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Abstract

We present some new asymptotic results for functionals of higher order differences
of Brownian semi-stationary processes. In an earlier work [4] we have derived a similar
asymptotic theory for first order differences. However, the central limit theorems
were valid only for certain values of the smoothness parameter of a Brownian semi-
stationary process, and the parameter values which appear in typical applications,
e.g. in modeling turbulent flows in physics, were excluded. The main goal of the
current paper is the derivation of the asymptotic theory for the whole range of the
smoothness parameter by means of using second order differences. We present the
law of large numbers for the multipower variation of the second order differences of
Brownian semi-stationary processes and show the associated central limit theorem.
Finally, we demonstrate some estimation methods for the smoothness parameter of a
Brownian semi-stationary process as an application of our probabilistic results.
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1 Introduction

Brownian semi-stationary processes (BSS) has been originally introduced in [7] for mod-
eling turbulent flows in physics. This class consists of processes (Xt)t∈R of the form

Xt = µ+
∫ t

−∞
g(t− s)σsW (ds) +

∫ t

−∞
q(t− s)asds, (1.1)

where µ is a constant, g, q : R>0 → R are memory functions, (σs)s∈R is a càdlàg intermit-
tency process, (as)s∈R a càdlàg drift process and W is the Wiener measure. When (σs)s∈R
and (as)s∈R are stationary then the process (Xt)t∈R is also stationary, which explains the
name Brownian semi-stationary processes. In the following we concentrate on BSS mod-
els without the drift part (i.e. a ≡ 0), but we come back to the original process (1.1) in
Example 3.8.

The path properties of the process (Xt)t∈R crucially depend on the behaviour of the
weight function g near 0. When g(x) ' xβ (here g(x) ' h(x) means that g(x)/h(x)
is slowly varying at 0) with β ∈ (−1

2 , 0) ∪ (0, 1
2), X has r-Hölder continuous paths for

any r < β + 1
2 and, more importantly, X is not a semimartingale, because g′ is not

square integrable in the neighborhood of 0 (see e.g. [11] for a detailed study of conditions
under which Brownian moving average processes are semimartingales). In the following,
whenever g(x) ' xβ, the index β is referred to as the smoothness parameter of X.

In practice the stochastic process X is observed at high frequency, i.e. the data points
Xi∆n , i = 0, . . . , [t/∆n] are given, and we are in the framework of infill asymptotics, that is
∆n → 0. For modeling and for practical applications in physics it is extremely important
to infer the integrated powers of intermittency, i.e.∫ t

0
|σs|pds, p > 0,

and to estimate the smoothness parameter β. A very powerful instrument for analyzing
those estimation problems is the normalized multipower variation that is defined as

MPV (X, p1, . . . , pk)nt = ∆nτ
−p+
n

[t/∆n]−k+1∑
i=1

|∆n
i X|p1 · · · |∆n

i+k−1X|pk , (1.2)

where ∆n
i X = Xi∆n −X(i−1)∆n

, p1, . . . , pk ≥ 0 and p+ =
∑k

l=1 pl, and τn is a certain nor-
malizing sequence which depends on the weight function g and n (to be defined later). The
concept of multipower variation has been originally introduced in [8] for the semimartin-
gale setting. Power and multipower variation of semimartingales has been intensively
studied in numerous papers; see e.g. [6], [8], [9], [10], [14], [16], [18], [23] for theory and
applications.

However, as mentioned above, BSS processes of the form (1.1) typically do not belong
to the class of semimartingales. Thus, different probabilistic tools are required to deter-
mine the asymptotic behaviour of the multipower variation MPV (X, p1, . . . , pk)nt of BSS
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processes. In [4] we applied techniques from Malliavin calculus, which has been originally
introduced in [19], [20] and [21], to show the consistency, i.e.

MPV (X, p1, . . . , pk)nt − ρnp1,...,pk

∫ t

0
|σs|p

+
ds

u.c.p.−→ 0,

where ρnp1,...,pk
is a certain constant and Y n u.c.p.−→ Y stands for supt∈[0,T ] |Y n

t −Yt|
P−→ 0 (for

all T > 0). This holds for all smoothness parameters β ∈ (−1
2 , 0) ∪ (0, 1

2), and we proved
the associated (stable) central limit theorem for β ∈ (−1

2 , 0).

Unfortunately, the restriction to β ∈ (−1
2 , 0) in the central limit theorem is not satis-

factory for applications as, due to physical laws (e.g. Kolmogorov’s 2
3 -law) and empirical

findings, we usually have β ∈ (0, 1
2). The theoretical reason for this restriction is two-fold:

(i) long memory effects which lead to non-normal limits for β ∈ (1
4 ,

1
2) and more impor-

tantly (ii) a hidden drift in X which leads to an even stronger restriction β ∈ (−1
2 , 0).

The main aim of this paper is to overcome both problems by considering multipower
variations of higher order differences of BSS processes. We will show the law of large
numbers and prove the associated central limit theorem for all values of the smoothness
parameter β ∈ (−1

2 , 0)∪ (0, 1
2). Furthermore, we discuss possible extensions to other type

of processes. We apply the asymptotic results to estimate the smoothness parameter β
of a BSS process X. Let us mention that the idea of using higher order differences to
diminish the long memory effects is not new; we refer to [13], [17] for theoretical results
in the Gaussian framework. However, the derivation of the corresponding theory for BSS
processes is more complicated due to their more involved structure.

This paper is organized as follows: in Section 2 we introduce our setting and present the
main assumptions on the weight function g and the intermittency σ. Section 3 is devoted
to limit theorems for the multipower variation of the second order differences of BSS
processes. In Section 4 we apply our asymptotic results to derive three estimators (the
realised variation ratio, the modified realised variation ratio and the change-of-frequency
estimator) for the smoothness parameter. Finally, all proofs are collected in Section 5.

2 The setting and the main assumptions

We consider a filtered probability space (Ω,F ,F = (Ft)t∈R,P) on which we define a BSS
process X = (Xt)t∈R without a drift as

Xt = µ+
∫ t

−∞
g(t− s)σsW (ds), (2.1)

where W is an F-adapted Wiener measure, σ is an F-adapted càdlàg processes and g ∈
L2(R>0). We assume that ∫ t

−∞
g2(t− s)σ2

sds <∞ a.s.
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to ensure that Xt <∞ almost surely. We introduce a Gaussian process G = (Gt)t∈R, that
is associated to X, as

Gt =
∫ t

−∞
g(t− s)W (ds). (2.2)

Notice that G is a stationary process with the autocorrelation function

r(t) = corr(Gs, Gs+t) =

∫∞
0 g(u)g(u+ t)du

||g||2L2

. (2.3)

We also define the variance function R of the increments of the process G as

R(t) = E(|Gs+t −Gs|2) = 2||g||2L2(1− r(t)). (2.4)

Now, we assume that the process X is observed at time points ti = i∆n with ∆n → 0,
i = 0, . . . , [t/∆n], and define the second order differences of X by

3n
i X = Xi∆n − 2X(i−1)∆n

+X(i−2)∆n
. (2.5)

Our main object of interest is the multipower variation of the second order differences of
the BSS process X, i.e.

MPV 3(X, p1, . . . , pk)nt = ∆n(τ3
n )−p

+
[t/∆n]−2k+2∑

i=2

k−1∏
l=0

|3n
i+2lX|pl , (2.6)

where (τ3
n )2 = E(|3n

i G|2) and p+ =
∑k

l=1 pl. To determine the asymptotic behaviour of
the functional MPV 3(X, p1, . . . , pk)n we require a set of assumptions on the memory func-
tion g and the intermittency process σ. Below, the functions LR, LR(4) , Lg, Lg(2) : R>0 → R
are assumed to be continuous and slowly varying at 0, f (k) denotes the k-th derivative of
a function f and β denotes a number in (−1

2 , 0) ∪ (0, 1
2).

Assumption 1: It holds that

(i) g(x) = xβLg(x).

(ii) g(2) = xβ−2Lg(2)(x) and, for any ε > 0, we have g(2) ∈ L2((ε,∞)). Furthermore,
|g(2)| is non-increasing on the interval (a,∞) for some a > 0.

(iii) For any t > 0

Ft =
∫ ∞

1
|g(2)(s)|2σ2

t−sds <∞. (2.7)

Assumption 2: For the smoothness parameter β from Assumption 1 it holds that

(i) R(x) = x2β+1LR(x).

(ii) R(4)(x) = x2β−3L
R

(4)(x).
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(iii) There exists a b ∈ (0, 1) such that

lim sup
x→0

sup
y∈[x,xb]

∣∣∣LR(4)(y)

LR(x)

∣∣∣ <∞.
Assumption 3-γ: For any p > 0, it holds that

E(|σt − σs|p) ≤ Cp|t− s|γp (2.8)

for some γ > 0 and Cp > 0.

Some remarks are in order to explain the rather long list of conditions.

• The memory function g: We remark that g(x) ' xβ implies g(2)(x) ' xβ−2 under
rather weak assumptions on g (due to the Monotone Density Theorem; see e.g. [12],
p.38). Furthermore, Assumption 1(ii) and Karamata’s Theorem (see again [12]) imply
that ∫ 1

ε
|g(x+ 2∆n)− 2g(x+ ∆n) + g(x)|2dx ' ε2β−3∆4

n (2.9)

for any ε ∈ [∆n, 1). This fact will play an important role in the following discussion.
Finally, let us note that Assumptions 1(i)-(ii) and 2 are satisfied for the parametric class

g(x) = xβ exp(−λx),

where β ∈ (−1
2 , 0) ∪ (0, 1

2) and λ > 0, which is used to model turbulent flows in physics
(see [7]). This class constitutes the most important example in this paper. 2

• The central decomposition and the concentration measure: Observe the decomposition

3n
i X =

∫ i∆n

(i−1)∆n

g(i∆n − s)σsW (ds) (2.10)

+
∫ (i−1)∆n

(i−2)∆n

(
g(i∆n − s)− 2g((i− 1)∆n − s)

)
σsW (ds)

+
∫ (i−2)∆n

−∞

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds) ,

and the same type of decomposition holds for 3Gni . We deduce that

(τ3
n )2 =

∫ ∆n

0
g2(x)dx+

∫ ∆n

0

(
g(x+ ∆n)− 2g(x)

)2
dx

+
∫ ∞

0

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
dx.

One of the most essential steps in proving the asymptotic results for the functionals
MPV 3(X, p1, . . . , pk)n is the approximation 3n

i X ≈ σ(i−2)∆n
3n
i G. The justification of



Limit theorems for functionals of higher order differences 6

this approximation is not trivial: while the first two summands in the decomposition (2.10)
depend only on the intermittency σ around (i − 2)∆n, the third summand involves the
whole path (σs)s≤(i−2)∆n

. We need to guarantee that the influence of the intermittency
path outside of (i−2)∆n on the third summand of (2.10) is asymptotically negligible. For
this reason we introduce the measure

π3
n (A) =

∫
A

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
dx

(τ3
n )2

< 1, A ∈ B(R>0), (2.11)

and define π3
n (x) = π3

n ((x,∞)). To justify the negligibility of the influence of the inter-
mittency path outside of (i− 2)∆n we need to ensure that

π3
n (ε)→ 0

for all ε > 0. Indeed, this convergence follows from Assumptions 1(i)-(ii) (due to (2.9)).
2

• The correlation structure: By the stationarity of the process G we deduce that

r3
n (j) = corr(3n

i G,3
n
i+jG) (2.12)

=
−R((j + 2)∆n) + 4R((j + 1)∆n)− 6R(j∆n) + 4R(|j − 1|∆n)−R(|j − 2|∆n)

(τ3
n )2

.

Since (τ3
n )2 = 4R(∆n)−R(2∆n) we obtain by Assumption 2(i) the convergence

r3
n (j)→ ρ3(j) =

−(j + 2)1+2β + 4(j + 1)1+2β − 6j1+2β + 4|j − 1|1+2β − |j − 2|1+2β

2
(

4− 21+2β
) .

(2.13)
We remark that ρ3 is the correlation function of the normalized second order fractional
noise

(
3n
i B

H/
√

var(3n
i B

H)
)
i≥2

, where BH is a fractional Brownian motion with Hurst

parameter H = β + 1
2 . Notice that

|ρ3(j)| ∼ j2β−3,

where we write aj ∼ bj when aj/bj is bounded. In particular, it implies that
∑∞

j=1 |ρ3(j)| <
∞. This absolute summability has an important consequence: it leads to standard central
limit theorems for the appropriately normalized version of the functionalMPV 3(G, p1, . . . , pk)n

for all β ∈ (−1
2 , 0) ∪ (0, 1

2). 2

• Sufficient conditions: Instead of considering Assumptions 1 and 2, we can alternatively
state sufficient conditions on the correlation function r3

n and the measure π3
n directly, as

it has been done for the case of first order differences in [4]. To ensure the consistency of
MPV 3(X, p1, . . . , pk)nt we require the following assumptions: there exists a sequence h(j)
with

|r3
n | ≤ h(j), ∆n

[1/∆n]∑
j=1

h2(j)→ 0, (2.14)
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and π3
n (ε)→ 0 for all ε > 0 (cf. condition (LLN) in [4]). For the proof of the associated

central limit theorem we need some stronger conditions: r3
n (j)→ ρ3(j) for all j ≥ 1, there

exists a sequence h(j) with

|r3
n | ≤ h(j),

∞∑
j=1

h2(j) <∞, (2.15)

Assumption 3-γ holds for some γ ∈ (0, 1] with γ(p ∧ 1) > 1
2 , p = max1≤i≤k(pi), and there

exists a constant λ > 1/(p ∧ 1) such that for all κ ∈ (0, 1) and εn = ∆κ
n we have

π3
n (εn) = O

(
∆λ(1−κ)
n

)
. (2.16)

(cf. condition (CLT) in [4]). In Section 5 we will show that Assumptions 1 and 2 imply
the conditions (2.14), (2.15) and (2.16). 2

3 Limit theorems

In this section we present the main results of the paper. Recall that the multipower
variation process is defined in (2.6) as

MPV 3(X, p1, . . . , pk)nt = ∆n(τ3
n )−p

+
[t/∆n]−2k+2∑

i=2

k−1∏
l=0

|3n
i+2lX|pl

with τ2
n = E(|3n

i G|2) and p+ =
∑k

l=1 pl. We introduce the quantity

ρnp1,...,pk
= E

( k−1∏
l=0

∣∣∣3n
i+2lG

τ3
n

∣∣∣pl
)
. (3.1)

Notice that in the case k = 1, p1 = p we have that ρnp = E(|U |p) with U ∼ N(0, 1). We
start with the consistency of the functional MPV 3(X, p1, . . . , pk)nt .

Theorem 3.1 Let the Assumptions 1 and 2 hold. Then we obtain

MPV 3(X, p1, . . . , pk)nt − ρnp1,...,pk

∫ t

0
|σs|p

+
ds

u.c.p.−→ 0. (3.2)

Proof: See Section 5. 2

As we have mentioned in the previous section, under Assumption 2(i) we deduce the
convergence r3

n (j)→ ρ3(j) for all j ≥ 1 (see (2.13)). Consequently, it holds that

ρnp1,...,pk
→ ρp1,...,pk

= E
( k−1∏
l=0

∣∣∣ 3n
i+2lB

H√
var(3n

i+2lB
H)

∣∣∣pl
)
, (3.3)

where BH is a fractional Brownian motion with Hurst parameter H = β + 1
2 (notice that

the right-hand side of (3.3) does not depend on n, because BH is a self-similar process).
Thus, we obtain the following result.
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Lemma 3.2 Let the Assumptions 1 and 2 hold. Then we obtain

MPV 3(X, p1, . . . , pk)nt
u.c.p.−→ ρp1,...,pk

∫ t

0
|σs|p

+
ds. (3.4)

Next, we present a multivariate stable central limit for the family (MPV 3(X, pj1, . . . , p
j
k)
n)1≤j≤d

of multipower variations. We say that a sequence of d-dimensional processes Zn converges
stably in law to a d-dimensional process Z, where Z is defined on an extension (Ω′,F ′,P′)
of the original probability (Ω,F ,P), in the space D([0, T ])d equipped with the uniform
topology (Zn st−→ Z) if and only if

lim
n→∞

E(f(Zn)V ) = E′(f(Z)V )

for any bounded and continuous function f : D([0, T ])d → R and any bounded F-
measurable random variable V . We refer to [1], [15] or [22] for a detailed study of stable
convergence.

Theorem 3.3 Let the Assumptions 1, 2 and 3-γ be satisfied for some γ ∈ (0, 1] with
γ(p ∧ 1) > 1

2 , p = max1≤i≤k,1≤j≤d(p
j
i ). Then we obtain the stable convergence

∆−1/2
n

(
MPV 3(X, pj1, . . . , p

j
k)
n
t − ρnpj

1,...,p
j
k

∫ t

0
|σs|p

+
j ds

)
1≤j≤d

st−→
∫ t

0
A1/2
s dW ′s, (3.5)

where W ′ is a d-dimensional Brownian motion that is defined on an extension of the
original probability space (Ω,F ,P) and is independent of F , A is a d × d-dimensional
process given by

Aijs = µij |σs|p
+
i +p+j , 1 ≤ i, j ≤ d, (3.6)

and the d× d matrix µ = (µij)1≤i,j≤d is defined as

µij = lim
n→∞

∆−1
n cov

(
MPV 3(BH , pi1, . . . , p

i
k)
n
1 ,MPV 3(BH , pj1, . . . , p

j
k)
n
1

)
(3.7)

with BH being a fractional Brownian motion with Hurst parameter H = β + 1
2 .

Proof: See Section 5. 2

We remark that the conditions of Theorem 3.3 imply that max1≤i≤k,1≤j≤d(p
j
i ) >

1
2 since

γ ∈ (0, 1].

Remark 3.4 Notice that the limit process in (3.5) is mixed normal, because the Brownian
motion W ′ is independent of the process A. In fact, we can transform the convergence
result of Theorem 3.3 into a standard central limit theorem due to the properties of stable
convergence; we demonstrate this transformation in Section 4 (see also [2] for more details).
We remark that the limit in (3.7) is indeed finite; see Theorem 2 in [4] and its proof for
more details. 2
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Remark 3.5 In general, the convergence in (3.5) does not remain valid when ρn
pj
1,...,p

j
k

is

replaced by its limit ρ
pj
1,...,p

j
k

defined by (3.3). However, when the rate of convergence

associated with (3.3) is faster than ∆−1/2
n , we can also use the quantity ρ

pj
1,...,p

j
k

without
changing the stable central limit theorem in (3.5). This is the case when the convergence

∆−1/2
n (r3

n (j)− ρ3(j))→ 0

holds for any j ≥ 1. Obviously, the latter depends on the behaviour of the slowly varying
function LR from Assumption 2(i) near 0. It can be shown that for our main example

g(x) = xβ exp(−λx),

where β ∈ (−1
2 , 0) ∪ (0, 1

4) and λ > 0, ρn
pj
1,...,p

j
k

can indeed be replaced by the quantity

ρ
pj
1,...,p

j
k

without changing the limit in Theorem 3.3 (see [2] for more details). 2

Remark 3.6 (Second order differences vs. increments) Let us demonstrate some advan-
tages of using second order differences 3n

i X instead of using first order increments ∆n
i X.

(i) First of all, taking second order differences weakens the autocorrelations which leads
to normal limits for the normalized version of the functional MPV 3(G, p1, . . . , pk)n (and
hence to mixed normal limits for MPV 3(X, p1, . . . , pk)n) for all β ∈ (−1

2 , 0)∪ (0, 1
2). This

can be explained as follows: to obtain normal limits it has to hold that

∞∑
j=1

|ρ3(j)|2 <∞

where ρ3(j) is defined in (2.13) (it relies on the fact that the function |x|p−E(|N(0, 1)|p)
has Hermite rank 2; see also condition (2.15)). This is clearly satisfied for all β ∈ (−1

2 , 0)∪
(0, 1

2), because we have that |ρ3(j)| ∼ j2β−3.

In the case of using first order increments ∆n
i X we obtain the correlation function ρ of

the fractional noise (BH
i −BH

i−1)i≥1 with H = β + 1
2 as the limit autocorrelation function

(see e.g. (4.15) in [4]). As |ρ(j)| ∼ j2β−1 it holds that

∞∑
j=1

|ρ(j)|2 <∞

only for β ∈ (−1
2 , 0) ∪ (0, 1

4). 2

(ii) As we have mentioned in the previous section, we need to ensure that π3
n (ε) → 0,

where the measure π3
n is defined by (2.11), for all ε > 0 to show the law of large num-

bers. But for proving the central limit theorem we require a more precise treatment of the
quantity

π3
n (ε) =

∫∞
ε

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
dx

(τ3
n )2

.
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In particular, we need to show that the above quantity is small enough (see condition
(2.16)) to prove the negligibility of the error that is due to the first order approximation
3n
i X ≈ σ(i−2)∆n

3n
i G. The corresponding term in the case of increments is essentially

given as

πn(ε) =

∫∞
ε

(
g(x+ ∆n)− g(x)

)2
dx

τ2
n

,

where τ2
n = E(|∆n

i G|2) (see [4]). Under the Assumptions 1 and 2 the denominators (τ3
n )2

and τ2
n have the same order, but the nominator of π3

n (ε) is much smaller than the nom-
inator of πn(ε). This has an important consequence: the central limit theorems for the
multipower variation of the increments of X hold only for β ∈ (−1

2 , 0) while the corre-
sponding results for the second order differences hold for all β ∈ (−1

2 , 0) ∪ (0, 1
2). 2

Another advantage of using second order differences 3n
i X is the higher robustness to the

presence of smooth drift processes. Let us consider the process

Yt = Xt +Dt, t ≥ 0, (3.8)

where X is a BSS model of the form (2.1) and D is a stochastic drift. We obtain the
following result.

Proposition 3.7 Assume that the conditions of Theorem 3.3 hold and D ∈ Cv(R≥0) for
some v ∈ (1, 2), i.e. D ∈ C1(R≥0) (a.s.) and D′ has (v − 1)-Hölder continuous paths
(a.s.). When v − β > 1 then

∆−1/2
n

(
MPV 3(Y, pj1, . . . , p

j
k)
n
t − ρnpj

1,...,p
j
k

∫ t

0
|σs|p

+
j ds

)
1≤j≤d

st−→
∫ t

0
A1/2
s dW ′s,

where the limit process is given in Theorem 3.3. That is, the central limit theorem is robust
to the presence of the drift D.

Proof: Proposition 3.7 follows by a direct application of the Cauchy-Schwarz and Minkovski
inequalities (see Proposition 6 in [4] for more details). 2

The idea behind Proposition 3.7 is rather simple. Notice that 3n
i X = OP(∆

β+ 1
2

n ) (this
follows from Assumption 2) whereas 3n

i D = OP(∆v
n). It can be easily seen that the drift

process D does not influence the central limit theorem if v − β − 1
2 >

1
2 , because ∆−1/2

n is
the rate of convergence; this explains the condition of Proposition 3.7.

Notice that we obtain better robustness properties than in the case of first order

increments: we still have ∆n
i X = OP(∆

β+ 1
2

n ), but now ∆n
i D = OP(∆n). Thus, the drift

process D is negligible only when β < 0, which is obviously a more restrictive condition.

Example 3.8 Let us come back to the original BSS process from (1.1), which is of the
form (3.8) with

Dt =
∫ t

−∞
q(t− s)asds.
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For the ease of exposition we assume that

q(x) = xβ1{x∈(0,1)}, β > −1,

and the drift process a is càdlàg and bounded. Observe the decomposition

Dt+ε −Dt =
∫ t+ε

t
q(t+ ε− s)asds+

∫ t

−∞
(q(t+ ε− s)− q(t− s))asds.

We conclude that the process D has Hölder continuous paths of order (β + 1) ∧ 1. Con-
sequently, Theorem 3.1 is robust to the presence of the drift process D when β > β − 1

2 .
Furthermore, for β ≥ 0 we deduce that

D′t = q(0)at +
∫ ∞

0
q′(s)at−sds.

By Proposition 3.7 we conclude that Theorem 3.3 is robust to the presence of D when the
process a has Hölder continuous paths of order bigger than β. 2

Remark 3.9 (Higher order differences) Clearly, we can also formulate asymptotic results
for multipower variation of q-order differences of BSS processes X. Define

MPV (q)(X, p1, . . . , pk)nt = ∆n(τ (q)
n )−p

+
[t/∆n]−qk+q∑

i=q

k−1∏
l=0

|∆(q)n
i+qlX|

pl ,

where ∆(q)n
i X is the q-order difference starting at i∆n and (τ (q)

n )2 = E(|∆(q)n
i G|2). Then

the results of Theorem 3.1 and 3.3 remain valid for the class MPV (q)(X, p1, . . . , pk)n with
ρnp1,...,pk

defined as

ρnp1,...,pk
= E

( k−1∏
l=0

∣∣∣∆(q)n
i+qlG

τ
(q)
n

∣∣∣pl
)
.

The Assumptions 1 and 2 have to be modified as follows: (a) g(2) has to be replaced by
g(q) in Assumption 1(ii) and 1(iii), and (b) R(4) has to be replaced by R(2q) in Assumption
2(ii).

However, let us remark that going from second order differences to q-order differences
with q > 2 does not give any new theoretical advantages (with respect to robustness etc.).
It might though have some influence in finite samples. 2

Remark 3.10 (An extension to other integral processes) In [4] and [5] we considered
processes of the form

Zt = µ+
∫ t

0
σsdGs, (3.9)

where (Gs)s≥0 is a Gaussian process with centered and stationary increments. Define

R(t) = E(|Gs+t −Gs|2)
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and assume that Assumption 2 holds for R (we use the same notations as for the process
(2.1) to underline the parallels between the models (3.9) and (2.1)). We remark that
the integral in (3.9) is well-defined in the Riemann-Stieltjes sense when the process σ
has finite r-variation with r < 1/(1/2 − β) (see [4] and [24]), which we assume in the
following discussion. We associate τ3

n and MPV 3(Z, p1, . . . , pk)nt with the process Z by
(2.6). Then Theorem 3.1 remains valid for the model (3.9) and Theorem 3.3 also holds if
we further assume that Assumption 3-γ is satisfied for some γ ∈ (0, 1] with γ(p ∧ 1) > 1

2 ,
p = max1≤i≤k,1≤j≤d(p

j
i ).

We remark that the justification of the approximation 3n
i Z = σ(i−2)∆n

3n
i G is easier

to provide for the model (3.9) (see e.g. [4]). All other proof steps are performed in exactly
the same way as for the model (2.1). 2

Remark 3.11 (Some further extensions) We remark that the use of the power functions
in the definition of MPV 3(X, p1, . . . , pk)nt is not essential for the proof of Theorem 3.1
and 3.3. In principle, both theorems can be proved for a more general class of functionals

MPV 3(X,H)nt = ∆n

[t/∆n]−2k+2∑
i=2

H
(3n

i X

τ3
n

, . . . ,
3n
i+2(k−1)X

τ3
n

)
,

where H : Rk → R is a measurable even function with polynomial growth (cf. Remark 2
in [4]). However, we dispense with the exact exposition.

Another useful extension of Theorem 3.3 is a joint central limit theorem for functionals
MPV 3(X, p1, . . . , pk)nt computed at different frequencies (this result will be applied in
Section 4.3). For r ≥ 1, define the multipower variation computed at frequency r∆n as

MPV 3
r (X, p1, . . . , pk)nt = ∆n(τ3

n,r)
−p+

[t/∆n]−2k+2∑
i=2r

k−1∏
l=0

|3n,r
i+2lrX|

pl , (3.10)

where 3
n,r
i X = Xi∆n − 2X(i−r)∆n

+ X(i−2r)∆n
and (τ3

n,r)
2 = E(|3n,r

i G|2). Then, under
the conditions of Theorem 3.3, we obtain the stable central limit theorem

∆−1/2
n

(
MPV 3

r1 (X, p1, . . . , pk)nt − ρ
n,r1
p1,...,pk

∫ t
0 |σs|

p+ds

MPV 3
r2 (X, p1, . . . , pk)nt − ρ

n,r2
p1,...,pk

∫ t
0 |σs|

p+ds

)
st−→
∫ t

0
|σs|p

+
µ1/2dW ′s, (3.11)

where W ′ is a 2-dimensional Brownian motion independent of F ,

ρn,rp1,...,pk
= E

( k−1∏
l=0

∣∣∣3n,r
i+2lrG

τ3
n,r

∣∣∣pl
)

and the 2× 2 matrix µ = (µij)1≤i,j≤2 is defined as

µij = lim
n→∞

∆−1
n cov

(
MPV 3

ri (BH , p1, . . . , pk)n1 ,MPV 3
rj (BH , p1, . . . , pk)n1

)
with BH being a fractional Brownian motion with Hurst parameter H = β + 1

2 . Clearly,
an analogous result can be formulated for any d-dimensional family (rj ; p

j
1, . . . , p

j
k)1≤j≤d.

2
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4 Estimation of the smoothness parameter

In this section we apply our probabilistic results to obtain consistent estimates of the
smoothness parameter β ∈ (−1

2 , 0) ∪ (0, 1
2). We propose three different estimators for β:

the realised variation ratio (RV R3), the modified realised variation ratio (RV R3) and the
change-of-frequency estimator (COF3). Throughout this section we assume that

∆−1/2
n (r3

n (j)− ρ3(j))→ 0 (4.1)

for any j ≥ 1, where r3
n (j) and ρ3(j) are defined in (2.12) and (2.13), respectively. This

condition guarantees that ρn
pj
1,...,p

j
k

can be replaced by the quantity ρ
pj
1,...,p

j
k

in Theorem 3.3

without changing the limit (see Remark 3.5). Recall that the condition (4.1) holds for our
canonical example

g(x) = xβ exp(−λx)

when β ∈ (−1
2 , 0) ∪ (0, 1

4) and λ > 0.

4.1 The realised variation ratio

We define the realised variation ratio based on the second order differences as

RV R3n
t =

MPV 3(X, 1, 1)nt
MPV 3(X, 2, 0)nt

. (4.2)

This type of statistics has been successfully applied in semimartingale models to test for
the presence of the jump part (see e.g. [9]). In the BSS framework the statistic RV R3n

t

is used to estimate the smoothness parameter β.

Let us introduce the function ψ : (−1, 1)→ ( 2
π , 1) given by

ψ(x) =
2
π

(
√

1− x2 + x arcsinx). (4.3)

We remark that ψ(x) = E(U1U2), where U1, U2 are two standard normal variables with
correlation x. Let us further notice that while the computation of MPV 3(X, p1, . . . , pk)nt
requires the knowledge of the quantity τ3

n (and hence the knowledge of the memory func-
tion g), the statistic RV R3n

t is purely observation based since

RV R3n
t =

∑[t/∆n]−2
i=2 |3n

i X||3n
i+2X|∑[t/∆n]

i=2 |3n
i X|2

.

Our first result is the consistency of RV R3n
t , which follows directly from Theorem 3.1 and

Lemma 3.2.

Proposition 4.1 Assume that the conditions of Theorem 3.1 hold. Then we obtain

RV R3n
t

u.c.p.−→ ψ(ρ3(2)) , (4.4)

where ρ3(j) is defined by (2.13).
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Note that

ρ3(2) =
−41+2β + 4 · 31+2β − 6 · 21+2β + 4

2
(

4− 21+2β
) ,

ρ3(2) = ρ3
β (2) is invertible as a function of β ∈ (−1

2 , 0)∪(0, 1
2), it is positive for β ∈ (−1

2 , 0)
and negative for β ∈ (0, 1

2).

Obviously, the function ψ is only invertible on the interval (−1, 0) or (0, 1). Thus,
we can recover the absolute value of ρ3(2), but not its sign (which is not a big surprise,
because we use absolute values of the second order differences in the definition of RV R3n

t ).
In the following proposition we restrict ourselves to β ∈ (0, 1

2) as those values typically
appear in physics.

Proposition 4.2 Assume that the conditions of Theorem 3.3 and (4.1) hold. Let β ∈
(0, 1

2), ρ3
β (2) : (0, 1

2) → (−1, 0), ψ : (−1, 0) → ( 2
π , 1) and set f = ψ ◦ ρ3

β (2). Then we
obtain for h = f−1

h(RV R3n
t ) u.c.p.−→ β, (4.5)

and

∆−1/2
n (h(RV R3n

t )− β)MPV 3(X, 2, 0)nt√
1
3 |h′(RV R

3n
t )|(1,−RV R3n

t )µ(1,−RV R3n
t )TMPV 3(X, 4, 0)nt

d−→ N(0, 1), (4.6)

for any t > 0, where µ = (µij)1≤i,j≤2 is given by

µ11 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 1, 1)n1

)
,

µ12 = lim
n→∞

∆−1
n cov

(
MPV 3(BH , 1, 1)n1 ,MPV 3(BH , 2, 0)n1

)
,

µ22 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 2, 0)n1

)
,

with H = β + 1
2 .

Proposition 4.2 is a direct consequence of Theorem 3.3, of the delta-method for stable
convergence and of the fact that the true centering ψ(r3

n (2)) in (3.5) can be replaced by
its limit ψ(ρ3(2)), because of the condition (4.1) (see Remark 3.5). We note that the
normalized statistic in (4.6) is again self-scaling, i.e. we do not require the knowledge
of τ3

n , and consequently we can immediately build confidence regions for the smoothness
parameter β ∈ (0, 1

2).
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Remark 4.3 The constants βij , 1 ≤ i, j ≤ 2, can be expressed as

µ11 = var(|Q1||Q3|) + 2
∞∑
k=1

cov(|Q1||Q3|, |Q1+k||Q3+k|),

µ12 = cov(Q2
2, |Q1||Q3|) + 2

∞∑
k=0

cov(Q2
1, |Q1+k||Q3+k|),

µ22 = var(Q2
1) + 2

∞∑
k=1

cov(Q2
1, Q

2
1+k) = 2 + 4

∞∑
k=1

|ρ3(k)|2,

with Qi = 3n
i B

H/
√

var(3n
i B

H). The above quantities can be computed using formulas
for absolute moments of the multivariate normal distributions (see [2] for more details).
2

4.2 The modified realised variation ratio

Recall that the restriction β ∈ (0, 1
2) is required to formulate Proposition 4.2. To obtain

estimates for all values β ∈ (−1
2 , 0) ∪ (0, 1

2) let us consider a modified (and, in fact, more
natural) version of RV R3n

t :

RV R
3n
t =

∑[t/∆n]−2
i=2 3n

i X3n
i+2X∑[t/∆n]

i=2 |3n
i X|2

. (4.7)

Notice that RV R3n
t is an analogue of the classical autocorrelation estimator. The following

result describes the asymptotic behaviour of RV R3n
t .

Proposition 4.4 Assume that the conditions of Theorem 3.3 and (4.1) hold, and let
h = (ρ3

β (2))−1. Then we obtain

h(RV R3n
t ) u.c.p.−→ β, (4.8)

and, with MPV
3(X, 1, 1)nt = ∆n(τ3

n )−2
∑[t/∆n]−2

i=2 3n
i X3n

i+2X,

∆−1/2
n (h(RV R3n

t )− β)MPV 3(X, 2, 0)nt√
1
3 |h′(RV R

3n
t )|(1,−RV R3n

t )µ(1,−RV R3n
t )TMPV 3(X, 4, 0)nt

d−→ N(0, 1), (4.9)

for any t > 0, where µ = (µij)1≤i,j≤2 is given by

µ11 = lim
n→∞

∆−1
n var

(
MPV

3(BH , 1, 1)n1
)
,

µ12 = lim
n→∞

∆−1
n cov

(
MPV

3(BH , 1, 1)n1 ,MPV 3(BH , 2, 0)n1
)
,

µ22 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 2, 0)n1

)
,

with H = β + 1
2 .
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Remark 4.5 Note that Proposition 4.4 follows from Remark 3.11, because H(x, y) = xy
is an even function. In fact, its proof is much easier than the corresponding result of
Theorem 3.3. The most essential step is the joint central limit theorem for the nominator
and the denominator of RV R3n

t when X = G (i.e. σ ≡ 1). The latter can be shown
by using Wiener chaos expansion and Malliavin calculus. Let H be a separable Hilbert
space generated by the triangular array (3n

i G/τ
3
n )n≥1,1≤i≤[t/∆n] with scalar product 〈·, ·〉H

induced by the covariance function of the process (3n
i G/τ

3
n )n≥1,1≤i≤[t/∆n]. Setting χni =

3n
i G/τ

3
n we deduce the identities

∆1/2
n

[t/∆n]−2∑
i=2

(
χni χ

n
i+2 − ρ3(2)

)
= I2(f (1)

n ), f (1)
n = ∆1/2

n

[t/∆n]−2∑
i=2

χni ⊗ χni+2,

∆1/2
n

[t/∆n]∑
i=2

(
|χni |2 − 1

)
= I2(f (2)

n ), f (2)
n = ∆1/2

n

[t/∆n]∑
i=2

(χni )⊗2,

where I2 is the second multiple integral. The joint central limit theorem for the above
statistics follows from [20] once we show the contraction conditions

||f (1)
n ⊗1 f

(1)
n ||H⊗2 → 0, ||f (2)

n ⊗1 f
(2)
n ||H⊗2 → 0,

and identify the asymptotic covariance structure by computing 2 limn→∞〈f (i)
n , f

(j)
n 〉H⊗2 for

1 ≤ i, j ≤ 2. We refer to the appendix of [3] for a more detailed proof of such central limit
theorems. 2

Remark 4.6 The constants βij , 1 ≤ i, j ≤ 2, are now much easier to compute. They are
given as

µ11 = var(Q1Q3) + 2
∞∑
k=1

cov(Q1Q3, Q1+kQ3+k)

= 1 + |ρ3(2)|2 + 2
∞∑
k=1

(|ρ3(k)|2 + ρ3(k + 2)ρ3(|k − 2|),

µ12 = cov(Q2
2, Q1Q3) + 2

∞∑
k=0

cov(Q2
1, Q1+kQ3+k) = 2|ρ3(1)|2 + 4

∞∑
k=1

ρ3(k)ρ3(k + 2),

µ22 = var(Q2
1) + 2

∞∑
k=1

cov(Q2
1, Q

2
1+k) = 2 + 4

∞∑
k=1

|ρ3(k)|2,

withQi = 3n
i B

H/
√

var(3n
i B

H). This follows from a well-known formula cov(Z1Z2, Z3Z4) =
cov(Z1, Z3)cov(Z2, Z4) + cov(Z2, Z3)cov(Z1, Z4) whenever (Z1, Z2, Z3, Z4) is normal. 2

4.3 Change-of-frequency estimator

Another idea of estimating β is to change the frequency ∆n at which the second order
differences are built. We recall that (τ3

n )2 = 4R(∆n)−R(2∆n) and consequently we obtain
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the relationship
(τ3
n )2 ' ∆2β+1

n

by Assumption 2(i). Observing the latter we define the statistic

COFnt =
∑[t/∆n]

i=4 |3n,2
i X|2∑[t/∆n]

i=2 |3n
i X|2

, (4.10)

that is essentially the ratio of MPV 3(X, 2, 0)nt computed at frequencies ∆n and 2∆n.
Recall that (τ3

n,2)2 = E(|3n,2
i G|2) = 4R(2∆n)−R(4∆n) and observe

(τ3
n,2)2

(τ3
n )2

→ 22β+1.

As a consequence we deduce the convergence

COFnt
u.c.p.−→ 22β+1.

The following proposition is a direct consequence of (3.11) and the properties of stable
convergence.

Proposition 4.7 Assume that the conditions of Theorem 3.3 and (4.1) hold, and let
h(x) = (log(x)− 1)/2. Then we obtain

h(COFnt ) u.c.p.−→ β, (4.11)

and

∆−1/2
n (h(COFnt )− β)MPV 3(X, 2, 0)nt√

1
3 |h′(COF

n
t )|(1,−COFnt )µ(1,−COFnt )TMPV 3(X, 4, 0)nt

d−→ N(0, 1), (4.12)

for any t > 0, where µ = (µij)1≤i,j≤2 is given by

µ11 = lim
n→∞

∆−1
n var

(
MPV 3

2 (BH , 2, 0)n1
)
,

µ12 = lim
n→∞

∆−1
n cov

(
MPV 3

2 (BH , 2, 0)n1 ,MPV 3(BH , 2, 0)n1
)
,

µ22 = lim
n→∞

∆−1
n var

(
MPV 3(BH , 2, 0)n1

)
,

with H = β + 1
2 .

Let us emphasize that the normalized statistic in (4.12) is again self-scaling. We recall
that the approximation

(τ3
n,2)2

(τ3
n )2

− 22β+1 = o(∆1/2
n ),

which follows from (4.1), holds for our main example g(x) = xβ exp(−λx) when β ∈
(−1

2 , 0) ∪ (0, 1
4) and λ > 0.



Limit theorems for functionals of higher order differences 18

Remark 4.8 Observe the identity

Xi∆n − 2X(i−2)∆n
+X(i−4)∆n

= 3n
i X − 23n

i−1X + 3n
i−2X.

The latter implies that

µ11 = 2 + 2−4β
∞∑
k=1

|ρ3(k + 2)− 4ρ3(k + 1) + 6ρ3(k)− 4ρ3(|k − 1|) + ρ3(|k − 2|)|2,

µ12 = 2−2β(ρ3(1)− 1) + 21−2β
∞∑
k=0

|ρ3(k + 2)− 2ρ3(k + 1) + ρ3(k)|2,

µ22 = 2 + 4
∞∑
k=1

|ρ3(k)|2.

2

5 Proofs

Let us start by noting that the intermittency process σ is assumed to be càdlàg, and thus
σ− is locally bonded. Consequently, w.l.o.g. σ can be assumed to be bounded on compact
intervals by a standard localization procedure (see e.g. Section 3 in [6] for more details).
We also remark that the process F defined by (2.7) is continuous. Hence, F is locally
bounded and can be assumed to be bounded on compact intervals w.l.o.g. by the same
localization procedure.

Below, all positive constants are denoted by C or Cp if they depend on some parameter
p. In the following we present three technical lemmas.

Lemma 5.1 Under Assumption 1 we have that

E(|3n
i X|p) ≤ Cp(τ3

n )p , i = 2, . . . , [t/∆n] (5.1)

for all p > 0.

Proof of Lemma 5.1: Recall that due to Assumption 1(ii) the function g(2) is non-increasing
on (a,∞) for some a > 0 and assume w.l.o.g. that a > 1. By the decomposition (2.10)
and Burkholder’s inequality we deduce that

E(|3n
i X|p) ≤ Cp

(
(τ3
n )p + E

(∫ ∞
0

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2
σ2

(i−2)∆n−sds
)p/2)

,

since σ is bounded on compact intervals. We immediately obtain the estimates∫ 1

0

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2
σ2

(i−2)∆n−sds ≤ C(τ3
n )2 ,
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∫ a

1

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2
σ2

(i−2)∆n−sds ≤ C∆2
n ,

because g(2) is continuous on (0,∞) and σ is bounded on compact intervals. On the other
hand, since g(2) is non-increasing on (a,∞), we deduce that∫ ∞

a

(
g(s+ 2∆n)− 2g(s+ ∆n) + g(s)

)2
σ2

(i−2)∆n−sds ≤ ∆2
nF(i−2)∆n

.

Finally, the boundedness of the process F implies (5.1). 2

Next, for any stochastic process f and any s > 0, we define the (possibly infinite) measure

π3n
f,s (A) =

∫
A

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
f2
s−xdx

(τ3
n )2

, A ∈ B(R>0), (5.2)

and set π3n
f,s(x) = πnf,s({y : y > x}).

Lemma 5.2 Under Assumption 1 it holds that

sup
s∈[0,t]

π3n
σ,s(ε) ≤ Cπ3

n (ε) (5.3)

for any ε > 0, where the measure π3
n is given by (2.11).

Proof of Lemma 5.2: Recall again that g(2) is non-increasing on (a,∞) for some a > 0,
and assume w.l.o.g. that a > ε. Since the processes σ and F are bounded we deduce
exactly as in the previous proof that∫ ∞

ε

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
σ2
s−xdx

=
∫ a

ε

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
σ2
s−xdx

+
∫ ∞
a

(
g(x+ 2∆n)− 2g(x+ ∆n) + g(x)

)2
σ2
s−xdx ≤ C(π3

n (ε) + ∆2
n).

This completes the proof of Lemma 5.2. 2

Finally, the last lemma gives a bound for the correlation function r3
n (j).

Lemma 5.3 Under Assumption 2 there exists a sequence (h(j))j≥1 such that

|r3
n (j)| ≤ h(j),

∞∑
j=1

h(j) <∞, (5.4)

for all j ≥ 1.

Proof of Lemma 5.3: This result follows directly from Lemma 1 in [3]. Recall that
r3
n (j)→ ρ3(j) and

∑∞
j=1 |ρ3(j)| <∞, so the assertion is not really surprising. 2

Observe that Lemma 5.3 implies the conditions (2.14) and (2.15).



Limit theorems for functionals of higher order differences 20

5.1 Proof of Theorem 3.1

In the following we will prove Theorem 3.1 and 3.3 only for k = 1, p1 = p. The general
case can be obtained in a similar manner by an application of the Hölder inequality.

Note that MPV 3(X, p)nt is increasing in t and the limit process of (3.4) is continuous
in t. Thus, it is sufficient to show the pointwise convergence

MPV 3(X, p)nt
P−→ mp

∫ t

0
|σs|pds,

where mp = E(|N(0, 1)|p). We perform the proof of Theorem 3.1 in two steps.

• The crucial approximation: First of all, we prove that we can use the approximation
3n
i X ≈ σ(i−2)∆n

3n
i G without changing the limit of Theorem 3.1, i.e. we show that

∆n(τ3
n )−p

[t/∆n]∑
i=2

(
|3n

i X|p − |σ(i−2)∆n
3n
i G|p

)
P−→ 0. (5.5)

An application of the inequality ||x|p − |y|p| ≤ p|x − y|(|x|p−1 + |y|p−1) for p > 1 and
||x|p− |y|p| ≤ |x− y|p for p ≤ 1, (5.1) and the Cauchy-Schwarz inequality implies that the
above convergence follows from

∆n(τ3
n )−2

[t/∆n]∑
i=2

E(|3n
i X − σ(i−2)∆n

3n
i G|2) −→ 0. (5.6)

Observe the decomposition

3n
i X − σ(i−2)∆n

3n
i G = Ani +Bn,ε

i + Cn,εi

with

Ani =
∫ i∆n

(i−1)∆n

g(i∆n − s)(σs − σ(i−2)∆n
)W (ds)

+
∫ (i−1)∆n

(i−2)∆n

(
g(i∆n − s)− 2g((i− 1)∆n − s)

)
(σs − σ(i−2)∆n

)W (ds)

Bn,ε
i =

∫ (i−2)∆n

(i−2)∆n−ε

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds)

− σ(i−2)∆n

∫ (i−2)∆n

(i−2)∆n−ε
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds)

Cn,εi =
∫ (i−2)∆n−ε

−∞

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds)

− σ(i−2)∆n

∫ (i−2)∆n−ε

−∞
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds)
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Lemma 5.2 and the boundedness of σ imply that

∆n(τ3
n )−2

[t/∆n]∑
i=2

E(|Cn,εi |
2) ≤ Cπ3

n (ε), (5.7)

and by (2.9) and Assumption 2(i) we deduce that

∆n(τ3
n )−2

[t/∆n]∑
i=2

E(|Cn,εi |
2) −→ 0,

as n → ∞, for all ε > 0. Next, set v(s, η) = sup{|σs − σr|2| r ∈ [−t, t], |r − s| ≤ η} for
s ∈ [−t, t] and denote by ∆σ the jump process associated with σ. We obtain the inequality

∆n(τ3
n )−2

[t/∆n]∑
i=2

E(|Ani |2) ≤ ∆n

[t/∆n]∑
i=2

E(v((i− 2)∆n, 2∆n)) (5.8)

≤ λ+ ∆nE
( ∑
s∈[−t,t]

|∆σs|21{|∆σs|≥λ}

)
= θ(λ, n)

for any λ > 0. We readily deduce that

lim
λ→0

lim sup
n→∞

θ(λ, n) = 0.

Next, observe the decomposition Bn,ε
i = Bn,ε

i (1) +Bn,ε
i (2) with

Bn,ε
i (1) =

∫ (i−2)∆n

(i−2)∆n−ε

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
× (σs − σ(i−2)∆n−ε)W (ds)

Bn,ε
i (2) = (σ(i−2)∆n−ε − σ(i−2)∆n

)

×
∫ (i−2)∆n

(i−2)∆n−ε
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds).

We deduce that

∆n(τ3
n )−2

[t/∆n]∑
i=2

E(|Bn,ε
i (1)|2) ≤ ∆n

[t/∆n]∑
i=2

E(v((i− 2)∆n, ε)), (5.9)

∆n(τ3
n )−2

[t/∆n]∑
i=2

E(|Bn,ε
i (2)|2) ≤ ∆n

[t/∆n]∑
i=2

E(v((i− 2)∆n, ε)2)
1
2 .

By using the same arguments as in (5.8) we conclude that both terms converge to zero
and we obtain (5.6), which completes the proof of Theorem 3.1. 2
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• The blocking technique: Having justified the approximation 3n
i X ≈ σ(i−2)∆n

3n
i G in

the previous step, we now apply a blocking technique for σ(i−2)∆n
3n
i G: we divide the

interval [0, t] into big sub-blocks of the length l−1 and freeze the intermittency process σ
at the beginning of each big sub-block. Later we let l tend to infinity.

For any fixed l ∈ N, observe the decomposition

MPV 3(X, p)nt −mp

∫ t

0
|σs|pds = ∆n(τ3

n )−p
[t/∆n]∑
i=2

(
|3n

i X|p − |σ(i−2)∆n
3n
i G|p

)
+Rn,lt ,

where

Rn,lt = ∆n(τ3
n )−p

( [t/∆n]∑
i=2

|σ(i−2)∆n
3n
i G|p −

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|3n
i G|p

)

+
(

∆n(τ3
n )−p

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|3n
i G|p −mpl

−1

[lt]∑
j=1

|σ j−1
l
|p
)

+ mp

(
l−1

[lt]∑
j=1

|σ j−1
l
|p −

∫ t

0
|σs|pds

)
,

and
Il(j) =

{
i| i∆n ∈

(j − 1
l

,
j

l

]}
, j ≥ 1.

Notice that the third summand in the above decomposition converges to 0 in probability
due to Riemann integrability of σ. By Theorem 1 in [4] we know that MPV 3(G, p)nt

u.c.p.−→
mpt, because the condition (2.14) is satisfied (see Lemma 5.3). This implies the negligibility
of the second summand in the decomposition when we first let n → ∞ and then l → ∞.
As σ is càdlàg and bounded on compact intervals, we finally deduce that

lim
l→∞

lim sup
n→∞

P(|Rn,lt | > ε) = 0 ,

for any ε > 0. This completes the proof of the second step and of Theorem 3.1. 2

5.2 Proof of Theorem 3.3

Here we apply the same scheme of the proof as for Theorem 3.1. We start with the
justification of the approximation 3n

i X ≈ σ(i−2)∆n
3n
i G and proceed with the blocking

technique.

• The crucial approximation: Here we prove that

∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

(
|3n

i X|p − |σ(i−2)∆n
3n
i G|p

)
P−→ 0. (5.10)
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Again we apply the inequality ||x|p−|y|p| ≤ p|x−y|(|x|p−1+|y|p−1) for p > 1, ||x|p−|y|p| ≤
|x− y|p for p ≤ 1 and (5.1) to deduce that

∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

E
(∣∣∣|3n

i X|p − |σ(i−2)∆n
3n
i G|p

∣∣∣)| ≤ ∆1/2
n (τ3

n )−(p∧1)

×
[t/∆n]∑
i=2

(
E(|3n

i X − σ(i−2)∆n
3n
i G|2)

) p∧1
2 .

Now we use a similar decomposition as in the proof of Theorem 3.1:

3n
i X − σ(i−2)∆n

3n
i G = Ani +Bn,ε

(1)
n

i +
l∑

j=1

Cn,ε
(j)
n ,ε

(j+1)
n

i ,

where Ani , Bn,ε
(1)
n

i are defined as above, 0 < ε
(1)
n < · · · < ε

(l)
n < ε

(l+1)
n =∞ and

Cn,ε
(j)
n ,ε

(j+1)
n

i =
∫ (i−2)∆n−ε(j)n

(i−2)∆n−ε(j+1)
n

(
g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)

)
σsW (ds)

−σ(i−2)∆n

∫ (i−2)∆n−ε(j)n

(i−2)∆n−ε(j+1)
n

g(i∆n − s)− 2g((i− 1)∆n − s) + g((i− 2)∆n − s)W (ds).

An application of Assumptions 1, 2 and 3-γ, for γ ∈ (0, 1] with γ(p ∧ 1) > 1
2 , and Lemma

5.2 implies that (recall that σ is bounded on compact intervals)

∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

(
E(|Ani |2)

) p∧1
2 ≤ C∆

γ(p∧1)− 1
2

n , (5.11)

∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

(
E(|Bn,ε

(1)
n

i |2)
) p∧1

2

≤ C∆−1/2
n |ε(1)

n |γ(p∧1),

∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

(
E(|Cn,ε

(j)
n ,ε

(j+1)
n

i |2)
) p∧1

2

≤ C∆−1/2
n |ε(j+1)

n |γ(p∧1)|π3
n (ε(j+1)

n )− π3
n (ε(j)

n )|
p∧1
2 ,

∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

(
E(|Cn,ε

(l)
n ,ε

(l+1)
n

i |2)
) p∧1

2

≤ C∆−1/2
n π3

n (ε(l)
n )

p∧1
2 ,

for 1 ≤ j ≤ l− 1. In [4] (see Lemma 3 therein) we have proved the following result: if the
condition (2.16) is satisfied then there exist sequences 0 < ε

(1)
n < · · · < ε

(l)
n < ε

(l+1)
n = ∞

such that all terms on the right-hand side of (5.11) converge to 0. Set λ = (3− 2β)(1− δ)
for some δ > 0 such that λ > 1/(p ∧ 1). This is possible, because 3− 2β ∈ (2, 4) and the
assumptions of Theorem 3.3 imply that p > 1/2. We obtain that

π3
n (εn) ≤ C∆λ(1−κ)

n ,
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for any εn = ∆κ
n, κ ∈ (0, 1), by (2.9) and Assumption 2(i). Thus, we deduce (2.16) which

implies the convergence of (5.10). 2

• The blocking technique: Again we only consider the case d = 1, k = 1 and p1 = p.
We recall the decomposition from the proof of Theorem 3.1:

∆−1/2
n

(
MPV 3(X, p)nt −mp

∫ t

0
|σs|pds

)
(5.12)

= ∆−1/2
n

(
∆n(τ3

n )−p
[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|3n
i G|p −mpl

−1

[t/l∆n]∑
j=1

|σ j−1
l
|p
)

+∆1/2
n (τ3

n )−p
[t/∆n]∑
i=2

(
|3n

i X|p − |σ(i−2)∆n
3n
i G|p

)
+R

n,l
t ,

where

R
n,l
t = ∆1/2

n (τ3
n )−p

( [t/∆n]∑
i=2

|σ(i−2)∆n
3n
i G|p −

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|3n
i G|p

)

+ mp∆−1/2
n

(
l−1

[lt]∑
j=1

|σ j−1
l
|p −

∫ t

0
|σs|pds

)
.

Note that the negligibility of the second summand in the decomposition (5.12) has been
shown in the previous step. The convergence

lim
l→∞

lim sup
n→∞

P(|Rn,lt | > ε) = 0,

for any ε > 0, has been shown in [3] (see the proof of Theorem 7 therein). Finally, we
concentrate on the first summand of the decomposition (5.12). By Remark 11 in [4] we
know that (Gt,∆

−1/2
n (MPV 3(G, p)nt −mpt))⇒ (Gt,

√
µW ′t), where µ is defined by (3.7),

because r3
n (j)→ ρ3(j) and condition (2.15) holds (see again Lemma 5.3). An application

of the condition D′′ from Proposition 2 in [1] shows that

∆−1/2
n (MPV 3(G, p)nt −mpt)

st−→ √µW ′t .

Now we deduce by the properties of stable convergence:

∆−1/2
n

(
∆n(τ3

n )−p
[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|3n
i G|p −mpl

−1

[t/l∆n]∑
j=1

|σ j−1
l
|p
)

st−→ √µ
[lt]∑
j=1

|σ j−1
l
|p∆l

jW
′,
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for any fixed l. On the other hand, we have that

√
µ

[lt]∑
j=1

|σ j−1
l
|p∆l

jW
′ P−→ √µ

∫ t

0
|σs|pdW ′s

as l→∞. This completes the proof of Theorem 3.3. 2
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