7 Zt,j) = vi,—k-

Imposing the standard regularity conditions, the most general version of the conditional autocor-
relation in (47) can be estimated consistently by

_ N1 . —1
Cov (ug, Wi [X14,215) = (A;Q) Ztﬂvv k(leth) (Ax2 ) ; (50)

- A Tyt

X9 1 ng(xl?tvxlt?gl) 1

where AX? in (41) and Z; = Tyt { 0% ¢ RN are consistent estimators of A} and
]:

Z;, respectively. It is more difficult to get a consistent estimator of Qyv, i (X1,4,2¢5), and it will in
general be necessary to impose some structure on vy _j (X14,2¢ ;) due to its large dimension. One
solution may be to use a multivariate GARCH model, and yields or bonds within certain maturities
ranges such as 0-2 years, 2-4 years, etc. can be assumed to have the same properties.’

’See Bauwens, Laurent & Rombouts (2006) for a survey of multivariate GARCH models.
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The estimation of the conditional autocorrelation greatly simplifies if it is reasonable to impose a
homoscedasticity assumption on the covariance between vy and v;_. The empirical support for this
assumption can be examined using tests for multivariate GARCH effects in v; (see Bauwens et al.
(2006)). Given the homoscedasticity assumption of Qv _j (x1,¢,2¢,;), the conditional autocorrelation
in (48) can be estimated consistently by

— ~ -1, . o o
Cov (upy g lx1,25) = (AF) 2w, iZi (A1) (51)

A 1 T Ny
where Qvv & = 77 D i1 ViV
Given F [vtvL k] = Qv _k, the unconditional autocorrelation can be estimated by

— —_— !/

Cov (uy,u_p) = (A%2) L ZQ 1 (AX2) 1 Z (52)

—_— N _1 N
where (A%) ' Z = 7 Y (AX) 2

Finally, we note that empirical support for the independence assumption between v; and w;_j can
be tested in a standard manner using v; and w;. Here, W; is the innovation to the factors using the
estimated factors and the estimated parameters in the model, i.e.

Xit1=h <X1,t7i2,t7‘i’t+1; 01, 92) .

4.3 Results for 92

When deriving the asymptotic properties of ég, we must deal with two non-standard features. Firstly,
measurement errors are present in the estimated latent factors. Fortunately, the SR approach provides
an estimate of these errors, and it is therefore straightforward to correct for the measurement errors
when setting up the moment condition as we showed in section 3.5. In other words, the first non-
standard feature is dealt with in the moment conditions.

The second non-standard feature is the presence of an estimated value of 81 in the moment con-
ditions instead of the true value of the parameter. Fortunately, it turns out that we do not need
to correct for the fact that 01 is estimated. This is because inference for 69 is undertaken in the
time-series dimension (7" — oo) whereas inference for 6 is carried out in the cross-section dimension
(ny, — oo for all ¢t implying N = Zthl ny, — 00). Hence, when T tends to infinity, NV tends faster to
infinity, and as a result, 8, is estimated superconsistently. This means that we can treat 6, as known
when we derive the asymptotic distribution of 0.

As a result, the conditions stated in Hansen (1982) and Duffie & Singleton (1993) for consistency
and asymptotic normally of GMM and SMM, respectively, also apply in our case. For completeness,
the asymptotic distribution of 0, are stated below.

When 05 is estimated by GMM and T tends to infinity

VT (é2 - eg) Y (0, Var (@)2)) . (53)
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For the optimal weighting matrix, i.e. W = [Var (q; (83,03))] ", it holds that

Var (92) - {(ng)'WQgJ , (54)

where Qg, = E [%} and has dimension P X Lo.
2

When 65 is estimated by SMM and T tends to infinity
VT (92 — 08) NV (O, Var (92)) .

For the optimal weighting matrix is used, i.e. W =[Var (q; (69,69))]"", then

-1

Var (62) = (14 1) [(@5,)' Var (ar 67,691 @3,

Note that these results for GMM and SMM only apply for stationary and ergodic processes. Thus,
if data series are non-stationary, these series must be transformed to become stationary and moments
must be set up based on the transformed series.%

5 A Monte Carlo study

This section studies the finite sample properties of the SR approach and compares it with the standard
ML approach. We begin by outlining the study design for the Monte Carlo study in section 5.1. In
section 5.2 we compare the precision of the regression filter with the optimal estimator. The finite
sample distributions of 81 and 6, are examined in sections 5.3 and 5.4, respectively.

5.1 The study design

Throughout the Monte Carlo study we focus on a linear and Gaussian dynamic term structure model
because its likelihood function can be evaluated by the Kalman filter, and the optimal estimator for the
latent factors is given by the Kalman smoother. In particular, we choose to consider the three factor
model by Diebold, Rudebusch & Aruoba (2006) which is a dynamic interpretation of the static yield
curve model by Nelson & Siegel (1987). We therefore refer to the model by Diebold et al. (2006) as the
dynamic Nelson-Siegel model. Two considerations motivate our choice of model. Firstly, the dynamic
Nelson-Siegel model only has one element in the parameter vector 61, and an extensive comparison
between the properties of the SR estimator with respect to 81 and the corresponding properties of the
ML estimator can therefore be undertaken. Such a comparison would be difficult to do in a model
with many elements in @1because in this case the ML estimator would be numerical challenging to
compute with many observables. Secondly, the dynamic Nelson-Siegel model provides a hard test of
the second step in the SR approach because 82 contains many parameters.

5The case with deterministic trends is an exception (see for instance Hamilton (1994)).
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In the dynamic Nelson-Siegel model the interest rate at time ¢ with maturity 7 is given by

(1) = w14 + L—e™™ T =™ + g (7) (55)
Yt (\T) = X1t T+ T2t pye x3t N € v (T),
where v; ~ NZD (0,Var (v¢)). A VAR(1) model is used for the factors, i.e.

Xir1 = @+ hpxy + wyyg, (56)

where wy ~ NID (0, Var (wy)). The latent factors x; = [ T Top T3 ]/ determine the level, slope,
and curvature of the yield curve, respectively. Diebold et al. (2006) estimate the model on monthly
US data from January 1972 to December 2000 using the 10 year yield curve. We use their estimates
of A\, a, h,, and Var (w;) in the Monte Carlo study.”

The simulated time series of bond prices are obtained from simulated values of x; from (56)
and adding measurement errors v, (7) to the value of y; (7) implied by x;. The corresponding log-
transformed zero-coupon bond prices are then given by In P, (1) = —y; (7) 7. Note that this simulation
procedure induces larger measurement errors in bonds with long maturities than in bonds with short
maturities. To keep the simulation study as simple as possible, we take the structure of this het-
eroscedasticity to be known. This implies that the subsequent results based on bonds are equivalent
to using interest rates y; (1) directly.

To make the study design as realistic as possible, we allow the maturities of these zero-coupon bonds
to vary between time periods. That is, at one point in time we may have zero-coupon bonds with
maturities (5, 20, 60, 80, 120), whereas in the next time period we may have zero-coupon bonds with
maturities (6, 10, 50, 80, 100). The specific maturities available at a given point in time are derivied
by partitioning the 10 year yield curve into three equally sized segments according to maturity, and
then sampling randomly from each of these segments. This sampling procedure ensures that we always
have bonds with short, medium, and long maturities which is the case in empirical data.

The length of the simulated time series is set to 480 periods, corresponding to 40 years of monthly
data. As for the number of bonds in each time period, we examine the performance of the Kalman
filter by starting with a minimum of 5 bonds and then gradually increasing this number. For the SR
approach, we start with a minimum of 10 bonds.

We consider two scenarios in this stimulation study. In the first scenario (Case 1), all bond prices
are generated from interest rates where measurement errors have a standard deviation of 10 basis
points. In the second scenario (Case 2), all interest rates have measurement errors with a standard
deviation of 20 basis points. Given that the average measurement errors for interest rates in Diebold
et al. (2006) have a standard deviation of 10.5 basis points, we consider Case 1 the most realistic
scenario.

5.2 Factor estimation

This section examines how fast the regression filter converges to the optimal estimates as given by the
Kalman smoother. The root mean squared errors (RMSE) for the regression filter and the Kalman
smoother are shown in Figure 1 for each of the three factors. The red lines with a circle denote the
estimates from the SR approach, and the black lines with a star denotes the estimates from the ML

"These estimates are reported in the appendix.
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approach. 500 repetitions are used to generate each of the point estimates of the RMSE for the various
number of bonds.

< Figure 1 about here >

Starting with Case 1, we see that as the number of bonds increases the regression filter converges
relatively fast to the Kalman smoother. The performance of the regression filter based on just 25
bonds is close to that of the Kalman smoother, and the RMSE of the regression filter is basically
identical to the RMSE of the Kalman smoother with 50 bonds.

It is even more interesting to compare the RMSE from the Kalman smoother based on 5-10 bonds
with the RMSE from the regression filter based on 50-100 bonds. Such a comparison shows that the
regression filter clearly outperforms the Kalman smoother, and that the gain in precision corresponds
approximately to a 50% reduction in the RMSE. Hence, factor estimation in dynamic term structure
models using many observables and a non-optimal estimator is clearly prefered to using just 5-10
observables and the optimal estimator. The latter, of course, is the current common practice in the
literature.

Turning to Case 2 where all bond prices are measured less precisely than in Case 1, convergence
of the regression filter to the Kalman smoother is slower than in Case 1. Now, about 100 bonds
are needed for convergence of the regression filter to the Kalman smoother. Hence, the speed of
convergence for the regression filter to the optimal estimates is faster when bonds are measured more
precisely as argued in section 2.2.

The average number of seconds it takes to evaluate the regression filter and the Kalman filter is
displayed in Figure 2.® Here, we choose to report the performance of the Kalman filter and not the
Kalman smoother because the likelihood function is evaluated by the former.” The regression filter
is in all cases much faster to compute than the Kalman filter. We also note that the computational
gains of using the regression filter increases rapidly with 50 or more observables. This is shown by the
bottom graph in Figure 2, which displays the ratio of the computing time for the Kalman filter to the
computing time for the regression filter.

< Figure 2 about here >

The results reported in Figure 2 are calculated based on the standard algorithm for computing
the Kalman filter (see Durbin & Koopman (2001)). However, Jungbacker & Koopman (2008) have
recently shown that the computational time of a Kalman filter with a large number of observables
can be substantially reduced by introducing a transformation of the state space system. Thus, the
steep increase in cumputational time for the Kalman filter can probably be eliminated if the method
by Jungbacker & Koopman (2008) is applied in our case.

For non-linear and/or non-Gaussian state space models, we conjecture that the computational
gains associated with using the regression filter instead of importance sampling to approximate the
likelihood function would be even greater than the results shown in Figure 2. This is partly because
nonlinear regressions problems are very fast to solve and the estimated factors from the previous
period operate as good starting values. Furthermore, the computational requirements for importance
sampling increase rapidly as the number of observables increases each period.

8This comparision was done in Matlab on a standard desktop machine.
Tf the likelihood function is optimized by the EM-algorithm, then it might be reasonable to report the computing
time for the Kalman smoother which is higher than the computing time for the Kalman filter.
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This simulation study therefore leads to the conclusion that the regression filter converges relatively
fast to the optimal estimator. In the most realistic case where all bond prices are generated from
interest rates with measurement errors having a standard deviation of 10 basis points (Case 1), just 50
observables are needed. We also conclude that the regression filter with just 50 observables actually
outperforms a Kalman smoother based on 5-10 observables. We therefore argue that factor estimation
in dynamic term structure models could benefit from using many observables instead of focusing only
on how to compute the optimal estimator based on 5-10 observables.

5.3 Parameter estimation

This section examines finite sample properties when estimating parameters in the dynamic Nelson-
Siegel model using the SR approach and the ML approach respectively. As mentioned earlier, the
parameter A can be identified in this model from the set of measurement equations. That is, we let
01 = [)\] in the first estimation step of the SR approach. The remaining parameters in the dynamic
Nelson-Siegel model, i.e. [a, hy, vech (Var (w))], are elements of @ which are estimated in the second
step of the SR approach.

We start by studying the finite sample properties of 81 in the SR approach which we compare to
the ML estimates of 81. When deriving these ML estimates, we let all parameters in @2 be fixed at
their true values. The subsequent section extends the set of parameters to be estimated by 8s.

5.3.1 Estimates of 0,

Figure 3 reports biases when estimating A by the SR approach and by the ML approach respectively. In
Case 1 with small measurement errors, the SR estimates of A are completely unbiased, even when just
10 bonds are available each period. Small biases are present in the ML estimates using 5-25 bonds in
each period, but these biases disappear when the number of bonds increase. Note in relation to Figure
3 that the ML estimates are unavailable beyond 100 observables due to numerical problems when
calculating the logarithm of the determinant for the one-step ahead prediction co-variance matrix.

Turning to Case 2 where measurement errors in the bond prices are larger, we see that the SR
estimates of A are still unbiased while biases in the ML estimates increase slightly compared to Case
1.

< Figure 3 about here >

The true standard errors of 81 as measured by the standard deviation of the Monte Carlo estimates
are reported in Figure 4. For Case 1 and 2, the precision of the SR estimates with 15 bonds or more
is very close to the precision of the ML estimates.

< Figure 4 about here >

Biases from the estimation of standard errors for 6, are displayed in Figure 5. The red lines
with circles represents the heteroscedastic robust estimates from the SR approach, and the green lines
with squares refer to the non-heteroscedastic robust estimates from the SR approach. As before, the
black lines with stars denote the ML estimates. All these estimates of standard errors are basically
unbiased, and this holds even when only a few bonds are available in each time period and with large
measurement errors (i.e. in Case 2).
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< Figure 5 about here >

To summarize, the finite sample properties of 6, are well approximated by the asymptotic distri-
bution derived in section 4. This is the case even with a small number of observables in each time
period. Moreover, the SR estimator and the ML estimator exhibit a similar degree of precision. This
suggests that the loss in efficiency of not using a likelihood approach is minimal in this case.

5.3.2 Estimates of 0, and 0,

We now turn to estimation of 81 and 65. The ML estimates are obtained in the standard way by
maximizing the likelihood function across all parameters. For the SR approach, 0; is estimated as in
the previous section and 65 is estimated based on the moments chosen in section 3.5, equation (21).
This gives 18 moments which exactly identifies the 18 parameters in 2. To make the simulation study
numerically feasible, we only consider Case 1 where all bond prices are generated from interest rates
with measurement errors having a standard deviation of 10 basis points. For a similar reason, we only
compute ML estimates up to the case where 25 observables are available each time period.

The biases for the two estimators are reported in Figure 6. We first note that biases in the
SR approach are small and decrease when the number of bonds increases. The latter result is very
intuitive because more bonds reduce the measurement errors in the estimated factors and give more
precise estimates of the size of the measurement error. We also observe that the performance of the
SR approach with just 25 bonds is similar to the performance of the ML approach. On the other
hand, the performance of the ML approach does not improve much when we increase the number of
observables from 5 to 25 in each time period.

Figure 6 also reports the ML estimates when the factors are observed, or equivalently, when there
are an infinite number of observables in each time period. These ML estimates for a standard VAR(1)
model are denoted by thick pluses in Figure 6. Comparing the SR approach to these estimates, we
see that the SR estimates at about 25 bonds already have converged to these optimal estimates.

< Figure 6 about here >

The true standard errors for the estimates are displayed in Figure 7. Here we find that the SR
approach with just 25 bonds in each time period achieves the same precision as the ML approach
based on 5-10 observables. Note also that the precision of the SR approach with about 25 bonds is
very similar to the precision of the optimal (but infeasible) ML estimates in a VAR model where all
factors are observed.

< Figure 7 about here >

Figure 8 illustrates biases when estimating the standard errors. When calculating the standard
9q:(07,03)
9(63)’
Cov (Wyy1, W) # 0. Also in terms of estimating the standard errors does the SR approach do well
with only small biases in the estimated standard errors. Compared to the ML approach with 5-10

bonds, we once again find that the SR approach is performing equally well with just 25 bonds.

errors for the SR approach we use one lag in the Newey-West estimator of £ [ } because only

< Figure 8 about here >
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To summarize, the finite sample distribution of 0, is well approximated by the asymptotic distri-
bution derived in section 4.2. A second key finding is that the finite sample performance of the SR
approach with just 25 bonds is similar to that of the ML approach with 5-10 bonds. These results
hold in terms of unbiasness and efficiency.

6 Conclusion

This paper presents a new and simple estimation approach for a wide class of non-linear dynamic
term structure models with potentially latent variables. The latent variables may have a Gaussian or
non-Gaussian probability distribution. The novelty of our approach is the use of many observables
(vields or bonds prices) in the cross-section dimension instead of just a few observables. We argue
that this actually simplifies the estimation process, contrary to the common belief in the literature.
An important benefit of using many observables in each time period is to realize that an accurate and
very fast estimator of the latent factors is to minimize the distance between the observed yields/bond
prices and the model implied yields/bond prices. The performance of this regression filter is shown to
converge to the optimal smoothing estimator when the number of observables tends to infinity. We
also show how parameters in dynamic term structure models can be estimated consistently under very
weak restrictions from the output of the regression filter.

We hope that the introduction of the SR approach will generate more research in the exciting
field of non-linear and non-Gaussian dynamic term structure models. More careful examining of the
empirical implications of quadratic term structure models as presented by Ahn, Dittmar & Gallant
(2002) and Realdon (2006) seem to be a natural starting point for future research. Further research
could also focus on tests for non-linearities in the market price of risk and thus allow for strong non-
linearities in the factor dynamics. We thus conjecture that the SR approach could have important
applications in future research.
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A Condition for identification

Consider ,
(ye—9;(1,0.%0.600))°  (ve,i—95 (1,65 1:0%)+9; (x1,6,%5 :09) —g; (x1,¢,%2,:301))
Var(v,t) B Var(vj¢)
_ (yt,j—gj(X1,t,xg,i%9(f))2+(gj(X1,t7xs¢;9‘1’)—gj(xl,t7X2,t;91))2
o Var(vj¢)
2(ye,5—95 (x1,6:%3,309) ) (95 (%1,6,%3 1:09) g5 (%1,¢,%2,4:01) )
- Var(vj,e)
Thus
E ZT: (ys,—9; (X1,1,%2,4;01))*
= Var(vj¢)
T 2
) — Y5 1 X2, 70
- [p [ sty |
T . . o .A° 2 . o .Q9 . . 2
- B Z (yt,]_gg(xl,tyxztvel)) +(gj(xl,t7x27t701)_gj(xl,t7x2,ty01))
- = Var(vj)
. ° .09\ _g.: -0 2
Since the term F [(g] (XLMXQ’“\/Ia)r(gJ. Squz,u V) } is nonnegative, it follows that
7>
T T 2
S g | W =9 (KXo 1) | S F (415 — 95 (%16, %5, 67))
t=1 Var (vj,) i Var (vjt)

This inequality is strict and the model is uniquely identified when

T

Y E

t=1

(93' (Xl,tv X3 45 9(17) — g5 (X1,¢,%2,4;0
Var (vjy)

2
) ] > 0 for all 81 # 69 and x;; # x7, for all ¢

B Computing moments for the illustration of GMM

This section computes the moments used in the illustration of GMM. The infeasible model for the
factors is
Xir1 = @+ hyXy + Wy

where wy ~ ZZD (0,Var (w¢)). The observed and feasible model for the factors is
Xit1 = a+ hyXy + Wy

where
% =x{+w w~NID(,Var (X)) fort=1,2,..,T

Note then that
FE (WtJrl) =F [)A(t+1 — x — hxf(t]
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=F

= E[x7,; — o — hyx{]
E
0

E (Wi1%t) = B ()11 — o — hyxky) X}
=E[(x0,; + w1 —a—he (x¢+wp)) (x¢ +wy)]
= B [(x711 + w1 — o= hye (%7 + 1)) (x0)' + (x74q + uen — @ — hy (x7 + up)) wy]
=F [(x 001 — o —hyxy +ugyg — hxut) (x9) + (Xto+1 —a—hex? +upy — hxut) ug]
= E [(Wis1 + w1 — hewy) (x9) 4 (Wig1 + w1 — hyug) uf]
= E [wir1 (x9)" + w1 (x9)" — hywy (x9)" + (Wiuf + ugguf — hyeugu))|
= E [u1 (x0) — hyu (x9)" + (Wep1u) + ugpu) — hyupu))]

since wy41 is iid. and thus independent of x{

= E [~hyu (x0)" + (W1} + ugpu) — hyuea))]
since w41 is a function of v¢11 and x7? is a function of {wi}le,
which imply independence of us4;1 and x? due to the independence of v; and wy

/ !/ !/
= E[(Weriuy + wpu; — hyuguy)]
as above because v; and w; are independent

_ !/ /
= F [uy11u; — hyuu)]
because w; is a function of v; and v; and w; are independent

= E [-hxusu)]

w, is iid.
— (hy B [uuy])
= —hyVar (u)
Var (Wep1) = Var (X401 — a — hyXy)
= Var (wir1 — g1 + hyuy)

= Var (wir1) + Var (ugy1) + heVar (ug) hl
since Cov (Wyy1,ui11), Cov (W1, hyxuy), Cov (—ugy1, hxuy) are zero

Thus
E (%) 0
vec (B (WiX})) | = vec (—hxVar (u))
vech (Var (Wy)) vech (Var (wy) + Var (uy) + hxVar (u) hl)
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C Proof of proposition 1

The first-order conditions for {)”(27t}tT:1 and 6, are

.t (yt,j - gj <X1,t,f<2,t;01>> Jg; (Xl,t,iz,t; 91)

0Q:
3X2,t_ ; V (z¢5;7%) %2,

=0 fort=1,2,....,T (57)

oQ(61) _i% (yt,g j <X1t7X2t (9 ) 91)) (58)

X
891 =1 =1 V (2t,5;9)
IR 4 <91> dg; <x1,t,§c2,t <91) ;91> dg; <X1,t75<2,t (91) ;é1)
08, 0Xa ¢ (91) i 08,
= 0

Note then that

oQ(01) _ Z 0%} ,(61) nzy’:t (ye,i—9; (xl,t7i2,f(él)§él)) 9g;(x1,1,%2,1(01);01) _ i ni’:t 995 (x1,1,%2,1(01);01)

001 801 =1 V(2 Jv'Y) [6,:2 z(él) =1 =1 691
ZT: aﬁét(gl) Dyt (yt,] g5 (Xl ty X2t (él) ;0 )) 89; (Xl,t,Xz,t (91> ,91)
B t=1 90 =1 Vv (ztﬂj; ;Y) 8)22’t (él

6 using (57)

t=1j=1 961

)
T Nyt . s a2 \.H
2Q(8 9g;(x1,6,%2,6(01);:01)
i = - 30 3, eI — o

1
But (57) and (58) are also the first-order conditions to the joint estimation problem

(él,{izt}le) arg ZZ (Wt — 9j X1t7X§t,01))

91{)(21}15 1 =1 j=1 ztj77

Q.E.D.

D The asymptotic distribution of 0,

In addition to the assumptions in Proposition 2, let: i) 89 be in the interior of ®1, ii) 891 (x¢, z¢ ;; 01,7)
be continuously differentiable on the interior of (Xg,t, o', I‘) for all (x14,2¢;) € (X1, Z4), iii)

HY (Xt 26,3 01,7)1,| < b(X1t,2t5) for ki = 1,2,..., L1 where E[b(x14,2,)] < o0, iv) Agl =
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E [Hel (xu, X9 45 2,53 09, 'y*)] be positive definite, and v) 91 (X17t, X9 4, Zt,5; 07, ’y*) be i.i.d. with finite
second moments. Then for N — oo

VN (91 - 0(;) N (o, Var (él)) (59)
where
Var (él) - (Agl)’lBgl (Aﬁl)fl (60)
Proof:
Let Q (61) = 5

Nyt
I (yr,—95(x1,6,%2,:(61);01))>

M’ﬂ

. The first-order derivative with respect to 67 is

t:1_’] 1 (Zt ]57)
2Q(61) _ i " (=95 (X1,0,%2,0(81):01)) [ 0% (01) Bg; (x1.4,%2.4(61);01) + Dg;(x1,,%2,t(01);01)
001 - y V(Zt ],'y) 001 35‘(2775(01) 001
t=1j5=1
00(01) _ 5~ (N (0m0:01.0:22.4(61)01)) 956 1(01) 9 1.1 22.4(61)61)
201 T e\ V(zt,5:7) 00, 0%2,¢(61)
t=1 j=1
(1,5 =95 (%1,6,%2,:(01);01)) g (x1,t,%2,:(01);01)
Z t,j— ]Vlztf]iyt) 1);601 J 1t8;1t 1 1)
T Nyt
Z Z U (x1,, X2, (01) ;21,55 01,9)
: J:
where we have defined
i — 9j 01);61)) 0g; (X1,¢,%2,(01) ;61)
0 0 L0, A) = _(yt,] 95 (X1,6, %2, (61) ;61 5 \X1,t, X2, ) 61
S (Xl,t7 Xt ( 1) azt,]a 177) v (Zt,j; ?Y> 601 ( )
(yeg — 95 (X1,%2,4 (01) ;1)) 9% 4 (07) Dgi (x1,4, %24 (67) ;67)
V (Zt,j§ ’AY) 80‘1’ 8X2,t (9(1))

to be the score vector for 61 at time ¢ for observable number j. Note that 99;(x1.6:%2.6(61):61) .

001
. . o%!, (69 . . Ha. %o -(0°):0° . .
dimension Lq x 1, %é(o 0 has dimension L X n,,, and gl(xg}(’:?&éo)l)’ D) has dimension Mg, X 1. Thus,
1 X 1

st (Axl’t, %24 (01),2¢5;61,%) has dimension L; x 1. We may therefore write the first-order condition
for 01 as
N
ngl (Ui;é1,’7> =0 (62)
i=1

where we have set up the pooled sample, i.e.
T
= {{]}?ill ,{j}?i*f .. {]}nyT} with N = ) n,; elements.
i=1

{Ulj}j 1 ,{1}2]}?9‘12 e {vTj}ny T} which has dimension 1 x N

z= {{zl,j }j 1 {72, }j L i2r }ny T} which has dimension 1 x N
{{yl,y}] 1 7{y2,]}J Lo {yr sy j=1 } which has dimension 1 x N

{x1}7 i ,{Xg}?y’f . {XT}ny T} which has dimension n, x N
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We refer to the elements in v, z, y, and x by v;, z;, y;, and x;, respectively. For notational

convenience let u; = (Xu,xm (01> ,Zi ).

N u
We now do a mean value expansion of > %1 (ui; 0., ’?) around 09 (the true value of 6Y) and ~v*,
i=1

where 4 2, ~* but v* does not need to be the true value of . This implies

N . N N gsh (ui§é1>7*) . N 9501 (w01 ~*
D05 (1 01,7) = o w07+ —— a8 = 07) 4y R 5y
i=1 i=1 i=1 90, i=1 v
(63)
~ 2] P *
Next, let H% (ui;01,7*> = W be a L1 x L; Hessian matrix for the object function in
1

terms of 01 evaluated at 8; where 0. = 0@@172‘—# (1—0;)07, fori =1,2,..L1 and o; € (0,1). This
notation indicates that each row of the Hessian matrix is evaluated at a potentially different mean,
N ~ ~ (2] .0 *
but since 6 69 it follows that 6, 2 09. We also let J (ui; 01,7*) E%’fﬁﬁ) be the Jacobian
of dimension L; X n, where n, is the size of ~.
Using (62), (63) reduces to
N 0 N - " N ~
0= > 8% (u;607,7*) + Y H” (%‘;91,7*) <91 - 9?) +>J (Ui§0177*> ¥ =)
i=1 i=1 i=1

0= \/% % s% (ui; 09,7%) + <1{; % HY (Ui§ él,’)’*>> VN (91 - 0‘{)

=1

+ <11v % J (uz';él,'y*)) VN (3 —~7)
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i=1 =1

N ~ o .02 ~*
For N — oo we have % > J (ui; 01,7*> P, 08T (uii67") given standard regularity conditions.
i=1

oy*
But ) ,
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SO

B [8591(%‘;9‘1’7’7*) ‘ X1 Z} _ E[(yi—(x1,i,%2,i(09);609))|x1,i,24] (69i(x1,i7x2,i(9(1))§0(1)) + 0x5 1(09) 9gi(x1,1,%2,:(6%); 1)) <6V(zi;'y*
vy Hr | T )
1

a(v*)’ V(ziiv*)” 907 997 9x2,:(07 o
0
Henac% 08 r") 9691 (us:09 )
s71 (ui079") | s71 (u;607 7" R I
B[*55570] = B B [2255 xm]| <0

By assumption, s (u;; 09,v*) isi.i.d. and with E [s%! (u;;69,v*)] = 0and E [[591 (u;; 09, 7*)1}2} <
oo for I = 1,2,...,L;. It therefore follows by the central limit theorem (The Lindeberg-Levy) for
nyt — oo for all ¢, meaning N — oo, that

VN <é1 - 9(1)> -, N (0, Var <91)) (64)
where

Var (0) = (a%) " BE (a2) (65)
and A% = E [H% (u;69,~v*)] and B8 = Var (s (u;;07,v%))

We estimate Var (91) as follows.

1. The variance of the score function, robust version
For notational convenience, let

gb1 (u o *) _ _((yi7gi(x1,i,xz,¢(9‘1’);9‘17)) x5 ;(07) dgi(x1,:,%2,i(69);:0% )+(yz 9i(%x1,i,%2,:(09);69)) 3g¢(X1,¢,X2,¢(9({);9‘1’))
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Hence,
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/ / / !/
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=F

—

/ / /
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v2 0g;(x1,i,%2,:(01);09) 3gi(X1,i7X2,i(9‘f);9?))l]

V(ziy*)* 06y 06y
Imposing conditions for uniform convergence, we have

Bo = L i v<ﬁ?&)2 <6’A"2,g(91) Ogi(x1.i.%2.i(81); 91)) (axh(el) 0gi (1.1 %2.i(81):61 ))'

2i; 00, 0%2,:(01) 961 0% (é )
N 02 (09i(x0%0,0(81):81) | (0%,5(B1) g (x1,i.%2,4(81):01)
1 U7 9i\ X1,i,X2,5 2,i\Y1 i\ X1,i,X2,4
25 Z; V(i) < 08, 00, 0%2,4(01)
L1 % 02 99 ((x1,,%2,1(01):61)) ( 0g:(x1,1,%2,1(61);61) I]
N i=1 (V(sz'AY))z aél 891
_ 1 év: 02 [ 0%}, ;(61) 9gi(x1,i,%2,:(01);01) 0% ;(01) 0gi(x1,i,%2,i(01);01) '
N = V(zi7)? 96, 85(2,2'(91) 301 A%z ; é
49 9g(x1,i,%2,i(61);01) 0%} ;(61) 89i(x1,i7x2
96, 96, 8Xzz
+39((X1,¢,ﬁ2,¢(91);91)) 9g(x1,i,%2,:(61);01) ]
8@1 aél

L var (%1 (u;;09,4*)) for N — oo

2. The variance of the score function, homoscedastic version

If the conditional variance is correctly Speciﬁed then the estimator of ]321 can be simplified as
follows. I.e. we assume: for some v, € I' and Uw, Var (vi| x1,,2;) = cf%oV (zi;7,). From this
assumption,

E [s% (u;;09,7%) s8 (ui;09,v*) | x14,2] =

= E| v} (ax/&i(e(l)) Bgi(xl,mx2,i(9‘1’);9‘1’)> (axé,i(ef) agi(xLi,Xz,i(B‘f);@‘{))/
V(Zi;’y*)Q 60(1) 8x27,~(6‘1’) 89‘1) 8x27i(9f)
49 v? <6Qi(xl,iﬂx2,i(9‘f);9?)) (axl&i(eg) 8Qi(xl,iyx2,i(9({)§9f))/
V(ziy*)? 069 009 0x2,:(69)
v?  9gi(x1,i,%2,i(69);69) (8g¢(X1,i,X2,i(9‘f);0?))'|x 2]
V(ziv*)? 261 007 1is %

v? 0% ;(09) 9gi(x1,i,%2,i(09);6% 9xh ;(09) Dgi(x1,1,%2,(09):09) )
:E[iv(zi;,y*)ﬂxl,ivzi](( 2, (x1, 2,()1) 1)) ( 2, (x1,1,%2,:(07) 1))

009 8i27i(0‘1’ 009 8x27i(9‘1’)
+2 9gi(x1,i,%2,i(01);09) 0%y (69) gy (x1.5,%2.:(09):09)
009 0069 0x2.i(09)
4 091061,0.%2.i(09):09) (D9 (x1.1:%2.1(69):6%) ’)
09 969

_ pPleVtimive) (95500 Dpixysx,(09):69) | (9%4(0) Dgixssixas(67):6) |
V(zir™)2 Lyiy 44 963 9%2,:(09) 903 9x32,:(09)
+9 (agi(xl,uxz,z‘w?)ﬁ(f)) <6X’2,¢(‘9(17) 89i(x1,i7x26i(0(1))§0(1)) !
90¢ 067 0%2..(07)
+agi(xl,i7x2,i(9?)§0?) 0gi(x1,i,%2,:(09);0%) /)
90° 96°

_ ‘772,,0 ( Ix3 ;(01) dg;(x1,:,%2,:(09);0%) Ox3 ;(01) g (x1,:,%2,:(09);05) !
V(zi;’y*) 80(1) sz,i(ei’) 80? 8)(212'(9‘17)
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492 0gi(x1,i,%2,:(07);07) 0x3 ;(07) 8gi(x1,1,%2,:(69);6%) !
507 007 9%3,:(07)

4 091061,0:%2.i(09):09) (Dgi(x1.1:%2.1(69):6%) ’)
069 069

Imposing conditions for uniform convergence, we have under the additional assumption

Ao _;§ 7 ([ 9%u(B) Oui(1 %0 (00)01) ) (956,,(B1) 031 524 (01)81) ’
hom =™ N i=1 V(Zu'AY) 8@1 8?(2,1'(91) 8@1 85(2,1'(@1)
) 0gi(x1,i,%2,1(01);01) 0%}, ;(61) 0gi(x1,i,%2,:(81);01) '
961 06, 0%2,:(01)
_l_agi((xl,i,f(zi(él);éﬂ) 9gi(x1,1.%2,:(81):61) ,]
90, 26,

2 var (s% (u;;09,~%)) for N — oo
where 62 is estimated based on

Nyt 2

t

52 _ 1 Vi, —
0F = s j§:1 Vo) forallt=1,2,...,T

~2 ~ 2\ My,1 A2\ "y,2 ~2 Ny, T
and o; = {{al}jzl ,{02}].:1 s eees {O‘T}jzl }

3. The Hessian matrix
We use numerical derivatives to find H?! <ui; 04, '7). Hence

Aol_iﬁgf’l (u..g >
— N . i; U1, 7Y

E The asymptotic distribution of the latent factors, x;,

In addition to the assumptions in Proposition 2, let: i) x5, be in the interior of Xoy, ii) 8*2 (x4, 2¢,5; 601, 7)
be continuous differentiable with respect to (x2¢, 81,) on the interior of (X, @1, T') for all (x4, Zj) €
(Xrg, Z4), 1il) | H*2 (x4, 2t 5 0177)k,l‘ <b(x14,2) for k, 1 =1,2,...,ny, where E [b(x14, 2,j)] < 00, iv)

A2 =F [Hx2 (x17t,x(2’7t, 2455 0(1’,7*)] be positive definite, v) 4 L, 4* and vi)
s*2 (th, X9 4, Zt 55 07, 7*) be i.i.d. with finite second moments. Then for n,; — oo

~ d ~
Vgt (X2 = x3,) —— N (0,Var (%2,)) (66)
where . . ) .
Var (%o,) = (A2) 7 B (A%2) '+ (A%2) ' DyoVar (81) Dy, (A2) (67)
X o .90 ~*
Here, B, = Var [s*2 (Xl,t,XS,t,Zt,j;H{f,’)’*)} and Dy, = F [as Z(XI’t’ax(zﬁl,’)z,t’" L )} is the Jacobian
with dimension n, x L1
Proof: . )
Yt g (%1 +.%9 +:0
Let Q¢ = % > (v, g‘]/((zz’?’vf;’el)) . The first-order condition for the latent factors xs; are
=1 v
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9Qr _ _ny’t (yt,;—9; (%1,6,%2,101)) 9g; (x1,0,%2,1;,61) —0
axg’f = V(Zt7‘j;’y*) 85(27,5
Ny, t
0Q¢ . ~
X < . by —
o g s*2 <X1,tX2,t,Zt,j,91,’Y> =0 (68)
t 4
where we define
N . (yt,j —gj (Xl,t,x2,t; 91)) 0g; <X1,t7X2,t;91) (69)
SQ(XltX2t7th§01,7>E_ ; 69
V (zt,557*) 0%y
which has dimension n,, x 1. We now do a mean value expansion around x§,, 87, and ~*
Nyt R Nyt
N . A\ . po
> s* <X17t7x2,tazt,j70177) =) s* (Xl,tvximzt,jael?'?’*)
Jj=1 Jj=1
Tl gex2 (x1 1Ko 1,20.5:0 *)
s a4t 5391, ~ o
+2 0%, , (%2, —x3,)
J=1 '
Tt gsxa (x1 %0 4.24.::0 *) ~
s a4t 5391, o
+ 2 08, (91 - 01)
j=1 1
Nyt Os*2 (Xl X2 ¢,%¢ "él *)
, stybt, g Y ~ *
+> (¥ =)
j=1 (1)
~ - 9s%2 (x1,4,%2,1,24,5;01,7* . .
Let H*2 (xlvt,xzt,zt,j;Gl,’y*) = ( 5% u ) be the n,, x ng, Hessian matrix for the
t
. . . ~ ~ 0s*2 (x1,¢,X2,¢,2¢, ';51,7*
latent factors in time period ¢. Further, let D (xlﬁt,xzt,zt,j;el,’y*) = ( o7 s ) be the
1
. . . -~ ~ 9s*2 (x1,¢,%2,¢,2¢,7;01,7*
Jacobian of dimension n,, x Li, and let F (xl’t,xu, Ztj; 91,7*) = ( o( ’*),t . ) be the Jaco-
Y1

bian of dimension n,, x n,. Here, n, is the size of . All these matrices are evaluated at (él, i;t)
which is on the line segment between (@1,${2,t> and (H‘f,xg,t). Thus for 8; 2 6% and Xo ¢ 2 X5 1t

follows that 6; 2 07 and X3, 2, x5 4. Using these definitions and (68), the mean value expansion then
reads
nyyt
0=> s* (Xl,taxg,tazt,ﬁ 69,~*)
j=1
Nyt _ ~
+ > H* <X1,tax2,tazt,j§01a7*) (Rt — %3 )
j=1
nyyt 5 - N
+> D (Xl,t,th,Zt,j; 917’7*> <91 - 9‘1))
j=1
Ty,t _ ~
+> F (X1,t,X2,t,Zt,j;917’Y*) ¥ =)
j=1

Ty,

t
_ 1 X2 o . OO0 A%
0_,/711,,5 s (xlvt’x2,t7zt,]’ 177)
vt i
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1 Xo s Y * S w0
+ Tyt ZlH <X1,t,X2,t7Zt,37917’Y ) Myt (X2,t ngt)
]:

Tyt - _
1 =~ . o
(D (s ) s 000
]
1 ~
X . * ~ *
sl o F <X17t7X2,t7Zt7j,91,’7 ) Vgt (F — %)
]
ny,t ~
H™ (Xlﬂfvx?,ta Zt,55 917’7*) Tyt (Xz,t - Xg,t) =
Jj=1

Nyt
—1 X2 o .. QO *
\/W Z S (Xl,t7x27tazt7]70177 )
J=

Ny, t ~ -~
oy . * [0
(ny,t ‘ 1D (Xl,taXZ,taZt,ja 01,7 ) VTt <91 - 01)
]:
y,t ~
~ . * A~ 3
o 1F (Xl,t7X2,t,Zt,j,91,’Y ) Vgt (Y =)
]:
Tyt (X240 —x3,) =
Tyt ! Ty,t
ZH’Q(XUthzt 0 ) ZSXQ(X X9 ,, 209
n ) ) ,ja 1,7 m 1,t5 2,9 t,j7 1,7
Y,t j=1 VTy,t
-1
Tyt 1 Tyt ~ ~
> . * o
- nyt Z H*? (Xl thQtazt,jaala ) Tyt Z D (Xl,t7x2,tvzt,j; 01)7 > VTt (01 - 01)
Jj=1 =1
-1
1 Tyt - 1 Ty, ~
bt . * s . * 2 *
- Tyt H*? <X17t7 X2,t7 Zt7j7 017 Y ) Tyt F (Xl,ta X2,t7 zt,ju 9177 ) \/ny,t (’Y et )
iz A
Ty,t p
For n,; — oo we have —— Z F (x1 ts X2 4, Bt 5 01, *) — E[F (X1,t,X§7t,Zt,j; 67,7*)] given stan-
"=

dard regularity conditions. But

8( (yw gﬂ(xlt*"w ))agﬂ(xlt’x2t79)>

V(ztd,’y ) 0x3 ,t

o(vi)

o . QO *\ —
F (x17t7x27tvzt7j7 0177 ) =

~ (yei—95(%1,6,%3.,30%)) g, (x1,6.%3 ,;09) Vize )\
V(ze,5i7*)° %3 oy

and
E [F (Xl,t7 Xg,m Zt,j, 0?7 7*) | X1,t, Zt,j]

38



. E[(yt,j—gj(X1,t,xg7t;9(1’))|X1,t,Zt,j] 8gj(X1,t,x§,t;0?) (V(zw-;fy*))'
V(ze,5i7*)° 9x3, 2%
=0

Hence
E[F (x14,%3,,2:j:05,7")] = E [E [F (x1,,x3,, 20505, 7")| x1,0.2,,]] = 0

T
Note next, when n,; — oo then N = ) n, also tends to infinity. Hence, n,; — oo implies

i (0 o) Lx(ovar(a)))

By assumption, s*2 (xlvt,x‘z’yt,zt,j;H‘l’,’y*) is 7.7.d. and with E [ng (xl,t,xgﬂf,zm; ‘1’,7*)] =0 and
2
E HS’Q (xl,t,xgﬂf, Zt 0‘{,7*)1] } < ooforl=1,2,..., L. By the central limit theorem (The Lindeberg-
Levy) for ny,; — 0o, we have
~ d ~
N (x27t — xgt) — N (0,Var (X24))

where

Var (%,) = (A32) " (B + DioVar (81) D}, ) (A7)
and A7 = E[H®(x14,x5,,2,;:07,7")], B, = Var (s (x1,x3,,2:01,7")), and
O o .00 ~*
D;, =D (X1,t,X§t,Zt,j;0§,‘)’*) == Q(XI’“XQZ)“Z?]’ i)
’ 8(x27t)

We estimate Var (%X24) as follows.

1. The Hessian matrix

H*? (x14,%3,,2;0%,7") s*2 (x1,1%3 21,3369 7")
it X2 15 4t 55 U,

8(xgyt)/

P ( <39j (x1,6%8 4:69) ) / (vi,=9; (x1,0x5 :09)) >

[
Ox3,t V(H,j;"/*)

6(xg’t)

02gj(x1,0x5 309) v, 1 (%’ (Xl,tXS,t;Gi’)) <39j(><1,t><‘2’,t;9‘1’)>/

Ca(xg,) 0(xg,) Vi) 1 V70 03, o3,

and
E [Hx2 (Xl,txg,ta 7t 5; 09, ’Y*) ‘ X1,t, Zt,j]

o o o o ,
B 1 9g; (x1,6x8 1;09) \ [ 99 (x1,x5 ;67)
- V(z¢,557%) 8x‘27’t 8x§’7t

1 9%g5(x1,ex5,:69)
zt537") 9(x3,) 0(x3,)

Xl,tvzt,j:|

—E [vt,j] %16, 20,4] 17
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!/
- B 1 9g; (x1,:x5 ,;60%) 9g; (x1,:x3 ,;69)
- Vi(ze,5;7*) Bxg’t 8’(5,1&

Thus
E[H*? (x1,%9;,215;05,7")] = E [E [H* (x1,X5;, 2,35 07, 7*) | x1.0, 21,5 |

!/
- E 1 9g; (x1,6x3 ,;609) 9g; (x1,:x3 ,;69)
- V(ze,5;7*) 8xg,t 8xg,t

Imposing conditions for uniform convergence, we have

. . /
AXQ _ 1 nzy’:t 1 3gj(X1,t5<2,z;91) agj(xl,ti2,t;91)
t et V(zt,55) 0%t 0%t

Xl,t,Zt,j]

. F [sz (xl,tx%t,zt’j; 0‘1’,7*)] for ny, s — oo

2. The variance of the score function, robust version
In the general case

Var (s*2 (x14, x5 4, 21,5 09, 7))
/
- B [(yt,j_gj(xmxg,t;g(f)) dg; (x1,txg,t;0‘1’) <(yt,j—gj(x1,txg7t;0‘1’)) 8gj(x1,txg’t;9§j)> ]

V(zt,557*) 3X5,t V(ze,5;7*) axs,t

2 o o)
z¢ 557*)) %3, x5,

—F |: vf’j 9g; (xl,txg,t;ef) <Ogj (xlﬂgxg’t;e‘f) ) /:|
(V(

Imposing conditions for uniform convergence, we have

A N’
Bx2 — 1 nit 07 9g; (x1,:%2,1;01) 9g;(x1,:%2,1;01)
t - Ny, t ] (V(zt,j ;—?/))2 8&2,t 8)22775

=1
p x .00 %
— Var (s 2 (x17t,xg’t,zt7j,01,'y )) for ny s — oo

3. The variance of the score function
If we impose the condition Var (vy ;| x14,2:;) = o7 for all j = 1,2,...,n,, then

!
b o .00 A% oX o .00 A% .
B {S ’ <X1’t’x27t’zt:j70177 )S ’ (Xl,taxztaztmeh’?’ ) ‘Xl,taZtJ

[ I
= F (yt,j—gj(xl,txg,tﬂ‘f)) 8gj(x1,txgyt;0§’) (yt,j—gj(xl,f,xgt;ef)) 89j(X1,tx‘2’_’t;9‘1’)
= V(zt,557*) 0x3 Vize,v") %3,
[ /
- E Ut2,j agj(thXg’t;H'f) 6gj(x1,txgﬂt;9‘1’) < z
= V(zw.w*)Z axgﬁt axgyt 1,t5 Zt,j
[ /
=F 1)2 ‘ X1+,%Z } 1 9g; (Xl,txg‘t;e‘f) ag; (Xl,txg_’t;ﬂ‘{)
[T B Vg O 03,

!
o2 0gj(x1,x3,:07) [ 9g;(x1,.%35 ,;67)
V(zejiv*)” %3 1 0x3

Imposing conditions for uniform convergence, we have
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. R ’
Bxt . ZJ: 9g; (x1,1,%2,1501) 95 (x1,1,%2,1;01)
t,hom T ny, = V(%,]Q’)) 0X2,¢ OXa ¢

L5 Var (ng (X1 t,xgt,zm;ef,'y*)) for ny; — oo

Yt A2
where 62 = 1/nyt2] 1054

4. The Jacobian
Recall that D (Xl,mXSJ, z¢ 5,607,

_ 0s*2 (Xl,t,xg’t,Zt,j ;0(17’7*)
) = a(67)

5 (ve,5=9;(x1,6:%34:6%)) 09; (1,65 136%)
V(ztd,'y ) 8x 2.t
a(e9)’

'
_ 1 9g;(x1,6.%x3 1;:09) ( 0x4 ,(69) Dg;(x1,4,%3 ,;0%) I 9 (x1,6,:%3 ,;09)
T V(zt,57) 8xgyt 009 8xg7t 009

Vt,j »g; (letrxg,ﬁe(l))
Vi(ze5v*)  9(69) 0x3,

82%g; ;09 .
E [D (Xl,t7 Xg,t? Zt,j; 9?7 ,7*) ’ X1.4, Zt7j] - _ 9j (xl,mxg,tv 1) [ Vt,j

a(69) 03 , V(Ze,557)
/
L E 1 0gi(x1,6,%3,:09) [ 0xb,(09) Dg;(x1,:,%3 ;:0%) +gj(x1,t,xg,t;ea’)
V( 007

X1,t9 Zt,j]

.. o @ ]
Zi,55Y") 6x27t 009 8x2715

X1,t5 Zt,j:|

!
_ g 1 0gi(x1,6x8,:09) [ 0xh,(09) Dg;(x1,6,%3 ,;:0%) n 95 (x1,6,x3 4;69)
=P\ Ve, o, 907 ax3, 907

X1,t) Zt,j:|

and
FE [D (th,xg’t,th; 0?,7*)] =F [E [D (th,xg’t,zt,j; 0?,7*) ‘ xl’t,ztj]]

Imposing conditions for uniform convergence, we have

D, = 1 nit 1 9g; (x1,t,%2,101) [ x5 t(el) 9g; (x1,t,%2,1;01) i g (x1,1,%2,1301) '
ET g 2 Vie) %21 96, 9(X2,1) 06,

— b [D (Xl,t,XS,t,ZtJ; 9?,’7*)} for Nyt — 00

F The asymptotic properties of &f

This section shows consistency and asymptotlc normality of 6 at In addition to the conditions ensuring
consistency and normality of of 8; and {X27t} 41, We impose:

L. Var (ye | x14,2t5) = af’oV (z¢4;7,) for some v, € I' and O'%O where 4 2, Yo
1 . / .
2. E V(Zz’j:’yo) gj,x? (Xl’hxg,t’ 0?) gj,XQ (Xl,hX(Q),t; 0?):| < 0

41



[ 1 o .poy o .po
3. F _V(Zt’j:,yo)gj,el (Xl,t7x2,ta91) gj,01 (Xl,tax27t701):| < 00

[ 1 ) o .o\ . o .po
4. K ‘V(Zt7j:,yo)gj7)(2 (X17t,X2,t,01) g‘],gl (X17t,x27t,01):| < 0

i 4
5. B | —=2 < 00
Vi(zt,5:v°)

F.1 Proof of consistency for 47

We begin by defining:
v, = {uv J};Ly{ which has dimension 1 x ny;
7, = {z1;}" = 1 which has dimension 1 X ny¢
vi={y ) bz ¥ which has dimension 1 X n,;
xi={x;}" ;21 which has dimension n; X 1y

We also need the mean value expansion of g (Xl,t, Xo.t; 01) in xo; and 61, that is

g (Xl,t,fizt; é’1) =g (x1,6,%3 ;3 69) + gx. (Xl,t,iz,t; 91) (Ro.t — %3 ;) + 8o, (Xl,taiZ,ﬂ él) (91 - 9?)

-2\ _ Og(x1,e,%2,501 . . ~ 2 dg(x1,¢,%2,:;01
Here, gx, (xl,t, X2t 01> = % has dimension n, ; xn., and gg, (X1, X2, 61 ) = %

has dimension n,; x Li. All these matrices are evaluated at (51,5'(20 which is on the line seg-
ment between (él,xz,t) and (09,x3,). Thus for 8; 5 69 and %p; > x3, it follows that 6; 5 65
and X 2 x9;. Variables scaled by V'V (2t;4) are denoted by a bar, ie. g (x17t,>227t;91) =
g (%10 %2001 ) /v/V (2:3) = X524 05 (%10 %0 01) //V (2057, ete.
Now consider
— ) — — — !/ —
Vfgvt = (Yt -8 (Xl,t; Xgﬂg; 0(1))) (Yt — g (Xl,t> x%,t; 9?))
~ ~ /
= (}_’t — 8 (x1,,%5,;09) + 8 (Xl,niz,t; 91) —g (Xl,mizt; 91))
X (}_’t — 8 (x1,1,%X5,;09) + 8 (Xl,t,iz,t; él) -8 (Xl,uiz,t; é1))
= —8 (X1,t,X§,t; 09) + g (x1, t: X3 43 09) + Ex, (Xl,t,iz,t; él) (X2, — Xg,t)
+8o, (Xl,t,iz,t;el) ( ) -8 (Xlt,izt;é1>)/
X(Ft — 8 (x1,6, X8 45 09) + B (x1,6, X5 5 09) + Bx, (Xl ts X213 91> (R0 — %9,)

+8o, (X1,t,>~<2,t;91) (91 90) (X1t7X2t;01>)
using the mean value expansion from above

~ ~ - R _ ~ - ~ li
= (S’t -8 (Xl,taizt% 01) + 8x, (Xl,tsz,t; 91) (%20 —x3,) + 8o, (Xl,taXZt; 91) (91 - 93’))
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X (}_’t —g (Xl,t,izt; 91) + 8x, (Xl,taiQ,tQ él) (Ro,t — X%t) + 8o, (Xl,t,iz,t; él) <@1 - 9‘{))

. _ - R B _ - R /
= (‘_’t + 8x, (Xl,t;XQ,tQ 01) (Ro,t — %9 ;) + 8o, <X1,t,X2,t; 91) <91 — 0?))
X (‘_715 + 8x, <X1,ta)~(2,t§ él) (Rot — %9 ;) + 8o, (Xl,taiQ,tQ él) <91 — 9?))

because v, = ¥; — 8 ( X1.¢, X213 01

~1 R _ _ - ! - /_ _ -~ /
= <Vt + (%ot — X‘it),ng (Xl,t,xzt;el) + (91 - 9?) 8o, (Xl,taXQ,t;01>

(‘_715 + 8x, <X1,t, X2t él) (Ro,t — Xgﬂ:) + 86, (X1,t, X2t él) <91 - 9?))
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for ny; — oo due to consistency of 4. This proves consistency of &f.

F.2 Proof of normality for 57

To prove asymptotic normality, we scale the expression for %\_7,5,\_7,5 by \/fy . Thus

2 _ 1 ors 2
Vi Vi — 0o = mvtVt - Ut,o
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G The time series properties of u,

This section derives the time series properties of u; which denotes the measurement errors in the
estimated latent factors. We have from above
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Thus .
uy = (A:i)i ZtVt

The mean and the variance of u; are stated above. The expression for conditional autocorrelation
n u; is
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H The dynamic term structure model for the Monte Carlo study

We use the following linear and Gaussian term structure model for our Monte Carlo study

1—e 1 — e 7
Yt (7') =Tt + Tot | ——— + 3y | ——— — €—>\T + Vrr
AT AT

Xi+1 = @+ hpxp +wigg

where v ~ NID (0,Var (vi,)) and w; = [ wip Wi Wy ]I ~ NID(0,Var(wy)). Moreover, xq,
v, and w; are mutually uncorrelated at all leads and lags. Diebold et al. (2006) estimate this model
based on US data (Jan. 1972 - 2000 Dec.) for 15 zero-coupon yields with maturities between 3 and
120 months. They find A = 0.077 and

o 0.115
Qy | = 0.171
a3 —0.279

0.99 0.03 -0.02
h,=1] -0.03 094 0.04
0.03 0.02 0.84

0.09 —-0.01 0.04
Var (wy) = | —0.01 0.38 0.01
0.04 0.01 0.80
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Figure 1: The RMSE for the estimates of the latent factors
This figure reports the RMSE for the estimates of the three latent factors in the dynamic Nelson-Siegel model.

These RMSE are calculated based on 500 repetitions of a sample of 480 observations. The black lines with
stars refer to the Kalman smoother and are computed for 5, 10, 15, 20, 25, 50, 100, 150, and 200 bonds. The
red lines with circle refer to the regression filter and are computed for 10, 15, 20, 25, 50, 100, 150, and 200
bonds. Case 1 refers to the scenario with measurement errors of 10 basis points along the yield curve, and
Case 2 refers to the scenario with measurement errors of 20 basis points along the yield curve.
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Figure 2: The computing time
This top graph reports the average number of seconds used to calculate the Kalman smoother (the black line

with stars) and the regression filter (the red line with circles). The buttom graph displays the computational
gain of using the regression filter instead of the Kalman smoother. That is we report the ratio of the average
number of seconds for the Kalman smoother to the average number of seconds for the regression filter.
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Figure 3: Biases when estimating lambda
This figure reports the biases when estimating lambda in the dynamic Nelson-Siegel model. These results are

calculated based on 1000 repetitions of a sample of 480 observations. The black lines with stars refer to the
ML estimates and are computed for 5, 10, 15, 20, 25, 50, and 100 bonds. The red lines with circles refer to the
SR estimates and are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. Case 1 refers to the scenario
with measurement errors of 10 basis points along the yield curve, and Case 2 refers to the scenario with
measurement errors of 20 basis points along the yield curve.
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Figure 4: The true standard error when estimating lambda
This figure reports the true standard errors when estimating lambda in the dynamic Nelson-Siegel model.

These results are calculated based on 1000 repetitions of a sample of 480 observations. The black lines with
stars refer to the ML estimates and are computed for 5, 10, 15, 20, 25, 50, and 100 bonds. The red lines with
circles refer to the SR estimates and are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. Case 1 is to
the scenario with measurement errors of 10 basis points along the yield curve, and Case 2 is to the scenario
with measurement errors of 20 basis points along the yield curve.
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Figure 5: The biases in estimating the standard error of lambda
This figure reports biases in estimating the standard error of lambda in the dynamic Nelson-Siegel model.

These results are calculated based on 1000 repetitions of a sample of 480 observations. The black lines with
star refer to the ML estimates using the outer product of the score function and are computed for 5, 10, 15,
20, 25, 50, and 100 bonds. The red lines with circles refer to the heteroskedastic robust estimates in the SR
approach. The green lines with squares refer to the non-heteroskedastic robust estimates in the SR approach.
The SR estimates are are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. Case 1 is to the scenario
with measurement errors of 10 basis points along the yield curve, and Case 2 is to the scenario with
measurement errors of 20 basis points along the yield curve.
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Figure 6: Biases when estimating the Dynamic Nelson-Siegel model
This figure reports biases when estimating all the parameters in the dynamic Nelson-Siegel model. These

results are calculated based on 1000 repetitions of a sample of 480 observations and with measurement errors
of 10 basis points along the yield curve. The black lines with stars refer to the ML estimates and are computed
for 5, 10, 15, 20, and 25 bonds. The red lines with circles refer to the SR estimates and are computed for 10,
15, 20, 25, 50, 100, 150, and 200 bonds. The black pluses refer to the infeasible ML estimates when the factors
are observed, or equivalently, when there are an infinite number of observables each time period.

| —%—— ML approach —E&—— SR approach ———— Infeasible VAR |

X 10'4 lampda alfa(1,1)
0.2
t 0.1
5 3 < © +
0 — 0
0.2+
2 L L L L L L L L L L
5 25 50 100 150 200 5 25 50 100 150 200
Number of bonds Number of bonds
alfa(2,1) alfa(3,1)

os}
0.2 ¢
01}
g © +
0 0y = S -+
0.1t
0.2

0.5
L L L L L L L L L L
5 25 50 100 150 200 5 25 50 100 150 200
Number of bonds Number of bonds
hx(1,1) hx(2,1)
0.05
0.02
0 0
- o + : 5 +
-0.02 i
L L L L L 0.05 L L L L L
5 25 50 100 150 200 5 25 50 100 150 200
Number of bonds Number of bonds
hx(3,1) hx(1,2)
0.05 0.01f
. o +
o - + ] %
-0.05 | -0.01F
L L L L L L L L L L
5 25 50 100 150 200 5 25 50 100 150 200
Number of bonds Number of bonds
hx(2,2) hx(3,2)
01p

0.05 | 0.05 |
4 = 5 + * '
0.05 -0.05

! ! ! ! ! -0.1 ! ! ! ! !
5 25 50 100 150 200 5 25 50 100 150 200

Number of bonds Number of bonds

o7



Figure 6: Continued
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Figure 7: The true standard errors for the estimates in the Dynamic Nelson-Siegel model
This figure reports true standard errors for the estimates in the dynamic Nelson-Siegel model. These results

are calculated based on 1000 repetitions of a sample of 480 observations and with measurement errors of 10
basis points along the yield curve. The black lines with stars refer to the ML estimates and are computed for
5, 10, 15, 20, and 25 bonds. The red lines with circles refer to the SR estimates and are computed for 10, 15,
20, 25, 50, 100, 150, and 200 bonds. The black pluses refer to the infeasible ML estimates when the factors are
observed, or equivalently, when there are an infinite number of observables each time period.
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Figure 7: Continued
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Figure 8: Biases in the estimates of standard errors in the Dynamic Nelson-Siegel model
This figure reports biases when estimating the standard errors for the estimates in the dynamic Nelson-Siegel

model. These results are calculated based on 1000 repetitions of a sample of 480 observations and with
measurement errors of 10 basis points along the yield curve. The black lines with stars refer to the ML
estimates and are computed for 5, 10, 15, 20, and 25 bonds. The red lines with circles refer to the SR
estimates and are computed for 10, 15, 20, 25, 50, 100, 150, and 200 bonds. The black pluses refer to the
infeasible ML estimates when the factors are observed, or equivalently, when there are an infinite number of
observables each time period.
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Figure 8: Continued
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