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Abstract

In this paper a new GARCH-M type model, denoted the GARCH-AR, is proposed.
In particular, it is shown that it is possible to generate a volatility-return trade-off in
a regression model simply by introducing dynamics in the standardized disturbance
process. Importantly, the volatility in the GARCH-AR model enters the return func-
tion in terms of relative volatility, implying that the risk term can be stationary even
if the volatility process is nonstationary. We provide a complete characterization of
the stationarity properties of the GARCH-AR process by generalizing the results of

Bougerol and Picard (1992b). Furthermore, allowing for nonstationary volatility, the
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asymptotic properties of the estimated parameters by quasi-maximum likelihood in
the GARCH-AR process are established. Finally, we stress the importance of being
able to choose correctly between AR-GARCH and GARCH-AR processes: First, it is
shown, by a small simulation study, that the estimators for the parameters in an AR-
GARCH model will be seriously inconsistent if the data generating process actually
is a GARCH-AR process. Second, we provide an LM test for neglected GARCH-AR
effects and discuss its finite sample size properties. Third, we provide an empiri-
cal illustration showing the empirical relevance of the GARCH-AR model based on

modelling a wide range of leading US stock return series.

Key words: Quasi-Maximum Likelihood; GARCH-M Model; Asymptotic Proper-

ties; Risk-return Relation.
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1 Introduction

Since Merton’s (1973) pathbreaking article deriving the intertemporal Capital Asset Pric-
ing Model, the idea that higher risk assets must have higher expected returns to attract
investors has been a foundation of modern finance theory. The GARCH-M (Generalized
Autoregressive Conditional Heteroskedastic-in-mean) model proposed by Engle, Lilien and
Robins (1987) allows for the direct effect of volatility changes on asset prices through re-
quired returns in a short memory GARCH-type model, by introducing the conditional
volatility function into the conditional mean return equation. Numerous empirical studies
have explored this volatility-return trade-off in attempts to estimate the magnitude of
the trade-off itself. Perhaps surprisingly, both statistical significance and even the sign
of the linear relation between expected return and variance of return have proved elu-
sive in empirical work. Just naming a few studies and confining the listing to studies
using some form of GARCH-in-mean models, for example, confirmation of the positive
volatility-return trade-off is supported by French, Schwert, and Stambaugh (1987), Chou
(1988), Baillie and DeGennaro (1990), and Campbell and Hentschel (1992), while evidence
of a negative risk-return trade-off was found by Nelson (1991) and Glosten, Jagannathan,
and Runkle (1993). Indeed, Campbell and Hentschel (1992) argue that an alternative
source of a negative volatility-return relation is the volatility feedback mechanism, that
is, if volatility is increased, then so is the risk premium, in case of a positive trade-off
between risk and conditional expected return. Hence, the discount rate is also increased,

which in turn, for an unchanged dividend yield, lowers the stock price. Negative premia is



also found in recent work in asset pricing focussing on volatility innovations that examines
cross-sectional risk premia induced by covariance between volatility changes and stock
returns, e.g., Ang, Hodrick, Xing, and Zhang (2006). The idea is that since innovations in
volatility are higher during recessions, stocks which co-vary with volatility pay off in bad
states, and so they should require smaller risk premia. For a survey of these and related
studies, see Lettau and Ludvigson (forthcoming).

One possible source of the disagreement is misspecification of the way in which condi-
tional variance enters the conditional mean return equation. Considerations and debates
of this type have lead to the interest in specifying a more flexible model encompassing
these and other alternative volatility-return relations. Flexibility, however, comes at the
cost of more complicated statistical properties and typically also more restrictive assump-
tions on the data generating process. Hodgson and Vorkink (2003) estimate the density
function of a multivariate GARCH-M model in a semiparametric fashion. Linton and Per-
ron (2003), Sun and Stengos (2006), Conrad and Mammen (2008) and Christensen, Dahl
and Iglesias (2008) all propose to use a mean equation given by y; = u (af) +e40¢ where 1
is the daily return, £ (E%af][t_l) = 0} is the conditional return variance, I;_1 denotes the
sigma field generated by the information available up to time t — 1, &, ~ 4.i.d. (0,1), and
i (+) is a smooth mean function determining the functional form of the volatility-return
relation. Common for all these papers is that the specification is estimated semiparamet-
rically, assuming stationary GARCH or exponential GARCH processes for the conditional
variance. Indeed, based on this approach and using CRSP excess return data, a hump
shaped (nonlinear) pattern of the risk premium is generally supported.

However, as pointed out by Christensen, Nielsen and Zhu (2009), a potential statistical
problem with the traditional GARCH-M specification is that possible nonstationarity or
long memory properties of the volatility process may not balance well with the short
memory properties of the return series in the regression model. Whether estimating the
GARCH-M parametrically or semiparametrically, this might give unwanted and spurious
results. The empirical evidence supporting the long memory properties of the volatility
is extensive and includes studies by Robinson (1991), Crato and de Lima (1994), Baillie
et al (1996), Ding and Granger (1996), Breidt, Crato and de Lima (1998), Robinson
(2001), Andersen, Bollerslev, Diebold and Labys (2003) and Christensen et al (2009).
Consequently, in the recent literature, see, e.g., Ang et al (2006), Christensen and Nielsen
(2007) and Christensen et al (2009), it has been suggested to use changes of volatility as
the M-term in the GARCH-M type return equations.



In this paper, we propose a new GARCH-M model which allows for an alternative
parametric relation across conditional means and variances relative to the traditional
GARCH-M of Engle et al (1987). In particular, we show that by introducing simple
dynamics in the standardized disturbance process of the return series (described in details
later), it is possible to generate a volatility-return trade-off in a regression model setting.
Importantly, the volatility will enter the return function in terms of relative volatility,
implying that even if the volatility process is nonstationary, the risk term will maintain
stationarity as required. For reasons that will be obvious later, and to differentiate our
model from the traditional GARCH-M of Engle, Lilien and Robins (1987), we will refer
to the new GARCH-M type model as the GARCH-AR model.

One unfortunate and potentially serious problem associated with all parametric GARCH-
M models (with or without stationary volatility) and with semiparametric GARCH-M
models (with nonstationary volatility) is the lack of asymptotic theory associated with
the estimated parameters. Lending on the techniques of Jensen and Rahbek (2004a,
2004b), we are able to establish the asymptotic normality of the Quasi Maximum Like-
lihood Estimator (QMLE) in the proposed GARCH-M type specification, allowing for
possible explosive and nonstationary behavior of the GARCH process. We provide a gen-
eral asymptotic theory that holds both in the stationary and the nonstationary regions of
the parameter space. We hereby fill in an important gap in the literature by facilitating
simple quasi-likelihood based inference in presence of risk premiums.

Finally, we provide some empirical illustrations. First, it is shown, by a small sim-
ulation study, that the estimators for the parameters in an AR-GARCH model will be
seriously inconsistent if the data generating process actually is a GARCH-AR process.
Second, we propose an LM test for neglected GARCH-AR effects and discuss its finite
sample size properties. Third, we provide an empirical illustration showing the empirical
relevance of the GARCH-AR model based on modelling a wide range of leading US stock
return series.

An important final remark is that the asymptotic theory applies to the stationary
as well as the nonstationary regions of the parameter space. In financial data it is very
common to be very close to the boundary of the stationary region and to have Integrated
GARCH type effects. In this paper we show that regardless if we are in the stationary or
the nonstationary region, the researcher can use the asymptotic normality of the QMLE
in the new model.

The plan of the paper is as follows. Section 2 motivates our new GARCH-M type



model in the risk-return trade-off literature. Section 3 establishes the strict stationarity
of a GARCH(1,1) model with ergodic and strictly stationary standardized disturbances.
Section 4 presents the simplest version of new GARCH-M type model and it provides
results on consistency and asymptotic normality of the QML estimator. Section 5 gener-
alizes Section 3. Section 6 presents some illustrations of our approach: first we provide
a Monte Carlo simulation study on the consequences of dynamic misspecification of the
GARCH model; second, we propose and illustrate an LM test, and third, we present an
empirical application based on modelling US riskless rate of return series. Finally, Section

7 concludes. The proofs are collected in Appendices 1-3.

2 The new GARCH-M type representation

For illustrative purposes consider initially the process y;, with the representation

Yt = Oté€yq, (1)
€ = Q-+ pe_1+ g, (2)
v~ i..d.(0,1), (3)

where o7 has, say, a GARCH(1,1) specification. Relative to the existing literature, this
model contains one new term given by pe;_1. The contribution of this term and the link

to the traditional GARCH-M model can be seen more explicitly if we rewrite (1)-(3) as

+p—Zy o+ (4)
Yt = Hoy p Yt—1 T Ot
~~ Ot—1 —
Term 1 NS—~——Term 3
Term 2

Note that Terms 1 and 3 sum up to the standard GARCH-M model. However, when
p # 0, Term 2 becomes relevant. Some of the implications on the risk-return relationship
of this new term can be seen from the following derivative

0
E <a—yt|ft—1> =p+ Lyt—l-
Ot Ot—1

In the standard GARCH-M model, if volatility increases by one unit we would expect the
mean return (or excess return) to increase by p. However from (4), in addition, we would

expect the return to change by an additional amount as a result of the new term, namely

p
ot—1

Yt—1. In summary, the risk-return relationship becomes state dependent. Furthermore,

notice that this expected change (E (g—gi \It_l)) would be larger if the increase in volatility
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came from a low level at t-1, i.e., oy_1 is small when considering a change in o;. Another,
important implication from Term 2 is that a negative (excess) return in the previous period
(yt—1 < 0) could cause the risk premium to be smaller than p and may even be negative
if the negative return comes at a time where the volatility level in the market is low.

Equation (4) also illustrates that it is critical how to model the dynamics. Traditionally,
lagged values of the return series have been included in the conditional mean equation as
in the traditional Autoregresive-GARCH (AR-GARCH) model . However, if the dynamics
should enter the process for ¢;, then the AR-GARCH will be misspecified. It is well known
that misspecification of the conditional mean function can have very serious effects on the
estimates in GARCH-type models. In the empirical section, we will analyze the effects of
this type of dynamic misspecification further.

Finally, it is clear from equation (4) that if volatility is nonstationary, for example
if o, — oo as in Jensen and Rahbek (2004a, 2004b), then the risk-return relationship
becomes unbalanced in the standard GARCH-M model due to Term 1. However, if we

restrict © = 0, then as long as the ratio —U‘t’jl

is stationary, the risk-return relationship
maintains a balance. In what follows, this scenario where o; may be nonstationary will
serve as one of the main focus points of the theoretical and empirical analysis. We name

the model that allows for Terms 2 and 3 in (4), the GARCH-AR(1) model.

3 Strict stationarity and weak-GARCH(1,1) processes

Following Drost and Nijman (1993), GARCH models can be classified into three categories:
strong GARCH (where the innovation process €; is i.i.d. with zero mean and unit variance);
the semi-strong form (where the innovation process is a martingale difference sequence),
and finally the weak form, where also the martingale difference sequence assumption is
relaxed.

Asymptotic normality of the QMLE has been established under a wide range of alter-
native assumptions for strong-GARCH models (see e.g. Lumsdaine (1996) and Berkes and
Horvath (2004)). One of the most recent contribution is by Jensen and Rahbek (2004a,
2004b), who show that the QMLE is asymptotically normal both in the stationary and
the nonstationary region of the parameter space. Lee and Hansen (1994) show asymp-
totic normality of the QMLE for the semi-strong form. In relation to weak-form GARCH
models, the asymptotic normality of the QML estimator has not yet been established, see,

e.g., Linton and Mammen (2005, see page 787). Indeed Franqc and Zakoian (2000) con-



sider a weak-GARCH type model where the squared of the errors are modelled explicitly
with ARMA (Autoregressive Moving Average) processes, but they show the properties of
estimating such a model with two-stage least squares instead of with QML.

GARCH processes where the innovation is not i.i.d. have mainly been treated semi-
parametrically in the literature, see, e.g., Meddahi and Renault (2004), Linton and Mam-
men (2005) and Dahl and Levine (2006). However, common for the semiparametric ap-
proaches, they do not permit nonstationary and explosive GARCH processes. The first
main contribution of this paper is to analyze a fully parametrically specified GARCH pro-
cess, where the standardized disturbances are neither i.i.d. nor a martingale difference
sequence and by allowing for explosive and nonstationary behavior of the GARCH pro-
cess. Papers such as Francq and Zakoian (2000), Meddahi and Renault (2004), Linton
and Mammen (2005) and Dahl and Levine (2006) provide evidence that allowing for a
structure in €; that is non-i.i.d. is relevant in Economics and Finance. We are hereby ex-
tending the work of Jensen and Rahbek (2004a, 2004b) from strong-GARCH processes to
GARCH with serially dependent standardized disturbances. Linton and Mammen (2005)
argue that one of the important challenges in relation to modelling weak-form GARCH
processes parametrically is to avoid higher order moment restrictions on the dependent
variable. That is the reason of why all GARCH processes with non i.i.d.-noise have been
treated so far only semiparametrically or nonparametrically. Franqc and Zakoian (2000)
are an exception, but they use two-stage least squares as the estimation method instead
of QML. Importantly, we show the moment restrictions needed for asymptotic normality
of the QMLE are not stronger for the GARCH process with serially dependent standard-
ized disturbances we consider relative to the strong-GARCH specification in Jensen and
Rahbek (2004a, 2004b).

It should be emphasized that the GARCH representation with non-i.i.d. noise we
consider in this paper is not new in the literature. It has been used previously, for example,
by Gongalves and White (2004, page 208). Kristensen and Rahbek (2005) also note the
relevance of this model. However, the asymptotic properties of this model and its GARCH-
M type representations has not previously been explored under the best of our knowledge.

One of the key elements in the derivation of the asymptotic results for GARCH pro-
cesses, including the new GARCH-M type representation, is strict stationarity of y;. To



keep a high level of generality, we therefore consider the following representation

Y = O¢ (9*) €t, (5)
o7 (6%) w+ ayp + Boi_, (87), (6)

fort =1,2,...,T, where we allow ¢ to be a dependent process. Following Jensen and Rah-
bek (2004b) as to the initial values, the analysis is conditional on the observed value yy and
if expressions involved in (5)-(6) are well defined, we assume that the initial value of ¢; is
drawn from the strictly stationary distribution and the unobserved variance is parameter-
ized by v = 0’8. The vector of parameters of interest is then given as 8* = (w, o, 3,7) € 0%,
where the true parameter vector is defined as @y. In establishing strict stationarity, we will

work under the following set of general assumptions which are maintained throughout the

paper

Assumption A
Al ©* C Ri is a compact set.

A2 ¢ is an ergodic and strictly stationary process.

For simplicity of notation we write 07 = o7 (6g). We can now establish the following
result regarding strict stationarity of 3, which is an extension of the results of Bougerol
and Picard (1992a, 1992b).

Lemma 1 Let Assumption A hold. A necessary and sufficient condition for strict sta-

tionarity of y; generated by (5)-(6) is given by
Elog (aoe? + 60) < 0.
Proof of Lemma 1 Given in Appendix 1.

An additional and important new result (extending the results in Nelson (1990)), under

the broad definition of ¢ in Assumption A,can now be formulated as follows

Lemma 2 Let Assumption A hold. If E log (aoe? + ﬁo) >0 as t — oo, then o} % .



Proof of Lemma 2 Given in Appendix 1.

Lemmas 1 and 2 generalize the well known conditions for strict stationarity of strong-
GARCH processes, to include weak-GARCH processes. The results presented in Lemmas
1 and 2 on strict stationarity also apply directly to the new GARCH-M type model, i.e.,
the GARCH-AR specification.

4 The GARCH(1,1)-AR(1) model and its properties

To obtain quasi-likelihood based estimators of the unknown parameters in 8*, we pro-
ceed by parameterizing the process generating ¢;. We will begin under the simplifying
assumption that €, follows a strictly stationary and ergodic AR(1) process. Later we will
generalize all the results to the AR(p) case. In order to be precise about the dynamic
order of the new GARCH-M type model we will, for the remainder of the paper, mostly
refer to it as the GARCH(1,1)-AR(p) representation. To keep matters simple, however,
we begin considering the GARCH(1,1)-AR(1) representation given as

ye = ou(0)e(0), (7)

€ (0) = pe—1(0)+ v, (8)

o7 (0) = w+oayr , + Boi (6), 9)

where the parameter vector is redefined as 8* = (w,«,3,7,p)” € © with true values

0y = (wo, @, Bo,Y0,p0) and where v; is a white noise process defined by Assumption B
below. We write (e¢,07) = (& (6o) ,07 (60)) -

To illustrate a potential and important difference, we will first consider the uncon-
ditional variance of the process given by (7) - (9) and compare it to the unconditional
variance generated from the strong-GARCH process. For illustration only, let us restrict
attention to the case where the unconditional variance is bounded and o7 is a strictly

stationary and ergodic process. We immediately have that
E(07) = wo+aoE (07 16-1) + B E (07-1)
where

E (03—153—1) = E (0'?—1 (po€t—2 + 'Ut—1)2) )
= pE (03—163—2) +E (03—1) )



such that,

E (0’?) _ o + app3 E (af_le?_z)
(1—ao— o)
Consequently, the difference between the unconditional variance of the standard GARCH(1,1)
process and the GARCH(1,1)-AR(1) generated from (7) - (9) is equal to aopd E (07_1€7_5) / (1 — ag — Bo)
and the GARCH(1,1)-AR(1) model will be able to generate relative larger (smaller) un-
conditional variance depending on the magnitude of this term. Again we would like to
emphasize that stationarity of o7 is not required in the estimation framework presented
below, so the unconditional variance may not exist in the GARCH(1,1)-AR(1) setting.
This feature introduces additional flexibility in the conditional volatility process mod-
elling relative to the traditional GARCH(1,1) model (since when py = 0 we are back in
the traditional GARCH(1,1)).
A second important issue is how to interpret the conditional variance function o? (6*)
in the representation given by (7) - (9). In what follows, let 7, = o (6*) vy and define the
information set at time t — 1 as Iy_1 = {y¢—1,%1—2,...}. To help the understanding, let
us compare to the traditional AR(1)-ARCH(1) model, see e.g., Ling and McAleer (2003,
page 283), where

Yt — QY1 = M, (10)
o (0°) = w+an,. (11)

Here the interpretation is that o (6*) is the conditional variance (conditional on informa-
tion up to and including ¢ — 1) since o7 (8*) = E <(yt — ¢yt_1)2 |It_1> = vary (1) , where
var; (1;) is the conditional variance of 7;. Note, that in (10)- (11), o7 (6*) is a function
of m?_; which is the original idea of Engle (1982). Alternatively, consider the double

autoregressive model of Ling (2004), where

Yt — Yt—1 = M,
ol (") = w+ayl .
Again the interpretation is that o? (%) = E <(yt — y—1)? ]It_1> = vary (n;). It does not
change this interpretation that o7 (6*) is a function of y? ; which is different from 77 ; in

(11) whenever ¢ # 0. Regarding the interpretation of o7 (6*) in the model given by (7) -

(9), note that it can be re-represented as

g — po (0%) 0, (0" ) ye1 = e, (12)
o7 (6%) w+ oy + Bop_y (67), (13)

10



since the model allows the standardized disturbances as defined in the traditional GARCH
model to be partially predicted through an autoregressive process. Note that with (12),
we have returned to traditional context of having an i.i.d. innovation term 7; (there-
fore vary (n;) = var(m)). Also, this emphasizes the differences between a traditional
AR-GARCH model with a constant AR coefficient given by ¢ in the mean equation
versus the GARCH-AR having variable AR coefficients in the mean equation given by

po¢ (%) oY (6%). However, because of the properties of 7; we again have that

B (s = por (0) 0,y (69 yi-1)* [1i1) = o7 (67),
= varg (n) .

In conclusion, the interpretation of o2 (8*) as the conditional variance still holds in the
GARCH(1,1)-AR(1) model and this result easily generalizes to any GARCH(1,1)-AR(p)
model. This result is not surprising as the GARCH(1,1) with serially dependent stan-
dardized disturbances given by (7) - (9) is a generalization of a Ling’s (2004) double
autoregressive model with a function of the volatility in the mean equation (i.e. allowing
for a risk premium effect).

From (12), it also becomes clear how by specifying an AR(1) process for the standard-
ized disturbance, a measure of the volatility is introduced into the mean equation of the
process y;. Interestingly, this gives an easy test for the presence of risk effects in the mean
equation: if the hypothesis that p = 0 cannot be rejected, then data supports the tradi-
tional GARCH(1,1) process without risk effects in the mean . Furthermore, as pointed
out by Dufour, Khalaf, Bernard and Genest (2004), it is difficult to test for GARCH
effects within the traditional GARCH-M framework due to the presence of identification
problems. These problems are not present in the GARCH-AR specification. To see this
let us define p; = poy (0*) oY (6%). A test for no GARCH effects would reduce to a test
of the null hypothesis p; = p for all ¢, i.e., a test whether p; is a constant versus a time
varying parameter. This test is particular simple since under the null hypothesis as the

standardized disturbance term will be i.i.d..

4.1 Estimation and the Asymptotics

In order to derive the asymptotic properties of the QMLE, in addition, we need to modify

the set of assumptions we will be work under.

Assumption B

11



B1 © C RY x R is a compact set, g € interior (©) and |po| < 1.
B2 Elog (aoe% + ﬁo) > 0.
B3 v ~ i.i.d. (0,1) with E (v} — 1) = ¢ < oc.
Note that we impose Assumption B2 to explicitly focus first on the nonstationarity
region for the GARCH process given by (5).

We now present the result of the asymptotic behavior of the QMLE in this setting.
The QML estimators will maximize the quasi log-likelihood (with 8 = (wy, «, 3,70,p))

given as
— PO O'_1 t— 2
Ir(0) = —% Z <log (wo + ayt2—1 + 5@&2—1 (9)) + (yt e (?2 (Z)l ©)y 1) ) - (1)
t=1 t

We then have,

Theorem 1 Let Assumption B hold with (w,~) fixed at their true values, (wo,7p)’ and
assume that y; is generated from (7) - (9). Then there exists a fixed open neighborhood
U = U (ap, Bo, po) of (ao,Bo,po) such that with probability tending to one as T — oo,
Ir (8) given by (14) has a unique maximum point (62, 5, ﬁ) “in U. In addition, the QML

estimator (&, B, ﬁ) “is consistent and asymptotically normal, i.e.,

VT [(&, 3, ﬁ) - (ao,ﬂomo)] LN (0,271),

with 11; = E (6o/ (cwe€? + ﬁo))l ,i = 1,2 and where

a _m 0
Cag Caofo(1—p1)
0 — w1 (Ltpa)p2
CaoBo(l—p1)  ¢B2(1—pa)(1—p2)
0 0 L

(1-r)

Proof of Theorem 1 Given in Appendix 1.

Three remarks in relation to Theorem 1:

Remark 1: Note that Theorem 1 relies on the nonstationary case and later Theorem 5
will focus on the stationary case. Since in this paper our proofs consider both the stationary
and the nonstationary cases, that means that we do not need to estimate GARCH-AR

models by QML constrained to the restriction of stationarity.

12



Remark 2: Note that Theorem 1 involves to deal with yu; = E (ﬁo / (ozoe% + ﬁo))i 1=
1,2 where we use ¢; instead of the i.i.d. innovation process in Jensen and Rahbek (2004b).
Also E (vf — 1) =¢.

Remark 3: When p = 0, The results in Theorem 1 match with the results in Jensen
and Rahbek (2004b).

Furthermore,

Theorem 2 If Elog (aoef + ﬁo) > 0, under the conditions given in Theorem 1, then the
results in Theorem 1 hold for any arbitrary value of w > 0 and ~ > 0.

Proof of Theorem 2 Theorem 2 is proved by a direct application of Theorem 2 of
Jensen and Rahbek (2004b).

In order to make the proofs easier to follow, we have structured the derivatives in the
Appendix such that comparisons to the results of Jensen and Rahbek (2004a, 2004b) are

straightforward to make.

5 Asymptotics of the QMLE for the GARCH(1,1)-AR(p)

process

We now generalize the results in Theorems 1 and 2 to the AR(p) case. Consider now the
GARCH(1,1)-AR(p) model given as

ye = 01(0)e(0), (15)
p(L)e (8) = v, (16)
07 (0) = w+oy; , +Poi 1 (6), (17)

where p (L) =1->"_| p;L" and 0 = (wo, a, 8,70, p1, <y pp) € © with its true value at .
Again we write {e;, 07} = {e (0g),02 (60)}. As in the previous section it can be shown
that the unconditional volatility of this process relative to the unconditional volatility

(provided that they exists) will depend on 6y, in particular, on the term

(1_%_[30 (Zﬂzo Jt 1€i-io1 ‘1‘2202 1opz0E(Ut 16t —i€t—i— 1))

%
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It is again clear that there are some new extra-terms in the unconditional volatility that
would not be present given that the data was generated from the traditional GARCH(1,1)
process. Hence, more flexibility is introduced in the conditional variance of the GARCH(1,1)-
AR(p) versus the GARCH(1,1).

For estimation purpose we next impose the following set of assumptions

Assumption C

C1l © C RY x RP is a compact set, 8y € interior (©) and the roots of p (z) are all outside

the unit circle.
C2 Elog (aoe? + ﬁo) > 0.
C3 vy ~i.i.d. (0,1) with E (v} —1) =( < o0

As Assumption C is more restrictive than Assumption A, Lemmas 1 and 2 still hold
when data under this assumption is generated from (15)-(17). In order to deriving the

limiting properties of the QML estimators, we represent (15)-(17) as

p
ye— Y pioi(0)0, (O yr—s = 01(0) v,
i=1
ot (0) = w+ayi,+ P07, (6).

As in the previous section, we note that the AR(p) structure in the innovation process
generates a measure of risk premium in the mean equation. With (w, ) fixed at their true

values, (wo,7o) ,the quasi log-likelihood function associated with (15)-(17) then writes

- - P 10t 0'_1. t—i 2
’T<">=—%Z(log<w+ays_1+ﬁaz_1<o>>+<yt Zz=1ﬂz02<(99>) i (8) )
t=1 +

(18)

We can now state the most important results of the paper.

Theorem 3 Let Assumption C hold and let data be generated according to the GARCH(1,1)-
AR(p) process given by (15)-(17) Then the results of Theorem 1 hold. The variance-
covariance matrix 2 will be block diagonal. The upper block will be unchanged while
the lower block will consist of the information matrix of the AR(p) process as given in

Hamilton (1994, page 125) using the Galbraith and Galbraith (1974) equation.
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Proof of Theorem 3 Given in Appendix 2.

As in the GARCH(1,1)-AR(1) case we have the following companion result to Theorem 3.

Theorem 4 If Elog (aoef + ﬁo) > 0, then the results in Theorem 3 hold for any arbitrary
value of w > 0 and v > 0.

Proof of Theorem 4 Theorem 4 is proved by a direct application of Theorem 2 of
Jensen and Rahbek (2004b).

Very importantly, it is straightforward to show that, using similar techniques as in Jensen
and Rahbek (2004b), the results in Theorem 1 and 3 carry over to the stationary case by

the ergodic theorem. This important result can be summarized as follows

Theorem 5 Let Assumptions C1 and C3 hold and assume that Elog (age? + ﬁo) < 0.
Furthermore, let data be generated according to the GARCH(1,1)-AR(p) process given by
(15)-(17). Then the results of Theorem 3 hold.

Proof of Theorem 5 Given in Appendix 3.

By Theorems 3, 4 and 5, we have generalized the main results of Lumsdaine (1996)
and Jensen and Rahbek (2004a, 2004b) to a much richer class of volatility models. In the

next section we will turn to the subject of the empirical relevance of the new approach.

6 Illustrations

In this section we illustrate the importance and need of carefully considering whether to
specify the dynamics of the GARCH process in the conditional mean function (i.e., by
choosing the AR-GARCH specification), a GARCH-M model or to specify the dynamics
in the standardized disturbance by working with the GARCH-AR specification. We begin
by analyzing the effects on the estimated parameters in the conditional mean function if
it is misspecified, i.e., if the researcher estimates an AR-GARCH model when the true
data generating process is GARCH-AR. We derive the relative inconsistency theoretically
and we quantify it under various distributional assumptions by conducting simulations.
Second, we present an LM test for neglected serially dependent standardized disturbances

in GARCH models and we analyze its size properties in finite samples. Third, we provide
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Figure 1: Alternative densities for v;.

an empirical illustration showing that the GARCH-AR model, in some cases, may be a
better alternative relative to the AR-GARCH model when fitting leading stock return

series.

6.1 Effects of misspecification: A simple illustration

Consider the time series of interest y; being generated according to the following GARCH(1,1)-

AR(1) process parameterized as

Yt = Otéy, (19)
€& = ¢oet—1 + v, (20)
where v; is white noise and 07 = 1+ ay? ; + Bo? ;. Assume, for simplicity that a) the
researchers primary interest is in estimating ¢ and b) that she can observe the conditional

variance function perfectly. However, the researcher “wrongly” assumes that the model is

given by an AR(1)-GARCH(1,1), hence uses the representation in the mean given as

Yr = QYi—1 + o1y, (21)

for estimation of the parameter ¢g. The main interest is to analyze the consequences of
using the wrong model and to establish the asymptotic properties of the estimator of ¢

based on (21) given that oy is known and data is generated from (19). When o, is known,
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Figure 2: Measures of absolute relative inconsistency for alternative values of |¢g| and

alternative distributional assumptions.

a proper estimator of ¢g is the WLS (Weighted Least Squares) estimator ngb given as

~ %20{2%%—1
¢ = S5 (22)
Tszt Y
1/2 / 9
¢O%Z(Ut2/0§—1) (Ut ?J?—l)
-2
%Zat yt2—1

For simplicity assume that y? 2% 0. Then from straightforward calculations we have

+ 0p(1),

o7 %y? | —1/a, and 0}/o} | = 1/0? | + ae?_+ (. By inserting in (22) it follows that

phm(;b%%) = ‘plim (% > (o i+ 6)1/2> - 1‘ : (23)

We will denote ‘plim ((E - <250> / %‘ as the measure of absolute relative inconsistency. From
(23) it can be seen that estimating ¢g based on (21) when (19) is the actual data generating
process generally leads to relative inconsistency except in the trivial case when ¢g = 0. In
general plim 7 Y (ae?_; + 3) 12

of |¢o| that will generate a large variance of €2 .

can be far away from unity in particular for larger values

To quantify the measure of absolute relative inconsistency under different distributional

assumptions on v; and for alternative values of |¢g|, we next conduct a small simulation
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study. We consider v; being generated from three alternative densities depicted in Figure
1. As we expect the relative inconsistency to grow with the variance of v;, we include the
standard Gaussian density as well as a student—t¢ density with 5 degrees of freedom and
a Gaussian mixture density.

In Figure 2 we have depicted the measure of absolute relative asymptotic inconsistency
for alternative values of |¢g| when (a, 8) = (0.4,0.6). Not surprisingly, the inconsistencies
become more severe as the variance of €;_; increases. Note that var(e;—;) increases with
¢o and when the density of v; goes from the normal to densities with fatter tails such as the
student—t and Gaussian mixture. Such fat-tailed distributions are common in financial
time series. In general, the inconsistencies seem significant even for very small values of |¢y|
ranging from 5% in the Gaussian case to about 45% for the Gaussian mixture. This simple
example stresses that careful model evaluation is needed to determine whether to model the
dynamics in the standardized disturbance or in the conditional mean function, particularly
when the density of the data exhibit fat-tail behavior. This evidence emphasizes again
that the choice between the traditional AR-GARCH model with constant AR coefficients
in the mean equation versus the GARCH-AR with variable AR coefficients potentially is

of great importance.

6.2 Empirical illustration

In this section we provide an empirical motivation for the GARCH-AR specification. First,
we suggest a simple testing procedure for the presence of the new GARCH-M type risk-
return trade-off in AR-GARCH models. Secondly we illustrate the advantages of the
GARCH-AR specification versus other traditional GARCH-type models in terms of model
fitting leading US stock returns.

6.2.1 Testing

In order to test for the presence of serially correlated standardized disturbances in GARCH
models, we propose an extension of the LM test of Lundbergh and Terésvirta (2002). In
the model given by equations (15)-(17), the null hypothesis corresponds to the case where
Hy:p;=0,Vi=1,...p. The LM test can therefore be computed according to the following

3-step procedure:

Step 1: (Estimating the model under the null) Estimate the parameters of the conditional

variance model using a traditional GARCH model under Hy : p; = 0, Vi = 1,...p.
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Compute the standardized residuals € and the residual sum of squares under the
null hypothesis SSRy = thzl e,

Step 2: (Estimating the auxiliary regression) Regress € from Step 1 on p lags of &, i.e.
(€—1,--,€—p) , and compute the sum of squared residuals SSR; associated with

this regression.

Step 3: (Form the LM test statistic) Compute the x? version of the test statistic as
LM,2» =T (SSRy— SSR1) /SSRo ~ x* (p),

or the F'—version as

"~ SSRi/(T -3 —p) F(pT-3-p).

In Table 1, the extent to which the asymptotic distribution of the LM statistic approx-
imates its distribution in finite samples is illustrated. We use two models for simulations
under the null; the GARCH(1,1) and an AR(5)-GARCH(1,1) with population parameters
fixed at the QML estimated parameters using IBM stock return series (to secure empirical
relevance of the simulations). From inspection of Table 1 it is apparent that the nominal
size is quite well matched by the simulated small sample distribution of the LM,2 distri-
bution. The test seems to be only slightly oversized, even when the AR(5) mean function

has to be estimated.

[Table 1 about here]

6.2.2 Estimation

Based on 11 leading US Stock returns series!

, we have reported results from estimation
of the simple GARCH(1,1) model in Table 2.2 A few stylized facts are confirmed: First,
the estimated sum of a and ( is close to unity, and secondly, dynamic misspecification

in the conditional mean is often observed across the columns of the table. Specifically,

'Data corresponds to the following 11 companies: IBM, Intel, Microsoft, General Motors (GM), Ford,

General Electric (GE), Boing, Walmart, McDonald’s, TimeWarner and Sony.
2Data on the individual stock are collected from Yahoo Finance and are closing prices. Returns are

computed as daily log returns. The last observation for all stock are 9.10.2007. Information on the dates

for the first observation are given in Tables 2-4.

19



the GARCH(1,1) is rejected for GM, Ford, GE, Walmart, McDonald’s, Time Warner and

Sony at 5% significance level based on the LM test described in the previous section.?

[Table 2 about here]

In Table 3, we have augmented the GARCH(1,1) model by including dynamics in the
conditional mean function. Indeed, this is the common practice when the GARCH(1,1)
model appears dynamically misspecified. The effect of including dynamics on the esti-
mated values of o and [ is negligible. In all the models where the GARCH(1,1) model
was dynamically misspecified according to the LM test in Table 2, one or more of the
lagged dependent variables are significant in Table 3 (except for Intel, Microsoft, and Bo-
ing). However, only in the model for Ford and Sony, the inclusion of lagged dependent
variables matters in terms of dynamic misspecification according to the LM test at the
5% significance level. In summary, the LM test indicates that the AR-GARCH models
for GM, GE, Walmart, McDonald’s and Time Warner still appear misspecified after the

inclusion of lagged dependent variables in the conditional mean function.?

[Table 3 about here]

In Table 4, the results based on the GARCH(1,1)-AR(1) model are presented. For
all the models where the GARCH(1,1) specification is misspecified, the dynamic term,
represented by €;_1, becomes significant. Secondly, simply by including only a single
additional term/coefficient in the model, the null hypothesis of a dynamically well specified
model cannot be rejected for any of the return series considered, which is remarkable.
Finally, it should be noticed that the estimates of p take positive as well as negative
values depending on the return series considered.® Moreover, it is exactly for the series
of GM, GE, Walmart, McDonald’s and Time Warner (the ones where the AR-ARCH is
not dynamically correctly specified in Table 3) where the estimate of p is statistically

significant even at the 1% in Table 4.

3The LM tests in Tables 2-4 are all testing for serial correlation of order 1. The results, however, do

not change when testing for serial correlation of higher order.
4 Although not reported here, we estimated and tested a wide range of alternative dynamic specifications

including up to 20 lags of the dependent variable. However, at large, this did not matter for the outcome

of the LM test. Typically, higher order lagged terms were highly insignificant.
5We also estimated various versions of the classical GARCH-M model. The M-terms never turned up

significant in any of the US stock return series.
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[Table 4 about here]

7 Conclusion

In this paper we introduce a new parametric volatility model. One of the key features
of the new model is that it can generate a volatility-return trade-off even when volatility
is nonstationary and returns have short memory. A second important feature is that the
model can be specified sufficiently simple facilitating a complete characterization of its
stationarity properties and the asymptotics of the estimated parameters. Finally, we pro-
vide evidence of the usefulness of the new representation in a Monte Carlo experiment and
in practical applications. We first show the consequences of dynamically misspecifying the
GARCH model when the actual data generating mechanism is an GARCH-AR specifica-
tion. We provide evidence of the large inconsistencies that this type of misspecification
can generate. Next, we propose an LM test for neglected serially dependent standardized
disturbances in AR-GARCH models. And finally, we provide an application based on a
broad range of leading US stock return series where we show the empirical relevance of

our new model.

21



Appendix 1

Appendix 1 provides the proof of Theorem 1. We need for that the use of Lemmas 1-5.
The proof of Lemmas 1-5 are in the technical appendix which is available upon request

from the authors.

Proof of Theorem 1 In order to allow for nonstationarity in the GARCH along the
lines of Jensen and Rahbek (2004a, 2004b), we first find the expressions for the first,
second and third order derivatives that are given in Results 1, 2 and 3. Lemmas 1 and 2
are used in our results. Later, Lemmas 3, 4 and 5 establish the Cramér type conditions.
As in Jensen and Rahbek (2004a, 2004b) we also use the central limit theorem in Brown
(1971). In order to make our results clear, we order the terms of the derivatives to find a
similar structure as in Jensen and Rahbek (2004a, 2004b), in all those cases where this is
possible. We also use Lemma 1 of Jensen and Rahbek (2004b) to prove uniqueness and

the existence of the consistent and asymptotically Gaussian estimator. B

Result 1: First order derivatives The first order derivatives are given by

—1 2
Ut_ll (0) yt—1)2> 907(6) 3(yt—pot(0)gt71(9)yt71)

0 1 (yt — poi (8) o, 0z oz Ny
51 ()= 32 <1‘ 77 (6) 2O) " o) el
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Solr(0) = ;slt(é?),
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%ZT(O) = > s (0),

t=1

a a — poy (8) o, 1—1) 0, —
ng(O) = 233t(0)zz(yt pot(0) o, (0)y 1) 1(0) yi—1

=1 =1 a;(6)
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where
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for Vz = a, 6. Then

Lemma 3 Let Assumption B hold. Define s;; = s;; (6y), Vi = 1,2,3 where s (8p) is
defined in Result 1. Then

with p; = E(ﬁo/ (OZ(]E% —I—ﬁo))i,’i =1,2as T — 0.

Result 2: Second order derivatives We have,
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for Vz, 21,29 = a, 8. Then

Lemma 4 Under Assumption B, with the expressions of the second order derivatives
from Result 2 evaluated at 6
(a) 7 ( 25ir (9) \0:00) = ﬁ > 0,
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Result 3: Third order derivatives We have,
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for Vz, z1, 29 = «, B where
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again for Vz, 21,29 = «, 3.

Definition 1 Following Jensen and Rahbek (2004b), we introduce the following lower

and upper bounds on each parameter in 8 as
wr <wy < wy;, o <o <oy,

Br < Bo < Pu; v << pL<po<pu,

and we define the neighborhood N (6y) around 6, as

N (6p) = {0\wr <w <wy,ap <a<ay,B <B <Py, <y<yand pp <p<pu}.
(24)

Lemma 5 Under Assumption B, there exists a neighborhood N (8) given by (24) in
Definition 1 for which

(a)  SUPgen(ay) |amsir (O )‘ < 7 i wy () suPgen(ay) |iwlr (9)‘ < 7 iy was

(¢)  suPgen(ay) |T 33 It (0)‘ <A wy  (d) supgen(ay %%ZT 0) < A3 wa,
(€) SUPgeN (6o) %acggaplT (0)| < %Zthl wse,  (f) SUPge N (6o) T aﬁazgapl (6) < %ZtT:l Wet
(9)  suPsen(oy) %%ﬁh (9)‘ <A jwn, (h)  supgen(,) %ZZT (0)| < £ wsr,

Nl= =

: 103 1 7T . 92 1 T
(1) suPecn(ay) | T g5a2 T (9)‘ ST 2a—1Wor s (J)  SUPecN(6y) | T gagpop!T (9)‘ < D1 Wit
where wyy, ..., wg; and wy; are stationary and have finite moments, E (w;;) = M; < oo, Vi

., 10. Furthermore % Zle wiy =2 M;, Vi =1, ...,10.
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Appendix 2

Proof of Theorem 3 We begin again with the first order derivatives (Lemma 6). Later,
we move to the second and third order derivatives (Lemmas 7 and 8). Brown (1971)
provides the type of central limit theorem we need. Lemmas 1 and 2 also hold for the
AR(p), and they are used in our proofs. The first, second and third order derivatives
are given in Results 4-6. The proof of Lemmas 6-8 are in the technical appendix that is

available upon request from the authors. W

Result 4: First order derivatives The first order derivatives associated with (18) are

given by (Vz = a, 3)
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Lemma 6 Let Assumption C hold and write the scores associated with (18),

Result 4, as s;; = sy (6p) . Then

T
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for Vi =1,...,p, with u; = E ([30/ (aoe% +ﬁ0))j, j=1,2asT — oo.

derived in

Result 4: Second order derivatives The second order derivatives associated with

(18) are given by
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for Vi,j = 1,...,p,and Vz, z1, 20 = «, 3, where
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Lemma 7 Under Assumption C, with the expressions of the second order derivatives

given by Result 5 and evaluated at 6
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(a) 7 <_aan2lT (6) le—eo) = 50z >0,

(b) & (~ 2l (6) lomey ) 2 grtitiakie_— >,

(©) # (— a5t (6) lo=0y ) = sty

(d) % <_8382p1 Ir () |9—90) 2,0, Vi=1,...,p,

(©) % (a7 (0) lo=g, ) 0, ¥i=1,...p,

(6) 4 (gt 0) lo=a) = [y > 0. ¥i=1 o,
with p1; = E (6o/ (awe} +ﬂo))], j=1,2asT — co.
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Result 6: Third order derivatives

are given by

The third order derivatives associated with (18)
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for Vz1, 20 = «, 8. Furthermore,
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for Vz,z1,20 = «, B.

Definition 2 Similar to Definition 1 we introduce lower and upper values for each pa-

rameter in g as
wp <wy <wy; ap <ag<ay; Pr<pPo<pbu,

YL <Y <w; pPL<p1o0 < pU;s--;PL < Ppo < PU,
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and we define the neighborhood N (6y) around 8 as

N (6p) = {0\wr, <w <wy,ar <a<ay,Br <0< Bu,v <y <w,pr<p1<pv,pL <pp < pv},
(25)

Lemma 8 Under Assumption C, there exists a neighborhood N (6y) given (25) in Defi-

nition 2 for which
(a)  suPgen(gy)

3 3
Zslr (9)‘ < 7 i wy b)  supgen(g,) ‘%SZT (9)‘ < 7 iy way

. 1 93 1 T . T
i) SUPeeN(y) |T 3B59p ;T 9)‘ < F2—iwor,  (§)  SuDgen(ey) T@a@ﬁ@ple )‘ T2 i1 Wio,

with ¢, 5,k = 1,...p, where wy, ..., wg; and wy; are stationary and have finite moments,
Ewy = M; < 00,Vl =1, ...,10. Furthermore %Zthl wy =25 My, VL= 1, ..., 10.

(
3 3 T
(c) SUPge N (6y) %apiaamlT (9)‘ < % ZtT:1 wgt, (d) SUPge N (6y) %aa%ang (0)‘ 11“ =1 Wat,
3
(e) SUPge N (6y) %aag—apilT (9)‘ < %23:1 Wst, (f) SUPge N (6y) Tagzap lT ‘ T Zthl Wet
T

( () swpoenion |t w1 r(6)] <+ XL ws
(

3
9) SUPge N (6) %aaa—amlT (9)‘ < %Zthl wrt,
(
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Appendix 3

Proof of Theorem 5 The proof of Theorem 5 uses the same expressions of the first,
second and third order derivatives of Theorem 3. Lemmas 6 and 7 apply directly to the
stationary region by using the ergodic theorem for the observed information as in Jensen
and Rahbek (2004a , page 641 and 2004b, Remark 4, page 1212). Lemma 8 does not use
the nonstationary condition and therefore it applies directly both in the stationary and the
nonstationary case (see Jensen and Rahbek (2004b, page 1216 and Remark 5 page 1218).
Brown (1971) provides the type of central limit theorem we need. We also use Lemma 1
of Jensen and Rahbek (2004b) to prove uniqueness and the existence of the consistent and

asymptotically Gaussian estimator.ll
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Table 1: Size results of the LM, test statistic. Rejection frequencies reported

Nominal size: 50% 40% 30% 20% 15% 10% 5% 1%
GARCH(L1)

500 0.57090 0.45040 0.33420 0.21670 0.16750 0.11520 0.056800 0.012300
2000 0.56360 0.44360 0.33120 0.21500 0.16050 0.10930 0.055600 0.0092000
10000 0.54730 0.43310 0.31930 0.21580 0.16010 0.10770 0.054600 0.010100

AR(5)-GARCH(1,1)

500 0.58380 0.46550 0.35270 0.23640 0.17880 0.12320 0.063700  0.012900
2000 0.58010 0.45590 0.33910 0.22680 0.17100 0.11330 0.059000  0.014300
10000 0.55780 0.44380 0.33450 0.22480 0.17430 0.11890 0.061600  0.012000

Simulations based on 10000 Monte Carlo replications.
The parameters values used in the GARCH(1,1) and AR(5)-GARCH(1,1) models are based on the IBM data.




Table 2: Estimation results based on the model y; = ¢ + oye;,07 = w + ay? | + fo?_, e ~iid(0,1).

IBM Intel Microsoft GM Ford GE Boing Walmart McDonalds TimeWarner Sony
w 0.026** 0.086* 0.032 0.028** 0.034**  0.008***  (0.023** 0.001 0.025*** 0.004 0.105*
(0.011) (0.052) (0.022) (0.011) (0.013) (0.003) (0.010) (0.002) (0.006) (0.004) (0.057)
« 0.068***  (0.0655***  (0.051*%**  0.057*** 0.048%** 0.032%¥*%* (0.032%¥*%*  (.020%** 0.047*%* 0.042%** 0.073***
(0.020) (0.019) (0.015) (0.013) (0.011) (0.005) (0.007) (0.004) (0.007) (0.014) (0.023)
16} 0.925**F*  (0.935***  (.945%**  (.935%**  (0.945%**  0.966***  0.964***  0.980*** 0.946*** 0.959*** 0.903***
(0.021) (0.023) (0.015) (0.015) (0.012) (0.005) (0.009) (0.004) (0.007) (0.012) (0.035)
c 0.022* 0.085***  (.080*** 0.018 0.022 0.049***  (0.053***  (0.055*** 0.060*** 0.041 0.034
(0.012) (0.032) (0.025) (0.013) (0.021) (0.013) (0.018) (0.020) (0.016) (0.031) (0.024)
LMTest 3.674 2.652 1.638 21.225 5.208 47.566 0.643 13.789 13.767 9.808 10.944
pval 0.055 0.103 0.201 0.000 0.022 0.000 0.423 0.000 0.000 0.002 0.001
logL -0.869 -1.434 -1.285 -0.947 -1.170 -0.949 -1.210 -1.387 -1.024 -1.546 -1.140
BIC 1.741 2.874 2.575 1.898 2.344 1.902 2.423 2.778 2.053 3.100 2.286
First obs. 1.3.62 7.10.86 3.14.86 1.3.62 1.3.62 1.3.62 1.3.62 8.28.70 1.5.70 3.20.92 4.7.83

Standard errors in parenthesis. The last observation for all stocks are dated 9.10.2007. * Significant at 10%;

** Significant at 5%; *** Significant at 1%. LM test: denotes the test statistics for neglected serial correlation.
pval: is the p-value associated with the LM test:. LogL: denotes the value of the log likelihood function evaluated at
the estimated parameters. BIC: is the Bayesian Information Criterion.




Table 3: Estimation results based on the model y; = ¢ + Z?Zl Siyi—i + orer, 02 = w + ay? | + Bo? |, e ~iid(0,1).

IBM Intel Microsoft GM Ford GE Boing Walmart McDonalds TimeWarner Sony
w 0.026** 0.087* 0.032 0.028%*  0.035%**  0.008***  (0.023** 0.002 0.025%** 0.004 0.106*
(0.011) (0.053) (0.022) (0.011) (0.013) (0.003) (0.010) (0.002) (0.006) (0.004) (0.055)

o 0.069%**  0.056***  0.050***  0.058%** 0.047***  0.031*%F*  0.032*%**  (.019*** 0.047#+* 0.043*+* 0.074%**
(0.020) (0.020) (0.015) (0.013) (0.011) (0.005) (0.007) (0.004) (0.007) (0.014) (0.023)

I6; 0.924%F%  0.934%**  0.946%**  0.934FFF  0.946%**  0.967FFF  0.964***  (0.981*** 0.945%** 0.958%** 0.902%**
(0.021) (0.023) (0.015) (0.015) (0.012) (0.005) (0.009) (0.004) (0.008) (0.013) (0.034)
c 0.021*  0.088***  (.086*** 0.018 0.023 0.055***  0.055%F*F  0.064%** 0.062%** 0.039 0.033
(0.012) (0.033) (0.026) (0.013) (0.021) (0.014) (0.018) (0.020) (0.016) (0.031) (0.023)

01 0.023* 0.023 -0.019 0.053*%F*%  -0.027**  -0.069***  -0.007  -0.042*%**  (.043*** 0.058%#* 0.046%**
(0.012) (0.015) (0.016) (0.012) (0.013) (0.010) (0.011) (0.013) (0.012) (0.020) (0.016)
P -0.009 -0.011 -0.024 -0.018* -0.000  -0.037***  -0.015  -0.050%** -0.022%* -0.023 0.006
(0.011) (0.015) (0.015) (0.010) (0.012) (0.011) (0.011) (0.013) (0.011) (0.018) (0.014)
3 0.003 -0.016 -0.017 -0.014 -0.005 -0.017* -0.004  -0.035%** -0.022** 0.007 0.003
(0.010) (0.016) (0.016) (0.010) (0.012) (0.010) (0.010) (0.012) (0.011) (0.018) (0.014)

04 -0.001 -0.012 -0.014 0.007 -0.003 -0.017* -0.015 -0.009 -0.022%* 0.022 -0.033%*
(0.011) (0.015) (0.015) (0.010) (0.012) (0.010) (0.010) (0.012) (0.011) (0.018) (0.014)
05 0.011 -0.015 -0.002 -0.007 -0.012 -0.003 -0.006 -0.024** -0.006 -0.019 0.006
(0.010) (0.015) (0.015) (0.010) (0.012) (0.010) (0.010) (0.012) (0.011) (0.018) (0.014)
LMTest 2.002 0.136 0.372 11.345 0.613 13.984 3.641 6.171 7.475 9.357 0.652
pval 0.157 0.712 0.542 0.001 0.434 0.000 0.056 0.013 0.006 0.002 0.419
logL, -0.869 -1.433 -1.284 -0.946 -1.169 -0.946 -1.210 -1.385 -1.023 -1.544 -1.139
BIC 1.745 2.881 2.582 1.899 2.349 1.900 2.427 2.778 2.054 3.107 2.291
First obs. 1.3.62 7.10.86 3.14.86 1.3.62 1.3.62 1.3.62 1.3.62 8.28.70 1.5.70 3.20.92 4.7.83

Standard errors in parenthesis. The last observation for all stocks are dated 9.10.2007. * Significant at 10%;

** Significant at 5%; *** Significant at 1%. LM test: denotes the test statistics for neglected serial correlation.

pval: is the p-value associated with the LM test:. LogL: denotes the value of the log likelihood function evaluated at
the estimated parameters. BIC: is the Bayesian Information Criterion.




Table 4: Estimation results based on the model y; = ¢ + o€, O't2 =w+ ayt{l + ﬁafﬁl, € = per—1 + vy, vy ~iid(0, 1).

IBM Intel Microsoft GM Ford GE Boing Walmart McDonalds TimeWarner Sony
w 0.026** 0.085 0.032 0.028**  0.035***  (0.008***  0.023** 0.002 0.025%** 0.004 0.106*
(0.011) (0.052) (0.022) (0.011) (0.013) (0.003) (0.010) (0.002) (0.006) (0.004) (0.056)
o 0.069***  0.055***  (0.051*%**  0.058%** 0.047***  0.031***  0.032***  0.020%** 0.048*** 0.044*** 0.074%***
(0.020) (0.019) (0.015) (0.013) (0.011) (0.005) (0.007) (0.004) (0.007) (0.015) (0.023)
I} 0.924***  (0.935%**  (0.945%**  (.934%**  (0.946%**  0.967T¥F*  0.964***  (0.980*** 0.945%** 0.957*** 0.902***
(0.021) (0.023) (0.015) (0.015) (0.012) (0.005) (0.009) (0.004) (0.007) (0.013) (0.034)
p 0.018* 0.022 -0.016 0.043***  _0.026*%* -0.065%** -0.007 -0.039*** 0.038*** 0.049*** 0.042%***
(0.010) (0.014) (0.014) (0.011) (0.012) (0.010) (0.011) (0.013) (0.011) (0.018) (0.014)
c 0.022* 0.085%*  (0.079*** 0.018 0.022 0.048*%**  0.053***  (0.055%** 0.060*** 0.040 0.034
(0.013) (0.033) (0.025) (0.014) (0.020) (0.013) (0.018) (0.019) (0.017) (0.033) (0.024)
LMTest 0.087 0.006 0.260 0.027 0.078 0.066 0.002 0.399 0.030 0.777 0.004
pval 0.769 0.939 0.610 0.870 0.780 0.798 0.963 0.528 0.863 0.378 0.950
logLL -0.869 -1.434 -1.282 -0.946 -1.169 -0.947 -1.210 -1.386 -1.024 -1.544 -1.139
BIC 1.742 2.875 2.573 1.897 2.345 1.898 2.424 2.778 2.052 3.099 2.286
First obs. 1.3.62 7.10.86 3.14.86 1.3.62 1.3.62 1.3.62 1.3.62 8.28.70 1.5.70 3.20.92 4.7.83

Standard errors in parenthesis. The last observation for all stocks are dated 9.10.2007. * Significant at 10%;
** Significant at 5%; *** Significant at 1%. LM test: denotes the test statistics for neglected serial correlation.

pval: is the p-value associated with the LM test:. LogL: denotes the value of the log likelihood function evaluated at

the estimated parameters. BIC: is the Bayesian Information Criterion.




Supplementary Technical Appendix for “Modelling the Volatility-Return
Trade-off when Volatility may be Nonstationary”, by Christian M. Dahl

and Emma M. Iglesias.

In this Appendix, we provide a detailed proof of Lemmas 1-8. Also we show the expressions of the first (given in
Result 1), second (given in Result 2) and third order derivatives (given in Result 3) for the proof of Theorem 1, and
of the first (given in Result 4), second (given in Result 5) and third (shown in Result 6) order derivatives that are
needed for the proof of Theorem 3 in the paper: “Modelling the Volatility-Return Trade-off when Volatility may be
Nonstationary”, by Christian M. Dahl and Emma M. Iglesias.

Proof of Lemma 1 Let Assumption A hold and write the process
op = wo + (aoef_y + fo) 07— = Br + Asoi_y,

where A; = (aoef_l + ﬁo) and B; = wg. Then, applying Theorem 1.1 of Bougerol and Picard (1992a, page 1715)
with || being an operator norm, we verify the conditions that E (log (max {|1, Ao|})) < o0, E (log (max {|1, By|})) < oo

(since by Assumption A wo, ag, 8o > 0), and also o7 is strictly stationary if the Lyapunov exponent 7

) 1
7 = inf {E (T—H 10g|AoAT|)} < 0.

In the case of one-dimensional recurrence equations

T
1 1
—— E(log|Ap+-Ar|) = =—— Elog|A;| =Elog|A 0.
71 & (og| 4o Ar]) T+1; og | A;] og|Ao| <
Therefore, o7 is strictly stationary if

Elog |Ao| = Elog (aoe; + Bo) < 0.

This provides the conditions under which o? is strictly stationary. Since the pair (yt,af)' = (atet,af)' is a fixed
function of (Uf, Gt) “which is ergodic and strictly stationary, then it follows that if (Uf, Gt) “is strictly stationary, then
(o1er,07) s also strictly stationary.

We note that this is the same sufficient and necessary condition when we have and i.i.d. process in €;. Since we
have shown that the sufficient condition is the same regardless if €; is i.i.d. or ergodic and strictly stationary, then
we also prove that this is not only a sufficient but also a necessary condition since this is also a necessary condition
when ¢; is i.i.d. as proved in Bougerol and Picard (1992a). Therefore, we prove that the results carry over from the
i.i.d. case to the ergodic and strictly stationary framework. This is not a trivial result, since almost all theory in the

literature is developed only for strong GARCH processes.li



Proof of Lemma 2 Let Assumption A hold. By recursions,

oF = wo+ (aoety + o) oy, ®
= Bt+AtUt2—1a
t—1
— At-"AlO'g+2At"'At*’i+1Bt*i’
i=0
= U%t“‘agt’

where 07, = A Ajod and 03, = Y2120 Ay A1 By Since 03, is always positive (and B and wy are always positive
2

by Assumption A), it suffices to show that log% 2% Elog (aoef + ﬁo) > 0. After taking logarithms and dividing by

t in the expression for o7, in (1) we obtain

logo?, _ Yico log (aw0€?_; + fBo) + logag

t t ’

and by the strong law of large numbers for ergodic and strictly stationary processes, when Elog A; > 0, and as t — oo,
i _— 2
log% =% Elog (aoef + ﬁo) > 0, since bg%'o L5 0. |

Proof of Lemma 3 Define I;_1 = {y:—1,yt—2,...}.As in Jensen and Rahbek (2004b, Lemma 5 and its extension to
the a parameter), using the law of iterated expectations and the properties of vy, we have E (s1¢|lt—1) = E (s2¢|Iz—1) =

E (s3t|ft—1) = 0. Also, the proof of Lemma 3 requires that
E[s1] < 00, Elsa] < 00, Elsg| < 00. (2)

We prove now (2). For the first two scores, we have evaluated at 6y (note that the second term of the score

a(yt_po'to';,llyt—l)z is divided b 2
5 is divided by o7)

_ 2 802 Iyt —po ot Yp— 2
1 <1 _ (yt _pO'tO't_llyt—l) ) aa; ( : tazt L 1)

- +
2 2 2
0} 0} O
1 [derd 902 902
_ 2t (1 _ vz) 9z PogtUYt—1 (2 O0i o 011
2 ¢ af 205’0753_1 =19, t 9z
6(7,52 2 6(7,52 230571
_ 1 (1 _Uz) 0z @vtyH(at,lW —0i—5) _
2 tog2 2 oto} |
1 80? p 80? 60}2,1
0 0z Jz
—(1—=v?) 22 + Boe - 9= Vz=a,
2 ( t) o? 2 o? oz |’ o

where the first term follows from Lemma 5 in Jensen and Rahbek (2004b), and for the second term, note that

80? 8‘7?71 80? 6‘7?71
Po Jz Jz < Po 0z 0z
?Utet—l 5 2 =~ EvtEt_l 5 2

0} Oi_1 O Oi—1



In addition

°° .
|Ut€t—1 | = Z pJQUtUt—l—j
j=0

oo

> |

J=0

IN

|Utvt71—j )

and from Holder’s inequality

Elow1l < /B2 /BEL,)
= B()
= 1.

Finally, E |vie;—1] < oo (as Z;io b

< 00), and hence E |s1¢| < 0o and E |sa¢| < co. For the third score, we have
83t = Ut€t—1,
and from the previous results for the first and second score, it follows directly that

E |S3t| = E|’Ut6t_1| < 0.

Besides
T T 902 \ 2
1 1 L
Y e - 335 (%)
t=1 t=1 t
T 2,2 2 2\ 9o 2 5\ 997, \2
+i Z PoYi-1 ((U’O + aoyi_o + 600'1572) 2 (U’O + aoyi_q + BOUtfl) 92 )
T 4(1+ aoyf_2)3 (1+ 040%52—1)2
o, G
4043’

T 802
i) =2
T P 4 0t2 4a%’
and )
p2 T do 60},1
0 2 Oz 0z p
AT Z €t-1 o2 o2 0
—1 t t—1

9)

We now prove (8) and (9). The proof of (8) requires (see Lemmas 3-6 in Jensen and Rahbek (2004b) to show that

. 6 p
Ei:l <a€§—k +6)

is exponentially decreasing in j for each p > 1, and it follows since €; is stationary and ergodic.
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The proof of (9), for example for z = «, follows from first using Slutsky’s theorem and noting that = Zthl <@> LN

2

807 4

% and also that % Z;‘ll < g ) £, % We also use the fact that ¢; is stationary and ergodic and therefore
0 t—1 0

t=1 0
For the second score and the outer product
1 o CA+pm)p
=D E(3na) -
I (™
T
1 p Ci
= E (s1:50¢ |l — _—
T; (s1e2t/1-1) daofBo (1 — p1)
since )
T o
lzg o5 r, C(L+ p1) po
T4\ of 463 (1 — p1) (1 — p2)’
following Jensen and Rahbek (2004b), Lemmas 3, 4 and 5. For the last score
T 2
1 1 Yi—1
T E (S3t|It—1) = 7
ri T2 o)
2, 1
(1-p5)
under Assumption B. Finally, we can derive a Lindeberg type condition as in Jensen and Rahbek (2004a), where we
have
9o} 2 2\ 997, 2 2\ 997
1 1 2N Dz Utytfl((wo + aoyi_q + 50‘715_1) 92 (wo + ayi_o + 50015_2) 2 )
1 (1-vf) o2 + ro 0203
i t9t—1
907\ ? 2,2 2 2\ 99i 2 2\ 9972
_ 1 1—2)? [ 2= o UiyE 1 ((wo + aoyi_ | + Booi_ 1) =5+ — (wo + aoyi_y + Poo?_3) =)
= Z[( ) 2 + 0o 1.6
0% 0t0¢1
9o 2 2\ 997, 2 2\ 907
) 1 — 2 e ye—1((wo + aoyi_y + Booi—1) =5+ — (wo + aoyi_s + Booi_s) F&)
+2povt ( Ut) 1.3 ]7
01041
2 2
Jdo 0o, _ o2
1 2 t 1 9 1 L
= (1= 2 0z -2 B Oz _ Dz
Y ( ) R v
1 6(7,52 doy_4 do,
_ B 1 — 2 0z 9z _ 0=z
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and
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with the following bounds for s2, (for s3,, it would follow the same argument) and s3,

1 2 2
ste < phe= g (L=0f) 405 (veer-1)” + lpol [(veer-1)| [ (1 =) (10)
0
s3, < pd, = vl (14 7) for 0 <y < 00 . (11)

Since v; and €;_ are stationary and ergodic, then also any measurable mapping of v; and €;_1 will be stationary and

ergodic, see, e.g., White (1984, Th. 3.35). Consequently, u2, and p3, are stationary and ergodic and it follows that

Jm 3378 (6h1 (> VT9)) < i 2B (it () > VT9))

= Jlim E (1%21] (|Ni1| > \/T@)) (12)

— 0.

for i = 1,2,3. This establishes the Lindeberg type condition as in Jensen and Rahbek (2004a, 2004b). H

Proof of Lemma 4 For expressions (a), (b) and (c)

T _ 2 90?2 Ho? _ 2 8%o?
1 <1 . 2 (yt - POUtUthtfl) ) 8z: W; I ((yt - pOUtUtfllytfl) -~ 1) azlatzQ

2 1 2
0% Oy 0%

2, 2704(2)’ with z1 = 20 = a,

p (14 pa) po .

— , with z1 = 29 = §,
265 (1 — ) (1 = pa)

P H1 ; _ —

— with z; = a and 25 = 3,

200060 (1 — 1)’

because of Lemma 6 in Jensen and Rahbek (2004b), and its extension to o and the cross products of o and 8. Also

—1 2 -1 2
2 _ 1 2 80? 8(yt_p0(7t(7t,1yt—l) Baf a(yt_POUtUt,lyt—l)
1 T 15} (yn p;atgt,lytfl) (821 9%a + D2s e )
21022 . —
_2T - 2 + ) 0; VZ1722_04757
t=1 i Tt

by using again Lemmas 3 and 4 in Jensen and Rahbek (2004b) and the same results as in Lemma 3 for our score. An

expression of the most complicated term in the previous expression is

2 2
2 T o dat 99} 907 00ty | 0o} 99ty 9074 doi_y
o Yi—1 Oz1 Ozo O0z1 Oz Ozz 0z 0z1 BED p 0: V _
E 2 ) - 2 B} - 4 ’ 21,22 = @, 6
=1 9t—-1 Oy 0i-10¢ Or—1
For expressions (d) and (e)
T 6[(yt_pO(TtG';,llyt—l)Uta';,llyt—l] 1 1 do2
1 72 (yt - pOUtUt_lyt—l) Oy 1Yt—1757 p
__Z 2 - 3 —0; Vz=aqa,0,
T p o} lop



since

T y do? do?_, Vsl do? doi_,
Z PoYi—1 9z 9z tJt—1 0z 0z 2. 0. _
2 2 - 9 2 2 07 Vz = O‘vﬁv
O' of of 4 o101 of of 4

1 —

and by a simple application again of Lemmas 3 and 4 in Jensen and Rahbek (2004b). Finally, expression (f)

_ 1T2

t e — —

Eglytl TEEtl
t=1

p 1
T 2
(1—90)

by Assumption B.H

Proof of Lemma 5 In this proof we change the notation slightly. We first define o7 when the conditional variance

is evaluated at 0, and o7 (6p) when it is evaluated at the true parameter. By definition

_ 2
(yt — po (6o) Ut711 (6o) ytfl) 2

= V; .
o7 (6o) !

For expressions (a), (b), (d) and (g), then wy; (0) ,wat (8),wat () and wr (0) are given by

o 2\ P o 2\ (002?00
_1 Z 1 (yt - pO'tO'tflytfl) az26z2 Z patatflyt,l) 21 D2s
2 O't2 — atQ a?

t=1
T _1 2 620,52 Oat + 18 o2 do?
Z 9 (yt - pUtUt71yt71) 1 021022 0z1 2 022 9z
o 2 o 4 )
t=1 i Tt

with z; and zy being the corresponding a and [ that are needed. If in all the three previous ratios we replace
(yt—Paw;llytfl)z by

o7
_ 2
0t2 (00) (yt - pUtUt_l1yt—1) 9
2 _ 2%
70 (ye = por(80) oy (B0) ye1)
then, using Lemmas 3 and 9 of Jensen and Rahbek (2004b) as in their Lemma 10, and knowing that

)

2 0, 2
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_ 2 B -
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and, for example, for the second of the previous ratios

902\ ? 902
2 0 —1 2 ( Ut) Oy
Dl _ <3O't ( 0) (yt - pUtUtilytfl) ’U? . 1) Oz1 Ozo
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Wit

where A is the lower bound that is obtained in Lemma 9 of Jensen and Rahbek (2004b). Finally E (w};) < oo,
Vi = 1,2,4,7 as E(e?) < oo, E(e7_;) < oo and E(|e;—1€¢;]) < oo provided that |pg] < 1 and E(v?) < oo. For the
remaining ratios (and using the results of Lemma 4 with the same type of ratios that have been already analyzed), it

is enough to deal with the extra expression

o? (yt — pUtUt__llyt—l)Q

022029

The most complicated terms of the previous expression are the terms

2 2 2
2 0o} 2007, 2 do} 807, 2 do} 9o 4
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for V21, 22 = a, 3, where we have re-arranged the terms and used the fact that o2 | = % Applying Lemma 9 of
t—1

Jensen and Rahbek (2004b) directly again, we get that the previous expectation is bounded. The proof for expression

(c) is trivial. For the proof of expressions (e) (f) and (j), we need to consider the extra ratios

— 2 — 2
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0210220 0z0
— P , and 2p
0t Ot

For the first term, we use the law of iterated expectations and the fact that
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and
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as well as
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for Vz1, z9 = «, 8 are all bounded. For the second term we need

2 2
2 8Ut—1 agt
{%] "9z _ 5z
2 2 2 |
041 041 0%

which is also bounded. For the proof of expressions (h) and (i), we have

807,
—2 ;. Vr=q,f; i=28,9.
01

w; (6) = 6?71
and due to Assumption 1, E (w;) < 0o, 1 =8,9. B

Proof of Lemma 6 The proof follows the same type of argument as Lemma 3 and the proof in Jensen and Rahbek
(2004b). Note that Lemma 6 is the same as Lemma 3, but with i = 1, ..., p. Define again I;_1 = {y1—1,yi—2, ...}. Using
the law of iterated expectations and the properties of vy, then E (s14|I;—1) = E (s2¢|[1—1) = E (s(2+i)t|It,1) = 0. Also,

by the same argument as in Lemma 3
E|s1| < o0; E |sat] < o0 E‘s(gﬂ-)t‘ <oo; Vi=1,...,p.

In addition,
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Proof of Lemmma 7 The proof follows the same type of arguments as in Lemma 4. Note that Lemma 7 is the same

as Lemma 4, but for ¢ = 1, ..., p. All the results of the proof of Lemma 4 apply here directly. B



Proof of Lemma 8 The proof follows the same argument as Lemma 5. Note that Lemma 8 is the same as Lemma

5, but instead for ¢ = 1, ..., p. All the results of the proof of Lemma 5 apply here directly. B

Result 1: First order derivatives The first order derivatives are given by
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Result 3: Third order derivatives We have,
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again for Vz, z1, 20 = «, 0.

Result 4: First order derivatives
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Result 5: Second order derivatives
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for Vi,j =1,...,p,and Vz, z1, 20 = «, 3, where
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Result 6: Third order derivatives

The third order derivatives are given by
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