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Abstract

In this paper, nonlinear models are restricted to mean nonlinear
parametric models. Several such models popular in time series econo-
metrics are presented and some of their properties discussed. This in-
cludes two models based on universal approximators: the Kolmogorov-
Gabor polynomial model and two versions of a simple arti�cial neural
network model. Techniques for generating multi-period forecasts from
nonlinear models recursively are considered, and the direct (non-recursive)
method for this purpose is mentioned as well. Forecasting with com-
plex dynamic systems, albeit less frequently applied to economic fore-
casting problems, is brie�y highlighted. A number of large published
studies comparing macroeconomic forecasts obtained using di¤erent
time series models are discussed, and the paper also contains a small
simulation study comparing recursive and direct forecasts in a partic-
ular case where the data-generating process is a simple arti�cial neural
network model. Suggestions for further reading conclude the paper.
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1 Introduction

Nonlinear time series forecasting is quite common in science. Forecasts of
river�ow, meteorological phenomena such as earth or sea temperatures or
cloud coverage, sunspots, size of animal populations, future outcomes of bio-
chemical processes, or medical time series, to name a few examples, are very
often generated by nonlinear models. The most popular nonlinear forecast-
ing models in these areas are complex dynamic systems based on the concept
of chaos, and various neural network models. The former models are deter-
ministic, although they may be assumed to be contaminated by stochastic
variation. The latter are stochastic and parametric, and in spirit close to
nonparametric models. They belong to the family of universal approxima-
tors, that is, they are very �exible and can be used to approximate rather
general functional forms arbitrarily accurately.
Economic time series have traditionally been forecast by parametric linear

models. More recently, nonlinear univariate and single-equation models have
gained in popularity, although linear models still dominate. Perhaps because
of the linear tradition, nonlinear forecasting of economic time series is of-
ten carried out by parametric nonlinear models such as switching or smooth
transition regression models and hidden Markov or Markov-switching models.
These models have the property that they nest a linear model and, depending
on the application, may have an economic interpretation. They are less fre-
quently used for forecasting outside economics where, as already mentioned,
neural networks and nonparametric methods including chaos-based ones are
more frequent.
Forecasts from parametric models to be discussed in this chapter are

conditional means of the variable to be forecast. If the model and thus
its conditional mean are linear, computing the conditional mean is easy.
When the conditional mean is nonlinear, multi-step forecasting becomes more
complicated, and numerical techniques are called for. This issue deserves a
separate discussion.
The plan of this chapter is as follows. In Section 2 we shall consider a

number of parametric time series models. Some universal approximators,
including neural network models, will be studied in Section 3. Forecasting
several periods ahead with nonlinear models is the topic of Section 4, and
forecasting with chaotic systems is brie�y considered in Section 5. Compar-
isons of linear and nonlinear forecasts of economic time series are discussed
in Section 6 and studies comprising a large number of series in Section 7.
Section 8 contains a limited forecast accuracy comparison between recursive
and direct forecasts. Final remarks and suggestions for further reading can
be found in Section 9.
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2 Nonlinear time series models

2.1 Switching regression model

The standard switching regression (SR) model is de�ned as follows:

yt =
rX
j=1

(�0jzt + "jt)I(cj�1 < st � cj) (1)

where zt = (w0
t;x

0
t)
0 is a vector of explanatory variables,wt = (1; yt�1; :::; yt�p)

0

and xt = (x1t; :::; xkt)0; st is an observable switch-variable, usually assumed
to be a continuous stationary random variable, I(A) is an indicator vari-
able: I(A) = 1 when A is true, zero otherwise. Furthermore, c0; c1; :::; cr
are switch or threshold parameters, c0 = �1; cr = 1. Parameters �j =
(�0j; �1j; :::; �mj)

0 are such that �i 6= �j for i 6= j; where m = p + k + 1,
"jt = �j"t with f"tg � iid(0; 1); and �j > 0; j = 1; :::; r. It is seen that (1) is
a piecewise linear model whose switch-points are generally unknown. If they
are known, the model is linear. It is also linear if r = 1; that is, if there is
only one regime. In many economic applications, the number of regimes is
two, so eqn. (1) collapses into

yt = (�
0
1zt + "1t)I(st � c1) + (�

0
2zt + "2t)f1� I(st � c1)g: (2)

When xt is absent and st = yt�d; d > 0, (1) becomes the self-exciting
threshold autoregressive (SETAR, or TAR for short) model. The univariate
model has been frequently applied in economics. For a thorough account of
the TAR model, see Tong (1990).
A useful special case of the univariate TAR model is the one in which

only the intercept is switching, whereas the autoregressive structure remains
unchanged. Setting wt = (1; ew0

t)
0 with ewt = (yt�1; :::; yt�p)0; the model can

be written as follows:

yt =
rX
j=1

�0jI(cj�1 < yt�d � cj) + �
0 ewt + "t (3)

where � = (�1; :::; �p)
0 and "t � iid(0; �2): This speci�cation was suggested

by Lanne & Saikkonen (2002) to characterize �near unit root� behaviour.
The switching intercept in (3) causes level shifts in realizations, although the
process itself is stationary and ergodic when the roots of the lag polynomial
1 �

Pp
j=1 �jz

j lie outside the unit circle. This model is a useful tool for
modelling series that �look�nonstationary but are stationary and �uctuate
within bounds, such as interest rate series. Lanne and Saikkonen �t their
model to two interest rate series that by de�nition cannot have a unit root.
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Application of the SR model requires selecting the number of regimes r
since it is typically not known in advance. It is a priori possible that r = 1; in
which case a genuine SR model with r > 1 is not identi�ed. Solutions to this
speci�cation problem can be found in Tsay (1989), Hansen (1996), Gonzalo
& Pitarakis (2002) and Strikholm & Teräsvirta (2006), see also Teräsvirta,
Tjøstheim and Granger (2010, Chapter 16). Estimation of SR models with
r = 2 is carried out by a set of regressions, see for example Tong (1990),
because the threshold parameter has to be estimated using a grid. Gonzalo &
Pitarakis (2002) showed how to do that when there is more than one threshold
parameter, in which case r > 2: Assuming stationarity and ergodicity of the
TAR model, Chan (1993) derived the asymptotic properties of maximum
likelihood estimators of the parameters of the model. This included showing
(in the case r = 2) that bc1; the maximum likelihood estimator of c1 is super
consistent and Tbc1 (T is the sample size) is asymptotically independent ofp
T b�1 and pT b�2:
The switching regression model can be generalized to a vector model that

may be called the vector switching regression or, in the absence of exogenous
variables, the vector threshold autoregressive model. For various forms of
this model, including the Threshold Cointegration model, see Teräsvirta et
al. (2010, Chapter 3).
The TAR model has been applied to macroeconomic series such as GNP,

industrial production, unemployment and interest rate series. Tsay (1998)
contains several examples of �tting a vector TAR model to economic and
�nancial series.

2.2 Smooth transition regression model

The smooth transition regression (STR) model is a nonlinear model that
bears some relationship to the switching regression model. The two-regime
switching regression model with an observable switching variable is a special
case of the standard STR model. The univariate smooth transition autore-
gressive (STAR) model contains the two-regime TAR model as a special
case. The smooth transition regression model originated as a generalization
of a switching regression model in the work of Bacon & Watts (1971). The
authors considered two regression lines and devised a model in which the
transition from one line to the other as a function of the sole explanatory
variable is smooth instead of being abrupt. The STR model is de�ned as
follows:

yt = �0zt+ 
0ztG(
; c; st) + "t

= f�+ G(
; c; st)g0zt + "t; t = 1; :::; T (4)
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where zt is de�ned as in the preceding section, � = (�0; �1; :::; �m)
0 and

 = ( 0;  1; :::;  m)
0 are parameter vectors, c = (c1; :::; cK)0 is a vector of

location parameters, c1 � ::: � cK ; and "t � iid(0; �2): Furthermore, the
so-called transition function G(
; c; st) is a bounded function of st, contin-
uous everywhere in the parameter space for any value of the continuous
transition variable st: The last expression in (4) indicates that the model
can be interpreted as a linear model with stochastic time-varying coe¢ cients
�+ G(
; c; st): The logistic transition function has the general form

G(
; c; st) = (1 + expf�

KY
k=1

(st � ck)g)�1; 
 > 0 (5)

where 
 > 0 is an identifying restriction. Equations (4) and (5) jointly
de�ne the logistic STR (LSTR) model. In applications, typically either K =
1 or K = 2: For K = 1; the parameter vector �+ G(
; c1; st) changes
monotonically from � to �+ as a function of st: For K = 2; this vector
changes symmetrically around the mid-point (c1 + c2)=2 where this logistic
function attains its minimum value. The slope parameter 
 controls the
steepness and c1 and c2 the location of the transition function.
The usefulness of the LSTR model with K = 1 (LSTR1 model) is based

on the fact that it is capable of characterizing asymmetric cyclical behav-
iour. It shares this property with the SR model. Suppose for example that
st measures the phase of the business cycle. Then the LSTR1 model can
describe economic growth processes whose dynamic properties are di¤erent
in expansions from what they are in recessions, and where the e¤ect of the
exogenous variables on the growth rate may vary with the business cycle.
The LSTR2 model is appropriate in situations where the dynamic behaviour
of the process is similar at both large and small values of st and di¤erent
in the middle. A three-regime SR model whose outer regimes are similar to
each other while the mid-regime is di¤erent also has this property.
When 
 = 0; the transition function G(
; c; st) � 1=2; so the STR model

(4) nests the linear model. At the other end of the scale, when 
 ! 1 the
LSTR1 model approaches the SR model (2) with two regimes and �21 = �22.
When 
 ! 1 in the LSTR2 model, the result is an SR model with three
regimes such that the outer regimes are identical and the mid-regime di¤erent
from the other two.
In practice, the transition variable st is a stochastic variable and very

often an element of zt: There is a useful exception: st = t; which yields a
linear model with deterministically changing parameters as seen from the
last expression of (4). A univariate model of this type will be called the
time-varying autoregressive (TV-AR) model.
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When zt = wt = (1; yt�1; :::; yt�p)
0 in (4) and st = yt�d or st = �yt�d;

d > 0; the STR model becomes a univariate smooth transition autoregressive
(STAR) model. This model can be generalised in various ways including a
generalization to vector models, for discussion see Teräsvirta et al. (2010,
Chapter 3).
Application of the STR or STAR model requires a modelling strategy:

the model has to be speci�ed, estimated and evaluated. Speci�cation in-
volves testing linearity and, if rejected, selecting the transition variable and
K; and the appropriate parameter restrictions in (4). The parameters are
estimated using numerical optimization techniques and the estimated model
evaluated, among other things, by misspeci�cation tests. This strategy has
been discussed in several contributions: see, for example, Teräsvirta (1998,
2004, 2006), Teräsvirta et al. (2010, Chapter 16) and van Dijk, Teräsvirta &
Franses (2002). For vector STAR models, see Camacho (2004).
The STAR model has been applied to the same macroeconomic series as

the TAR model. Some forecasting applications will be considered in Section
7.

2.3 Markov-switching regression models

The observable regime indicator st in the SR model (1) may be replaced by
an unobservable discrete stochastic variable �t that can take r di¤erent values
f�1; :::; �rg, and is independent of "t: This gives another switching regression
model, called the Markov switching (MS) or hidden Markov regression model.
The sequence f�tg is assumed to follow a Markov chain, typically of order
one, with transition (or staying) probabilities

pij = Prf�t = �jj�t�1 = �ig; i; j = 1; :::; r: (6)

The model is de�ned as follows:

yt =
rX
j=1

(�0jzt + "jt)I(�t = �j) (7)

where zt is de�ned as before, "jt = �j"t with f"tg � iid N (0; 1). Often, but
not always, it is assumed that �j = � > 0 for j = 1; :::; r: Lindgren (1978)
considered this model and properties of the maximum likelihood estimators
of its parameters. The univariate version of this model was introduced and
�tted to a daily IBM stock return series by Tyssedal & Tjøstheim (1988).
The MS model (7) with (6) is a generalization of a linear dynamic re-

gression model. Analogously, the linear vector autoregressive model may be
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generalized into a Markov switching (MS-VAR) one. For a comprehensive
account of MS-VAR models, see Krolzig (1997).
It may be noted, however, that the MS model (7) or its univariate version

are not the most commonly applied Markov switching models in macroeco-
nomics. Instead, many econometricians have preferred the following speci�-
cation, due to Hamilton (1989):

yt = �(�t) +

pX
j=1

�jfyt�j � �(�t�j)g+ "t

= f�(�t)�
pX
j=1

�j�(�t�j)g+
pX
j=1

�jyt�j + "t: (8)

where �(�i) 6= �(�j) for i 6= j: From (8) it is seen that the �exibility of
the parameterization is due to the switching intercept that can obtain rp+1

di¤erent values, whereas the autoregressive coe¢ cients are constant and the
roots of the lag polynomial 1�

Pp
j=1 �jz

j lie outside the unit circle. In this
respect the model resembles the intercept-switching TAR model of Lanne &
Saikkonen (2002), the di¤erence being that in (8) the switching intercept is
controlled by a latent variable. It should be noted that this model is not
nested in the univariate autoregressive MS model (7) :
The number of regimes as well as the threshold variable in SR or TAR

models are typically determined from the data. The number of regimes r in
the Markov-switching model (7) or (8) is in principle also unknown a priori.
Nevertheless, in economic applications it is most often chosen beforehand
without any testing even when economic theory behind the model is not
speci�c about the number of regimes. The most common choices are r = 2
and r = 3:
The model (8) has also been applied to several macroeconomic series such

as GNP, industrial production, unemployment rate or interest rate series.

2.4 Other models

The three models already discussed, the SR (or TAR), the STR (or STAR),
and the MS model seem to be the most commonly applied nonlinear time
series models in economic forecasting. This list, however, must be completed
by the arti�cial neural network model that will be considered separately in
Section 3.2. It has been a popular forecasting device in many branches of
science and has been applied to economic forecasting problems as well. In
what follows, we shall brie�y mention two other families of models that have
been used in economic forecasting. They are the bilinear model and the
family of random coe¢ cient models.
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2.4.1 Bilinear model

The bilinear model is a model containing both autoregressive and moving
average terms such that the model is nonlinear in variables but linear in
parameters. It has the following general form:

yt = �0 +

pX
j=1

�jyt�j +
rX
j=1

sX
k=1


jkyt�j"t�k + "t (9)

where f"tg � iid(0; �2): For a review for bilinear models, see Granger & An-
dersen (1978). Due to the moving average terms, invertibility of the model is
an issue. It is particularly important when the model is used for forecasting.
Due to bilinear terms, analytic invertibility conditions for (9) only exist in
some special cases. As mentioned in Teräsvirta et al. (2010, Section 3.5),
most often the only way to check invertibility is to do it numerically. Bilinear
models with suitable coe¢ cients can generate realizations that display occa-
sional deviating observations or short sequences of them. Such observations
are in practice di¢ cult to distinguish from outliers.
The bilinear model can be used as an example of a situation in which a

stochastic process is white noise but nevertheless forecastable. Consider the
following special case of (9):

yt = 
21yt�2"t�1 + "t:

It follows that Eyt = 0 and Eytyt�j = 0; j 6= 0; because "t � iid(0; �2):
However, Efyt+1jFtg = 
21yt�1"t where Ft = �f(yt�j; "t�j) : j � 0g; so yt
is forecastable. For more examples of forecastable white noise models; see
Granger (1981). The bilinear model has not turned out to be very successful
in economic forecasting; see however Maravall (1983) who used the model for
short-term forecasting of currency in circulation in Spain.

2.4.2 Random coe¢ cient models

One way of generalizing standard linear models is to assume that their para-
meters are stochastic. The simplest alternative is that the parameters form
a sequence of independent identically distributed random variables. This
yields the following model:

yt = �0 + �
0
tzt + "t; t = 1; :::; T (10)

where zt is an m � 1 vector of explanatory variables, f�tg � iid(�;
) with

 = [!ij] a positive de�nite matrix and "t � iid(0; �2). Furthermore, "t
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and �t are mutually independent. If zt = (yt�1; :::; yt�m)0, the model (10) is
called the random coe¢ cient autoregressive model. A notable thing about
this model is that by writing �t = � + �t where f�tg � iid(0;
); equation
(10) can be reformulated as

yt = �0 + �
0zt + vt (11)

where vt = "t+�
0
tzt: From this expression it is seen that the model becomes

a linear model with constant coe¢ cients but conditional heteroskedasticity.
This is because E(vtjzt) = 0 and

var(vtjzt) = �2 + z0t
zt: (12)

Note that if zt = ("t�1; :::; "t�q)0 and 
 = diag(!11; :::; !qq) in (11), the con-
ditional variance (12) has an ARCH representation of order q:
In economic applications, the coe¢ cient sequence is often not completely

random but contains autoregressive structure. A well known special case is
(10) where the sequence f�tg is a random walk without drift, that is, f��tg
is a sequence of independent variables with zero mean and �nite variance.
For applications of this model to economic forecasting, see Marcellino (2002,
2004). Vector autoregressive models with random walk coe¢ cients have be-
come popular recently; see for example Cogley and Sargent (2001, 2005).

3 Universal approximators

One may assume that yt; the variable to be forecast, is a¤ected by a vector of
variables zt; but that the functional form of the relationship is unknown. In
that case it would be useful to be able to approximate the unknown function
by a general parametric function and use that function of zt for forecasting
yt: This is where the so-called universal approximators have a role to play.
Two such approximators, the Kolmogorov-Gabor polynomial and the single
hidden-layer neural network, will be presented in this section.
In order to illustrate the concept of universal approximator, consider a

possibly nonlinear function f(z) of the vector of variables z = (z1; :::; zM)
0

that satis�es some regularity conditions. Suppose there exists another para-
metric function gN(z); where N is the number of parameters and � > 0 an
arbitrary constant such that for an appropriate norm j � j;

jf(z)� gN(z)j < � (13)

for N � N0 < 1: The function gN(z) is called a universal approximator: it
approximates f(z) arbitrarily accurately with a �nite number of parameters.
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3.1 Kolmogorov-Gabor polynomial

Consider a nonlinear causal relationship between two processes: fxtg (input)
and fytg (output), both observable, and approximate it by the following
equation (see Priestley, 1981, p. 869):

yt =

1X
i=0

�ixt�i+

1X
i=0

1X
j=i

�ijxt�ixt�j +

1X
i=0

1X
j=i

1X
k=j

�ijkxt�ixt�jxt�k + ::: (14)

The right-hand side of (14) is called the Volterra series expansion. If the lag-
length, and thus the number of sums, is �nite, it is called the Kolmogorov-
Gabor (KG) polynomial. For further discussion, see Teräsvirta et al. (2010,
Section 3.5).
The KG polynomial has been used to describe the (unknown) functional

relationship between y and the vector z: The polynomial model of yt of order
k then becomes

yt =
MX
i1=1

�i1zi1t +
MX
i1=1

MX
i2=i1

�i1i2zi1tzi2t + :::

+
MX
i1=1

MX
i2=i1

:::
MX

ik=ik�1

�i1i2:::ikzi1tzi2t:::zikt + "t (15)

where "t is the error term that is white noise. The KG polynomial is a uni-
versal approximator of the function f(z); where z = (z1; :::; zM)0; in the sense
that under mild conditions, it satis�es the condition (13) when k; the order
of the polynomial, is su¢ ciently high. It may be mentioned that the well
known translog production function is based on a second-order KG polyno-
mial. Note that if zit = yt�i; i = 1; :::;M; the estimated version of (15) for
k > 1 is generally explosive and not useful in forecasting, except possibly in
the very short run.
Although popular for instance in engineering, KG polynomial approxima-

tions to unknown nonlinear functional forms have not been in common use
in economic forecasting. New developments in automated model selection,
however, see for instance Krolzig & Hendry (2001), have generated interest
in them. Castle & Hendry (2006) used KG polynomials as a starting point
for nonlinear model selection. The idea was to approximate well known
nonlinear models such as the LSTR1 model introduced in Section 2.2 by
appropriate special cases of these polynomials. Castle & Hendry (in press)
discussed linearity tests based on KG polynomials as they nest the linear
model. In particular, the authors focussed on ways of parsimonious approxi-
mations to KG polynomials as testing tools. Interest in such approximations
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arises from the fact that the number of parameters in the KG polynomial in-
creases quite rapidly with the number of variables. This in turn implies that
the dimension of the null hypothesis of the linearity tests grows accordingly.
When the number of variables is not small, tests relying on such approxima-
tions while having reasonable power are very useful. It may be mentioned
that parameter-saving approximations to KG polynomials have interested
researchers for a long time; see for example Ivakhnenko (1970, 1971).

3.2 Arti�cial neural networks

As mentioned in the Introduction, arti�cial neural networks are a popular
forecasting method in many branches of science. The family of neural net-
work models is large, and many books and reviews have been devoted to
them. For a review written for econometricians, see Kuan & White (1994).
Arti�cial neural networks are universal approximators. In this section we

focus on two versions of a simple arti�cial neural network (ANN) model, the
so-called �single hidden-layer feedforward�model. It has the following form

yt = �
0
0zt +

qX
j=1

�jG(

0
jzt) + "t (16)

where yt is the output series, zt = (1; yt�1; :::; yt�p; x1t; :::; xkt)0 is the vector
of inputs, including the intercept and lagged values of the output, �00zt is a
linear unit with �0 = (�00; �01; :::; �0;p+k)

0: Furthermore, �j; j = 1; :::; q; are
parameters, called �connection strengths�in the neural network literature. In
(16), the component

gN(zt; q) = �
0
0zt +

qX
j=1

�jG(

0
jzt)

satis�es the condition (13) for some q � q0 < 1. Only mild regularity
conditions are then required for the unknown function f(z); see for example
Cybenko (1989), Funahashi (1989), Hornik, Stinchombe & White (1989) for
discussion.
The function G(�) in (16) is a bounded, asymptotically constant func-

tion and 
j; j = 1; :::; q; are parameter vectors. It is often chosen to be a
�symmetric sigmoid�, such as the logistic function. The errors "t are often
assumed iid(0,�2): Often �0 = (�00; 0; :::; 0)

0 but in time series applications
omitting the linear unit �00zt may not always be sensible. The term �hidden
layer�refers to the structure of (16). While the output yt and the m�1 input
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vector zt are observable, the linear combination
Pq

j=1 �jG(

0
jzt) is not. It

thus forms a hidden layer between the �output layer�yt and �input layer�zt:
Another rather common variant for G(�) in (16) is the radial-basis func-

tion. This function is radially symmetric around a centre c, for example

G(zt; c;') = expf�'�1jjzt � cjjg (17)

where jj � jj is the quadratic norm, c is a vector of parameters de�ning the
centre and ' > 0 is the radius. When zt = c; G(zt; c;�) obtains its maximum
value unity and approaches zero when the distance of zt from the centre
increases. It has been generalized to the elliptic-basis function

G(zt; c;') = expf�jj��1=2(zt � c)jjg (18)

where � = diag('1; :::; 'm)
0; 'j > 0; j = 1; :::;m: In (18), the deviations

from the centre can have di¤erent weights for di¤erent elements of zt: Note,
however, that the weights can also be changed by applying variance-changing
transformations to these elements in (17). For more information, see for
example Park and Sandberg (1991, 1994). The radial- and elliptic-basis
functions are universal approximators as well.
A statistical property separating the arti�cial neural network model (16)

from the nonlinear time series models discussed in Section 2 is that it is only
locally identi�ed. This is because the hidden units are exchangeable. For ex-
ample, letting any (�i;


0
i)
0 and (�j;


0
j)
0; i 6= j; change places in the equation

does not a¤ect the value of the likelihood function. Thus for q > 1 there al-
ways exists more than one observationally equivalent parameterization and,
consequently, the likelihood function has q! identical global maxima. Which
one of these is reached when the likelihood function is maximized does not
matter, but the existence of multiple maxima may sometimes cause prob-
lems in numerical maximization of the log-likelihood. For further discussion
of identi�cation of ANN models, see Hwang & Ding (1997).
Assume now that zt = wt = (1; yt�1; :::; yt�p)

0 in (16) ; and let {"tg �
iid(0; �2): Equation (16) can be written as follows:

yt = �0(wt) +

pX
j=1

�0jyt�j + "t (19)

where �0(wt) = �00 +
Pq

j=1 �jG(

0
jwt): This shows that the switching-

intercept TAR model (3) mentioned in Section 2.1 may be viewed as a special
case of the more general autoregressive model (19). Another special case of
(19) is obtained by assuming that the intercept in (19) equals �0(t=T ) =
�00+

Pq
j=1 �jGj(t=T ); where Gj(t=T ) = (1+ expf�
j(t=T � cjg)�1; 
j > 0;
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and the roots of 1 �
Pp

j=1 �0jz
j lie outside the unit circle. This yields a

nonstationary autoregressive model with a deterministically �uctuating in-
tercept, the so-called Switching-Mean Autoregressive (SM-AR) model, see
González & Teräsvirta (2008). González, Hubrich & Teräsvirta (2009) re-
cently used the SM-AR model for medium-term forecasting of the euro area
and UK in�ation using monthly year-on-year time series.
Speci�cation and estimation of ANN models may be a complicated exer-

cise. Several algorithms, often computationally intensive, have been proposed
in the literature as well as a speci�c-to-general technique based on statisti-
cal inference (Medeiros et al., 2006). Recent work by White (2006), however,
considerably simpli�es ANNmodelling. White�s idea was to convert the com-
plicated speci�cation and nonlinear estimation problem into a linear model
selection problem. This was achieved by treating hidden units as variables
by �xing their parameters, creating a very large set of them (the parameters
in each one were �xed), and developing a speci�c-to-general algorithm called
QuickNet for selecting the hidden units with the highest explanatory power
from this set. It may be mentioned that instead of QuickNet, the recent
automatic model selection algorithm Autometrics (Doornik 2008, 2009) may
also be used for this purpose; see Section 8 for a small example.
Claims of success of ANN models in economic forecasting include Kuan &

Liu (1995) who forecast daily exchange rates using ANNmodels and reported
that their out-of-sample forecasts had a smaller root mean square forecast
error (RMSFE) than a simple random walk model. On the other hand, Rech
(2002), who considered both economic and noneconomic series, found that
the ANN models often did not o¤er any improvement in forecast accuracy
over the corresponding linear model. Zhang, Patuwo & Hu (1998), who
surveyed the area, also found the evidence mixed. Large-scale applications
of ANN models in macroeconomic forecasting will be discussed separately in
Section 7.

4 Forecasting with nonlinear time series mod-
els

4.1 Analytical point forecasts

Forecasts from a nonlinear model for more than one period ahead can most
often only be obtained recursively using numerical techniques. Consider the
following nonlinear model

yt = g(xt�1) + "t (20)
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where f"tg is white noise, E"t = 0 and var("t) = �2: Assume further that
the set of conditioning information Ft = �fxt�j : j � 0g and that "t is
independent of Ft�1: Given that the loss function is quadratic, the minimum
average loss forecast for yT+h from (20) at time T equals the conditional
mean

yT+hjT = EfyT+hjFTg = Efg(xT+h�1)jFTg: (21)

When h = 1 in (21), yT+1jT = g(xT ): When h � 2; however, the conditional
expectation (21) can in general only be calculated numerically. Nevertheless,
there are cases, in which the forecast can still be obtained analytically. As
an example assume, for simplicity, that xt follows a stationary �rst-order
autoregressive model:

xt = �xt�1 + �t (22)

where j�j < 1; and f�tg � iid(0; �2�): Furthermore, assume that

g(xt) = �1xt + �11x
2
t (23)

that is, a second-order KG polynomial. Then the forecast for yT+2 equals

yT+2jT = EfyT+2jFTg = Efg(xT+1) + "t+2jFTg
= �1Ef�xT + �T+1jFTg+ �11Ef(�xT + �T+1)

2jFTg
= �1�xT + �11(�

2x2T + �2�):

Generally, for h � 3;

yT+hjT = �1�
h�1xT + �11f�2(h�1)x2T + (1 + :::+ �2(h�2))�2�g:

As another example, consider the following bilinear model:

yt = "t + 
11yt�1"t�1 + 
22yt�2"t�2:

Then,

yT+2jT = 
11EfyT+1"T+1 + 
22yT "T jFTg = 
11�
2 + 
22yT "T

and, for h � 3;
yT+hjT = �2(
11 + 
22) = EyT

Other examples of analytical forecasts for nonlinear models can be found in
Teräsvirta (2006).
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4.2 Recursive point forecasts

Consider again the nonlinear model (20) and the forecast (conditional mean)
(21) for h = 2: Assume that �t has a continuous distribution with the density
f(�t): Then the forecast for two periods ahead becomes

yT+2jT = Efg(xT+1)jFTg = Eg(�xT + �T+1jFT )

=

Z 1

�1
g(�xT + �T+1)f(�T+1)d�T+1: (24)

The forecast can be obtained by numerical integration when f(�T+1) is
known. This so-called �exact�method becomes computationally more com-
plex, however, when h > 2; as the integral becomes a multiple integral. Three
other methods for obtaining yT+2jT have been suggested in the literature; see
for example Granger and Teräsvirta (1993, Chapter 9) or Teräsvirta et al.
(2010, Chapter 14). The �rst method is called �naïve�, which means that the
presence of �T+1 in (24) is ignored by putting its value to zero. This implies
assuming Eg(x) = g(Ex); which is true when g(x) is a¢ ne but not generally.
The naïve forecast ynT+2jT = g(�xT ):
As already mentioned, numerical integration becomes tedious when the

forecast horizon increases. It will then be easier to obtain the forecast by sim-
ulation. This is called the Monte Carlo method. The �Monte Carlo forecast�
is

yMC
T+2jT =

1

N

NX
j=1

g(�xT + zj)

where zj; j = 1; : : : ; N; are random numbers drawn independently from the
distribution of �T+1. This forecast is an approximation to yT+2jT ; and for N
large enough, it should be practically identical to the one obtained by the
exact method.
It is also possible to compute the forecast by the bootstrap. In that case,

yBT+2jT =
1

NB

NBX
j=1

g(�xT + �
(j)
t )

where b�(j)t ; j = 1; : : : ; NB; are the NB independent draws with replacement
from the set of residuals fb�tgTt=2 estimated from (22) over the sample period
[1; T ]. Compared to the Monte Carlo method, this variant has the advantage
that the errors �t can be allowed to be unconditionally heteroskedastic.
These techniques can clearly be used for multi-step forecasts (h > 2): For
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example the exact three-step forecast is

yT+3jT = Efg(xT+2) + "T+3)jFTg = Efg(�xT+1 + �T+2)jFTg
= Efg(�2xT + ��T+1 + �T+2)jFTg: (25)

The naïve forecast is easy to compute because it ignores �T+1 and �T+2, but
the exact forecast (25) now involves a double integral. The Monte Carlo
method requires draws from a bivariate distribution, but with independent
components. The recommended bootstrap forecast based on pairs of subse-
quent residuals (b�(j)t ;b�(j)t+1):

yBT+3jT =
1

NB

NBX
j=1

g(�2xT + �b�(j)t+1 + b�(j)t ):
This implies that the order of the observed residuals is retained, in case
the assumption of the independence of errors is incorrect. The Monte Carlo
and the bootstrap method are computationally easier than the exact method
when h increases. If the distribution of �t is known, the Monte Carlo method
will be the better of the two, but otherwise the bootstrap is the preferred
alternative.

4.3 Direct point forecasts

There exists yet another forecasting method, the so-called �direct�method.
It appears computationally attractive, because the recursions are avoided
altogether. As an example, assume that h = 2 and, furthermore, that the
nonlinear model (20) is approximated by

yt+2 = g2(xt; yt) + "�t

where f"�tg may be autocorrelated but has mean zero and does not depend
on xt or yt. Since (xt; yt) 2 Ft; the minimum average loss forecast of yT+2
given Ft becomes

yDT+2jT = g2(xt; yt):

The function g2(�) has to be speci�ed and estimated separately, rather than
derived from the one-step representation (20). A di¤erent function is required
for each forecast horizon. A linear function is a popular choice in practice.
The study by Stock & Watson (1999) constitutes an exception: the authors
used STAR and neural network models for the purpose. Results of this study
will be discussed in Section 7.1.
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5 Forecasting with complex dynamic systems

The forecasting method of this section has its origins in chaos theory. The
method was introduced by Farmer & Sidorowich (1987) and has also been
applied to economic time series. It builds on the assumption that fytg is a
chaotic process. Consider a block of length m from the available past of the
observed series yt; t = 1; :::; T; and denote it by ymt = (yt; yt�1; : : : ; yt�(m�1)).
The choice ofm is left to the user. There are T�m+1 such blocks. The most
recent block is thus ymT ; and it is the one used for (short-term) forecasting.
The one-step-ahead forecast is obtained as follows. First, carry out a search
to �nd the k earlier blocks that are closest to ymT , according to some distance
measure d(ymT ;y

m
t ); such as

d(ymT ;y
m
t ) =

m�1X
i=0

jyT�i � yt�ij :

These are the k nearest neighbours ymt1 ; :::;y
m
tk
of ymT : Second, run the regres-

sion

yti+1 = �0 +
m�1X
j=0

�jyti�j + "ti+1; i = 1; :::; k (26)

where k > m. The nearest-neihgbour forecast of yT+1 has the form

yNNT+1jT =
b�0 + mX

j=1

b�jyT+1�j
where b�0; b�1; :::; b�m are OLS estimates of the parameters of (26). The method
can be generalized to the case where h > 1; but in practice its accuracy de-
teriorates quite rapidly with an increasing forecast horizon. Jaditz, Riddick
& Sayers (1998) applied the method for one-month-ahead forecasting of the
growth of the US industrial production. They found that their forecasts
were generally more accurate than the ones obtained from linear vector au-
toregressive models, but the improvement was not statistically signi�cant.
Bajo-Rubio, Sosvilla-Rivero & Fernández-Rodríguez (2001) considered Eu-
ropean daily exchange rates and reported nearest neighbour forecasts that
were superior to ones obtained from simple linear models.
The nearest neighbour method is a nonparametric forecasting method. It

may also be viewed as a quantitative version of analogy forecasting, in which
a system to be forecast is compared to another system that has been in the
same state as the current system is at the moment of forecasting. Analogy
forecasting has been used for instance in weather or technology forecasting
and in economics forecasting economic development of a country or countries.
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6 Comparing linear and nonlinear point fore-
casts

A frequently asked question in forecasting economic time series with non-
linear time series models is whether nonlinear models yield forecasts that
are more accurate than the ones obtained from linear models. A number
of small-scale studies comparing a limited number of nonlinear models with
corresponding linear ones exist, and some of them are listed in Teräsvirta
(2006). Many of these studies �nd that nonlinear models do not perform
better than linear ones. This suggests that nonlinearity in economic series is
often not �strong�enough to make a di¤erence in forecasting. For example,
suppose that the �nonlinear episodes�, that is, events that require a nonlinear
time series in order to be properly explained by a time series model, are rela-
tively rare. Then gains from forecasting with an appropriate nonlinear model
may not show in standard measures of accuracy of point forecasts such as
the RMSFE. This is illustrated by the �ndings of Montgomery, Zarnowitz,
Tsay & Tiao (1998). They considered forecasting the US unemployment
rate and found that the nonlinear threshold autoregressive and the Markov-
switching autoregressive model of Lindgren (1978) outperformed the linear
autoregressive model during periods of rapidly increasing unemployment but
not elsewhere.
Lundbergh & Teräsvirta (2002) conducted a simulation experiment to

investigate this idea further. The authors generated one million observations
from the following stationary LSTAR model:

yt = �0:19 + 0:38(1 + expf�10yt�1g)�1 + 0:9yt�1 + 0:4"t (27)

where f"tg � iidN (0; 1): This model is a smooth transition version of the
switching intercept TAR model (3) of Lanne & Saikkonen (2002) and has
the property that the realizations intermittently �uctuate around two lo-
cal means, �1:9 and 1:9; respectively, moving from one regime to the other
only rarely. The �nonlinear observations�were de�ned to be the ones corre-
sponding to large (> 0:2 or < �0:2) changes in the value of the transition
function. The number of such observations was 6282. Every nonlinear ob-
servation was chosen to be the last observation in a 1000 observations long
subseries, which gave 6282 subseries. An LSTAR1 model was �tted to each
subseries and forecasts up until 20 periods ahead generated from the model.
Due to infrequent and relatively rare switches, standard unit root tests

when applied to these series typically did not reject the unit root hypothesis.
For this reason the authors �tted a linear �rst-order autoregressive model
to the corresponding di¤erenced series �yt and model to the subseries and
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Figure 1: Ratio of the RMSFEs of the forecasts from the LSTAR model (27)
and the ARI(1,1) model estimated from 6282 time series whose last observa-
tion represents a large change. Dashed curve, long dashes: the parameters of
the LSTARmodel are estimated, Dashed curve, short dashes: the parameters
are known. Source: Lundbergh and Teräsvirta (2002).

generated forecasts from that ARI(1,1) model as well. Figure 1 contains the
ratio of the RMSFEs of the LSTAR and ARI forecasts in two cases: (i) the
parameters of the LSTAR model are known, and (ii) they are unknown and
estimated. As may be expected, the forecasts from the LSTAR model are
more accurate than the ones from the ARI model when the parameters of the
former model are known. When they are estimated (the realistic case), the
model loses its predictive edge when the forecast horizon exceeds thirteen.
This shows that a part of the advantage gained by knowing the nonlinear
model disappears when the parameters of the model are estimated. That
the ARI model is so competitive against the LSTAR model may appear
surprising at �rst. A plausible explanation is given in Clements and Hendry
(1999, Chapter 5). They argued that �rst di¤erences are useful in forecasting
in case of structural breaks in levels, because the model based on them is
�exible and adapts quickly to the new level even if it is misspeci�ed. Rare
but reasonably rapid shifts in levels are characteristic for realizations from
the simulated STAR model (27), which o¤ers an obvious explanation to the
success of the linear ARI model. This simulation experiment thus illustrates
two things. First, even a misspeci�ed linear model may sometimes yield more
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accurate point forecasts than a correctly speci�ed nonlinear model. Second,
estimation of the parameters of a nonlinear model may have a large e¤ect on
forecast accuracy when the time series are short. In the present example it
still has a non-negligible e¤ect, although the series are rather long.

7 Large comparisons of economic forecasts

7.1 Forecasting with a separate model for each forecast
horizon

As already mentioned, linear and nonlinear forecasts of economic time series
have been compared in a number of studies. These studies have typically
involved a small number of models and time series. In this section we shall
consider a number of large-scale forecast comparisons that involve a large
amount of series, several forecast horizons, and a large number of forecasts.
One of the most extensive investigations of that kind appears to be the study
by Stock & Watson (1999) who forecast 215 monthly US macroeconomic
variables using the direct method described in Section 4.3. The observation
period was mostly 1959(1)�1996(12), although some time series were shorter
than that. The series covered most types of macroeconomic variables from
production, consumption, money and credit series to stock returns. All se-
ries were seasonally adjusted. In two large studies, Marcellino (2002, 2004)
focussed on forecasting macroeconomic variables of the countries of the Eu-
ropean Union. The forecasts were also generated using the direct method.
The study of Stock &Watson (1999) involved two types of nonlinear mod-

els: a �tightly parameterized�model which was the LSTAR model of Section
2.2 and a �loosely parameterized�one, which was the autoregressive neural
network model. The authors experimented with two families of AR-NN mod-
els: one with a single hidden layer as the model (16) in Section 3.2, and a
more general family with two hidden layers. Various linear autoregressive
models were included as well as models of exponential smoothing. Several
methods of combining forecasts were included in the comparisons. The total
number of models or methods to forecast each series was 63.
The models were either completely speci�ed in advance or the number of

lags was speci�ed using AIC or BIC. The models were built on either levels of
the series or �rst di¤erences. The forecast horizons were 1, 6 and 12 months.
The series were forecast every month, beginning after an initial period of 120
observations. The authors trimmed their forecasts, which means that if the
forecast was outside the range of observations in the sample, the forecast
was set equal to the sample mean. The same idea, although in a slightly
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di¤erent form, was already applied in forecasting exercises of Swanson and
White (1995, 1997a, b) who compared forecasts from linear and ANNmodels.
They called their trimming device the insanity �lter: it �replaced insanity
with ignorance�.
The forecasting methods were ranked according to several loss functions.

The individual nonlinear models did not seem to perform better than the
linear ones. In one comparison, the 63 di¤erent models and methods were
ranked on forecast performance using three di¤erent loss functions, the ab-
solute forecast errors raised to the power one, two, or three, and the three
forecast horizons. The best ANN forecast had rank around ten, whereas the
best STAR model typically did worse than that. The best linear models were
better than the STAR models and, at longer horizons than one month, better
than the ANN models.
A noteworthy result was that combining the forecasts from all nonlinear

models generated forecasts that were among the most accurate in rankings.
They were among the top �ve in 53% (models in levels) and 51% (models
in di¤erences) of all cases when forecasting one month ahead. This was by
far the highest fraction of all methods compared. In forecasting six and
twelve months ahead, these percentages were lower but still between 30%
and 34%. At these horizons, the combinations involving all linear models
had a comparable performance. No single model performed equally well.
A general conclusion that can be drawn from the study of Stock and

Watson is that there was some exploitable nonlinearity in the series under
consideration but that it was too di¤use to be captured by a single nonlinear
model. Interestingly, a similar conclusion emerges from the study of Jaditz
et al. (1998). In their case the nonparametric forecasts generated as described
in Section 5 were not the most accurate ones individually, but combining
them yielded superior forecasts.
Marcellino (2002) reported results on forecasting 480 variables represent-

ing the economies of the twelve countries of the European Monetary Union.
There were 58 models but, unlike Stock and Watson and Marcellino (2004),
combining forecasts from them was not considered. In addition to purely
linear models, linear models with stochastic coe¢ cients, each following a
random walk, ANN models and logistic STAR models were included in the
study.
The results of the study were based on rankings of model performance

measured using �ve di¤erent symmetric loss functions. Neither neural net-
work nor LSTAR models appeared in the overall top-10. But then, both the
fraction of neural network models and LSTAR models that appeared in top-
10 rankings for individual series was greater than the same fraction for linear
or stochastic-coe¢ cient AR models. One was able to conclude that nonlinear
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models in many cases work very well but that they can also relatively often
perform rather poorly.
These studies suggest some answers to the question of whether nonlinear

models perform better than linear ones in forecasting macroeconomic series.
The results in Stock & Watson (1999) indicated that using a large number
of nonlinear models and combining forecasts from them increases forecast
accuracy compared to relying on single nonlinear models. It also seemed
that this may lead to better forecasting performance than what is achieved by
linear models. But then, the results in Marcellino (2004) did not unanimously
support this conclusion. From Marcellino (2002) one was able to conclude
that nonlinear models are uneven performers but that they can do well in
forecasting some types of macroeconomic series such as unemployment rates.

7.2 Forecasting with the same model for each forecast
horizon

Contrary to the articles considered in the previous section, the studies re-
ported in Teräsvirta, van Dijk &Medeiros (2005) and Kock (2009) were based
on recursive multi-period forecasts. The authors of the former study were
interested in the e¤ects of careful speci�cation of the model on the forecast
accuracy. This implied, among other things, testing linearity and choosing
a nonlinear model only if linearity was rejected. Thus it occurred that a
linear model was employed for some periods, and due to respeci�cation of
the model when new observations became available, even the structure of the
nonlinear model was varying over time.
Teräsvirta et al. (2005) considered seven monthly macroeconomic vari-

ables of the G7 countries. They were industrial production, unemployment,
volume of exports, volume of imports, in�ation, narrow money, and short-
term interest rate. The number of time series was 47 as two series were too
short to be considered. The series were seasonally adjusted with the excep-
tion of the in�ation and short-term interest rate series. As in Stock &Watson
(1999), the series were forecast every month and the models respeci�ed every
12 months.
The models applied were the linear autoregressive model, the LSTAR

model and the ANN model (16). For some series linearity was never re-
jected. It was rejected somewhat more frequently against the LSTAR than
the ANN model. In order to �nd out whether modelling was a useful idea,
the investigation also included a set of models with a predetermined form
and lag structure that did not change over time.
Results were reported for four forecast horizons: one, three, six and 12
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months. They indicated that careful modelling does improve the accuracy of
forecasts compared to selecting �xed nonlinear models, when the loss function
is the RMSFE. The LSTAR model turned out to be the best model overall,
better than the linear or neural network model, which was not the case in
Stock & Watson (1999) or Marcellino (2002). There were series/country
pairs, however, for which other models performed clearly better than the
LSTAR model. Nevertheless, as in Marcellino (2002), the LSTAR model did
well in forecasting the unemployment rate.
Teräsvirta et al. (2005) also considered combinations of forecasts and

found that in many cases, but not systematically, they did improve forecast
accuracy compared to individual models. But then, the combined forecasts
only consisted of pairs of forecasts, so the results cannot be regarded as very
informative in assessing the usefulness of combined forecasts.
The dataset of Kock (2009) consisted of 47 macroeconomic time series

from the G7 and Scandinavian countries. His forecast comparisons also
included the KG polynomial model whose performance turned out to be
roughly comparable to that of ANN models with logistic hidden units. The
results supported the notion of combining forecasts from nonlinear models.
The forecasts thus obtained were on the average more accurate than ones
from linear AR models.

8 Comparing recursive and direct forecasts

There is not much literature on comparing the direct forecasting method with
the recursive ones. Using 170 US macroeconomic series Marcellino, Stock &
Watson (2006) found that on the average the recursive method generated
more accurate point forecasts than the direct method. Their results are
valid for linear models, but comparable results for nonlinear data-generating
processes do not seem to exist in the literature.
We conducted a small simulation study that sheds some light on this

issue. It will be a part of a considerably larger study that at this time is still
in progress. We chose a strongly nonlinear model from Medeiros, Teräsvirta
& Rech (2006). These authors took the well known annual Wolf�s sunspot
number series and, after transforming the observations as in Ghaddar & Tong
(1981), �tted an ANN model (16) with two hidden units to the transformed
series. This means that our data-generating process (DGP) is

yt = �0:17 + 0:85yt�1 + 0:14yt�2 � 0:31yt�3 + 0:08yt�7
+12:80G1(yt�1) + 2:44G2(yt�1) + "t (28)
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where the two hidden units were

G1(yt�1) = (1 + expf�0:46(0:29yt�1 � 0:87yt�2 + 0:40yt�7 � 6:68)g)�1

G2(yt�1) = (1 + expf�1:17� 103(0:83yt�1 � 0:53yt�2 � 0:18yt�7 + 0:38)g)�1

and "t � iidN (0; 1:892):We generated 100 realisations with 600 observations
from this model, speci�ed and estimated an ANN model for each realisation
and forecast with it.
The ANN models were built using two di¤erent methods. One was Quick-

Net of White (2006) as described in Section 3.2. We thus formed a pool of
1002 hidden units that included the two in the DGP (28) and let the algo-
rithm select the relevant hidden units from that pool. The other was Auto-
metrics, see Doornik (2008, 2009). This algorithm relied on the same pool of
hidden units as QuickNet, but the rules of selecting the units were di¤erent.
One important di¤erence was that while QuickNet sequentially adds hidden
units to the model, Autometrics can also remove them if necessary.
It is known, see for example Teräsvirta et al. (2005), that an estimated

ANNmodel with a linear unit can sometimes be explosive even when the time
series looks stationary. For this reason we considered not only the original
forecasts but also the ones obtained by applying the insanity �lter resembling
that of Swanson and White (1995a, b, 1997). Our �lter works as follows. If
the di¤erence yT+hjT � yT ; where yT is the last observation, lies outside the
observed bounds de�ned by the minimum and maximum of yt � yt�h in the
set of the last 120 observations, the forecast yT+hjT is set equal to the last
obseration yT (�no change� forecast). The �lter was strictly speaking only
necessary in generating recursive forecasts, although it was also applied to
direct forecasts.
The results can be found in Tables 1 and 2. Table 1 contains the relative

RMSFEs of the original forecasts. A number of observations can be made
from the table. First, a small number of both QuickNet and Autometrics re-
cursive forecasts were explosive. This invalidates a straightforward RMSFE
comparison between recursive and direct forecasts when the forecast hori-
zon is �ve years but underlines the importance of checking the properties
of the estimated ANN model before forecasting. It may be noted, however,
that in forecasting two periods ahead, the recursive forecasts from the ANN-
Autometrics model are clearly superior to their direct counterparts. Second,
the recursive and the direct method applied to the AR(10) model yield very
similar RMSFEs. This may appear strange at �rst, but there is an expla-
nation. The model (28) generates very regular cyclical variation with the
cycle length of about 11 years. When the AR model contains ten lags, the
loss of accuracy due to the �lag gap�in the direct model is nicely �lled by
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Table 1: Ratios of the root mean square forecast error of the linear AR(10)
model and the benchmark and two ANN models and the benchmark. No
insanity �lter applied

Model Horizon
1 2 5

True model (16) (1.7915) (2.7345) (4.0849)
AR(10), recursive 1.3326 1.3353 1.3543
AR(10), direct 1.3326 1.3356 1.3064
QuickNet, recursive 1.1651 1.2372 180.8
QuickNet, direct 1.1651 1.2466 1.1169
Autometrics, recursive 1.0247 0.9732 3.5097
Autometrics, direct 1.0247 1.1928 1.1308
Figures in parentheses are the RMSFEs from the bench-
mark model

observations from �the previous cycle�. If the AR model had been an AR(1),
say, the outcome would have been quite di¤erent. Finally, both ANN models
yield more accurate direct forecasts than the linear model. At the one- and
two-year horizons, Autometrics appears superior to QuickNet as a method of
selecting the �network architecture�.
Table 2 contains the results obtained by applying the insanity �lter. In

the ANN case, the recursive method is clearly superior to the direct method
when the forecast horizon is su¢ ciently long. But then, the insanity �lter
substantially lowers the accuracy of the direct forecasts from all three models
when the forecast horizon is �ve years. Inferior results obtained using our

Table 2: Ratios of the root mean square forecast error of the linear AR(10)
model and the benchmark and two ANNmodels and the benchmark. Insanity
�lter was applied

Model Horizon
1 2 5

True model (16) (1.7915) (2.7345) (4.0849)
AR(10), recursive 1.3326 1.3353 1.9846
AR(10), direct 1.3326 1.3356 2.1596
QuickNet, recursive 1.1651 1.2383 1.5176
QuickNet, direct 1.1651 1.2466 1.9272
Autometrics, recursive 1.0247 0.9691 1.4510
Autometrics, direct 1.0247 1.1928 1.8994

Figures in parentheses are the RMSFEs from the
benchmark model
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insanity �lter are due to the fact that the �no change�forecast is generally
not a reasonable one in forecasting several periods ahead when the data-
generating process generates cycles. Constructing a useful �lter for such a
situation remains an open problem.

9 Final remarks and further reading

In this article we consider forecasting with nonlinear parametric models. We
present di¤erent models and various methods for obtaining multi-period fore-
casts recursively. We also brie�y discuss the di¤erences in accuracy between
recursive forecasts and direct ones obtained by building a separate model for
each forecast horizon. Our considerations are restricted to conditional mean
forecasts.
It is often argued that the value of nonlinear models in forecasting lies in

their ability to generate asymmetric forecast densities. Such densities may
sometimes be more informative to decision makers than symmetric densities
generated by a linear model. For space reasons, forecast densities have not
been considered here, but some discussion about their usefulness in nonlinear
models can be found in Teräsvirta (2006).
For a general view of nonlinear time series models and their use in eco-

nomics, the reader may consult Franses & van Dijk (2000) or Teräsvirta,
Tjøstheim & Granger (2010). They contain a large number of additional ref-
erences. The latter volume should replace Granger & Teräsvirta (1993). Fan
& Yao (2003) o¤ers a good exposition of nonlinear nonparametric models.
Tong (1990) contains a comprehensive discussion on threshold autoregressive
models. These two books are written for statisticians rather than econome-
tricians. Guégan (1994) has, among other things, a useful chapter on chaos.
Nonlinear forecasting is also discussed in Teräsvirta (2006) and, more speci�-
cally, forecasting with STAR models in Lundbergh & Teräsvirta (2002). The
literature on forecasting with neural network models includes Rech (2002),
White (2006) and a survey by Zhang et al. (1998). Timmermann (2006) is
a relevant survey of forecast combination, another topic not treated in this
article.
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