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Abstract

Starting from the discrete-time a�ne term structure model by Dai, Le & Singleton

(2006), this paper proposes a Radon-Nikodym derivative which implies that factors

follow a mixture distribution under the physical measure. The model thus maintains

attractive features of an a�ne relation between yields and factors, while allowing for

nonlinear and non-normal time-series dynamics. Empirically the �t of the discrete-

time 3-factor a�ne model is found to be substantially improved by the inclusion of

two components to describe the time-series dynamics. Relative to the risk-neutral

model, the mixture model is able to let the variance of the one-period rate be higher

and faster increasing in the variance factor, and to introduce negative skewness and

positive excess kurtosis. When weights on the components depend on factors, the

model produces a speed of mean reversion and variance of the one-period rate that

both increase fast with higher levels of the yield curve. The added second component

is found to capture infrequent relatively large simultaneous shifts in direction of a yield

curve that is at a lower level, is steeper, and is more positively curved.
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1 Introduction

The term structure of interest rates is commonly described by a factor model in which

zero-coupon bond yields depend linearly on factors. This goes back at least to Litterman

& Scheinkman (1991), who showed that the cross-sectional relation of yields with di�erent

maturities is well captured by 3 linear factors with loading functions shaped such that the

factors impact the level, slope and curvature of the yield curve, respectively. In addition,

a complete model of the term structure of interest rates describes the behavior of the yield

curve over time by modelling the dynamics of the factors in a way that does not admit

arbitrage. Du�e & Kan (1996) establish that an a�ne relation between yields and factors

is implied by models in which the factor drift and squared volatility terms for a risk-neutral

investor, as well as the short rate, are a�ne in the factors. Adding a description of investor

preferences by a properly de�ned market price of risk function leads to the continuous-time

a�ne term structure models, which are detailed in Dai & Singleton (2000).

The time series of interest rates have been documented by several authors to exhibit

nonlinearities in both �rst and second moments. Thus the short rate is found to mean revert

much stronger further away from the mean, and the volatility to increase faster than linearly

with the level of rates, Chan, Karolyi, Longsta� & Sanders (1992), A��t-Sahalia (1996a), A��t-

Sahalia (1996b), and Boudoukh, Richardson, Stanton & Whitelaw (1999). Yield changes

also does not appear to be normal distributed showing negative skewness and positive excess

kurtosis. This is for instance captured in models of the short rate that include jumps,

Johannes (2004) and Piazzesi (2001).

An a�ne pricing model is only a consequence of dynamics in the risk-neutral model, and

several papers have shown that generalizations of the market price of risk function improves

the ability of continuous-time a�ne models to match time-series properties of yields, Duf-

fee (2002), Duarte (2004), and Cheridito, Filipovic & Kimmel (2007). In continuous-time

Wiener driven models di�erences between the dynamics under the risk-neutral and histor-

ical measures are only in the drift term as a consequence of the Girsanov theorem. This

naturally limits the ability to reconcile a�ne pricing models resulting from a�ne continuous

time risk-neutral factor dynamics with some of the observed empirical time-series properties

of yields.

This paper attempts to improve on the ability of term structure models with an a�ne

pricing relation to capture the nonlinear and non-normal time-series properties of interest

rates. The proposed model is set in discrete time and builds on the framework introduced

by Dai et al. (2006), a discrete analog to the continuous-time a�ne models. By modelling

via the conditional moment generating function, their approach conveniently obtains closed-

form expressions for the conditional likelihood function even for general market price of risk

functions. Still, the formulation of the Radon-Nikodym derivative that they propose implies

that only the mean of factors that are Gaussian under Q is a�ected, and more generally,
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that changes in higher moments are �xed when the di�erence in mean between measures is

determined.

The paper suggests a Radon-Nikodym derivative that is a weighted average of Esscher

transforms. This has the consequence that the P distribution of yields will be a mixture
distribution with components de�ned by the individual Esscher transforms and mixture

proportions that are the weights from the Radon-Nikodym derivative. Component distribu-

tions are known in closed form, by the method used in Dai et al. (2006), and thus the full

conditional likelihood function of the mixture model is known as well. Besides the individual

market price of risk functions that de�ne each component relative to the risk-neutral model,

the mixture proportions may also depend on factors in the model.

By combining individual components the mixture model allows for nonlinearities as well

as variation in higher moments of the time-series distribution of yields. This is also pos-

sible in models where each component under the physical measure is a�ne with constant

parameters like in the risk-neutral model. Factors come from the standard a�ne pricing

framework, and the variation in moments conditional on these can therefore be interpreted

in relation to level, slope, and curvature of the yield curve. Models with regime switching

also describe interest rate time series as a combination of distributions. These models have

been applied for instance by Hamilton (1988), Ang & Bekaert (2002), Bansal & Zhou (2002).

A mixture model is similar to a regime switching model prior to realization of the regime

but without dependence in regime over time. That is, the weighing of components does

not depend on which component the previous period's realization comes from. The mixture

model with factor-dependent weights do allow for periods of higher or lower probability of

each "regime", but this dependence runs entirely through the position of factors.

In an empirical implementation the 3-factor a�ne pricing model with a mixture element

in the time-series dynamics is applied to weekly US zero-coupon bond yields. The estima-

tion method uses the standard simplifying assumption that some yields are observed without

error to implicitly obtain the factors and allow for maximum likelihood estimation without

�ltering. Results show that allowing for a two-component distribution in the time series

substantially improves the �t to observed yields relative to a single-component model when

�t is compared by information criterion statistics to correct for the higher number of param-

eters in the mixture model. Further, there is evidence in favour of letting weights depend

on factors, though this improvement is less than that of adding the second component.

The mixture models estimate a main component fairly similar to the single-component

models, while the second component with low weight is quite di�erent. The conditional

mean of the additional component is located such that it allows for relatively large changes

of the yield curve in a speci�c direction. This can be described as a simultaneous shift

towards a yield curve that has lower level, more steepness and more positive curvature.

Due to the high and low weights on each of the two components, such that these represent
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standard movement and infrequent large moves, the model captures some of the same e�ects

that Poisson-type jumps do in continuous-time models.

The suggested Radon Nikodym derivative allows for substantial di�erences in other mo-

ments than the mean between the risk-neutral and the physical measures. Compared to

single-component models, this results in the variance of the one-period rate being lower

and more slowly increasing with the variance factor in the risk-neutral part of the mixture

models. Thus the pricing implications are changed, although the speci�cation of this part of

the model is unchanged. The higher one-period rate variance, which also increases sharper

with the variance factor, shows up only in the time-series dynamics of the mixture model.

Changes in the one-period rate under the physical measure are very close to being normal

distributed for weekly intervals in the single-component models, whereas the mixture models

estimate negative skewness and positive excess kurtosis in the one-period rate time series.

With factor-dependent weights, the weight on the second component is higher when the

yield curve has a higher level factor, when it has a lower positive curvature factor, and

slightly higher when the steepness factor is higher. These results imply clear nonlinear

patterns in expected changes of the one-period rate. Thus it is expected to revert faster

towards lower rates when the general level of rates is high and when medium term rates

are low. Variance increases sharply as well for a higher level factor and for higher negative

curvature. Negative skewness and positive excess kurtosis are highest when these two factors

are about one standard deviation above their means.

A by-product of the empirical implementation is the observation that the canonical

identi�cation scheme for a�ne models is problematic for some data. The constant terms in

the variance of the Gaussian factors are �xed in the canonical rotation to identify the scale

of these factors, but they are in general only required to be non-negative. If data requires a

model with some of these terms close to zero, then the scale of the related factors becomes

weakly identi�ed resulting in problems of estimating standard errors for all parameters

a�ected by scale rotations of the given factor. This result is also applicable for continuous-

time models and is easily solvable when discovered by instead identifying the scale of the

given factor via restrictions on another parameter.

Section 2 of the paper introduces the discrete-time a�ne pricing model by Dai et al.

(2006). The conditions that must be satis�ed by the Radon-Nikodym derivative in this

framework to properly de�ne the physical dynamics are discussed in Section 3. In Section 4

the suggested form of this function is described and the consequences for the P distribution
of factors is presented. Section 5 discusses how to estimate the proposed type of model

under the assumption that some yields are observed without error. The empirical study of

di�erent risk price speci�cations in the 3-factor model with one factor a�ecting variance is

in Section 6 and Section 7 concludes.
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2 Discrete-Time A�ne Term Structure Model

Dai et al. (2006) suggest a class of discrete-time a�ne term structure models analogous to

the well known a�ne models set in continuous time. In this section, I briey review the part

of their model that determines the cross-sectional relation between zero-coupon bond prices

and thus the yield curve. As is standard, this is determined by a risk-neutral model of the

short rate, or in discrete time the one-period rate. The model describes the one-period rate

as a�ne in N factors and then speci�es the dynamics of these factors under the risk-neutral

measure, Q. The factors follow a �rst order a�ne Markov process in which M factors are

allowed to a�ect conditional variances. Thus the discrete a�ne risk-neutral model is termed

DAQM (N).

The N -dimensional Markov process for factors, X, is a�ne since the conditional moment

generating function of Xt+1 given Xt is exponentially a�ne

�Qt (u) = E
Q
t

h
eu

0Xt+1
i
= ea(u)+b(u)

0Xt ; (1)

where u is an N �1 vector, the function a (�) takes scalar values, and b (�) is an N �1 vector
of functions. In the DAQM (N) model the conditional factor distributions are in particular

chosen such that the model has as its continuous-time limit the continuous a�ne AQM (N)

model speci�ed by Dai & Singleton (2000). Therefore arrange the N factors in two groups,

X 0
t = [Z 0t; Y

0
t ], where Zt is a discrete time counterpart to M correlated Cox-Ingersoll-Ross

processes, and Yt corresponds to N �M Vasicek processes. To simplify the presentation, I

restrict Zt to be scalar, i.e., the model is only described here for M � 1. This includes the
empirically appliedDAQ1 (3) model, but the extension suggested in the paper can equivalently

be applied to models with multiple variance factors.

The variance factor Z is an autonomous process, independent of the Y factors at all times,

and it follows the exact discrete time counterpart of a CIR process. Thus the conditional

distribution of the variance factor at t+ 1 given Zt can be expressed by

2Zt+1
c
jZt � �2

�
2�;

2�Zt
c

�
; (2)

where �2 (k; �) is the non-central chi-square distribution with k degrees of freedom and

non-centrality parameter �. The parameters must satisfy 0 < � < 1, � > 0, and c > 0.

Conditional on variables at t, the N � 1 non-variance factors Yt+1 are independent of
Zt+1 and normally distributed,

Yt+1jXt � N (!Y t;
Y t) : (3)

The mean is a�ne in all factors, !Y t = �0 + �ZZt + �Y Yt, for (N � 1) � 1 vectors �0 and
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�Z , and an (N � 1) � (N � 1) matrix �Y . The variance is a�ne in Zt alone, and this is
parameterized by 
Y t = �Y SY t�

0
Y , where �Y is a non-singular (N � 1) � (N � 1) matrix

and SY t = diag (�+ �Zt) for (N � 1) � 1 parameter vectors � and � which both are non-
negative. Occasionally, it is convenient to express the variance as 
Y t = h0 + hZZt, for the

symmetric, positive semi-de�nite matrices h0 = �Y diag (�) �
0
Y and hZ = �Y diag (�) �

0
Y .

For the factor distributions of the DAQ1 (N) model, the conditional moment generating

function is on the exponential-a�ne form (1) with the a and b functions given by

a (u) = �� ln (1� uZc) + u0Y �0 +
1

2
u0Y h0uY (4)

b (u) =

�
uZ

1� uZc
�+

1

2
u0Y hZuY + u

0
Y �Z ; u

0
Y �Y

�0
:

Here, uZ and uY are the scalar and (N � 1)-vector in u0 = [uZ ; u0Y ], and it must hold that
uZ < 1=c.

When parameters are chosen appropriately the model converges to the continuous a�ne

AQ1 (N) model as the period length shrinks to zero. Suppose that parameters in a �-period

discrete model are set equal to

� = 1� �ZZ�; � = 2�ZZ�Z=�
2
Z ; c = �2Z�=2;

�0 = [�Y Z ; �Y Y ] ��; �Z = ��Y Z�; �Y = I � �Y Y�;

� = �c�; � = �c�;

(5)

where dimensions of right hand side parameters follow directly from the discrete model

parameters. Then it can be shown that for �! 0 the discrete model converges to

dXt = � (� �Xt) dt+ �
p
SctdWt; (6)

where

� =

 
�ZZ 0

�Y Z �Y Y

!
; � =

 
�Z

�Y

!
; � =

 
�2Z 0

0 �Y

!
: (7)

and Sct = diag ([Zt; �
c + �cZt]).

1

The a�ne relation between the one-period interest rate and the factors is written as

rt = �0 + �
0
XXt; (8)

for a scalar �0 and an N � 1 vector �X . The entries in �X are denoted (�Z ; �1; :::; �N�1)0, i.e.,
the numbers indicate which Y factor the parameters a�ect.

1The continuous model parameters �c, �c, and matrix Sct have been given superscript c to distinguish
them from the corresponding discrete model parameters �, �, and matrix SY t, which are all scaled relative
to the period length �.
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Analogous to the result in Du�e & Kan (1996) for continuous time models, the a�ne

speci�cations in (1) and (8) imply that the price of a zero-coupon bond with maturity n is

exponentially a�ne in the factors,

P nt = e
�An�B0nXt ; (9)

where the scalars An and the N � 1 vectors Bn are determined recursively according to2

An = An�1 +��0 � a (�Bn�1) A0 = 0

Bn = ��X � b (�Bn�1) B0 = 0:
(10)

This result follows since under the martingale measure Q discounted prices must satisfy the
no-arbitrage condition

P nt = E
Q
t

�
e��rtP n�1t+1

�
: (11)

For a risk-neutral model determined by the short rate (8) and factor dynamics (1) this

is satis�ed when prices are on the form (9) - (10). The n-period zero-coupon yield at

time t (continuously compounded and measured in per annum terms) is given by ynt =

� log (P nt ) = (n�). The yield curve at time t when factors are equal to Xt is therefore

ynt = �
n
0 + �

n 0
XXt; (12)

where the scalars �n0 = An= (n�) and the N � 1 vectors �nX = Bn= (n�) have been named
for their analogy with parameters in the one-period rate, rt = y

1
t = �

1
0+ �

1 0
XXt = �0+ �

0
XXt.

3 Restrictions in Choice of Physical Dynamics

A complete term structure model must also describe the behavior of interest rates over time.

As seen from (12) the risk-neutral model determines the cross-sectional relation between

yields in terms of the factors at each point in time. Therefore, the model is completed

by also modelling the time-series behavior of the factors, i.e., determining the dynamics of

factors under the actual, or physical, probability measure, P. An asset pricing model is free
of arbitrage if there exists an equivalent probability measure under which discounted prices

are martingales. The approach used here to modelling the term structure is somewhat

backwards, but standard, since dynamics under the martingale measure Q is determined

�rst and then the relation to the actual behavior of rates is determined in the second step.

To preclude arbitrage it is therefore only left to ensure that the physical probability measure

P is equivalent to Q, which then is an equivalent martingale measure per de�nition. This
2The period length � enters in front of �0 and �X since the one-period rate is measured in per annum

terms, see the appendix.
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section clari�es the necessary restrictions to ensure a well de�ned arbitrage-free model when

specifying the physical dynamics on top of a given discrete-time risk-neutral model, such as

the a�ne pricing model of Section 2.

Before turning to the multi-period model, consider �rst a probability space (
;F ;Q).
Then by the Radon-Nikodym theorem a measure absolutely continuous to Q can be de�ned
via a non-negative, F -measurable random variable � by

P (E) =
Z
E

�dQ 8 E 2 F ;

and � = dP
dQ is called the Radon-Nikodym (RN) derivative of P with respect to Q. The new

measure P is a probability measure if it integrates to 1 on 
, which is satis�ed if the RN
derivative has Q expected value 1, i.e., EQ (�) = 1. To ensure that Q is also absolutely

continuous to P, such that the measures are equivalent, it is further required that � > 0,

Q-a.s. With these additional conditions an equivalent probability measure can be de�ned
by an RN derivative.

In the discrete-time model let the RN derivative of P with respect to Q at time t for

variables to be realized at t + 1 be �t;t+1. For tractability reasons I restrict �t;t+1 to be

a function of Xt and Xt+1 only, such that the �rst order Markov property is preserved.

Applying the restrictions found above, the function must satisfy

EQt
�
�t;t+1

�
= 1

�t;t+1 > 0; Qt+1 � a:s:
(13)

to ensure that the new measure it de�nes is an equivalent probability measure. The distri-

bution of variables in the risk-neutral model was speci�ed through the conditional moment

generating function, (1). By de�nition of the RN derivative it is now straightforward to

obtain the corresponding function under the physical measure

EPt

�
eu

0Xt+1
�
= EQt

�
�t;t+1e

u0Xt+1
�
: (14)

De�ning all one-period RN derivatives in the discrete model to satisfy (13) will ensure that

the change of measure is also well de�ned over longer periods. By application of iterated

expectations and (14) for each period it follows that the RN derivative at time t for variables

at t+ k must be the product of those for each period,

�t;t+k =

kY
i=1

�t+i�1;t+i: (15)

Again, by iterated expectations it is straightforward to check that �t;t+k has Qt-expected
value 1, and that it is strictly positive on sets with positive mass under Qt+k, since this
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holds for all the single period RN derivatives. Thus the discrete multi-period model can

consistently be de�ned under the physical measure by specifying all one-period conditional

RN derivatives.

To determine the physical dynamics of interest rates by a change of measure in the initial

risk-neutral model in the way just described, the RN derivative must further be chosen such

that the resulting P distributions are econometrically tractable. In the discrete-time model
tractability is only necessary on a period by period basis, i.e., concerning distributions arising

from (14). The distributions that result for variables over longer periods from EPt
�
eu

0Xt+k
�
=

EQt
�
�t;t+ke

u0Xt+k
�
may be complicated and not known in closed form due to the way �t;t+k

is obtained by (15). This is di�erent from continuous-time models for which tractability at

the frequency of observations automatically implies this at longer frequencies, as well.

The physical dynamics of factors in the discrete-time term structure model can be de-

termined by a measure change from the a�ne risk-neutral model by de�ning in each period

the conditional RN derivatives, �t;t+1. These must satisfy conditions (13) to ensure that P is
an equivalent probability measure to the martingale measure Q, such that the model is free
of arbitrage. Further, �t;t+1 should de�ne a conditional moment generating function under

P, (14), such that the distribution of variables Xt+1jXt is econometrically tractable. Besides

these considerations, �t;t+1 can be chosen to get a P model with a good �t to empirically
observed interest rate behavior.

4 Mixture Model

This section suggests a exible approach to de�ning the physical dynamics of interest rates

on top of the discrete-time risk-neutral model. Thus it shows that if the one-period Radon-

Nikodym derivatives are weighted averages of variables that all satisfy the conditions dis-

cussed in the previous section, then the resulting model under P is a mixture model. Start
with k variables �1t;t+1; ::; �

k
t;t+1 that satisfy (13) and therefore de�ne equivalent probability

measures to Q, say P1; :::;Pk.3 Then let the RN derivative that de�nes P be the convex
combination of these k variables,

�t;t+1 =

kX
j=1

wjt �
j
t;t+1;

kX
j=1

wjt = 1; (16)

where the non-negative weights are allowed to be functions of the conditioning set of variables

at time t, wjt = w
j (Xt) � 0. The convex combination preserves the properties (13), satis�ed

3Here, k is generally small and in the later empirical application k is 2, but the notation for arbitrary k
is convenient.
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by each �jt;t+1,

EQt
�
�t;t+1

�
=

kX
j=1

wjtE
Q
t

�
�jt;t+1

�
=

kX
j=1

wjt = 1

�t;t+1 =

kX
j=1

wjt �
j
t;t+1 > 0 Qt+1 � a:s:;

so the combined RN derivative properly de�nes a probability measure P equivalent to Q.
The implied conditional moment generating function under P is

�Pt (u) = E
Q
t

h
�t;t+1e

u0Xt+1
i
=

kX
j=1

wjtE
Q
t

h
�jt;t+1e

u0Xt+1
i
=

kX
j=1

wjt�
j
t (u) ;

where �jt (u) is the conditional moment generating function under Pj, the probability mea-
sure de�ned by the j'th individual RN derivative, �jt;t+1.

In a �nite mixture distribution the moment generating function is the weighted average

of the component moment generating functions with weights that are the mixture propor-

tions. It follows that factors in a P model de�ned by (16) have mixture distributions in
which components are the distributions obtained for factors under each Pj. The mixture
proportions are the weights, wjt , used to combine the individual RN derivatives. Thus in

terms of conditional densities

fP (Xt+1jXt) =
kX
j=1

wjtf
j (Xt+1jXt) ; (17)

for densities f j obtained under Pj. Then if each �jt;t+1 is de�ned such that conditional
densities of variables under Pj are known in closed form, the P model is econometrically
tractable using standard methods for �nite mixture distributions.

A way to obtain component densities in closed form is to let the individual RN derivatives

be Esscher transforms as suggested in the single-component case by Dai et al. (2006). Thus

for N -vector functions �jt = �
j (Xt) for which the expectation E

Q
t

�
e�

j
t
0Xt+1

�
exists, de�ne

the component RN derivatives as

�jt;t+1 =
e�

j
t
0Xt+1

EQt

�
e�

j
t
0Xt+1

� ; j = 1; :::; k: (18)

This has EQt
�
�jt;t+1

�
= 1 by de�nition, and positivity follows if the exponent in the numerator

is �nite with probability one. The restrictions that each �jt must satisfy for this method to
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be well-de�ned are therefore

�1 < �jZt < 1=c and
���jY t�� <1; Q� a:s:; (19)

where �jt has been separated into the parts that a�ect variance and non-variance factors,

�jt
0 =
�
�jZt;�

j
Y t
0�.

The transformation (18) is convenient because the resulting component distributions are

on the same form as those under Q, but with some parameters varying dependent on the
value of �jt . The moment generating function for the j'th component is

�jt (u) = Ejt

h
eu

0Xt+1
i
= EQt

h
�jt;t+1e

u0Xt+1
i

= ea(u+�
j
t)�a(�

j
t)+[b(u+�

j
t)�b(�

j
t)]

0
Xt ; (20)

and this will only in special cases be a�ne, i.e., on the form (1). For the factor distributions

in the DAQM (N) model, though, it is possible even for general �
j
t functions to write (20) as

that under Q with time-varying parameters. Let parameters in the risk-neutral model be

� = f�; �; c; �0; �Z ; �Y ;�Y ; �; �g, then manipulations of (20) show that

�jt (u) = e
a(u;�(�jt))+b(u;�(�

j
t))

0
Xt ; (21)

where a and b are the function in (4). The parameters in �
�
�jt
�
that depend on �jt are

c
�
�jt
�
= c �

�
1� �jZtc

��1
; �

�
�jt
�
= � �

�
1� �jZtc

��2
;

�0
�
�jt
�
= �0 + h0�

j
Y t; �Z

�
�jt
�
= �Z + hZ�

j
Y t;

(22)

while the remaining ones are una�ected. Writing the conditional factor density under Q as
fQ (Xt+1jXt; �), the mixture density under P can be written as

fP (Xt+1jXt) =

kX
j=1

wjtf
Q �Xt+1jXt; �

�
�jt
��
; (23)

with the parameters in each component that di�er from their values under Q given by (22).
Consider the additional exibility obtained in the P model with multiple components

relative to the single-component case. The conditional distributions may depend nonlinearly

on the factors as � (Xt) can be any function that satis�es (19). Still, from the results (21)

and (22), when k = 1 the form of the conditional factor distributions under P will be the
same as under Q, i.e., normal for Y and non-central �2 for Z. Further, these distributions

can di�er from under Q only by one degree of freedom per factor, since conditional on Xt the

shift is determined by the value of �1t which has dimension equal to the number of factors.

Speci�cally, this implies that if the single-component model is to match a certain di�erence
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in the mean for each factor, then the di�erence between the two measures in higher moments

is automatically �xed. This property is conditional on Xt and thus not dependent on how

the � (Xt) function is chosen.

In the multi-component model the conditional moment generating function under P,

�Pt (u) =
kX
j=1

wjt e
a(u;�(�jt))+b(u;�(�

j
t))

0
Xt ; (24)

cannot in general be reduced to the single exponential a�ne form (21), so now also the form

and not only the parameters in the conditional distributions may change relative to Q. The
uncentered moments of factors under P are easily obtained from (24) as weighted averages

of component uncentered moments,

EPt
�
Xn
t+1

�
=

kX
j=1

wjtE
Q
t

�
Xn
t+1j�

�
�jt
��
:

This illustrates that in the mixture model there is additional degrees of freedom for the

distributions to di�er between the two measures, since several moments of the conditional

factor distribution can now di�er independently. Thus a given �rst moment shift for each

factor can be matched by a multitude of combinations of �jt 's and there is then additional

freedom to also match di�erences in higher moments.

This di�erence between k = 1 and k > 1 is especially clear for the conditional normally

distributed variables Yt, since, as seen from (22), only the mean is a�ected by a single-

component Esscher transform. Thus

EQt
�
Yt+1j�

�
�jt
��
= EQt [Yt+1] + V

Q
t [Yt+1] �

j
Y t; (25)

while the variance and all higher central moments remain unchanged. With multiple com-

ponents other moments than the mean will di�er from their values under Q. For instance,
the variance in the mixture equals

V Pt [Xt+1] =
kX
j=1

wjtV
j
t [Xt+1] +

kX
j=1

wjt
�
Ejt [Xt+1]� EPt [Xt+1]

� �
Ejt [Xt+1]� EPt [Xt+1]

�0
;

(26)

i.e., the average component variance plus the average outer product of the distance between

component means and the common mean. For the Y factors the component variances

are the same but the means may di�er in a variety of ways for the same �rst P moment,
and thus di�erences between V Pt (Yt+1) and V

Q
t (Yt+1) are possible in the multi-component

model. That only the �rst moment of the conditional distribution is a�ected by the Esscher

transform is a special property of the normally distributed variables that does not hold for

12



the non-central chi-square variables, Zt.
4 It still holds for this type of variable that in a

single-component Esscher transform, the shift in all conditional moments is determined by

the single variable �jZt, and that this constraint is relaxed in the mixture formulation.

The ability in the discrete model to let higher moments di�er between equivalent mea-

sures is tied to the modelling of variables over �xed intervals, � > 0. For increasingly shorter

intervals, � ! 0, it also holds for the mixture model in the limit that only the expected

rate of change for variables is a�ected by the change of measure. The e�ect of increasingly

shorter time intervals on the Esscher transform used to get the components follows from

results in Dai et al. (2006). Without loss of generality reformulate �jt in terms of another

function �j (Xt) as

�j (Xt) = (�S
c
t�

0)
�1 �

�j (Xt)� �Q (Xt)
�
; (27)

where �Q (Xt) is the drift and �
p
Sct the volatility in the di�usion (6) that the Q model

converges to as �! 0. Then a �rst order Taylor approximation of the mean and variance

in the discrete model under Pj obtained with an Esscher transform de�ned by (27) gives

Ejt (Xt+�) = Xt + �
j (Xt)� + o (�)

V jt (Xt+�) = �S
c
t�

0�+ o (�) = V Qt (Xt+�) + o (�) :
(28)

This implies that the limiting continuous-time di�usion for the discrete model under Pj has
drift �j (Xt) and volatility �

p
Sct . Thus in the limit the Esscher transform tends to the same

e�ect as that achieved by a Girsanov transformation with kernel
�
�
p
Sct
�0
�jt in the limiting

di�usion model under Q. As a result, �jt is approximately the market price of risk that gives
the shift in mean per unit of variance,

Ejt (Xt+�)� EQt (Xt+�) = V
j
t (Xt+�) �

j
t + o (�) : (29)

Extending the results above to multiple components, a �rst order Taylor approximation

to the mean and variance under P in the mixture model is found to give

EPt (Xt+�) = Xt +

kX
j=1

wjt�
j (Xt)� + o (�) � Xt + �

P (Xt)� + o (�)

V Pt (Xt+�) = �Sct�
0�+

kX
j=1

wjt
�
�j (Xt)� �P (Xt)

�2
�2 + o (�) (30)

= �Sct�
0�+ o (�) :

Here the second equality for the variance assumes that the di�erence between the �j (Xt)'s

does not increase with �. Thus, it also holds for the mixture model as �! 0 that the e�ect

4The n'th centered moment under Q is EQt
�
Znt+1

�
= (n� 1)!�cn+n!cn�1�Zt and the Esscher transform

make � and c depend on Zt as given in (22).
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of the measure to a �rst order approximation is only a change in the drift from �Q (Xt) to

the weighted average of the component drifts, �P (Xt) =
Pk

j=1w
j
t�
j (Xt). Consequently, the

weighted average of �jt is approximately for small time intervals the market price of risk,

Ejt (Xt+�)� EQt (Xt+�) = V
j
t (Xt+�)

kX
j=1

wjt�
j
t + o (�) ;

measuring the change in mean per unit of variance.

That the measure change in the mixture model to a �rst order approximation for small

time intervals only a�ects the mean requires that the di�erence �j � �P is not related to
the interval length. For �xed interval length this di�erence may be large enough for the

second term in (30) not to be negligible. This follows since �j � �P is not restricted by the
wish to match a certain di�erence in the means and therefore may become large enough

to matter for the variance at the interval length in the model. The variance in the single-

component model, (28), may also have terms of order �2, but the size of these cannot be

changed without a�ecting the mean. Whether the possibility in the mixture model to let

higher moments di�er between the pricing model and the model for interest rate time series

is relevant should therefore be determined empirically.

5 ML Estimation for Implicitly Observed Factors

The interest rate model is estimated from a data set of m zero-coupon bond yields with

di�erent maturities observed at �xed intervals. The period length in the discrete model is

set equal to the observation frequency, such that yields are observed at times t = 0; 1; :::; T .

Including an additive error term, "nt , that captures the part of the observed yield unexplained

by the model gives from (12) that observed yields are

ynt = �
n
0 + �

n 0
XXt + "

n
t : (31)

Due to the error term in (31) the latent factors should generally be �ltered out when the

model is estimated. It is common to make the simplifying assumption that a number of yields

equal to the number of factors are observed without error, such that factors can be calculated

directly from the perfectly observed yields. This method is used in continuous-time models

by Chen & Scott (1993) and Pearson & Sun (1994), and in discrete-time models by Dai

et al. (2006). When factors under P follow a mixture distribution, this assumption allows
the use of standard likelihood methods from mixture modelling such as the EM algorithm

to estimate parameters. This section describes the estimation approach when factors are

assumed implicitly observed from a subset of the yields.

To write down the likelihood function arrange yields into an N vector of those observed
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without error ypt and an m � N vector of those with error yet . Then factors are obtained

from ypt using (31) without the error term to get

Xt = (�
p
X)

�1 (ypt � �p0) ; (32)

for �p0 the N -vector of �
n
0 's for maturities without error, and �

p
X similarly the N �N -matrix

with rows �n 0X for maturities without error. Substituting the factors (32) in (31) for the

remaining yields observed with error results in

yet = �
e
0 + �

e
X (�

p
X)

�1 (ypt � �p0) + "et ; (33)

where the m�N -vector �e0 and the (m�N)�(m�N)-matrix �eX are obtained by collecting
�n0 and �

n 0
X for maturities of yields observed with error. The error terms in yet are assumed

normal and independent across maturities, "et � N
�
0; diag

�
�21; :::; �

2
m�N

��
.

Collect all model parameters in the vector 	 and write y = fytgTt=0 for yields. Then
assuming y0 is given, the likelihood function is

L (	jy) = f (yj	) =
TY
t=1

f (ytjyt�1; : : : ; y0;	) =
TY
t=1

f (yet jy
p
t ;	) f

�
ypt jypt�1; 	

�
;

where the last equation splits yt into y
p
t and y

e
t , and uses that the Markovian structure for

factors transfers to ypt . Use the change of variable formula to substitute y
p
t with factors given

by (32) and get

L (	jy) =
TY
t=1

f (yet jy
p
t ; 	) f

P (XtjXt�1; 	) j�pX (	)j
�1 ; (34)

where superscript P indicates the physical factor dynamics. The risk-neutral dynamics of
the factors, on the other hand, enter the likelihood function in the cross-sectional relation

between yields through determination of vectors and matrices �p0, �
p
X , �

e
0, and �

e
X in the

normal density for yet jy
p
t , cf. (33). Finally, substitute the P density from the mixture model

(17) and take logs to obtain the log-likelihood function

l (	jy) =
TX
t=1

(
log f (yet jy

p
t ) + log

kX
j=1

wj (Xt�1) f
j (XtjXt�1)

)
� T log j�pX j ; (35)

where dependence on the parameter vector 	 is suppressed on the right hand side, and X

must be calculated from (32).

Maximization of the log-likelihood function for mixture models can not be solved in

close-form due to the log of a sum term that arises from the mixture. The classic solution to

this in the literature is to use the expectation-maximization (EM) algorithm of Dempster,
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Laird & Rubin (1977). This method proceeds in two steps that are iterated and under weak

regularity conditions monotone convergence to a local maximum is ensured. The dynamic

structure in the suggested interest rate model is not standard in mixture models, but it is still

possible to apply the EM algorithm to maximize (35). The interest rate model can be seen

as missing the indicator variables Kt =
�
K1
t ; :::; K

k
t

�
that determine to which component

transition density Xt belongs, such that if K
j
t = 1 the density for Xt is f

j (XtjXt�1). These

variables are distributed KtjXt�1 � Multk (1; wt�1) and Kt is independent of Kt�1 when

conditioning on Xt�1. The last property is important, since if the link between component

indicators could not be broken by conditioning on factors, an extension of the algorithm

would be necessary, such as the forward-backward algorithm used in hidden Markov models.

EM is especially useful when the M-step can be calculated in closed form, such as for nor-

mal component densities and constant membership probabilities. In these cases application

of the algorithm avoids the use of standard numerical optimization routines which are then

substituted with the iteration over two easy to calculate steps. The parameter estimates in

component densities of the suggested interest rate model cannot be obtained in closed form

and the weights are allowed to depend on the factors. Therefore the maximization step must

be solved by numerical optimization. As the EM algorithm generally needs many iterations

to converge, this numerical step will slow down the algorithm considerably. Indeed, in the

empirical application later in the paper, it turns out that direct numerical optimization of

the log-likelihood function (35) over the parameters 	 is much faster than use of the EM

algorithm, and therefore standard numerical optimization rutines are used to maximize the

likelihood function instead.

There are a few special properties of the likelihood function for a model that includes

a mixture element which should be considered. The likelihood function will generally have

multiple local maxima. In models where components belong to the same family of distribu-

tions and di�er only in parameter values, it is always possible to reorder component labels

and obtain the same likelihood value. This label switching problem is solved by imposing

some ordering of one of the parameters that di�er over components. It is also possible that

the likelihood function is unbounded. For instance in a mixture of normals with di�erent

mean and variance parameters in each component, the likelihood function goes to in�nity if

one component centers at a single observation and its variance goes to zero. Even in such

cases regularity conditions satis�ed by most parametric families ensure existence of a local

maximum with the asymptotic properties equivalent to maximum likelihood estimators, see

Redner & Walker (1984). Therefore when searching for parameter estimates, the procedure

should be started several times from di�erent initial points. Then after removing possible

spurious solutions, the largest remaining local maximizer can be chosen as the maximum

likelihood estimate.

It is desirable to be able to test for the number of components to include in the mix-
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ture distribution, and in particular whether a mixture is necessary at all. Removing one

component density, i.e., going from k to k � 1 components, can be achieved by appropriate
parameter restrictions. Unfortunately regularity conditions are not met to test these restric-

tion by a standard likelihood ration test. Reducing the number of components restricts the

parameter vector to the boundary of the parameter space, or for components of the same

parametric family to a non-identi�able subset of the parameter space. This implies that the

LR statistic is not asymptotically chi-square distributed as in the standard setting. Instead

models with di�erent numbers of components can be compared using Akaike's information

criterion and the Bayesian information criterion. For a model with d parameters and T

observations AIC is �2 logL
�
	̂
�
+ 2d, while the BIC is �2 logL

�
	̂
�
+ d log T , and the

model with the lowest statistic is preferred. The statistics measure lack of �t as twice the

negative log-likelihood function and penalize models for their complexity as measured by

the number of parameters. The BIC requires a larger gain in likelihood value to include an

extra parameter when more data is observed, and thus it penalizes complex models stronger

than AIC for all reasonably sized samples.

6 Three-Factor Models

It is standard in term structure literature that three factors are needed to adequately describe

the cross section of interest rates. In the a�ne framework of Dai & Singleton (2000) a three-

factor model with one factor a�ecting variance is often the preferred model. I will therefore

focus on the discrete analog, the DAQ1 (3) model, and estimate it together with a number of

di�erent speci�cations for the Radon-Nikodym derivative, �t;t+1, to see whether the inclusion

of a mixture element in the measure change for this model is justi�ed empirically. Though

the mixture extension is not related to the speci�c form of the market price of risk function

�t, I consider for comparability reasons both the e�ect of restricting this function to get

linear P components and of allowing for a cubic formulation of �Z , as suggested in Dai et al.
(2006).

The risk-neutral part of the interest rate model to be estimated is presented in (2),

(3) and (8). Thus the DAQ1 (3) model has without restrictions 23 free parameters given

by the set f�0; �Z ; �Y ; �; �; c; �0; �Z ; �Y ;�Y ; �; �g. The restrictions imposed by de�nition on
parameters �, �, and c already ensure that Zt is a well-de�ned autoregressive-gamma process

that stays non-negative. To further avoid that Zt can reach its lower bound of zero, the

condition � > 1 is imposed. This sets PrQ fZt+1 = 0jZtg = 0 for any conditioning Zt, since
the degrees of freedom, 2�, in the non-central chi-square distribution then is larger than

two. That 
Y t is positive de�nite can be obtained by imposing that �i + �i > 0 for all i

in addition to the already given conditions, � � 0, � � 0, and �Y non-singular. There is

no problem in either �i or �i being zero as long as this is not the case for both with the
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same index, in which case the corresponding error term would not enter the model. Further,

mean-reverting Y factors is obtained by requiring that eig (�Y ) < 1. This already holds for

Z, since � < 1 by de�nition.

Analogous to the continuous-time a�ne models it is necessary to set some of the 23

parameters constant to get an identi�ed model. This is an issue, since factors in the linear

model can be rotated without a�ecting the model for the one-period rate and thus without

changing pricing implications. In the discrete model the main transformations are a rescaling

of Z with a positive constant l, an a�ne transformation LY + v of the Y factors, and a

reparametrization of Y -factor variance using the transformation D. The e�ect of these

transformations on the parameter vector is given in the appendix. Di�erent identifying

restrictions can be chosen to avoid that such transformations are possible. It is natural to

consider the restrictions that would place the approximating continuous-time AQ1 (3) model

in its canonical form. For the parametrization (6)-(7) of the AQ1 (3) model the canonical

form imposes the identifying restrictions �Z = 1, �Y = 0, � = I, �c = �, and �Y � 0.

Therefore by the relation (5), if the restrictions

c = �=2; �0 = ��Z
��=2

1� � ; � = ��; �Y = I; �Y � 0 (36)

are imposed in the discrete model, the approximating AQ1 (3) model will be on canonical

form. This sets 9 parameters constant and the risk-neutral model therefore has 14 free

parameters left. The sign restrictions on some of the free parameters,

0 < � < 1; v > 1; eig (�Y ) < 1; � � 0; (37)

also ensure that admissibility restrictions in the continuous-time model are satis�ed. In the

appendix it is argued that the restrictions in (36) are indeed identifying in the discrete model,

and that they are unrestrictive for any model with all �i strictly positive. This follows since

the conditions can be imposed in any discrete model, with � > 0, via transformations by

l, L, v, and D, and that no further transformations are possible when the restrictions are

imposed.

6.1 Empirical Identi�cation Issues

The canonical identi�cation restrictions (36) can be imposed in any model with all � strictly

positive. For the yield data used to estimate the 3-factor model, this turns out to be a prob-

lematic assumption. When the model is estimated with canonical identifying restrictions,

this results in a Y2 factor with very large scale, such that in the variance term �2+�2Zt, �2

is of the order 107� 109, while the scale-identifying restriction for Y2 is �2 = � = 1=52. For
such a di�erence in magnitude �2 is in practical terms equal to zero, and setting �2 equal
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to zero in the model removes theoretical identi�cation of the Y2 scale. The e�ect in the

estimated model is that L = diag (1; L22) rotations can be performed that change param-

eters �2, �2Z , �12, �21, and �2 while �2 is kept at its �xed value with very limited impact

on the likelihood value. Thus the likelihood is at in direction of L22 rotations, and the

standard errors of estimates for a�ected parameters will be very large. When data requires

an �2 close to zero and this parameter is �xed for identi�cation, a small constant term in

the Y2 variance is instead achieved by scaling up Y2. Equivalently, if the free parameter

estimate of �2 is close to zero, then the transformations needed to get to (36) include an L

rotation with L22 = �=�2, which scales Y2 up by a large number. This issue is not speci�c to

discrete-time a�ne models, but would also arise in continuous-time models if data requires

one of the non-variance factors to have no constant term in its volatility.

The issue can be solved by imposing another scale-identifying restriction for Y2 than

setting �2 constant. Any other free parameter a�ected by L22, i.e., �2, �2Z , �12, �21, and �2,

can be chosen. In general, any of these may be zero for some data, so there is no universal

choice. In the speci�c case where a restriction of �2 gives problems, the natural choice is

to set �2 constant instead, since for �2 = 0 it must hold that �2 > 0. I choose �2 = �,

such that �c2 = 1 in the continuous approximation. The rotation that achieves �2 = � is

L22 =
p
�=�2 and relative to (36) this makes �2 a free parameter, such that it can go to

zero if the data requires this. Thus the 14 free parameters to be estimated in the risk-neutral

model, including sign restrictions, are

�0; �Z ; �Y � 0; 0 < � < 1; � > 1; �Z ; eig (�Y ) < 1; �2 � 0; �1 � 0: (38)

6.2 Radon-Nikodym Derivative Speci�cations

A number of di�erent speci�cations for the time-series dynamics of yields are estimated.

These di�er on their degree of mixture in the RN derivative and in the formulation of the

market price of risk function. Besides a single-component model, I estimate models with

two components, k = 2 in (16), that either have constant weights, wt = w, or weights that

depend on the factors. The relation between weights and factors is chosen to be a logistic

function

w (Xt) = (1 + exp (��0 � �0XXt))
�1
; (39)

for �0 scalar and �X a 3� 1 vector. The function is convenient since its range is (0; 1) and
it is analogous to a logistic regression for the unobserved variables that indicate to which

component of the mixture each data point belongs.

For each degrees of mixture two types of market price of risk functions are investigated.

The linear speci�cation implies that component models under P are a�ne with constant
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parameters, so �
�
�jt
�
= �j in (21) and (22).5 The other speci�cation allows for cubic

terms in the Z factor, similar to the model preferred by Dai et al. (2006), and thus results in

some parameters of the P components varying over time. The cubic model sets the market
price of risk function for Z in each component to

�jZt = Z
�1
t

�
�jZ0 + �

j
Z1Zt + �

j
Z2Z

2
t + �

j
Z3Z

3
t

�
; (40)

for scalars �jZi, i = 0; :::; 3. The impact of �jZt on c and � is given in (22), and from (4)

it follows that the component conditional distribution will only be a�ne if �Z is constant.

Thus the linear speci�cation restricts �jZ0, �
j
Z2, and �

j
Z3 to zero. For all estimated models

the market price of risk functions for the Y factors in each component are de�ned as

�jY t = S
�1
Y t

�
�jY 0 + �

j
Y ZZt + �

j
Y YXt

�
; (41)

for �jY 0 and �
j
Y Z both 2 � 1 vectors and �

j
Y Y a 2 � 2 matrix. For general �

j
Y the �0 and

�Z parameters in the j'th component become time varying under P as given in (22). The
speci�c formulation in (41) a�ects the a and b functions in (4), see appendix, such that the

j'th component remains an a�ne model with constant parameters,

�
Pj
0 = �0 + �

j
Y 0; �

Pj
Z = �Z + �

j
Y Z ; �

Pj
Y = �Y + �

j
Y Y :

6.2.1 Restrictions for well-de�ned �t

Conditions on the component functions �jt for the RN derivative to be well-de�ned given

in (19) are now translated to conditions on parameters in speci�cations (40) and (41). To

ensure �jZt < 1=c, it must hold that �jZ0 � 0 and �jZ3 � 0 in the cubic model, since �jZt
otherwise increases without bound for Z ! 0 or Z ! 1.6 In the linear model �jZt = �

j
Z1,

so the requirement is just �jZ1 < 1=c. It is automatically avoided that Z can reach its lower

boundary of zero in the component models under P, since � > 1 is unchanged by the Esscher
transform, cf. (22). That �jZt is �nite Q-a.s. then follows from 0 < Z <1 with probability

one under Q. �Y t is �nite as well since Y is mean reverting under Q due to eig (�Y ) < 1.
It is desirable to put structure on the model under P such that variables do not become

explosive. This can be done component-wise in the mixture model. The Y factors have

constant parameters in each component under P, so Y is mean reverting when eig
�
�jY
�
< 1.

For Z in the linear models this is achieved by �Pj < 1 which requires �jZ1 <
�
1�p�

�
=c.

In the cubic models �Pj is time varying, so the requirement is instead that this parameter

is less than one for all large values of Z, i.e., that 9K > 0 : �
�
�jZ
�
< 1; 8Z > K. This is

5This de�nition of a linear �t is slightly di�erent from what is called a linear �t by Dai et al. (2006),
who instead de�ne this in terms of the impact on the drift in the approximating AM (N) model.

6Parameters may also be such that the polynomial �jZt exceeds 1=c in the interior, but this is less likely
as c is small, and it is therefore checked for each model individually.
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satis�ed when �jZ3 < 0.

By the limiting arguments in (27) and (28) a continuous-time di�usion approximating

the dynamics of factors in the j'th P component can be found to be on the form dXt =

�Pj (Xt) dt+ �
p
StdW

Pj
t . Here the drift for the Z factor is equal to

�
Pj
Z (Xt) = �ZZ (�Z � Zt) +

�
�jZ0 + �

j
Z1Zt + �

j
Z2Z

2
t + �

j
Z3Z

3
t

�
; (42)

with �ZZ and �Z from the approximation under Q given by (5). Although boundary non-

attainment for Zt is automatically satis�ed under P in the discrete models, since � in the
components is unchanged by the Esscher transform, this property need not be satis�ed in the

approximating continuous model. Boundary non-attainment for drift (42) in the continuous

model requires that 2
�
�ZZ�Z + �

j
Z0

�
> 1 in the parametrization with � = I, such that the

drift is positive and large enough as Z ! 0. Since � = 2�ZZ�Z from (5), the condition

in terms of the discrete parameters is that �jZ0 > 1=2 � �. This need not be satis�ed in
the discrete model for restrictions already imposed, though it may be, since the interval

where �jZ0 satis�es both conditions, (1=2� �; 0], is non-empty for � > 1. The reason that
the discrete model can be well-de�ned without �jZ0 < 1=2� � is that the continuous model
approximation becomes worse as Z ! 0.

In estimation of the discrete model I choose not to impose restrictions for boundary

non-attainment of Z in the approximating continuous model. I focus on the discrete model

and impose only restrictions to ensure that this is well-de�ned. Dai et al. (2006) present

their estimation results of the discrete model with focus on results for the corresponding

continuous-time model and they therefore impose �Z0 < 1=2� � on the cubic model. They
focus less on the discrete model in the background and thus do not impose �Zt < 1=c, as

seen from �Z0 > 0 in some of their estimated models. In the mapping to the continuous

model c = �2Z�=2, and thus for � ! 0 the constraint reduces to �Zt < 1 almost surely.

Therefore one can arrive at a well-de�ned continuous model, although the estimated discrete

model has �Zt > 1=c for some set of Z with positive probability.

6.3 Results

The models are estimated using constant maturity treasury rates from the Federal Reserve

Board's database on Selected Interest Rates (H.15). The constant maturity rates in this data

set are based on a yield curve estimated each period from on-the-run treasury securities with

a cubic spline model. I use weekly observations by selecting all Wednesday yields from the

daily data with maturities 3 and 6 months and 1, 2, 3, 5, 7, and 10 years. The sample

period is 1988 : 1 to 2009 : 1, giving a data set of 8 � 1097 yields. For the estimation method
described in Section 5, I assume that the yields with maturities 3 month, 2 and 7 years are

assumed observed without error, while the remaining ones include a Gaussian error term, cf.
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(33). Direct numerical optimization of the log-likelihood function (35) turns out to converge

and be much faster than using the EM algorithm. Standard errors are estimated using the

negative inverse of the Hessian at maximum likelihood estimates.

The 3-factor models with parameters given in (38)-(41) are over-parameterized, so I

follow Dai et al. (2006) and reduce the maximal models to preferred parsimonious models by

removing insigni�cant parameters. Table 1 shows the results of this procedure. For instance,

9 parameters were removed from the maximal single-component linear model at a loss of

2:75 log-likelihood points. The method used for this elimination was to successively remove

the parameter that resulted in the least drop in likelihood value as long as the corresponding

likelihood-ratio statistic was above 5%. In a couple of instances a parameter with p-value

slightly below 5% was removed when this allowed for subsequent removal of a parameter

with high p-value. In all models a considerable number of parameters were removed at low

cost in likelihood value. Table 1 shows the joint LR statistics of the restrictions imposed by

the preferred models and these do in all cases have p-values above 40%.

The likelihood ratio statistics of restrictions imposed in the preferred linear models rel-

ative to the preferred cubic models are shown in Table 1. For each degree of mixture the

linear and cubic preferred models are nested and only di�er by the preferred cubic models

including 2-3 of the �j0Z , �
j
Z2 and �

j
Z3 parameters not allowed in linear models. In the single-

component model the cubic elements are insigni�cant and should have been removed in the

reduction to the preferred model, but where kept for comparison. In the two-component

models the cubic terms are very signi�cant with p-values of the joint LR statistic close to

zero.

The performance of the two-component models relative to that of the single-component

models is compared using Akaike's information criterion and the Bayesian information crite-

rion also shown in Table 1. Formulating the RN derivative as a weighted sum of two Esscher

transforms, such that the P distribution of factors and interest rates become a mixture gives
a considerable increase in the log-likelihood value. When accounting for the increased com-

plexity of models by using either information criteria, the models with two components

are preferred. For instance, between the linear single-component and the linear constant

mixture models there is a di�erence in the two information criteria of respectively 165:4

and 145:4 points. Among all models the time-varying cubic mixture model is the preferred

model in terms of both the AIC and BIC statistics.

The mixture models with constant weights impose the restriction �X = 0 relative to

the models with time-varying weights. Testing this restriction is somewhat complicated by

the preferred models not being nested since �21Z is removed in the preferred time-varying

mixture models, but not in the preferred constant mixture models. The models can instead

be tested up against an encompassing model that includes all parameters in either model.

�21Z is trivially insigni�cant in this encompassing model since it is the only addition relative
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to the time-varying preferred model, where it was removed. The constant mixture models

set the 4 parameters
�
�210; �X

	
to zero relative to the encompassing model, and this gives

LR statistics of 23:6 and 24:2 in the cubic and linear models, respectively, which in both

cases have p-values below 10�4. There is thus evidence in favor of letting weights depend

on factors in the two-component models, although the gain in model �t this provides is less

than that of including an extra component relative to a single, as seen from the information

criteria.

6.3.1 Risk-neutral Models

Estimates of free parameters in the risk-neutral part of the preferred models, (38), are

shown in Table 2 together with standard errors estimated via the numerical Hessian at

maximum likelihood estimates. Of the 14 free parameters �2 and �2 are set to zero in all

preferred models, while �1 is also removed in all two-component models. Thus the second

Y factor does not a�ect the one-period rate directly, but only through its e�ect on Y1 via

�12, while the �rst Y factor has constant variance under Q in all mixture models. That

�2 is insigni�cant and removed in all preferred models is the reason that the canonical

identi�cation restrictions do not work for the given data, since models with �2 = 0 cannot

be rotated to satisfy (36).7 Parameter values in the approximating continuous-time AQ1 (3)

models are calculated by (5) and shown in Table 3 with standard errors obtained by the

delta method.

The speed of mean reversion for each factor is determined by �, �11, and �22. These

parameters are close to one, so Table 2 shows 1 � �, 1 � �11, and 1 � �22 instead for
convenience. The same pattern emerges in all estimated risk-neutral models. The Z factor

reverses faster to its mean than the Y factors of which Y1 is slightly more persistent than

Y2. The loading functions, �
n
X , giving the impact of each factor on yields with di�erent

maturities, are shown in Figure 1 for the linear constant mixture model and the shape

is similar in the other models. Y1 is the factor with most even impact over maturities.

The impact of Y2 is increasing from zero for the one-period rate, �2 = 0, to be strongest

(negatively) for yields with long time to maturity. Z impacts yields with about 2 years

to maturity most (negatively) and short and longer yields less or in the opposite direction.

These observations give the natural interpretation of Y1, Y2, and Z as level-, (negative) slope-

and (negative) curvature factors. Their successively increasing speed of mean reversion is

consistent with standard �ndings. Comparing models, the di�erence between persistence

of the Y factors is smallest in the time-varying mixture models and largest in the constant

mixture models. The time series of implied factors from the yields observed without error

obtained by (32) are drawn in Figure 2 for the linear constant mixture model. Abstracting

7�2 identi�es the sign of Y2, so when it is set to zero this becomes undetermined. Thus the estimated
models could be transformed with L22 = �1 without any real e�ects. This might be solved by assuming
that �21 � 0.
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from possible di�erences by the change to P, the graphs further illustrate the di�erences in
the persistence of the three factors.

The parameters that govern the relation between factors, �1Z , �12, �2Z , and �21, are

all estimated to be negative. Given the above mentioned interpretation of factors as level,

(negative) slope, and (negative) curvature the parameter estimates have the following im-

plications. More positive curvature or equivalently high medium term yields (Z low) tend

to push the general level of yields higher and make the curve less steep. A high general level

of yields (Y1 high) will tend to tilt the curve steeper, a relation which also goes the other

way, such that a steeper curve (Y2 low) generally tends to push the yield level higher.

The estimated risk-neutral models are fairly similar across di�erent speci�cations of the

P model for interest rates. There are some notable di�erences between the single-component
and mixture models mainly related to the variance of the level factor no longer increasing

with Z under Q in the mixture models, i.e., that �1 becomes insigni�cant. The explanation
for this is discussed after the presentation of estimates for the P models.

6.3.2 Single-Component Model

Table 4 displays estimates of parameters in the Radon-Nikodym derivatives for the preferred

models of the 6 di�erent speci�cations that are investigated. Those of the implied P param-
eter that are changed relative to their values under Q are shown in Table 5. Omitted are

the parameters in the cubic models that become time varying under P. These parameters
are instead illustrated in Figure 3.

Starting with the single-component linear model, the preferred model only keeps the

two market price of risk parameters that impact how the level factor, Y1, is a�ected by the

other two factors, �1Z and �12. Thus the negative impact of Z on Y1 is increased under

P, while the impact of the slope factor, Y2, is strongly reduced. Since the unconditional
mean of Z is positive, �Z = 5:1, the increase in �1Z under P causes the unconditional mean
of Y1 to fall. Through the negative �21, it also causes the mean of Y2 to increase. Thus

�PY = (�24:3; 7:3)0, which was zero under Q. This is the standard e�ect that the level of
interest rates are expected to be higher under the pricing measure, or equivalently that bond

prices are expected to be lower, to compensate for risk.

The e�ect of the measure change on the mean of the one-period rate is illustrated in

the �rst row of Figure 4. This �gure shows the expected change of the short rate over the

next period under Q and P as a function of each of the factors. As a function of Y1 there
is a parallel shift downward from Q to P, whereas the increase in �1Z causes the graph to
tilt steeper as a function of Z. Since the slope factor only a�ects the short rate through its

e�ect on the level factor, �2 = 0, the expected change as a function of this factor almost

become zero due to the fall in �12.

When the single-component model allows for a cubic speci�cation in �Z , the estimate of
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this function is illustrated in Figure 3 together with implied values of c and � as a function

of Z. The leading coe�cient for high Z, �Z3, is estimated to be negative, consistent with

�ndings in Dai et al. (2006), thus inducing larger mean reversion for large Z under P than
in the linear model. The �Z function is also negative for small Z, implying a less positive

expected change in Z up towards the unconditional mean, EP (Z). The shape of EPt (Zt+1)

as a function of Zt is shown in Figure 5. This �gure also illustrates that E
P
t (Zt+1) would

be positive and induce stronger mean reversion for small Z if �Z0 was estimated without

restriction, i.e., an "S on the side" shape is obtained. Though, to avoid that �Z increases

above 1=c as Z goes to zero, it must be imposed that �Z0 � 0 . In terms of the expected
change in the one-period rate, illustrated in �rst row of Figure 4, the cubic model produces

results similar relative to those of the linear model, and EPt (rt+1) � rt can only just be
discerned to be slightly curved as a function of Zt, the dash-dot line in the upper left panel.

There may be di�erent reasons why a cubic element in �Z turns out to be less signi�cant

in this study than in Dai et al. (2006). It is possible that a longer time scale in the discrete

model, 1 month instead of 1 week, increases the need for nonlinearities in the expected

change of the one-period rate under P. Such nonlinearity may also mainly be necessary
as a function of the level, whereas the Z factor that allows for nonlinearities comes out as

the curvature factor in the present study. Other models yet to be presented do �nd clear

nonlinear patterns in the expected r change as a function of both the level and the curvature

factor at the weekly timescale. The main reason that the cubic elements are less signi�cnt

seems instead to be that I impose �Z0 � 0 to get a well-de�ned �Z in the discrete model,
which is a binding restriction. Had �Z0 > 0 been allowed, the LR statistic for the restrictions

imposed by the linear model would have been 9:5 instead with a p-value of 5:1%. Thus the

cubic element would be substantially more signi�cant in the single-component model if it

was also allowed to increase the mean reversion for low Z through a positive �Z0.

6.3.3 Constant Mixture Model

Models with a RN derivative that imply a two-component mixture distribution with constant

weights under P estimate the weight on the second component at respectively 2:2% and 2:5%
in the linear and cubic models, see Table 4. Due to the high weight on the �rst component

in the mixture its distribution must be quite similar to the P distribution in the single-
component models. Thus the preferred constant mixture models also include a positive �112,

which reduces �P112 almost to zero and makes the expected change in the short rate almost

independent of the second Y factor, see the left panel of the middle row in Figure 4. The

level of rates is again lowered relative to Q by the measure change, but now with �110 instead
of �1Z in the single-component model. The e�ect is still to reduce the level and increase the

negative slope factor, �P1Y = (�11:1; 5:5)0, but EQt (rt+1)� rt is not tilted as a function of Z,
compare the left panels in the �rst two rows of Figure 4.
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The shift in distribution from Q to the second component under P determined by �2t
is much larger than that to the �rst component, but to a large extend still in the same

direction. The level of rates is lowered relative to Q, but much stronger and with �21Z .
Thus the tilt relative to Z, which was seen in the single-component models, but not in

the main component of the mixture, is delegated to the secondary component. Changes

in the Z variable from Q to P2 shift c and � down in the linear model implying stronger
mean reversion, lower level and lower variance as well. The estimated cubic function, see

second row of Figure 3, has the same shape as that in the cubic single-component model,

but again with greatly magni�ed e�ect due to the low weight on this component. As in the

single-component case the condition �Z0 � 0 imposed to avoid �2Z > 1=c is binding. The

second component mainly di�ers from the �rst or the single-component model in relation

to changes for the second Y factor. Thus mean reversion for this factor is increased under

P2 by a negative �222, an e�ect not seen elsewhere, and the impact of this factor on Y1, and
thus the one-period rate, is increased by a negative �212, which is opposite to that in the �rst

component. This seems to allow �P112 to be even lower in the �rst component relative to the

single-component model, but with approximately the same combined e�ect, compare the

mean graphs for the one-period rate as a function of Y2 under P. In general the estimated
�rst moment of the one-period rate as a function of the di�erent factors, row one and two of

Figure 4, is not very di�erent in the constant-weight mixture and single-component models.

The main di�erences between these instead occur in higher moments to be discussed later.

6.3.4 Time-varying Mixture Model

When weights on the two Esscher transforms that de�ne the measure change to P are allowed
to depend on factors, this gives estimates of coe�cients in the logistic weight function shown

in Table 4. Figure 6 plots w (Xt) as a function of each factor with the other two �xed at their

unconditional P means. At Xt = E
P (X) the weights on the second component are 1:6% and

1:8% in each of the linear and cubic models. The weight on the second component is higher

when medium term yields are comparably low, Z high, when the general level of rates is

high, Y1 high, and when the curve is steeper, Y2 low. Thus for instance in the cubic model

the weight increases to 6:7% or 5:4% when Z or Y1, respectively, is one standard deviation

above its mean. When Y2 is one standard deviation below its mean the weight increases to

3:1%. The combined e�ect is much stronger. If the (Z; Y1; Y2) factors simultaneously are

(1; 1;�1) standard deviation from their means, the weight on the second component would

be 27:1%. The numbers for the linear model are similar, but slightly lower.

As it can be seen from Table 4, parameters of the estimated market price of risk functions

for each of the two components, �j (Xt), are very similar to those in the constant mixture

models. The main di�erence is that �210 is included in the preferred models instead of �
2
1Z ,

such that the negative shift in yield level relative to Q is constant with respect to Z in both
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components. The reason for this is that a steeper relation under P between Z and the mean
change in the one-period rate instead is captured by the increase in weight on the second

component as Z becomes large. Thus looking at the �rst panel in the bottom row of Figure

4, EPt (rt+1) � rt as a function of Z obtains a clear nonlinear pattern with higher negative
changes for large Z. The single-component model includes a tilt via �1Z to partly capture

this, and the constant mixture has a negative �21Z in the secondary component. Also the

negative estimate of �Z3 in the cubic representation of these models implies e�ects in this

direction, but gives nonlinear e�ects that are barely discernible in the leftmost panels of the

top and middle rows of Figure 4. The regularity condition �Z0 � 0 is not binding in the

model with time-varying weights, although it is binding in the single-component model and

in the second component of the constant mixture model. This is due to the factor dependent

weight on the second component being almost zero for small Z where a positive �Z0 would

have been advantageous.

The time-varying mixture also generates a clear nonlinear pattern in the expected one-

period rate change as a function of the level factor. Thus the short rate is expected to move

much more negatively when the yield level in general is high, an e�ect not seen in any of

the other models. Since the nonlinearities that show up in the mean-change functions are

due to the dependence of weights on factors and not due to the form of the component

market price of risk functions, there are only small di�erences between the linear and cubic

formulations of �j (Xt).

The time series of weights calculated from estimated factors in the model are shown in

Figure 7 together with the factor time series. The fast moving Z factor capturing changes

in medium term rates drives most of the variation in the weights. The slow moving level

factor determines the base level for weights around which they vary mainly due to Z. The

slope factor moves medium fast and has lower impact on weights than the two other factors

as seen in Figure 6. It is interesting to notice how weights on the second component tend

to rise when the general level of yields is about to fall. Examples are found at the end of

1990, the beginning of 2001, and the period from late 2007 to early 2008.

6.3.5 Changes in Conditional Variance

Aside from the nonlinearities in the time-varying mixture models there are only relatively

small di�erences in expected short rate change between mixture and single-component mod-

els, and under Q the mean functions are virtually identical in all models. This is di�erent

with respect to the second moment of the one-period rate. Figure 8 displays, in a fashion

similar to that of Figure 4, the conditional standard deviation of the one-period rate in each

model under Q and P as a function of each factor, while the other two are at their uncondi-
tional Pmean, i.e., the function f (x) = V ar�

�
rt+1jXit = x;Xj 6=i;t = E

P (Xj 6=i;t)
�1=2

. As seen

in the �rst row of this �gure, the conditional standard deviation for the single-component
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models barely changes between measures. The conditional variance of the Gaussian fac-

tors is una�ected for given Zt by the Esscher transform, while it changes slightly for the

autoregressive-gamma factor when �Z 6= 0. Thus in the cubic model the change in standard
deviation is less than 0:3% for all conditioning values of Zt in the displayed range.

For the mixture models, in contrast, the conditional variance is estimated to be quite

di�erent under the two measures. This is possible as seen from (26), since the di�erent

means in component densities under P increase the variance of the mixture distribution.
Though this e�ect by (30) goes to zero with the square of the discrete model period length,

it is evident from Figure 8 that the component means can be su�ciently di�erent for this

e�ect to be large at weekly interval lengths. The possibility of a pronounced di�erence

in the conditional second moment in the mixture models between measures implies that

estimated values di�er from those in the single-component models not only under P but
also under Q. The risk-neutral part of the mixture models thus estimates both a lower
level for the conditional variance of the one-period rate and a lower dependence of this on

the variance factor, Z, than in the single-component models. The higher level and stronger

dependence on Z, akin to that in the single-component models, instead occur only under P
in the mixture models. In addition, the constant mixture has conditional variance under P
increasing as a function of the slope factor, due to the di�erent values of �12 and �22 in the

two components.

In the time-varying mixture models conditional standard deviation under P increases
faster than linearly as a function of Z and Y1 over the displayed range. This is due to the

increasing weight on the second component for large values of Z and Y1 in these models.

This result for the time series of interest rates is qualitatively similar to results of both Chan

et al. (1992) and A��t-Sahalia (1996a). These papers �nd that the volatility of the short rate

increases faster than linearly with the short rate, and that a non-parametric estimator of

the short rate di�usion increases fast in a range above the mean of the short rate.

Going back to the estimated parameters in the pricing models shown in Table 2, the main

di�erences between mixture and single-component models can be explained by the di�erence

in level and dependence on Z of the conditional variance under Q. Thus �1, the impact of
Z on variance of the level factor, is included in the single-component models, but becomes

insigni�cant in the mixture models. The reason must be that this parameter also describes

variance under P in the single-component models, which for the mixtures is also determined
by di�erences in the component means. When �1 is removed from the mixture models, the

constant term of the level factor's variance, �1, needs to increase somewhat to compensate,

although conditional variance still remains lower at Xt = E
P (X) in the mixture, see Figure

8. Since �1 is �xed to identify the scale of Y1, this increase is instead achieved by scaling

Y1 down, which explains why �1Z and �12 are lower, and why �1 and �21 are higher in the

mixture models.
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6.3.6 Higher moments and the Second Component Location

The mixture formulation of the P distribution for yields implies considerable variation in
the conditional higher moments of the one-period rate as shown in Figures 9 and 10. In the

single-component models under both measures and in the risk-neutral part of the mixture

models, the skewness and excess kurtosis of rt+1jXt are very close to zero. The mixture

models under P in general estimate negative skewness and positive excess kurtosis, and for
Xt = E

P (X) skewness is about �1 while excess kurtosis is about 3-4.
The scaled higher moments vary with the conditioning factors, as these a�ect the distance

between the component means and their relative weights. They also vary due to changes

in the second moment used for scaling. In the constant mixture models both skewness and

excess kurtosis increase numerically with both lower medium term rates and lower slope of

the yield curve, i.e., higher Z or Y2. With respect to the level they are constant. In the

time-varying models the quickly increasing second moment makes the negative skewness

and excess kurtosis highest at about +1 standard deviation for both the negative curvature

factor, Z, and the level factor Y1. It may be noted that the shapes of the conditional

standard deviation, skewness, and excess kurtosis are closely related. As the distribution

for factors in the single-component model for a given Xt is only shifted by a single value

�t, the distribution in the two-component mixtures is shifted from Q only in two directions
described by the mix over �1t and �

2
t .

The impact of the mixture distribution can alternatively be illustrated by the conditional

density of the factors, f (Xt+1jXt), in the direction of the mean of the second component.

Thus for the vector representing the (negative) direction to the second component mean, v =

Xt � EP2 (Xt+1jXt), Figure 11 draws the density function g (�) = f
P (Xt+1 = Xt + �vjXt),

such that � = �1 will be the conditional P density for Xt+1 = E
P2
t (Xt+1). The density is

drawn for conditioning Xt values at E
P (X) and points where each factor, Z, Y1, and Y2, in

turn are shifted �1 standard deviation. A joint shift of (1=2; 1=2;�1=2) standard deviations
from the factors' unconditional P means is also considered. Table 6 gives the corresponding
values of Xt and v used to draw Figure 11.

From Figure 11 and Table 6 it follows that the second component adds density to the

conditional distribution of factors under P for Xt+1's that represent relatively large move-

ments away from Xt. At Xt = E
P (X) the distance to the conditional mean of the second

component is �v = � (:3; :7; :2), i.e., in direction of a lower level of yields, a steeper curve
and more positive curvature. The distance almost does not vary with the conditioning value

of the level factor, while for a less steep curve, Y2t at +1 std. dev., the location is further

towards a steeper curve and a lower level, and for less positive curvature, Zt at +1 std. dev.,

it is further towards more positive curvature. The variation in the impact of the second

component in the varying weights model is clear from Figure 11. Thus, the height of the

second component in the density is noticeably larger for high values of Zt and Y1t, as well
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as for the joint case where all factors are shifted in the directions that give a higher second

component weight.

The introduction of a mixture distribution under P allows for the possibility of speci�c
large factor moves that have almost zero probability in single-component models. This

has similarities to adding jumps in continuous-time models in the sense that it adds the

possibility of infrequent large moves in variables. In the mixture model the weight on the

second component can thus be seen as the intensity of the speci�c unconventional moves

described by this component. For instance in the linear constant weight model this is

estimated at 2:2% per week equal to 68% probability per year of at least one such move. The

time-varying weights models can have periods of higher and lower intensity of these larger

moves dependent on how weights change with factors over time. The particular infrequent

move that the models estimate should be added under P is a relatively large move in direction
of simultaneously shifting the yield curve lower, steeper, and more positively curved.

7 Conclusion

A�ne risk-neutral factor models in the sense of Du�e & Kan (1996) are attractive because

they lead to relatively simple expressions for the yield curve and still are observed to capture

the cross-section of interst rates well when about three factors are included. A�ne models

are simultaneously found to provide a poor description of the time-series dynamics of interest

rates such as shown for instance by Du�ee (2002). It is well documented that the mean and

variance of the short rate depend nonlinearly on its own level, and that interest rate changes

depart from the normal distribution such as captured in models that include jumps. This

paper suggests a method that in a dynamic term structure model with an a�ne pricing

relation allows for nonlinear relations between factors and moments of the short rate in the

time-series dimension, as well as departures from the normal distribution. This is possible,

since the model is set in discrete time which o�ers substantial exibility in formulating how

the one-period ahead distributions for interest rates di�er between measures. Speci�cally,

the model exploits a weighted average of Radon-Nikodym derivatives, a combination which

results in a mixture model for the time-series of rates and thus allows for the requested

properties. Empirically it is indeed found that the distribution of interest rates over time

departs from normality, and that the one-period rate has nonlinear dependencies on the

factors. The preferred model with factor-dependent weights estimates for instance large

increases in mean-reversion and variance of the one-period rate for high levels of the yield

curve and �nds substantial negative skewness and positive excess kurtosis. These properties

are the consequences of the type of yield curve changes that the second component allows for

in form of simultaneous shifts toward lower level, more steepness, and more curvature. This

can be seen as capturing some of the same e�ects that jumps do in other types of models.
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In the model suggested here, though, the form of the infrequent large shifts that are added

can be given a quite speci�c interpretation since it relates to the factors that impact the

level, slope, and curvature of the yield curve.
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Appendix

Zero-coupon Bond Price Since Q is de�ned as the risk-neutral measure, discounted

prices must be martingales under Q to avoid arbitrage,

P nt = E
Q
t

�
e��rtP n�1t+1

�
(43)

where it has been emphasized that the one-period rate is measured in per annum terms by

the scaling with �. Suppose that prices are on the form P nt = e
�An�B0nXt and check whether

this satis�es the no arbitrage condition. Insert the price to get

e�An�B
0
nXt = e��rtEQt

h
e�An�1�B

0
n�1Xt+1

i
�An �B0nXt = ���0 ���0XXt � An�1 + a (�Bn�1) + b (�Bn�1)0Xt:

The second equation is obtained by taking logs and using (1) and (8). Then by equating

constants and coe�cients ofXt, this equation is satis�ed whenAn andBn solve the recursions

An = An�1 +��0 � a (�Bn�1)
Bn = ��X � b (�Bn�1) ;

with boundary conditions A0 = 0 and B0 = 0 following from P 0t = 1. Thus an exponential-

a�ne price does indeed satisfy (43). For yields measured in per annum terms, P nt =

exp (�n�ynt ), so
ynt =

An
n�

+
B0n
n�

Xt � �n0 + �n 0XXt

Multi-period RN derivative By iterated expectations and from (14) for each period it

follows that

EPt (Xt+k) = EPt
�
EPt+1 (Xt+k)

�
= EQt

�
�t;t+1E

Q
t+1

�
�t+1;t+kXt+2

��
= EQt

�
EQt+1

�
�t;t+1�t+1;t+kXt+2

��
= EQt

�
�t;t+1�t+1;t+kXt+2

�
;

such that �t;t+k = �t;t+1�t+1;t+k and then (15) follows by induction. Similarly, ifE
Q
t+1

�
�t+1;t+k

�
=

1, it holds that

EQt
�
�t;t+k

�
= EQt

�
�t;t+1�t+1;t+k

�
= EQt

�
EQt+1

�
�t;t+1�t+1;t+k

��
= EQt

�
�t;t+1E

Q
t+1

�
�t+1;t+k

��
= EQt

�
�t;t+1

�
= 1;

and then again by induction, all multi-period RN derivatives have expected value under

Q equal to 1, and they thus de�ne probability measures. Equivalence, i.e., �t;t+k > 0 for

Qt+k-a.s., follows since all one-period � are strictly positive Qt+k-a.s.
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Centered Moments in Mixture The centered moments in a mixture distribution can

be obtained by

EPt
��
Xt+1 � EPt (Xt+1)

�n�
=

kX
j=1

nX
i=1

�
n

i

��
Ejt (Xt+1)� EPt (Xt+1)

�n�i
wjtE

j
t

h�
Xt+1 � Ejt (Xt+1)

�ii
:

Alternatively, the uncentered moments of the mixture are linear in the component uncen-

tered moments, EPt
�
Xn
t+1

�
=
P

j w
jEjt

�
Xn
t+1

�
. Then the centered moments of the mixture

follow by standard relations.

Invariant Transformations in the Discrete Model Analogous to continuous-time

a�ne models di�erent transformations of the risk-neutral DAQ1 (N) model are possible with-

out changing the dynamics of the one-period rate rt. Instead of performing invariant trans-

formations in the continuous-time model and then considering the implications for the dis-

crete model via the approximation (5), the rotations can be formulated directly in the

discrete model. Let the parameter vector be

f�0; �Z ; �Y ; �; �; c; �0; �Z ; �Y ;�Y ; �; �g

as de�ned in (2), (3), and (8). Then consider the following transformations:

Rescaling of Z: Positive scalar l, which transforms the variance factor to lZ and the

parameters to

f�0; �Z=l; �Y ; �; �; lc; �0; �Z=l; �Y ;�Y ; �; �=lg :

A location shift of Z is not considered, since the discrete model does not allow Z to be a

location-shifted �2 (k; �) variable.

A�ne transformation of Y : A (N � 1) � (N � 1) non-singular matrix L and (N � 1)
vector v, which transform the Y factors to LY + v with new parameters given by

�
�0 � �0YL�1v; �Z ; L0�1�Y ; �; �; c; L�0 +

�
I � L�YL�1

�
v; L�Z ; L�YL

�1; L�Y ; �; �
	
:

Linear transformations of Z and Y , i.e., lZ and LY , are separated in the discrete model,

whereas the continuous models allow for general LXX scaling. This separation is necessary

in the discrete model, since Z and Y are de�ned to be instantaneously independent.

Reparametrization of Y variance: A diagonal matrix D that does not a�ect factors but

changes the parametrization of 
Y t, such that the new parameter vector is�
�0; �Z ; �Y ; �; �; c; �0; �Z ; �Y ;�YD

�1; D2�;D2�
	
:
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When the alternative representation of the discrete model variance, 
Y t = h0+hZZt, is used,

the h0 and hZ matrices are una�ected by a D transformation. An a�ne transformation of

Y has the e�ect fLh0L0; LhZL0g, while a rescaling of Z with l gives fh0; hZ=lg.
Further possible transformations are: A rotation of the Gaussian error terms, i.e., an

orthogonal matrix O that commutes with SY t and rotates only �Y to �YO
0. A permutation

of the Y factors.

E�ect of Invariant Transformations on Parameters in � An a�ne transforma-

tion of Y has no e�ect on �Z , whereas it changes f�Y 0; �Y Z ; �Y Y g to�
L�Y 0 +

�
I � L�Y YL�1

�
v; L�Y Z ; L�Y YL

�1	 ;
and f�0; �Z ; �Y g to �

�0 � �0YL�1v; �Z ; L0�1�Y
	
:

A rescaling of Z implies: f�Z0; �Z1=l; �Z2=l2; �Z3=l3g, f�Y 0; �Y Z=l; �Y Y g, and f�0; �Z=l; �Y g.
Reparameterizing the variance with D or a rotation of the Gaussian error terms with O has

no e�ect.

Mapping to Continuous-time AQ1 (N) Approximation The reverse relation between

the discrete model and the continuous-time approximation (5) is

�ZZ = (1� �) =�; �Z = c�= (1� �) ; �2Z = 2c=�;

�Y = (I � �Y )
�1
�
�0 + �Z

c�
1��

�
; �Y Z = ��Z=�; �Y Y = (I � �Y ) =�;

�c = �=� �c = �=�

(44)

Identi�cation in the Discrete Model When the restrictions (36) and (37) are im-

posed, it follows from (44) and (45) that the approximating continuous-time model has the

�xed parameters

�Y = 0; �Z = 1; �Y = I; �c = �;

while f�0; �Z ; �Y ; �ZZ ; �Y Z ; �Y Y ; �Z ; �cg are free parameters that satisfy

�Y � 0; �ZZ > 0; �Z > (2�ZZ)
�1 ; eig (�Y Y ) > 0; �c � 0:

These are the same �xed parameters and restrictions on the free ones as in canonical repre-

sentation.

Whether the conditions (36) indeed impose no limitations and are identifying in the

discrete model is checked by seeing whether these restrictions can be imposed on any

discrete model via invariant transformations and that no further rotations are possible
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from this point. Starting from a general DAQ1 (N) model with the full parameter vector

� = f�0; �Z ; �Y ; �; �; c; �0; �Z ; �Y ;�Y ; �; �g free, the following rotations can be performed,
which progressively do not a�ect parameters already �xed in previous steps:

I) l = �= (2c) sets c = �=2.

II) D = �diag (�)�1 sets � = ��. Requires � strictly positive.

III) L = ��1Y sets �Y = I.

III) v = � (I � �Y )
�1
h
�Z

c�
1�� + �0

i
sets �0 = ��Z c�

1�� .

IV) L = diag (sign (�Y )) ensures that �Y � 0.
Thus a model that satis�es (36) can be reached from any discrete model with � strictly

positive, so besides this, the set of conditions are unrestrictive. Also, any further transfor-

mations by either l, L, v, D or O where these are not identity operators will change the

value of either c, �0, �Y , or �, or a�ect the sign of �Y . Since no further transformations are

possible, the conditions (36) are identifying.

As discussed, this rotation turns out to be problematic for the data set used in this paper

and it is better to �x the scale of Y2 by setting �21 constant instead of �2. Thus for some

constant  the rotation L = diag (1; =�21) sets �21 =  and changes �2 to a free parameter,

while it also releases the sign of �2.

�jY t in (41) imply constant Pj parameters In the moment generating function (21)

for the j'th component of the P model set uZ = 0 to focus on the Y factors and then take

logs to get

log �jt (0; uY ) = u
0
Y �0

�
�jY t
�
+
1

2
u0Y h0uY +

�
1

2
u0Y hZuY + u

0
Y �Z

�
�jY t
�
; u0Y �Y

�
Xt:

Substitute that by (22) �0
�
�jY t
�
= �0 + h0�

j
Y t and �Z

�
�jY t
�
= �Z + hZ�

j
Y t to get that

log �jt (0; uY ) = u
0
Y �0 +

1

2
u0Y h0uY +

�
1

2
u0Y hZuY + u

0
Y �Z ; u

0
Y �Y

�
Xt + u

0
Y (h0 + hZZt) �

j
Y t:

For �Y = I, the variance is 
Y t = SY t = h0 + hZZt, and then for the j'th component

market price of risk function for the Y factors in (41), �jY t = S
�1
Y t

�
�jY 0 + �

j
Y ZZt + �

j
Y YXt

�
,

it follows that

log �jt (0; uY ) = u0Y �0 +
1

2
u0Y h0uY +

�
1

2
u0Y hZuY + u

0
Y �Z ; u

0
Y �Y

�
Xt

+u0Y
�
�jY 0 + �

j
Y ZZt + �

j
Y YXt

�
= u0Y �

j
0 +

1

2
u0Y h0uY +

�
1

2
u0Y hZuY + u

0
Y �

j
Z ; u

0
Y �

j
Y

�
Xt;

for constant j-component parameters �j0 = �0 + �
j
Y 0, �

j
Z = �Z + �

j
Y Z , and �

j
Y = �Y + �

j
Y Y .
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�, �, and �Y from h0 and hZ In the alternative representations of the variance for the

Y factors, 
Y t = �Y diag (�+ �Zt) �
0
Y = h0+hZZt, it may be relevant to be able to go from

h0 and hZ to the �, �, and �Y parameters. Of course, since D rotations can be performed

on �, �, and �Y , these are not identi�ed and di�erent solutions are possible. Suppose h0 is

positive de�nite, then one solution would be the following

�Y = U
0V �1; � = �; � = diag (D) ; (45)

where V is the Cholesky decomposition of h0 = V V 0, and U and D are the orthogonal

and diagonal matrices in the diagonalization of the symmetric matrix V �1hZV
0�1 = UDU 0.

Any other solutions for �, �, and �Y can then be obtained by further rotations by D.

The equivalent method can be used with h0 and hZ switched if hZ is positive de�nite. As

discussed in the main text, both h0 and hZ may be singular, since only �i+�i > 0 is required

and therefore �i = 0 and �j 6=i = 0 is possible. In that case the suggested solution would

not work, but with only two Y factors a solution is obtained by �11 = �22 = 1, �1 = h
11
0 ,

�2 = h
22
Z , �12 = h

12
Z =h

22
Z , and �21 = h

12
0 =h

11
0 .
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Relative Performance of 3-factor Models

Single Component Linear Cubic

maximal[df] 2.75 [28] 4.26 [31]

preferred [df] 0.00 [19] 1.58 [22]

LR(pref.) [pval] 5.50 [0.79] 5.36 [0.80]

LR(linear) [pval] 3.16 [0.368]

AIC 38.0 40.8

BIC 133.0 150.8

Constant Mixture Linear Cubic

maximal [df] 92.61 [38] 100.66 [44]

preferred [df] 86.68 [23] 95.08 [25]

LR(pref.) [pval] 11.86 [0.69] 11.16 [0.92]

LR(linear) [pval] 16.81 [0.000]

AIC -127.4 -140.2

BIC -12.4 -15.2

Time-varying Mixture Linear Cubic

maximal [df] 105.8 [41] 114.8 [47]

preferred [df] 98.47 [26] 107.1 [28]

LR(pref.) [pval] 14.61 [0.48] 15.39 [0.70]

LR(linear) [pval] 17.29 [0.000]

AIC -144.9 -158.2

BIC -15.0 -18.2

Table 1: The table compares the performance of DAQ1 (3) models with di�erent speci�cations
for interest rates dynamics under the physical measure. For each of the 6 models the table
shows log-likelihood values of the maximal and preferred models. The degrees of freedom for
each model is given brackets. Likelihood values are normalized relative to the preferred single
component linear model. Then follows �rst the likelihood-ratio test of restrictions imposed
by the preferred model relative to the maximal, and then the LR test of restrictions imposed
by the preferred linear models relative to allowing for cubic terms. Finally, Akaike's and the
Bayesian information criteria are shown.

39



Parameters in Risk-Neutral Models

Linear Single Component Constant Mixture Time-varying Mixture 10x

1� � 28.23 (0.94) 28.16 (0.35) 28.16 (0.33) (-3)

� 15.02 (0.32) 16.24 (0.39) 15.81 (0.34)

�1Z -47.37 (12.78) -27.32 (0.93) -28.05 (0.94) (-3)

1� �11 4.776 (0.489) 4.437 (0.016) 4.819 (0.018) (-3)

�12 {12.87 (3.47) -7.193 (0.301) -7.368 (0.276) (-3)

�2Z -18.29 (1.95) -19.25 (1.08) -17.86 (0.99) (-3)

�21 -1.495 (0.409) -2.691 (0.125) -2.645 (0.113) (-3)

1� �22 5.010 (0.484) 5.369 (0.198) 4.994 (0.020) (-3)

�1 11.88 (8.47) - - (-3)

�0 106.5 (5.4) 110.5 (5.4) 108.7 (5.1) (-3)

�Z 2.599 (0.168) 2.097 (0.119) 2.072 (0.114) (-3)

�1 4.307 (1.150) 7.378 (0.173) 7.297 (0.172) (-3)

Cubic Single Component Constant Mixture Time-varying Mixture 10x

1� � 28.22 (0.94) 28.25 (0.34) 28.16 (0.32) (-3)

� 15.13 (0.31) 14.58 (0.29) 15.96 (0.27)

�1Z -47.26 (12.83) -28.74 (0.99) -27.78 (0.93) (-3)

1� �11 4.770 (0.488) 4.405 (0.016) 4.804 (0.018) (-3)

�12 -12.85 (3.49) -7.698 (0.323) -7.407 (0.307) (-3)

�2Z -18.26 (1.95) -19.19 (1.06) -17.84 (1.04) (-3)

�21 -1.493 (0.412) -2.492 (0.117) -2.621 (0.126) (-3)

1� �22 5.003 (0.484) 5.381 (0.197) 4.993 (0.196) (-3)

�1 11.89 (8.53) - - (-3)

�0 106.3 (5.3) 110.0 (5.3) 107.7 (5.1) (-3)

�Z 2.586 (0.167) 2.279 (0.120) 2.158 (0.112) (-3)

�1 4.294 (1.156) 7.315 (0.174) 7.215 (0.169) (-3)

Table 2: The tables show maximum likelihood estimates of parameters in the risk-neutral
part of models. Estimates are for preferred models where insigni�cant parameters have
been removed as indicated by '-'. �2 and �2 that were set to zero in all preferred models
are not shown and neither are parameters whose values are �xed due to identi�cation or
admissibility. Figures in parenthesis are estimated standard errors, while the last column
indicates that all numbers in the row are to the order 10x.

40



Parameters in Continuous-time
Approximation to Risk-Neutral Models

Linear Single Component Constant Mixture Time-varying Mixture

�ZZ 1.468 (0.049) 1.465 (0.018) 1.464 (0.017)

�1Z 2.464 (0.664) 1.420 (0.049) 1.458 (0.049)

�11 0.248 (0.025) 0.231 (0.001) 0.251 (0.001)

�12 0.669 (0.180) 0.374 (0.016) 0.383 (0.014)

�2Z 0.951 (0.101) 1.001 (0.056) 0.929 (0.051)

�21 0.077 (0.021) 0.140 (0.007) 0.138 (0.006)

�22 0.260 (0.025) 0.279 (0.010) 0.260 (0.001)

�Z 5.117 (0.202) 5.546 (0.150) 5.397 (0.131)

�c1 0.618 (0.441) - -

Cubic Single Component Constant Mixture Time-varying Mixture

�ZZ 1.468 (0.049) 1.469 (0.018) 1.464 (0.017)

�1Z 2.458 (0.668) 1.494 (0.052) 1.445 (0.048)

�11 0.248 (0.025) 0.229 (0.001) 0.250 (0.001)

�12 0.667 (0.181) 0.400 (0.017) 0.385 (0.016)

�2Z 0.949 (0.101) 0.998 (0.055) 0.928 (0.054)

�21 0.078 (0.021) 0.130 (0.006) 0.136 (0.007)

�22 0.260 (0.025) 0.280 (0.010) 0.260 (0.010)

�Z 5.153 (0.202) 4.963 (0.116) 5.451 (0.112)

�c1 0.618 (0.444) - -

Table 3: The tables show parameter values in the continuous-time approximation to the risk-
neutral part of estimated discrete-time models. Values are for preferred models in which
insigni�cant parameters have been removed as indicated by '-'. �2 and �

c
2 that were set to

zero in all preferred models are not shown and neither are parameters whose values are �xed
due to identi�cation or admissibility. Figures in parenthesis are standard errors calculated
from the discrete model by the delta method.
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Parameters in the Radon-Nikodym Derivative

Single Component

Linear Cubic 10x

�Z1 - -1.905 (1.715)

�Z2 0.828 (0.657)

�Z3 -85.38 (61.24) (-3)

�1Z -19.62 (6.23) -19.54 (6.23) (-3)

�12 10.70 (4.55) 10.72 (4.57) (-3)

Constant Mixture Time-varying Mixture

Linear Cubic Linear Cubic 10x

�110 -43.35 (8.60) -41.82 (8.40) -44.04 (9.30) -42.38 (9.35) (-3)

�112 6.153 (1.825) 6.576 (1.941) 6.154 (1.881) 6.127 (1.894) (-3)

�2Z1 -3.402 (0.943) -52.00 (11.01) -3.439 (0.863) -57.69 (15.56)

�2Z2 18.29 (3.906) 18.78 (4.85)

�2Z3 -1.600 (0.340) -1.519 (0.372)

�210 - - -384.6 (70.0) -397.1 (72.2) (-3)

�21Z -75.03 (12.90) -86.09 (12.15) - - (-3)

�212 -52.84 (17.14) -43.53 (16.31) -62.99 (14.95) -51.46 (15.14) (-3)

�222 -54.60 (20.52) -49.49 (19.06) -37.48 (18.12) -35.75 (16.52) (-3)

w0 0.978 (0.005) 0.975 (0.006)

�0 5.789 (1.365) 5.958 (1.335)

�Z -1.043 (0.260) -1.084 (0.243)

�1 -0.321 (0.084) -0.315 (0.080)

�2 0.156 (0.098) 0.158 (0.098)

Table 4: The tables show estimates of parameters in di�erent speci�cations for the Radon-
Nikodym derivative. The estimates are for the preferred models in which insigni�cant pa-
rameters have been set to zero as indicated by '-'. Parameters set to zero in all models are
left out of the table. Entries for parameters that does not enter a given model are left blank.
Figures in parenthesis are estimated standard errors, while the last column indicates that
all numbers in the row are to the order 10x.
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Changed Parameters in the P-Models

Single Component

Linear Cubic 10x

1��P ?

cP ?

�P1Z -67.00 -66.80 (-3)

�P12 {2.170 {2.124 (-3)

Constant Mixture Time-varying Mixture

Linear Cubic Linear Cubic 10x

�P110 108.1 100.8 107.3 109.0 (-3)

�P112 -1.041 -1.123 -1.214 -1.280 (-3)

1��P2 88.76 ? 89.37 ? (-3)

cP2 9.311 ? 9.308 ? (-3)

�P210 -233.2 -245.7 (-3)

�P21Z -102.4 -114.8 (-3)

�P212 -60.03 -51.22 -70.36 -58.87 (-3)

1��P222 59.97 54.87 42.48 40.74 (-3)

Table 5: The tables show parameters in the models under P. Those that are not shown or
where entries are left blank have the same values as under Q. Parameters with a '?' in the
cubic models are time varying and their values as a function of Z are shown in �gure 3. The
last column indicates that all numbers in the row are to the order 10x.
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Values of Xt and Direction v in Figure 11

Constant Mixture

Xt Z Y1 Y2

+1 std.dev.

����� 6.61-9.54
5.75

�����
����� 5.27-6.29
5.75

�����
����� 5.27-9.54
9.21

�����
EP (X) -

����� 5.27-9.54
5.75

����� -

-1 std.dev.

����� 3.94-9.54
5.75

�����
����� 5.27-12.8
5.75

�����
����� 5.27-9.54
2.28

�����
�
1
2
; 1
2
;�1

2

�
-

����� 5.94-7.92
4.01

����� -

v Z Y1 Y2

+1 std.dev.

����� 0.440.83
0.34

�����
����� 0.320.71
0.32

�����
����� 0.320.90
0.52

�����
EP (X) -

����� 0.320.69
0.31

����� -

-1 std.dev.

����� 0.200.55
0.29

�����
����� 0.320.68
0.30

�����
����� 0.320.48
0.10

�����
�
1
2
; 1
2
;�1

2

�
-

����� 0.380.66
0.23

����� -

Time-varying Mixture

Xt Z Y1 Y2

+1 std.dev.

����� 6.11-8.06
5.82

�����
����� 4.95-4.65
5.82

�����
����� 4.95-8.06
9.07

�����
EP (X) -

����� 4.95-8.06
5.82

����� -

-1 std.dev.

����� 3.78-8.06
5.82

�����
����� 4.95-11.5
5.82

�����
����� 4.95-8.06
2.57

�����
�
1
2
; 1
2
;�1

2

�
-

����� 5.53-6.36
4.20

����� -

v Z Y1 Y2

+1 std.dev.

����� 0.400.78
0.24

�����
����� 0.300.76
0.23

�����
����� 0.300.97
0.36

�����
EP (X) -

����� 0.300.74
0.22

����� -

-1 std.dev.

����� 0.190.71
0.20

�����
����� 0.300.73
0.21

�����
����� 0.300.51
0.08

�����
�
1
2
; 1
2
;�1

2

�
-

����� 0.350.65
0.16

����� -

Table 6: Tables show the direction, v, of the center of the second component at di�erent
conditioning factor values, Xt, which are used to draw the density graphs in Figure 11. To
the left are the 8 conditioning factor vectors considered: the unconditional mean and one
in which each factor is shifted either +1 or �1 standard deviation, as well as the point
where factors jointly are shifted (1=2; 1=2;�1=2) std. dev. To the right are the values of
v = Xt � EP2 (Xt+1jXt), i.e., the negative direction to the mean of the second component
at each of the Xt points to the left.
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Uncondition mean and standard deviation of factors under P

Linear Cubic

Z Mean S.D. Mean S.D.

Single Component 5.11 1.33 5.03 1.18

Constant Mixture 5.27 1.34 4.74 1.33

Time-varying Mixture 4.95 1.17 5.16 1.24

Linear Cubic

Y1 Mean S.D. Mean S.D.

Single Component -24.28 7.51 -23.02 6.39

Constant Mixture -9.54 3.24 -9.31 3.46

Time-varying Mixture -8.06 3.41 -8.64 3.51

Linear Cubic

Y2 Mean S.D. Mean S.D.

Single Component 7.27 3.51 7.23 3.48

Constant Mixture 5.75 3.47 5.11 3.32

Time-varying Mixture 5.82 3.25 5.60 3.39

Table 7: Unconditional mean and standard deviation of factors under P were estimated
by Monte Carlo simulation. A draw from the unconditional P distribution of factors was
obtained as the �nal factor vector after simulating 3000 periods in the estimated model.
Though the initial X has little inuence over this many periods, the value that solves
EPt (Xt+1) = Xt was used. 10000 draws were made for each model, from which mean and
standard deviation were calculated.
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Linear Constant Mixture Model

Loading Functions
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Figure 1: Draws loading functions, �nX , and the constant part, �
n
0 , in the yield to factor

relation, ynt = �
n
0 + �

n 0
XXt, for the linear constant mixture model. The x-axis is measured in

years, i.e., n=52.
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Figure 2: Displays time series of factors implied by yields observed without error in the
linear constant mixture model.
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Time-varying P parameters in the Cubic Models

Single component
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Figure 3: Figures draw Z-factor parameters c and � that become time varying under Pj when the
market price of risk function �jZ , drawn as well, is not constant. This is the case in the cubic models,
though for the mixture models �1Z = 0 in the preferred models, so only the second component is shown.
In all graphs the solid line is the cubic model, while the horizontal dotted line illustrates the value in
the corresponding linear model, also given in table 5. The dashed lines are the values that arose in the
�rst two cubic models, when the �Z0 � 0 restriction, necessary for the P model to be well-de�ned, was
not imposed. This implies � > 1 for low Z and also that �Z > 1=c for Z ! 0.
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Conditional Mean Change of One-period Rate

Single Component
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Figure 4: The graphs show how the expected change in the one-period rate (in per annum terms) over the
next period varies as one of the conditioning factors changes and the other two are kept at their uncon-
ditional P mean. The function that is drawn is thus f (x) = E

�
rt+1 � rtjXit = x;Xh 6=i;t = E

P (Xh 6=i;t)
�
,

and the factor, Xit, that varies is respectively Zt, Y1t, and Y2t in each column from left to right . The
x-axes are measured in standard deviations from the P mean. In each �gure values are shown for the
linear model under Q (dash) and P (dot), and for the cubic model under Q (solid) and P (dash-dot).
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Expected change in Z factor - Cubic Single-Component model
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Figure 5: This shows the conditional expected change in the Z factor over di�erent condi-
tioning values, f (z) = E (Zt+1jZt = z)� Zt, for the cubic single-component model. This is
calculated under Q (dash-dot) and under P (solid), as well as under P (dot) in the cubic
model when the restriction �Z0 � 0 is not imposed.
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Weights as Function of Factors
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Figure 6: Figures illustrate how weights depend on factors in the time-varying mixture models by
drawing the function w (Xt) = (1 + exp (��0 � �0XXt)). From left to right respectively Zt, Y1t, and
Y2t varies, while the other factors are at their unconditional Pmean. The linear models are the dashed
lines and the cubic models are the solid lines. The x-axes are measured in standard deviations from
the P mean.

Time-varying Weights - Cubic Model
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Figure 7: Displays time series of weights on the second P component, 1 � wt, in the cubic mixture
model, for which weights depend on factors, as shown in Figure 6. Also shown are the series of each
of the three factors.
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Conditional Standard Deviation of One-period Rate

Single Component
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Figure 8: The graphs show the variation in standard deviation of the one-period rate (in per annum
terms) as one of the conditioning factors changes and the other two are kept at their unconditional P
mean. The factor that varies is respectively Zt, Y1t, and Y2t in each column from left to right . The
x-axes are measured in standard deviations from the P mean. In each �gure values are shown for the
linear model under Q (dash) and P (dot), and for the cubic model under Q (solid) and P (dash-dot).
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Conditional Skewness of One-period Rate

Single Component
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Figure 9: The graphs show the variation in skewness of the one-period rate as one of the conditioning
factors changes and the other two are kept at their unconditional P mean. The factor that varies is
respectively Zt, Y1t, and Y2t in each column from left to right . The x-axes are measured in standard
deviations from the P mean. In each �gure values are shown for the linear model under Q (dash) and
P (dot), and for the cubic model under Q (solid) and P (dash-dot).
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Conditional Excess Kurtosis of One-period Rate

Single Component
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Figure 10: The graphs show the variation in excess kurtosis of the one-period rate as one of the
conditioning factors changes and the other two are kept at their unconditional P mean. The factor that
varies is respectively Zt, Y1t, and Y2t in each column from left to right . The x-axes are measured in
standard deviations from the P mean. In each �gure values are shown for the linear model under Q
(dash) and P (dot), and for the cubic model under Q (solid) and P (dash-dot).
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Density in Direction of Second Component - Linear Mixture Models
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Figure 11: The �gures illustrate how the second component shows up in the P density of factors.
Thus the graphs draw the density of Xt+1jXt under P in direction of EP2 (Xt+1jXt). That is, for the
vector v = Xt � EP2 (Xt+1jXt), the function g (�) = f

P
Xt+1jXt (Xt+1 = Xt + �vjXt) is drawn, such that

� = �1 is the P density at the mean of the second component. This is done for the linear constant
mixture model (solid) and the linear time-varying mixture model (dash). The 8 �gures are for di�erent
values of the conditioning Xt, and the parenthesis below each �gure indicate the position of each factor
(Z; Y1; Y2) measured in standard deviations from its unconditional P mean. The values of Xt and the
corresponding negative distance to the second component, v, are shown in Table 6.
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