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Abstract

An economic time series can often be viewed as a noisy proxy for an underlying economic
variable. Measurement errors will influence the dynamic properties of the observed process
and may conceal the persistence of the underlying time series. In this paper we develop
instrumental variable (IV) methods for extracting information about the latent process.
Our framework can be used to estimate the autocorrelation function of the latent volatility
process and a key persistence parameter. Our analysis is motivated by the recent literature
on realized (volatility) measures, such as the realized variance, that are imperfect estimates
of actual volatility. In an empirical analysis using realized measures for the DJIA stocks
we find the underlying volatility to be near unit root in all cases. Although standard unit
root tests are asymptotically justified, we find them to be misleading in our application
despite the large sample. Unit root tests based on the IV estimator have better finite
sample properties in this context.
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1. Introduction

Many economic time series are constructed from survey statistics or composed of estimates

that involve sampling error. It is therefore natural to view such time series as proxies for the

underlying population quantities.

To take a concrete example, consider a daily time series of realized variances. Each element

of this time series can be viewed as a noisy estimate of the latent volatility. Much progress has

recently been made in estimating financial volatility from high-frequency data using realized

measures, such as the realized variance. Despite this progress, it is important to discriminate

between the realized measure of volatility and the underlying population quantity. Even with

the most accurate estimators of daily volatility, which can utilize thousands of high-frequency

prices, the standard error for a single estimate is rarely less than 10% of the point estimate,

see e.g. Barndorff-Nielsen, Hansen, Lunde & Shephard (2008a). Measurement errors of this

magnitude cause the autocorrelation function of the observed time series to look distinctively

different from that of the underlying time series.

In this paper, we develop instrumental variable methods that facilitate the analysis of the

latent time series. The instrumental variables are lagged value of the observed time series,

and we have in mind a situation where the latent process is persistent, because non-zero

autocorrelations are needed for these instruments to be valid. In fact, the more persistent

is the latent time series the “stronger” will these instruments be, other things being equal.

We focus on two aspects of the problem. First, we show that the IV methods provide an

effective way to assess the degree of persistence for the latent time series. An implication is

that unit root tests based on IV regression methods have better finite sample properties than

conventional tests. Second, we propose an alternative estimator of the autocorrelation function

(ACF) for the latent time series. This estimator is more informative about the ACF of the

latent process, in particular when the latter is a persistent process.

Our basic framework is simple: We model the latent time series as an ARMA(p,q) process

and the measurement error as a white noise process. The empirical problem that has motivated

this analysis is the situation where the latent time series is daily volatility whereas the observed

time series is a sequence of realized measure, such as the realized variance, that are compute

with high frequency data. Because each of these estimates are computed with different high

frequency data (data from distinct days) it is reasonable to assume that their sampling errors

are uncorrelated.

The analysis that we present in this paper is related to the literature on unit root test in the

context of moving average innovations. The unit root test based on instrumental variables (that

is very similar to ours) was proposed by Hall (1989), and Perron & Ng (1996) have proposed

another unit root test that is also robust to the sort of moving average innovations that
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arises in this context. Our analysis is also related to the literature on unobserved component

models that deals with signal extraction, detrending and filtering of noisy time series (see for

example Ashley & Vaughan (1986), Watson (1986), Harvey (2001), Harvey & Proietti (2005)

and Harvey & De Rossi (2006)). In this strand of the literature the statistical treatment of the

underlying component is usually carried out by setting up the state space form and applying

the associated (Kalman) filter and smoothing algorithms. These methods have been applied

to realized measures of volatility by Barndorff-Nielsen & Shephard (2002), Barndorff-Nielsen,

Nielsen, Shephard & Ysusi (2004), Hansen & Lunde (2005b) and Koopman, Jungbacker &

Hol (2005). These papers show that the measurement error (sampling error) is nontrivial

component of the realized variance.

Our analysis contributes with new theoretical results that helps to identify the dynamic

properties of the latent process of interest. Specifically in relation to the persistence of the

underlying process. The IV methods we develop in this paper compliments existing methods

and offers some advantages. For instance, the IV-based autocorrelation function shares the

simplicity and non-parametric nature of the conventional empirical autocorrelation.

We make the following contributions: First, we propose simple instrumental variable es-

timators of a key parameter that captures the persistence of autoregressive moving average

(ARMA) processes. For an AR(1) process the persistence parameter is simply the autore-

gressive coefficient. The persistence parameter can be estimated with simple IV estimators,

and for the ARMA(1,1) case we derive the optimal IV estimator that exploits the particular

covariance structure in this framework. Second, we propose an approximate autocorrelation

function for the latent time series. This is important because many economic time series can

be viewed as noisy proxies of the fundamental underlying process, and measurement errors can

cause the ACF of the observed time series to look distinctively different from that of the latent

process. Third, in our empirical analysis of realized measures of volatility, we find that actual

volatility is very close to having a unit root. In fact the largest autoregressive root is typically

in the range between 0.98 and 1.00. In this context, we show that standard unit root tests can

be very misleading. Standard unit root tests can be asymptotically justified in this context,

but their finite sample properties are quite poor – even with a sample size that is well over

a thousand observations. The main reason being that the measurement errors are relatively

large in these time series. Fourth, we make some remarks on fractionally integrated processes.

The popularity of fractionally integrated processes for the modeling of volatility is to some

extend driven by two empirical observations: 1) The shape of the ACF for observed volatility;

and 2) The apparent rejection of the unit root hypothesis using conventional unit root tests.

In this paper we argue that neither can be taken as evidence of fractional integration. The

reason is that a unit root process, or a local-to-unit root process, can also induce these empir-
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ical observations, provide a sufficient layer of measurement errors, a result that resembles the

aggregation result by Granger (1980). The measurement error is so pronounced in these time

series that it ought to be accounted for. However we do not dismiss the fractionally integrated

model as a good model of volatility. The reason is that our approximate ACF does have fea-

tures that are consistent with long memory processes and the instrumental variable unit root

tests do reject the unit root hypothesis for most of the volatility time series. So in this regard

we arrive at the same conclusion as Wright (1999) who based his analysis on squared daily

returns. Wright (1999) tested the unit root hypothesis using the test by Perron & Ng (1996).

This paper is organized as follows. In Section 2, we describe the theoretical framework,

introduce the instrumental variable estimator and derive its asymptotic properties. In Section

3 we introduce a novel estimator of the autocorrelation function for the latent time series and

illustrate some of its advantages. In Section 4 we present an empirical analysis with realized

measures of volatility, two macroeconomic time series of inflation, and two long time series of

absolute returns. We estimate the ACF for the underlying time series for all time series. For

the time series of realized measures we show that the underlying volatility is highly persistent

and close to unit root in all cases. Concluding remarks are given in Section 4. Appendix A

contains proofs of all Theorems and Lemmas that are stated in the main body of the paper,

and Appendix B presents additional empirical results.

2. An Instrumental Variable Approach to Assessing the Persistence of a

Latent Time Series

In this section we study some methods for assessing the persistence of a time series that is

measured with error. We consider a class of simple instrumental variable estimators, and show

that these are consistent for the parameter that measures the persistence.

We use an ARMA(p,q) specification for the latent time series, yt, and treat the observed

volatility, xt, as a noisy and possibly biased estimate of yt.. So our model is

ϕ(L)(yt − δ) = θ(L)εt, (1)

xt = yt + ξ + ηt. (2)

In the context of time series of volatility, one may take the latent time series to be the integrated

variance on day t, IVt =
∫ t
t−1 σ

2
sds, and the observed time series to be the realized variance for

day t, RVt. In our empirical analysis we study two types of realized measures, specifically the

realized variance and the realized kernel.

The model has the following implication for the observed time series.
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Lemma 1 Given (1) and (2) we have

ϕ(L) (xt − δ − ξ) = θ(L)εt + ϕ(L)ηt. (3)

The Lemma shows that xt is an ARMA process with the exact same autoregressive poly-

nomial. In the context of time series of volatility this result was noted in Barndorff-Nielsen &

Shephard (2002) and Meddahi (2003), see also Andersen, Bollerslev & Meddahi (2004).

We make the following assumptions.

Assumption 1 The characteristic polynomials,

ϕ(z) = 1− ϕ1z − · · · − ϕpz
p and θ(z) = 1− θ1z − · · · − θqz

q,

do not have any roots in common and are such that

ϕ(z)/ (1− z) = 0 ⇒ |z| > 1 and θ(1) 6= 0,

and {εt, ηt} is a sequence of independent and identically distributed random variables with zero

mean and σ2
ε = var(εt), σ

2
η = var(ηt), and cov(εt, ηt) = 0.

With Assumption 1 we ensure that yt is either integrated of order zero, I(0), or integrated

of order one I(1). The first part of the Assumption allows ϕ(z) to have a single unit root,

ϕ(1) = 0, but the multiplicity of this unit root is at most one. This rules out integration of

an order higher than one. For example yt is I(2) when the multiplicity of the unit root is two.

The requirement that θ(1) 6= 0 ensures that θ(L)εt is I(0). Without this condition we would

not have the previous relation between the roots of ϕ(z) and the order of integration.

A key parameter for our analysis is the persistence parameter that is defined by

π = max
i=1,...,p

1

|z∗i |
,

where z∗1 , . . . , z
∗
p are the roots of the characteristic polynomial, i.e. ϕ(z∗i ) = 0, i = 1, . . . , p. We

note that π = 1 when ϕ(z) has a unit root and for persistent processes we have

π ≈ ϕ• = ϕ1 + · · · + ϕp,

(e.g. when p = 1 we have π = ϕ• = ϕ1). This motivates the terminology “persistence parame-

ter”.

The persistence parameter can also be defined from the companion form for yt. Without

loss of generality consider the case with δ = 0 and θ(z) = 1. Then Yt = (yt, . . . , yt−p+1)
′, can
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be expresses as a VAR(1) process, Yt = ΦYt−1 + ε∗t , where ε∗t = (εt, 0, . . . , 0)
′, and

Φ =



















ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0

0 1 · · ·
...

. . .

0 1 0



















.

The persistence parameter, π, is simply given as the spectral radius of Φ (the largest eigenvalue

as measured in absolute value).

Much of our analysis can be understood from the simplest case where p = 1 and q = 0.

This case is outlined in the following example.

Example 1 Suppose that Assumption 1 holds with p = 1 and q = 0. Then yt is an AR(1)

process and by manipulating the two expressions,

yt = πyt−1 + (1− π)δ + εt and xt = yt + ξ + ηt,

we have that xt = πxt−1 + (1− π)(δ + ξ) + εt + ηt − πηt−1.

Note that we have parameterized the constant in a way that it vanishes whenever π = 1.

This ensures that yt does not have a deterministic trend in the unit root case.

2.1. Instrumental Variable Estimators

We consider the class instrumental variable estimators of the persistence parameter π, that we

defined in (3). These estimators have the form

π̂ivz =

∑n
t=1 ztxt+1
∑n

t=1 ztxt
, (4)

where we refer to zt as an instrumental variable or simply an instrument. The expression (4)

defines a large class of estimators that includes the least squares estimator and instrumental

variable estimators including the two-stage least squares estimator. For example, when the

instrumental variable is a lagged value of the observed time series (less its sample average), we

have

π̂ivj
=

∑n
t=1(xt−j − x̄j)xt+1
∑n

t=1(xt−j − x̄j)xt
, j = 0, 1, 2, . . . .

where x̄j = n−1
∑n

t=1 xt−j . When j = 0 this estimator simplifies to the least squares estimator

π̂ls =

∑n
t=1(xt − x̄0)xt+1
∑n

t=1(xt − x̄0)xt
.
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The two-stage least squares (TSLS) estimator, which is based on multiple instruments, Z̃t =

(xt−J1 − x̄J1 , . . . , xt−J2 − x̄J2)
′ with 0 ≤ J1 ≤ J2, can also be expressed in the form of (4). In

this case we have

zt = Z̃ ′
tα̂tsls, where α̂tsls =

(

n
∑

t=1

Z̃tZ̃
′
t

)−1 n
∑

t=1

Z̃txt. (5)

This is not surprising, because the first step in a TSLS procedure amount to a dimension

reduction, where a vector of instruments is mapped into a vector of instruments that has

a dimension that matches that of the regression parameters. The present problem has a

particular covariance structure that we can utilize to determine the optimal linear combination,

α∗, of the set of instrumental variables. This will lead to an IV estimator that is more efficient

than the TSLS estimator.

2.2. Properties of Estimators: The AR(1) Case

Initially we establish the properties of our estimators assuming that yt is a simple AR(1)

process. Later we consider more general ARMA specifications, and evaluate the extent to

which the IV estimators are robust.

Lemma 2 Suppose that Assumption 1 holds with p = 1 and q = 0, so that π = ϕ1. When

|π| < 1 and y0 is assigned the stationary distribution for yt, we have

var(yt) = σ2
y =

σ2
ε

1− π2
and cov(xt, xt−h) =

{

σ2
y + σ2

η for h = 0,

πhσ2
y for h 6= 0.

When |π| < 1 we have the usual errors-in-variable problem, because xt−1 and ut = ϕ(L)ηt+

θ(L)εt are correlated. For instance, under the assumptions of Lemma 2 we have ut = ηt −
πηt−1 + εt, so that cov(xt−1, ut) = −πσ2

η. This correlation causes the well known attenuation

bias of the least squares estimator, which has previously been discussed in the context of

realized measures by Barndorff-Nielsen & Shephard (2002).

Theorem 1 (least squares estimator) Suppose that Assumption 1 holds with p = 1 and

q = 0. Let λ = σ2
η/σ

2
ε .

(i) We have

π̂ls
p→ π

1

1 + λ(1− π2)
.

(ii) When π = 1 we have

n(π̂ls − 1)
d→
∫ 1
0 (Wu − W̄ )dWu − λ
∫ 1
0 (Wu − W̄ )2du

.
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The first part of Theorem 1 shows that the least squares estimator is inconsistent unless

λ = 0 or π = 1. Although measurement errors, λ > 0, do not render the least squares estimator

inconsistent when π = 1, it does affect the asymptotic distribution, because λ shows up in the

limit distribution. Despite the consistency of π̂ls in the unit root case, the stochastic bias,

− λ

n
∫ 1
0 (Wu − W̄ )2du

, (6)

need not be negligible in finite samples. This will be illustrated in our empirical application,

where the bias is sizable despite a large sample size.

When p = 1 such that ϕ(L) = 1−πL, we have the following decomposition of our estimators,

π̂ivz = π +

∑n
t=1 ztut+1
∑n

t=1 ztxt
, where ut+1 = εt+1 + ηt+1 − πηt.

This shows the key to consistency whenever |π| < 1 is an instrument that is uncorrelated

with ut+1. For example, when yt ∼ARMA(1,1) as in Meddahi (2002, 2003), the instrument

zt = xt−j − x̄j is valid for any j ≥ 1, because cov(xt−j , ut+1) = 0 for j ≥ 1.

Theorem 2 (instrumental variable estimator) Suppose that Assumption 1 holds with p =

1 and q = 0.

(i) When |π| < 1 we have for j > 0

n1/2(π̂ivj
− π)

d→ N
[

0, π−2j
(

1− π2
) {

1 + 2
(

1− π2
)

λ+
(

1− π4
)

λ2
}]

,

where λ = σ2
η/σ

2
ε .

(ii) (Hall, 1989) When π = 1 we have for j > 0

n(π̂ivj
− π)

d→
∫ 1
0 (Wu − W̄ )dWu
∫ 1
0 (Wu − W̄ )2du

.

For the case where yt ∼AR(1), Theorem 2 shows that the instrumental variable estimator

is consistent for π, when j ≥ 1. The first part of the Theorem shows that xt−1 is the most

efficient instrument variables, amongst xt−1, xt−2, . . . , when |π| < 1, because π̂iv1
has the

smallest asymptotic variance. This is intuitive because the autocovariance function is for j ≥ 1

given by corr(xt, xt−j) = πj, so that xt−1 is more correlated with xt than is xt−j, for j ≥ 2.

The asymptotic distribution for the case where π = 1 is due to Hall (1989), who emphasized

the benefits of using π̂ivj
to test for unit roots rather than π̂ls, because the former has an

asymptotic distribution that is free of the nuisance parameter, λ = σ2
η/σ

2
ε . c.f. Theorem 1 (ii)

and Theorem 2 (ii).

Having an asymptotic distribution that depends on nuisance parameters is obviously in-

convenient, but the conventional unit root test has another flaw that is more serious. The
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standard OLS-based unit root test is known to be highly size distorted in the presence of a

large moving average root, see Schwert (1989) and Perron & Ng (1996). This size distortion is

largely due to the stochastic bias that we defined in (6). Despite the fact that the stochastic

bias is only of order Op(n
−1), which suggests it vanishes quickly as n → ∞, it can play a major

role even if n is large. The reason is that λ can be large, as is the case in our application

with realized measures, so that the bias still plays a major role. This is indeed the case in our

application with realized measures of volatility where n is close to 2,000. For the time series

of realized variances we find the least squares estimator to be about 30% smaller than the

instrumental variable estimator, and for the more accurate estimator of volatility, the realized

kernel, we find the downward bias to be about 15%.

The instruments in Theorem 2 are single variable instruments, in the sense that they are

based on a single lag of xt. When |π| < 1 we can construct a more efficient instrumental

variable by taking a linear combination of multiple instruments, (xt−1, xt−2, . . .).

Theorem 3 (optimal instrument) Suppose that Assumption 1 holds with p = 1 and q = 0

and consider the case where |π| < 1. Let Zt = (xt−1 − x̄1, . . . xt−J − x̄J)
′ , where J ≥ 1 is the

dimension of Zt. (i) Then

avar

(

n−1/2
n
∑

t=1

Ztut+1

)

= σ4
εMπ,λ and plim

n→∞

(

n−1
n
∑

t=1

Ztxt

)

= σ2
yVπ,

where Vπ =
(

π, π2, . . . , πJ
)′
, and

Mπ,λ = 1
1−π2B1 + 2λI + λ2B2,

where I is the J × J identity matrix, and B1 and B2 are symmetric band matrices given by,

B1 =





















1 π π2 · · · πJ−1

π 1 π
. . .

...

π2 π 1
. . . π2

...
. . .

. . .
. . . π

πJ−1 · · · π2 π 1





















, B2 =





















1 + π2 −π 0 · · · 0

−π 1 + π2 −π
. . .

...

0 −π
. . .

. . . 0
...

. . .
. . .

. . . −π

0 · · · 0 −π 1 + π2





















.

Within the class of instrumental variables, {zt : zt = Z ′
tα for some α ∈ R

J}, the optimal

instrument is given by

z∗t = Z ′
tα

∗
π,λ, where α∗

π,λ = M−1
π,λVπ,

and the asymptotic variance of π̂∗ = π̂ivz∗
(the IV estimator that is associate with z∗t ) is

avar
{

n−1/2(π̂∗ − π)
}

=
(1− π2)2

V ′
πM

−1
π,λVπ

=
1− π2

V ′
π {B1 + 2λ(1− π2)I + λ2(1− π2)B2}−1 Vπ

.
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Comment. Naturally, the optimal linear combination is scale invariant, in the sense that cz∗t

is also an optimal instrument for any c 6= 0.

2.2.1. Implementation Multiple Variables IV

The optimal linear combination depends on unknown parameters, so in our empirical appli-

cation we will use a two-step estimation procedure. In the first step we obtain preliminary

estimates of π and λ. For example, one can estimate π by a the two-stage least squares estimator

and then estimate λ, by

λ̂π̂ = −
ρ̂
∆x,1

+ 1−π̂
2

(1 + π̂) ρ̂
∆x,1

+ 1+π̂
2

, (7)

where

ρ
∆x,1

=
cov(∆xt,∆xt−1)

var(∆xt)
.

In the second step the instrument zt = Z ′
tαπ̂,λ̂ is computed and used to obtain new estimates

of π and λ.1 If necessary, the second step can be iterated until the estimates have converged.

In our empirical application the estimates converged in just two iterations.

Note that the estimator in (7) simplifies to

λ̂ll = −
ρ̂
∆x,1

2ρ̂
∆x,1

+ 1
,

when π̂ = 1, which is the estimator of λ = σ2
η/σ

2
ε , in the the local level model

yt = yt−1 + εt and xt = yt + ηt,

that is motivated by the fact that ρ
∆x,1

= − λ
2λ+1 in this model, see e.g. Harvey (1993). When

|π| < 1, p = 1 and q = 0, the estimator in (7) can be motivate by the identity

ρ
∆x,1

=
cov(∆xt,∆xt−1)

var(∆xt)
= −

σ2
ε

(

λ+ 1−π
1+π

)

2σ2
ε(λ+ 1

1+π )
= −1

2

(1 + π)λ+ (1− π)

(1 + π)λ+ 1
=

1

2

{

π

(1 + π)λ+ 1
− 1

}

.

In our application we found this multiple variable IV estimator to be insensitive to the estimate

of λ, and the point estimates of π were always very similar to the two-stage least squares

estimates that does not require an estimate of λ.

2.2.2. Related Estimators

The instrumental variable estimator computed with z∗t is based on the solution to an eigenvalue

problem. This is a feature that is shared by the well known LIML estimator. Yet the two

1In the event that the estimator of π exceeds one we suggest to substitute 1 for π̂ in the expression (7).
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estimators are different, because the optimal estimator take full advantages of the particular

covariance structure in this model.

In the stationary case |π| < 1, this optimal IV estimator, π̂∗, will be similar to the TSLS

estimator when λ is small. This follows from the fact that

n−1
n
∑

t=1

ZtZ
′
t

p→ σ2
ε

(

1
1−π2B1 + λI

)

= σ2
ε

(

Mπ,λ − λI − λ2B2

)

,

n−1
n
∑

t=1

Ztxt
p→ σ2

yVπ,

when |π| < 1. So that the linear combination of instruments that is implied by the TSLS

estimator, converges in probability to αtsls =
(

Mπ,λ − λI − λ2B2

)−1
Vπ, as n → ∞. Which

will be similar to α∗ = M−1
π,λVπ when λ is small. Still the asymptotic variance of the TSLS

estimator exceed that of the optimal instrument when λ > 0 in the stationary case |π| < 1.

2.2.3. Quantifying the Asymptotic Variance

In Figure 1 we have plotted the asymptotic variance for several estimators in the situation

where π = 0.975 and λ = 10. This configuration is motivated by our empirical analysis that is

presented in Section 4.

All these estimators are linear combinations of Zt = (xt−1 − x̄1, . . . , xt−10 − x̄10)
′, so the

asymptotic variance is simply given by

avar(π̂α′Zt
) =

α′Mπ,λα

(α′Vπ)
2 .

The line with the crossed symbols presents the asymptotic variance of the single-variable

instrument, π̂ivj
, which has zt = xt−j− x̄j, for j = 1, . . . , 10. In the notation given above, these

estimators correspond to α-vectors that have one non-zero element, e.g. α = (1, 0, . . . , 0)′.

We also present results for the estimator that optimally combines a subset of the ten

variable, specifically the optimal combination of the J−j+1 instruments (xt−j−x̄j, . . . , xt−J−
x̄J), where j = 1, 2, 3 and j ≤ J ≤ 10. Obviously the smallest asymptotic variance (in this

class of estimators) is achieved by the estimator that has j = 1 and J = 10. However, by

increasing j the estimator becomes robust to measurement errors that are (j − 1)-dependent.

So we are interested in the loss of efficiency by dropping the first few lags as instruments. We

are also interested in the marginal gains from increasing J . The reason is that theory suggests

that J be as large as possible, but the practical implication of increasing J is that observations

must be dropped from the sample. It is therefore useful to know that the efficiency gain from

increasing J beyond 10, say, is small.
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Figure 1: The asymptotic variance of the IV estimator based on different subset of instrumental vari-

ables. Crosses correspond to the single-variable instrument estimators where zt = xt−j − x̄j; triangles

represent the optimal combinations of (xt−1 − x̄1, . . . , xt−J − x̄J ), for J = 1, . . . , 10; circles and squares

denote the optimal combinations of (xt−2−x̄2, . . . , xt−J−x̄J ) and (xt−3−x̄3, . . . , xt−J−x̄J , respectively.

The results are for the case where π = 0.975 and λ = 10. We see a substantial gain in efficiency by

constructing instruments as a combination of multiple lagged values of xt−j . Omitting the first few lags

of xt−j is fairly innocuous when J is sufficiently large.

Figure 1 shows that there are substantial gains from combining multiple instruments, but

that the loss of efficiency by dropping the first few instruments is modest in this configuration,

once J is chosen large enough. Increasing J beyond ten only leads to very minor gains in

efficiency. So our preferred instrumental variable estimation in our empirical analysis will be

the one that combines lags four through ten.

2.3. Properties of Estimators: The ARMA(p,q) Case

Consider now the case where yt is an ARMA(p,q), and where we allow for a more general

specification for the measurement errors.
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Theorem 4 Suppose that Assumption 1 holds. When π = 1 we have for all j ≥ 0,

π̂ivj

p→ 1, as n → ∞.

When π < 1 and j ≥ max(p, q) we have

π̂ivj

p→ γ(j + 1)

γ(j)
, as n → ∞,

where γ(h) = cov(yt, yt+h), h = 0, 1, . . . .

Previously we established the consistency of π̂ivj
for π when p = 1, yt ∼AR(1) and the

consistency holds in general in the unit root case π = 1. When p ≥ 2 but π < 1 we see that

the IV estimator, π̂ivj
, is consistent for γ(j + 1)/γ(j). So the question is whether this ratio is

related to the persistence parameter π. This is addressed next.

Lemma 3 Suppose that Φm is positive for some integer m, then γ(j+1)
γ(j) → π as j → ∞.

The Lemma is a consequence of the Perron-Frobenius theorem, and the result shows, in

conjunction with Theorem 4, that π̂ivj

d→ π as n, j → ∞. The convergence γ(j+1)
γ(j) → π occurs

at a fast exponential rate that is defined by the second largest eigenvalue of Φ, which suggests

that j does not have to be very large in practice. The assumption that Φm is positive for some

m, is stronger than necessary, yet it is a reasonable assumption for the type of time series we

consider in this paper. The assumption rules out cases where the largest eigenvalue is negative,

which could induce cyclical behavior in the autocorrelation function.

2.4. Multivariate Extension

In some cases it may be desirable to estimate all the autoregressive parameters, (ϕ1, . . . , ϕp),

simultaneously. This is possible with the following class of multivariate IV estimators,

ϕ̂ivZ
=

(

n
∑

t=1

ZtX
′
t

)−1 n
∑

t=1

Ztxt+1,

where Xt = (xt, xt−1, . . . , xt−p+1)
′ and Zt = (xt−j − x̄j , . . . , xt−j−p+1 − x̄j−p+1)

′.

Theorem 5 (multivariate instrumental variable estimator) Suppose that Assumption

1 holds and j ≥ max(p, q). Then

ϕ̂ivZ

p→ (ϕ1, . . . , ϕp)
′.

Naturally, it is also possible to use an TSLS estimator that utilize more than p instrumental

variables. It is also our experience that the multivariate IV estimators are sensitive to the
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measurement errors. So with measurement errors of the magnitude we have in our empirical

application with realized measures, it appears that an extremely large sample size is needed in

order to get reliable estimates of all autoregressive parameters when p ≥ 2.

Because we are mainly concerned with the persistence parameter and the autocorrelation

function, we do not pursue these multivariate estimators further.

3. An Approximate Autocorrelation Function of A Latent Time Series

In this section we introduce an approximate estimator of the autocorrelation function that is

based on a variant of the instrument variable estimator we studied in the previous Section.

It is well know that measurement errors cause the population autocorrelation function of the

observed process to look different from that of the underlying time series. With simple mea-

surement errors, the autocorrelations of the observed process is simple those of the underlying

process, scaled by a constant. In the context of realized measures this has been noted in Taylor

(2005, pp. 337).

Before we define the new approximate autocovariance function for the latent y-process,

we define the traditional empirical autocovariances for the latent process, y, and the observed

process, x.

If yt is observed then we can estimate the autocorrelations by the empirical autocorrelations

that are defined by

ACFy(h) =

∑n
t=1 yt+h(yt − ȳ0)
∑n

t=1 yt(yt − ȳ0)
, h = 0, 1, . . . .

The probability limit ρy(h) = plimn→∞ACFy(h) is well defined whether π = 1 or |π| < 1.

Naturally, ACFy(h) is simply the least squares estimator in the regression

yt+h = ρy(h)yt + µy + ut,h,

where µy is a constant. The corresponding regression equation for the observed time series is

xt+h = ρx(h)xt + µx + vt,h,

where the errors-in-variables problem will cause the least squares estimator of ρx(h), defined

by

ACFx(h) =

∑n
t=1 xt+h(xt − x̄0)
∑n

t=1 xt(xt − x̄0)
, h = 0, 1, . . . ,

to be inconsistent for ρy(h). In the presence of measurement errors it is therefore tempting to

estimate ρy(h) using an IV estimator, analogous to the way we have estimate the persistence

parameter π. Consider

ACF∗
x(h) =

∑n
t=1 ztxt+h
∑n

t=1 ztxt
,
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where the instrument zt could be a lagged value of xt−j − x̄j or a linear combination of such

zt = Z ′
tα with Zt = (xt−j − x̄j, . . . , xt−J − x̄J)

′. The latter corresponds to a two-stage least

squares estimator, where α is determined in the first stage by regressing xt onto Zt. In our

empirical application we use j = 4 and J = 10.

We refer to ACF∗
x(h), h = 1, 2, . . . , as the approximate autocorrelation function, where

the nomenclature “approximate” is due to the fact that ACF∗
x(h) is not consistent for ρ(h) in

general. The potential inconsistency can be understood from the following simple example.

Suppose that yt is an AR(2) process with |π| < 1 and zt = xt−j − x̄j. Then ACF∗
x(h)

p→
γ(h+j)/γ(j) which need not equal ρ(h) = γ(h)/γ(0). However if the process is highly persistent,

then
γ(h+ j)/γ(j)

γ(h)/γ(0)
≈ 1,

making ACF∗
x(h) an approximate estimator of ρ(h). Note that if yt is an AR(1) process with

π 6= 0 then γ(h+ j)/γ(j) = γ(h)/γ(0) = πh. So ACF∗
x(h) is consistent for ρ(h) in this case.

We illustrate the merits of the approximate autocorrelation function by considering two

persistent AR(2) processes. That is measured with error. Specifically we consider the process

yt = ϕ•(
3
4yt−1 +

1
4yt−2) + εt,

where εt ∼ iidN(0, 1) and where ϕ• is either ϕ• = 1 (unit root) or ϕ• = 1− 1√
n
(local to unit

root). The latter translates into π = 0.949, π = 0.975, and π = 0.992, for the sample sizes

n = 250, n = 1, 000, and n = 10, 000, respectively.

We consider the autocorrelation functions for both yt and xt = yt + ηt, where ηt ∼
iidN(0, σ2

η) with σ2
η = 4. The corresponding results for σ2

η = 1 and σ2
η = 10 are presented

in Figure 7 in Appendix B. The simulation results reported in Figure are based on 1,000

simulations where the initial values were set to y0 = y−1 = 0.

The short-dashed lines in Figure 2 represent the population autocorrelation function for

the underlying process. Naturally, for the unit root process in the left panels the population

autocorrelation is constant and equal to one. The long-dashed lines represent the empirical

autocorrelation function, ACFx, that is computed with the observed time series, xt, and the

solid blue lines represent the new approximate autocorrelation function, ACF∗
x. For comparison

we also include the empirical autocorrelation function, ACFy, that is computed with underlying

y-process (solid green lines). The difference between the empirical ACFy and the population

ACF reflects the well known bias that vanishes as n → ∞. The empirical autocorrelations

reported are the averages over 1,000 simulations.

For the unit root case in the left panels, it is interesting to note that the approximate

autocorrelation function is a less biased measure of the population autocorrelation function

than the (infeasible) empirical ACFy, which is computed with the (in practice unobserved)
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yt process. This holds true for much higher levels of measurement errors (see Figure 7 in

Appendix B for the corresponding results with σ2
η = 10). For the local to unit root process we

see that that ACF∗
x is nearly as as good as the infeasible ACFy in particular for large sample

sizes, and it clearly dominates the traditional ACFx.
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Figure 2: The short dashed lines represent the population autocorrelation function for the underlying

autoregressive y-process (the object of interest). The long-dashed lines are the empirical autocorrelation

functions for the observed x-process, ACFx. The solid blue line is the approximate autocorrelation func-

tion, ACF∗

x, also computed with the observed x-process. For comparison we include ACFy which is the

(infeasible) empirical acf for the y-process (green lines).

4. Empirical Analysis of Realized Measures, Inflation, and Absolute Returns

We present empirical results using three data sets. The first data set consists of realized

measures of volatility for stocks in the Dow-Jones Industrial Average (DJIA) (as of medio

2008). We consider both the realized variance and the realized kernel. The second data set

consists of two macroeconomic variables measuring US inflation. The third data set consists

of two long time series of absolute returns.

We present two types of results. For the realized measures of volatility, we estimates the
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persistence parameter, π, and compute both OLS and IV based unit root tests. For all three

data sets we compute the approximate ACFs introduced in this paper, and compare it to the

empirical ACF for the observed time series.

High-frequency based estimators of volatility are far more precise of volatility than squared

returns, which is valuable for a number of reasons. For the purpose of evaluating volatility

models, Andersen & Bollerslev (1998) documented that the realized variance strongly domi-

nates squared returns when GARCH models are evaluated with Minzer-Zarnowitch regressions,

see also Hansen & Lunde (2005a). On a related issue, Hansen & Lunde (2006) have shown that

a precise proxy of the latent volatility is critical for the empirical ranking of volatility models

to be consistent for the population ranking unless the loss function has certain properties. See

also Patton (2008) and Patton & Sheppard (2009) who provide further insight about this issue.

A drawback of the realized variance is that it is sensitive to market microstructure noise,

and it is therefore not sensible to compute the RV with ultra high frequency returns such as

tick-by-tick returns. Robust estimators that can utilize the entire database more efficiently

include those by Zhang, Mykland & Aı̈t-Sahalia (2005), Barndorff-Nielsen et al. (2008a, 2009),

and Hansen & Horel (2009). However, even these estimators are in practice found to have a

sizable sampling error, as is evident from the confidence intervals that are reported for these

estimators, see e.g. Barndorff-Nielsen et al. (2008a) and Hansen & Horel (2009). Any of

these point estimates should therefore not be taken to be the true volatility. The sampling

error must be accounted for when the objective is to learn about the dynamics of actual

volatilities. Naturally, the measurement error can have other sources besides sampling error,

such as those induced by market microstructure noise that has not properly been accounted

for. The measurement error will be different for different realized measures, but the conclusions

that one draws about yt from each of them should not contradict one another, because they

are all proxies for the same latent variable.

The importance of accounting for the measurement errors in the observed realized variances

have been stressed by Andersen, Bollerslev, Diebold & Labys (2003) and Andersen, Bollerslev

& Meddahi (2005). They emphasize the downwards bias in the R2 that measurement errors

induce in predictive regressions. See also Meddahi (2001a), Meddahi (2002), Andersen et al.

(2004), Andersen, Bollerslev & Meddahi (2006).

Our basis setup where the realized variance is viewed as a noisy proxy of latent volatility

has previously been used in Barndorff-Nielsen & Shephard (2002). Their objective was to

estimate the parameters of the underlying stochastic volatility model. See also Bollerslev &

Zhou (2002) and Barndorff-Nielsen et al. (2004).
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4.1. Data Description

4.1.1. Realized Measures of Volatility

We analyze daily volatility estimates primarily based on high-frequency assets prices for 29

assets in the Dow Jones industrial average. The sample period runs from January 3, 2002 to

July 31, 2009 with a total of 1,907 trading days for most of the series. The high frequency

data used to compute the realized measures of volatility is the collection of trades and quotes

recorded on the NYSE. These high frequency data were extracted from the TAQ database

through the Wharton Research Data Services (WRDS) system. Both the realized kernel and

the realized variance is computed with transaction prices. However, quote prices are being used

to clean the transaction data for anomalies. We follow the step-by-step cleaning procedure

proposed by Barndorff-Nielsen, Hansen, Lunde & Shephard (2009).

We did not include realized measures that were compute with high frequency data that

spanned less than six hours. For each of the assets there were about 18 such days, primarily

days where the market closed at noon, such as the day after Thanksgiving. These data were

removed in order to eliminate obvious outliers that would arise from realized measures that

correspond to just half a day of volatility. However, removing these data points barely affected

any of our estimates.

4.1.2. Other Data: Macroeconomic Time Series and Absolute Return Series

We present the approximate autocorrelation functions for two time series of inflation and two

time series of absolute returns. The two time series of inflation are those compute with “CPI-

U, all items” (PUNEW) and the “headline personal consumption expenditure implicit price

deflator” (GMDC). These are monthly time series (1959:M1 to 1997:M9) that have previously

been analyzed in Stock & Watson (1999) and Hansen, Lunde & Nason (2009). The two time

series of absolute returns are based on daily returns on the DJIA and the S&P 500 downloaded

from Yahoo Finance. These span the period October 1, 1928 to September 16, 2009 and

January 3, 1950 to September 16, 2009, respectively.

4.2. The persistence of the underlying volatility

In this Section we estimate the persistence parameter, π, using the instrumental variable es-

timators that were introduced in Section 2. The persistence parameter has been estimated in

earlier work. For instance, Maheu & McCurdy (2002) estimated an ARMA(1,1) model with a

daily time series of the realized variance for an exchange rate, and reported π = 0.9. Meddahi

(2003) deduced the value, π = 0.95 from Bollerslev & Zhou (2002), who estimated stochastic

volatility diffusions using empirical moments of the integrated variance. Interestingly, Boller-
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slev & Zhou (2002) did mention the potential use of instrumental variables in the context of

additive measurement errors, but did not pursue this estimation strategy. In an application

with time-varying betas that were computed from daily returns, Ghysels & Jacquier (2006)

used the first lag as an instrumental variable to estimate an augmented AR(1) model for the

noisy time series of betas.

Table 1: Autoregressive Persistence Parameter, π. x = log(RK t).

Single variable IV Multiple variables IV

OLS IV 1 IV 2 IV 3 IV 4 IV 1:10 IV 2:10 IV 3:10 IV 4:10

AA 0.854 0.966 0.976 0.986 0.981 0.977 0.983 0.985 0.986

AXP 0.926 0.988 0.986 0.987 0.991 0.989 0.990 0.991 0.993

BA 0.832 0.960 0.972 0.987 0.994 0.976 0.984 0.988 0.989

BAC 0.942 0.978 0.985 0.992 0.994 0.984 0.989 0.992 0.993

C 0.938 0.978 0.985 0.991 0.987 0.983 0.988 0.990 0.989

CAT 0.845 0.949 0.975 0.987 0.994 0.971 0.983 0.987 0.987

CVX 0.850 0.953 0.967 0.984 0.989 0.968 0.977 0.981 0.980

DD 0.847 0.959 0.973 0.988 0.986 0.975 0.982 0.985 0.984

DIS 0.864 0.959 0.976 0.990 0.991 0.975 0.984 0.988 0.987

GE 0.902 0.975 0.984 0.992 0.991 0.984 0.989 0.991 0.991

GM 0.865 0.952 0.984 0.986 0.984 0.974 0.988 0.991 0.996

HD 0.850 0.964 0.968 0.992 0.989 0.977 0.983 0.988 0.986

HPQ 0.819 0.943 0.967 0.979 0.985 0.965 0.978 0.983 0.984

IBM 0.857 0.968 0.970 0.992 0.993 0.978 0.983 0.986 0.984

INTC 0.858 0.945 0.962 0.998 0.993 0.964 0.980 0.990 0.984

JNJ 0.827 0.944 0.982 0.986 0.982 0.970 0.984 0.986 0.987

JPM 0.927 0.972 0.982 0.993 0.989 0.981 0.987 0.991 0.990

KO 0.836 0.965 0.967 0.984 0.991 0.976 0.981 0.985 0.985

MCD 0.751 0.933 0.955 0.988 0.976 0.963 0.977 0.986 0.986

MMM 0.809 0.946 0.946 0.994 0.967 0.962 0.972 0.982 0.978

MRK 0.751 0.899 0.980 0.972 0.980 0.946 0.977 0.976 0.979

MSFT 0.866 0.965 0.977 0.990 0.981 0.978 0.984 0.986 0.985

PFE 0.793 0.935 0.942 0.991 1.002 0.959 0.975 0.991 0.989

PG 0.800 0.928 0.964 0.973 0.992 0.955 0.973 0.979 0.981

T 0.832 0.940 0.958 0.978 0.984 0.959 0.973 0.983 0.986

UTX 0.825 0.955 0.967 0.972 0.988 0.969 0.976 0.980 0.983

VZ 0.848 0.962 0.971 0.982 0.989 0.975 0.982 0.987 0.989

WMT 0.813 0.952 0.961 0.991 0.980 0.970 0.979 0.986 0.985

XOM 0.850 0.954 0.967 0.987 0.985 0.969 0.977 0.982 0.978

Point estimates of the persistence parameter π. The first column contains the least squares estimator.

The next four columns are IV estimates based on a single-variable instruments: xt−2 − x̄2, . . . , xt−5 −
x̄5, respectively. The next four columns are estimates using multiple instrumental variables, xt−i −
x̄i, . . . , xt−10 − x̄10, for i = 2, . . . , 5.
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We use yt = log IVt and xt = logRMt, where RMt is a realized measure. We prefer the

logarithmic transformed variables for two reasons. First, it gets around the problem that the

ARMA model does not prevent volatility from being negative. Second, in the BNS framework

the asymptotic variance of RVt−IVt is proportional to IQt =
∫ t
t−1 σ

4
sds, whereas the asymptotic

variance of log RVt − log IVt is proportional to IQt/ IV
2
t . The latter varies less with t, so the

log-transformation leads to less heteroskedasticity.

In Tables 1-2 we present least squares and IV estimates of the persistence parameter.

The estimates in Table 1 are those for the time series with realized kernel estimates. For

each of the 29 assets we compute the least squares estimator and eight instrumental variable

estimators. The first four IV estimates are single variable instruments based on the instrument

zt = xt−j − x̄j , where j = 1, . . . , 4. The last four IV estimates are based on multiple lags of

the observed process, xt−j − x̄j , . . . , xt−10 − x̄10, j = 1, . . . , 4, and these are compute with the

procedure described in Section 2.2.1.

The least squares estimates in the first column are 10-20% smaller than the IV estimators

in most cases. This shows that stochastic bias is important despite the large sample size. Thus

interpreting the asymptotic result that the stochastic bias is of order Op(n
−1) to mean that

this bias is negligible is very misleading in this context. We see that the persistence parameter

tends to be large when the first few lags of xt−j is not used as an instrument. Because a large

value of j offers a higher degree of robustness there is strong evidence that j = 1 (and j = 2 in

some cases) is too small to properly estimate π. The multiple variable estimators with j = 3

and j = 4 are very similar and close to one in all cases, which shows that the underlying time

series is highly persistent and close to unit root.

In Table 2 we present empirical results that are analogous to those in Table 1. The only

difference being that these are based on the realized variance computed with 30 minute returns

instead of the realized kernel. The realized variance is expected to be a less accurate estimator

of the quadratic variation than the realized kernel, which translates in to a larger measurement

error variance. This indeed found to be the case, because the bias of the least squares estimator

is about twice as large as that we observed for with the realized kernel. The IV estimates based

on the realized variance are strikingly similar to those we obtained with the realized kernel.

This is further evidence that the underlying is highly persistent and close to being unit root.

The average difference (across assets) between the estimates obtained with the realized kernel

and those obtained with the realized variance are reported in the last row of Table 2. For the

instrumental variable estimators we get very similar estimates in all cases, whereas the two

least squares estimates are quite different. These observations reflect that the IV estimators

are estimating the persistence of the same underlying time series, whereas the least squares

estimators are affected by the variance of the measurement errors that is larger for the realized
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variance than the realized kernel.

Table 2: Autoregressive Persistence Parameter, π. x = log(RV t).

Single variable IV Multiple variables IV

OLS IV 1 IV 2 IV 3 IV 4 IV 1:10 IV 2:10 IV 3:10 IV 4:10

AA 0.722 0.953 0.974 0.991 0.982 0.978 0.984 0.986 0.987

AXP 0.853 0.982 0.990 0.989 0.984 0.990 0.991 0.992 0.993

BA 0.659 0.967 0.969 0.965 0.985 0.980 0.984 0.989 0.994

BAC 0.887 0.964 0.985 0.990 0.993 0.980 0.990 0.992 0.993

C 0.881 0.975 0.991 0.990 0.985 0.986 0.990 0.990 0.990

CAT 0.701 0.976 0.948 0.999 0.983 0.981 0.983 0.987 0.985

CVX 0.698 0.948 0.971 0.965 0.976 0.970 0.975 0.978 0.982

DD 0.716 0.941 0.998 0.989 0.965 0.978 0.987 0.984 0.985

DIS 0.746 0.953 0.980 0.983 1.002 0.980 0.988 0.990 0.991

GE 0.820 0.973 0.979 0.986 0.992 0.985 0.988 0.991 0.993

GM 0.758 0.945 0.966 0.974 0.983 0.973 0.985 0.993 1.001

HD 0.706 0.976 0.952 0.999 0.976 0.981 0.984 0.988 0.987

HPQ 0.670 0.927 0.952 0.967 0.971 0.960 0.972 0.979 0.983

IBM 0.708 0.973 0.968 0.999 0.982 0.982 0.984 0.985 0.984

INTC 0.725 0.935 0.971 0.994 0.977 0.970 0.982 0.984 0.983

JNJ 0.715 0.936 0.978 0.977 0.965 0.969 0.980 0.982 0.985

JPM 0.842 0.969 0.979 0.991 0.989 0.983 0.988 0.991 0.991

KO 0.708 0.967 0.959 0.989 0.990 0.980 0.984 0.988 0.989

MCD 0.626 0.896 0.966 0.985 0.969 0.956 0.979 0.984 0.986

MMM 0.639 0.931 0.948 1.027 0.930 0.968 0.979 0.984 0.977

MRK 0.611 0.895 0.991 0.955 0.975 0.957 0.976 0.973 0.980

MSFT 0.750 0.955 0.986 0.977 0.976 0.978 0.983 0.984 0.986

PFE 0.651 0.910 0.916 1.004 1.037 0.958 0.981 0.999 0.993

PG 0.639 0.916 0.939 0.997 0.999 0.960 0.976 0.984 0.980

T 0.709 0.941 0.948 0.969 0.998 0.967 0.978 0.987 0.991

UTX 0.685 0.962 0.957 0.986 0.982 0.976 0.980 0.984 0.984

VZ 0.719 0.960 0.973 0.974 0.990 0.978 0.983 0.986 0.989

WMT 0.650 0.941 0.975 0.977 0.986 0.974 0.982 0.984 0.986

XOM 0.709 0.963 0.953 0.973 0.985 0.972 0.975 0.980 0.981

Average difference between π-estimates based on RK and RV

Ave. 0.127 0.005 0.003 0.002 0.004 -0.003 -0.001 -0.000 -0.001

Point estimates of the persistence parameter π. The first column contains the least squares estimator.

The next four columns are IV estimates based on a single-variable instruments: xt−2 − x̄2, . . . , xt−5 −
x̄5, respectively. The next four columns are estimates using multiple instrumental variables, xt−i −
x̄i, . . . , xt−10− x̄10, for i = 2, . . . , 5. The last row displays the average difference (across assets) between

the estimates obtained with the realized kernel and the realized variance.

The unit root test statistics, n(π̂−1), that arises from our estimates of π using the realized

kernel estimates are reported in Table 3. The first column is the traditional Dickey-Fuller
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t-statistic. These typically range between -150 and -400 that suggest overwhelming evidence

against the unit root hypothesis. However, as we have seen earlier, the least squares estimates

of the persistence parameter, π, have a substantial bias, which causes these test statistics to

be misleading. The test statistics based on the IV estimates offer a more accurate picture of

the evidence against the unit root hypotheses.

Table 3: Unit Root Test Statistics: n(π̂ − 1). x = log(RK t).

Single variable IV Multiple variables IV

OLS IV 1 IV 2 IV 3 IV 4 IV 1:10 IV 2:10 IV 3:10 IV 4:10

AA -276 -65.0 -46.0 -25.6 -35.8 -42.5 -32.2 -27.5 -26.5

AXP -140 -23.5 -26.9 -25.2 -16.3 -21.2 -19.3 -16.3 -13.3

BA -317 -75.2 -52.4 -25.1 -12.0 -44.2 -30.1 -22.3 -21.6

BAC -110 -42.3 -27.9 -16.0 -11.5 -30.1 -20.2 -14.6 -13.9

C -117 -42.4 -28.5 -16.1 -24.5 -31.1 -22.6 -18.9 -20.0

CAT -293 -95.6 -46.4 -24.6 -11.6 -54.8 -31.3 -24.2 -25.1

CVX -283 -89.1 -61.6 -30.7 -21.5 -60.6 -43.4 -34.9 -38.1

DD -289 -76.8 -50.9 -23.0 -27.0 -47.7 -34.1 -27.8 -29.4

DIS -257 -77.6 -46.0 -19.1 -16.1 -47.6 -30.2 -23.2 -25.2

GE -185 -47.7 -30.4 -15.1 -17.7 -29.9 -21.1 -17.4 -17.7

GM -247 -87.7 -28.6 -26.5 -29.0 -48.2 -22.2 -16.5 -7.93

HD -282 -68.1 -60.0 -14.6 -20.3 -44.1 -32.3 -23.0 -26.0

HPQ -326 -102 -58.6 -37.0 -27.5 -62.5 -39.8 -31.4 -29.6

IBM -270 -59.7 -55.8 -15.8 -13.6 -40.8 -32.4 -25.9 -30.3

INTC -268 -103 -71.4 -3.92 -13.6 -67.4 -38.2 -18.7 -29.9

JNJ -326 -106 -34.8 -26.4 -33.1 -56.3 -29.2 -26.3 -25.2

JPM -138 -52.5 -34.4 -12.6 -20.1 -36.5 -23.7 -16.8 -19.5

KO -309 -65.8 -62.5 -30.9 -17.8 -45.5 -36.1 -27.6 -27.6

MCD -469 -127 -84.6 -23.5 -44.4 -69.9 -42.3 -26.2 -25.6

MMM -361 -103 -102 -11.8 -62.1 -72.3 -53.2 -34.0 -40.6

MRK -469 -191 -37.2 -53.3 -38.0 -101 -42.4 -44.9 -40.2

MSFT -254 -66.8 -42.7 -19.2 -35.0 -42.2 -30.5 -26.1 -27.8

PFE -391 -123 -109 -16.4 2.94 -77.6 -46.3 -17.5 -20.9

PG -378 -136 -68.1 -50.9 -14.3 -83.7 -50.1 -39.1 -35.1

T -315 -113 -79.4 -41.4 -30.1 -77.0 -50.4 -31.9 -26.5

UTX -330 -85.0 -62.3 -52.0 -23.3 -58.8 -45.5 -36.8 -31.5

VZ -286 -72.4 -55.5 -33.3 -20.7 -46.5 -33.7 -24.6 -20.8

WMT -352 -90.9 -73.2 -16.2 -36.8 -56.1 -38.7 -26.2 -28.9

XOM -284 -86.6 -62.9 -23.9 -28.0 -58.9 -42.4 -34.3 -40.6

The 1% and 5% critical values are -20.7 and -14.1, respectively (see e.g. Fuller (1996, Table 10.A.1,

page 641)). Test statistics in bold font are those that are insignificant at the 1% level.

The test statistics in bold font are those for which we fail to reject the unit root hypothesis

at the 1% level. While the unit root hypothesis is rejected for most series, it is evident that the
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empirical evidence against the unit root hypothesis is less clear-cut than suggested by the OLS-

based unit root tests. The conclusion we draw from our estimates of the persistence parameter

is that the underlying process is highly persistent. This may be attribute to the underlying

process being local to unit root, fractionally integrated, or some other form of persistent

process. Naturally, the usual suspect “structural change” cannot be ruled out either.

4.3. Empirical ACFs for Realized Measures

We consider two time series with estimates of daily volatility. The first time series is based on

realized variance, computed with 30 minute returns, the other is computed with the realized

kernel estimator implemented as detailed in Barndorff-Nielsen et al. (2009). Both the realized

variance and the realized kernel are estimates of the quadratic variation. Thus we can view

both as noisy proxies of the same population quantity, the underlying quadratic variation. We

compute the approximate autocorrelations ACF∗
x using the two-stage least squares estimator

discussed in Section 3, where seven lags, xt−4, . . . , xt−10, are used as instrumental variables.
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Figure 3: The empirical and approximate autocorrelation functions computed with realized measures of

volatility for BA. The approximate ACF∗ better reflects the autocorrelation function of latent volatility.

While the conventional ACF are quite different the two ACF∗-estimates are in agreement.

Figure 3 displays the estimated autocorrelation functions for realized measures of volatility
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compute with high frequency returns on BA (The Boeing Company). The two upper curves are

the approximate autocorrelation function, ACF∗, based on the realized kernel and the realized

variance. The approximate ACF is designed to reflect the the persistence of the latent time

series, which – in this case – is the same underlying volatility process for both time series. The

ACF∗-estimates for the two time series are quite similar, precisely as one would expect because

the realized variance and the realized kernel are both estimates of the same underlying quantity.

The two lower curves in Figure 3 are computed with the traditional empirical autocorrelation

function, ACFx, and the realized kernel and the realized variance result in distinctly different

ACFx-estimates. The difference between the two simply reflects that the measurement errors

in the two series are different. Figure 4 gives another example of the estimated autocorrelation

functions with another asset MRK (Merck & Co., Inc). The ACF for all other assets are very

similar to those presented in Figures 3-4.
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Figure 4: The empirical and approximate autocorrelation functions computed with realized measures of

volatility for MRK. The approximate ACF∗ better reflects the autocorrelation function of latent volatility.

Again we see that the conventional ACF are quite different whereas the two ACF∗-estimates are in

agreement.

In a survey of the existing literature, Taylor (2005) noted that the autocorrelation function

for the realized variance is typically estimated to start out between 0.60 and 0.65 and decay
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slowly, precisely as is the case for the conventional autocorrelation estimates for the realized

variance in Figures 3 and 4. Taylor (2005, sec. 12.9.4) discusses the downwards bias that

measurement errors induce on ACFx, and he speculates that the first-order autocorrelation of

the underlying volatility may be 0.70 or larger. We estimate the first-order autocorrelation of

the underlying volatility to be very close to unity in all cases, so the downwards bias is far

more severe than may have been thought.

The traditional ACFs suggest that the realized kernel is somewhat more persistent than

the realized variance, for both BA and MRK. A point we want to emphasize here, is that this

discrepancy between the two ACFs is induced by the realizes variance being a less accurate

estimator of the latent volatility, and that neither of the conventional autocorrelation functions

properly reflects the persistence of the population measure of volatility. The persistence is

better assessed with our approximate estimation of the autocorrelation function, ACF∗, that

produces very similar estimates for the realized kernel and the realized variance.

Given the results we reported in Figure 2 we see that the evidence against the unit root

hypothesis is less clear-cut than suggested by the conventional autocorrelation function. Since

the estimated autocorrelations are downwards biased when the underlying population quantity

is close to one, the estimated ACF∗s are by no means strong evidence against the unit root

hypothesis. When taking the finite sample bias and sampling error into account the estimated

ACF∗ could be consistent with a unit root process, a fractionally integrated process, as well

as many other types of processes.

4.4. Autocorrelation Functions for Time-Series of Inflation

In Figure 5 we have computed the empirical autocorrelation function, ACFx, and the approx-

imate estimator, ACF∗
x, for two monthly time series of inflation. These are virtually identical

which suggests that the measurement errors in these time series are relatively small.

4.5. Empirical Analysis of Absolute Returns

Absolute returns is often used as an example of a process that has properties that resemble

those of a fractionally integrated process, see Ding, Granger & Engle (1993). Squared returns is

a simple one-to-one transformation of absolute returns, so if absolute returns has long memory

features, then so will squared returns. In fact, the autocorrelation functions for log-absolute

returns and log-squared returns are identical. It is perhaps puzzling that the case of long

memory is rarely made about squared returns, even though the order of fractional integration,

d, is the same for absolute returns and squared returns, see e.g. Andersen & Bollerslev (1997),

Harvey (1998), and Bollerslev & Wright (2001). We believe that the explanation for this is
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that either series can be viewed as noisy measurements of volatility, and that the noise is

simply more pronounced in squared returns, which conceals the persistence to a larger extend

than is the case for absolute returns. The eigenfunction analysis, see Meddahi (2001b) and

Andersen, Bollerslev & Meddahi (2010), provides the deeper theoretical explanation for this.

For instance, in the context of stochastic volatility models this phenomenon would naturally

arise if the instantaneous volatility equals the first eigenfunction, as is the case in Forsberg &

Ghysels (2007).
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Figure 5: ACF for inflation series.

In Figure 6 we have computed the empirical autocorrelation function for absolute returns

as well as the approximate autocorrelation function. These are distinctly different. The empir-

ical autocorrelation function is often interpreted as evidence of long memory, and sometimes

considered to be evidence against an unit root hypothesis. The new estimation of the auto-

correlation of the underlying process, ACF∗
x, reveals that the choice between long memory and

unit root is less clear-cut than is suggested by the conventional autocorrelation function for

the observed process, ACFx.

Relying on the empirical ACF for the observed series is perhaps not the best way to

classify the long-dependence properties of a time series, because it is influenced by the short-
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run dynamics. A better classification scheme of persistent processes is that of Muller & Watson

(2008). Their method is explicitly designed to filter the effect of short-run dynamics and focus

on the variation at low frequencies. In their empirical analysis of absolute returns, they do

find empirical evidence that supports a fractionally integrated model for absolute returns.

Long memory models that explicitly account for noise in the manner we discuss in this

paper is a relatively unexplored topic. A few papers such as, Chong & Lui (1999), Sun &

Phillips (2003), Hurvich, Moulines & Soulier (2005) and Haldrup & Nielsen (2007), consider

estimation of the memory parameter in an ARFIMA setting, where the time series of interest is

perturbed by an additive noise term. In the context of volatility measures, Bollerslev & Wright

(2000) showed that high-frequency based volatility measures lead to more accurate estimates

of the long-memory parameter. This is quite intuitive because the use of realized volatility

measures effectively amounts to reducing the measurement error.
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5. Summary and Concluding Remarks

In a situation where a time series is observed with measurement errors, we have shown that

the persistence of the underlying time series can be assessed by instrumental variable methods.

When the latent time series is an ARMA(p,q) process it is possible to estimate the autoregres-

sive parameters consistently, hence a consistent estimate of the persistence parameter. The

instrumental variable we employ are lagged values of the observed time series, and we derived

the optimal linear IV estimator in a special case.

Serial dependence makes the lagged values of the observed time series useful as instruments.

So a highly persistent latent time series leads to an ideal framework for the instrumental

variable estimators. On the other hand, a time series with a small autocorrelation causes

the lagged values to be weak instruments, and the IV estimators may be unreliable in such

circumstances.

We have also proposed a novel estimator of the autocorrelation function for the underlying

time series. This estimator also relies on lagged values of the observed process being good and

valid instruments. So this estimator is best suited for the case where the underlying time series

is persistent.

We have shown that measurement errors can conceal the persistence of the underlying time

series, and that unit root tests are unreliable unless the measurement errors are accounted

for. So the empirical evidence against the unit root hypothesis may, in some cases, not have

been as clear-cut as may have been believed. Our findings are also relevant for multivariate

time series. For instance, the fact that a unit root process with measurement errors can be

confused with a fractionally integrated process begs the following question: Can some of the

fractional cointegration results that have been documented in the literature be attributed

to measurement errors? Another plausible explanation is that the underlying time series

are individually integrated of order one and cointegrate in the traditional sense, but that

measurement errors make the individual time series appear to be fractionally integrated. In any

case, we believe it is important to account for measurement errors in applications with realized

measures of volatility, and other persistent time series with similar levels of measurement errors.

Appendix A: Proofs

Proof of Lemma 1. By premultiplying (2) by ϕ(L) we have

ϕ(L)xt = ϕ(L)yt + ϕ(L)ξ + ϕ(L)ηt = ϕ(L)(yt − δ) + (1− π)(δ + ξ) + ϕ(L)ηt,

where we have used that ϕ(L)c = (1− π)c for any constant c. Now substitute (1) to get

ϕ(L)xt = (1− π)(δ + ξ) + θ(L)εt + ϕ(L)ηt.

�
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Proof of Lemma 2. The result for var(yt) is well known. For h = 0 we have var(xt) =

var(yt + ηt) = σ2
y + σ2

η, and for h 6= 0 we have

xt − ξ − δ = yt − δ + ηt = πh(yt−h − δ) +

h−1
∑

i=0

πiεt−i + ηt,

so that

cov(xt, xt−h) = E

[{

πh(yt−h − δ) +

h−1
∑

i=0

πiεt−i + ηt

}

{(yt−h − δ) + ηt−h}
]

= πhvar(yt−h).

�

Proof of Theorem 1. The case with |π| < 1 follows from Lemma 2. When π = 1 we have

y[un]/
√
n

w→ σεWu where Wu is a standard Brownian motion, u ∈ [0, 1], and we consider

n−1
n
∑

t=1

(xt − x̄0) (εt+1 + ηt+1 − ηt) = n−1
n
∑

t=1

(yt − ȳ0 + ηt − η̄) (εt+1 + ηt+1 − ηt)

= n−1
n
∑

t=1

(yt − ȳ0) εt+1 − n−1
n
∑

t=1

(ηt − η̄)2 + n−1
n
∑

t=1

ytηt+1 − n−1
n−1
∑

t=0

yt+1ηt+1

− ȳ0n
−1

n
∑

t=1

(ηt+1 − ηt) + n−1
n
∑

t=1

(ηt − η̄) (εt+1 + ηt+1) ,

where

n−1
n
∑

t=1

ytηt+1 − n−1
n−1
∑

t=0

yt+1ηt+1 = −n−1
n−1
∑

t=0

(yt+1 − yt)ηt+1 + n−1(ynη0 − y0η0)

= −n−1
n
∑

t=1

εtηt +Op(n
−1) = op(1),

and ȳ0n
−1
∑n

t=1 (ηt+1 − ηt) + n−1
∑n

t=1(ηt − η̄) (εt+1 + ηt+1) = op(1). Similarly,

n−2
n
∑

t=1

(xt − x̄0)
2 = n−2

n
∑

t=1

(yt − ȳ0)
2 + op(1),

so that

n(π̂ls − 1) =
n−1

∑n
t=1 (xt − x̄0) (εt+1 + ηt+1 − ηt)

n−2
∑n

t=1 (xt − x̄0)xt

=
n−1

∑n
t=1 (yt − ȳ0) εt+1 + n−1

∑n
t=1 η

2
t − n−1

∑n
t=1 εt+1ηt+1 + op(1)

n−2
∑n

t=1 (yt − ȳ0)
2 + op(1)

d→
∫ 1
0 (Wu − W̄ )dWu − σ2

η/σ
2
ε

∫ 1
0 (Wu − W̄ )2du

.

�
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Lemma A.1 Let Σt be short for n−1/2
∑n

t=1 . Given Assumption 1 with p = 1 and q = 0 we

have for j ≥ 1 and d ≥ 0

cov (Σtxt−jut+1,Σtxt−j−dut+1) → σ4
ε ×















1
1−π2 + 2λ+ (1 + π2)λ2 d = 0,
π

1−π2 − πλ2 d = 1,
πd

1−π2 d ≥ 2,

as n → ∞

Proof. Without loss of generality we set δ = ξ = 0. In our proof we use that

Σtyt−jηt = Σt(πyt−j−1 + εt−j)ηt = πΣtyt−j−1ηt +Σtηtεt−j +Op(n
−1/2). (A.1)

We have

Σtxt−jut+1 = Σt(yt−j + ηt−j) (εt+1 + ηt+1 − πηt) = Σtyt−jεt+1 +Σtηt−jεt+1

+Σtyt−jηt+1 − πΣtyt−jηt +Σtηt−j(ηt+1 − πηt)
(A.1)
= Σtyt−jεt+1 +Σtηt−jεt+1

+Σtyt−jηt+1 − π2Σtyt−jηt+1 − πΣtεt−j+1ηt +Σtηt−j+1(ηt+1 − πηt)

+Op(n
−1/2) = Σtyt−jεt+1 +Σtηt−j+1εt+1 − πΣtηtεt−j+1 + (1− π2)Σtyt−jηt+1

+Σtηt−j+1(ηt+1 − πηt) +Op(n
−1/2) = Σtyt−j

{

εt+1 + (1− π2)ηt+1

}

+Σtηt−j+1(εt+1 + ηt+1 − πηt)− πΣtηtεt−j+1 +Op(n
−1/2),

which is a sum of uncorrelated terms. So the asymptotic variance is

avar(Σtxt−jut+1) = σ2
y

{

σ2
ε + (1− π2)2σ2

η

}

+ σ2
η

{

σ2
ε + (1 + π2)σ2

η

}

+ π2σ2
ησ

2
ε

= σ4
ε

1−π2 + (1− π2)σ2
εσ

2
η + (1 + π2)σ2

ησ
2
ε + (1 + π2)σ4

η

= σ4
ε

1−π2 + 2σ2
εσ

2
η + (1 + π2)σ4

η = σ4
ε

{

(

1− π2
)−1

+ 2λ+
(

1 + π2
)

λ2
}

.

Next we analyze the covariances. The σ4
ε -terms are given by

cov(Σtyt−jεt+1,Σtyt−j−dεt+1)

= cov
{

Σt

(

πdyt−j−d + εt−j + · · ·+ πd−1εt−j−d+1

)

εt+1,Σtyt−j−dεt+1

}

= πdvar(Σtyt−j−dεt+1) + cov
{

Σt

(

εt−j + · · ·+ πd−1εt−j−d+1

)

εt+1,Σtyt−j−dεt+1

}

= πdvar(Σtyt−j−dεt+1) → πd(1− π2)−1σ4
ε , as n → ∞.

The σ2
ησ

2
ε -terms are given by Σtηt−jεt+1 − πΣtηtεt−j + (1 − π2)Σtyt−jηt+1 = Σtηt−jεt+1 −

πΣtηtεt−j + (1− π2)Σt

(

πdyt−j−d + εt−j + · · ·+ πd−1εt−j−d+1

)

ηt+1 such that

cov
{

Σtηt−jεt+1 − πΣtηtεt−j + (1− π2) Σtyt−jηt+1,Σtηt−j−dεt+1 − πΣtηtεt−j−d
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+(1− π2)Σtyt−j−dηt+1

}

= (1− π2)2πdvar(Σtyt−j−dηt+1)

+ cov
{

−πΣtηtεt−j−d, (1− π2)Σtπ
d−1εt−j−d+1ηt+1

}

= (1− π2)πdσ2
ησ

2
ε − (1− π2)πdσ2

ησ
2
ε = 0.

Finally, when d = 1 the σ4
η-term is simply

cov(Σtηt−jηt+1 − πΣtηt−jηt,Σtηt−j−1ηt+1 − πΣtηt−j−1ηt)

= cov(Σtηt−jηt+1,−πΣtηt−j−1ηt) = −πσ4
η + o(1),

whereas this term is zero when d ≥ 2. �

Proof of Theorem 2. With an AR(1) specification for yt we have

xt = πxt−1 + (1− π)(δ + ξ) + εt + ηt − πηt−1.

Without loss of generality we set δ = ξ = 0. By repeated substitution xt = πjyt−j + εt +

πεt−1 + · · · + πj−1εt−j+1 + ηt, and it follows that

cov(xt, xt−j) = πjcov(yt−h, xt−h) = πjvar(yt−h) = πjσ2
y.

Next, we consider the decomposition

π̂ivj
=

∑n
t=1(xt−j − x̄j)xt+1
∑n

t=1(xt−j − x̄j)xt
= π +

∑n
t=1(xt−h − x̄h) (εt+1 + ηt+1 − πηt)

n−1
∑n

t=1(xt−h − x̄h)xt
.

From Lemma A.1 it follows that

avar

{

n−1/2
n
∑

t=1

(xt−j − x̄j) (εt+1 + ηt+1 − πηt)

}

= σ4
ε

{

1
1−π2 + 2λ+ (1 + π2)λ2

}

,

and that

n−1
n
∑

t=1

(xt−j − x̄j)xt
p→ πjσ2

y = πj σ2
ε

1−π2 ,

so that

n1/2(π̂ivj
− π)

d→ N(0, σ2
π̂ivj

),

where

σ2
π̂ivj

= σ4
ε

{

1
1−π2 + 2λ+ (1 + π2)λ2

}

(

πj

1− π2
σ2
ε

)−2

= π−2j
{

1− π2 + 2
(

1− π2
)2

λ+
(

1− π2
)

(1− π4)λ2
}

The proof for the case where π = 1 is given by Hall (1989). �

Proof of Theorem 3. The structure of the J × J matrix Mπ,λ follows from Lemma A.1 and

Vπ follows from the law of large numbers and the fact that cov(xt−j , xt) = πjσ2
y for j ≥ 1.
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We seek a vector, α, that solves

min
α∈RJ

α′Mπ,λα

(α′Vπ)
2 .

This problem is clearly invariant to rescaling of α, so we can reformulate the problem as

min
α

α′Mπ,λα, s.t. α′Vπ = 1.

The first order conditions are simply 2Mπ,λα − ρVπ = 0, where ρ is the Lagrange multiplier,

so that

α⋆ =
1

V ′
πM

−1
π,λVπ

M−1
π,λVπ,

is the solution to the constrained problem. By the scale invariance of α we have that α∗ =

cM−1
π,λVπ yields an optimal instrument for any c 6= 0. �

Proof of Theorem 4. For the unit root case the result follows from n

n−2
n
∑

t=1

(xt−j − x̄j)xt =

∫ 1

0
(W (u)− W̄ )2du+ op(1),

and

n−2
n
∑

t=1

(xt−j − x̄j)xt+1 − n−2
n
∑

t=1

(xt−j − x̄j)xt = n−2
n
∑

t=1

(xt−j − x̄j)∆xt+1 = op(1),

for any j ≥ 1. When π < 1 the result follows from

n−1
n
∑

t=1

(xt−j − x̄j)xt = n−1
n
∑

t=1

(yt−j − ȳj + η̄)(yt + ξ + ηt)

= n−1
n
∑

t=1

(yt−j − ȳj)yt + op(1) = ρj + op(1).

�

Proof of Lemma 3. For a positive matrix, A, with spectral radius r, we know from the

Perron-Frobenius theorem that Ak/rk → ab′ as k → ∞, where a and b are the (left and right)

eigenvectors associated with the largest eigenvalue of A, which equals the spectral radius, r.

Moreover, the elements of the vector a are all strictly positive.

Define the vector of p consecutive autocorrelations, γ∗j = (γj , . . . , γj−p+1)
′. Since π is the

spectral radius of Φ then (π−1Φ)kγ∗j converges to a limit that is proportional to the eigenvector

a as k → ∞. By the Yule-Walker equation we have

γj+1 = ϕ1γj + · · ·+ πpϕj−p+1,

which implies that γ∗j+1 = Φγ∗j . Thus if we define the vector vj = π−jγ∗j ∈ R
p, then vj+1 =

(π−1Φ)vj. This shows that vj , as j → ∞, approaches the eigenvector associated with π, which
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implies that vj+1−πvj → 0 as j → ∞. By considering the first elements of the vectors vj+1 and

vj , (which are non-zero because a is strictly positive) it now follows that π−j+1γj+1−π−jγj → 0,

so that γj+1/γj → π. �

Proof of Theorem 5. Consider the case where |π| < 1. Since J ≥ max(p, q) we have

n−1
n
∑

t=1

ZtX
′
t

p→ ΓJ =















γJ γJ−1 · · · γJ−p+1

γJ+1 γJ γJ−p+2

...
. . .

...

γJ+p−1 γJ+p−2 · · · γJ















n−1
n
∑

t=1

Ztxt+1
p→ γJ+1 = (γJ+1, γJ+2, . . . , γJ+p)

′ .

So the IV estimator converges in probability to plimn→∞ ϕ̂ivZ
= Γ−1

J γJ+1. Next, by the Yule-

Walker equations we have

γJ+1 = ΓJϕ, where ϕ = (ϕ1, . . . , πp)
′,

and it now follows that the probability limit is given by ϕ = (ϕ1, . . . , ϕp)
′. When π = 1 the

proof follows by combining unit root results with those given above. �
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Appendix B: Additional Plots
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