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Abstract

This paper shows that non-linearities can generate time-varying and asymmetric
risk premia over the business cycle. These (empirical) key features become relevant and
asset market implications improve substantially when we allow for non-normalities in
the form of rare disasters. We employ explicit solutions of dynamic stochastic general
equilibrium models, including a novel solution with endogenous labor supply, to obtain
closed-form expressions for the risk premium in production economies. We find that
the curvature of the policy functions affects the risk premium through controlling the
individual’s effective risk aversion.
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1 Introduction

“... the challenge now is to understand the economic forces that determine the

stochastic discount factor, or put another way, the rewards that investors demand

for bearing particular risks.” (Campbell, 2000, p.1516)

In general equilibrium models, the stochastic discount factor is not only determined by

the consumption-based first-order condition, but also linked to business cycle characteristics.

In macroeconomics, dynamic stochastic general equilibrium models (DSGE) have been very

successful in explaining co-movements in aggregate data, but relatively less effort has been

made to understand their asset market implications (recent work includes Jermann, 1998;

Tallarini, 2000; Lettau and Uhlig, 2000; Boldrin, Christiano and Fisher, 2001).1 One main

advantage of using general equilibrium models to explain asset market phenomena is that the

asset-pricing kernel is consistent with the macro dynamics, which offers an excellent guide

to the future development of models in both macroeconomics and finance.

However, little is known about the determinants of the risk premium in DSGE models.

Which economic forces determine the risk premium? What are the main implications using

production based models compared to the endowment economy? This paper fills this gap

by studying asset pricing implications of prototype DSGE models analytically.2

In a nutshell, this paper shows that a neoclassical production function alone generates

key features of the risk premium. The economic intuition is that individual’s effective risk

aversion, excluding singular cases, is not constant in a neoclassical production economy.

We use explicit solutions of DSGE models. For this purpose we readopt formulating

models in continuous-time, which gives closed-form solutions for a broad class of interesting

models and parameter sets (Merton, 1975; Eaton, 1981; Cox, Ingersoll and Ross, 1985).3

To illustrate our general equilibrium pricing approach, we use Lucas’ fruit-tree endowment

economy allowing for rare disasters, which subsequently is extended to a production sector

and (non-tradable) human wealth with endogenous labor supply. Recent research has em-

phasized the importance of non-linearities and non-normalities in explaining the business

cycle for the US economy (Fernández-Villaverde and Rubio-Ramı́rez, 2007; Justiniano and

Primiceri, 2008; Posch, 2009). Barro (2006, 2009) shows that economic disasters have been

sufficiently frequent and large enough to account for the risk-premium puzzle.4

1There is an increasing interest in DSGE models in finance (cf. Kaltenbrunner and Lochstoer, 2006). A
survey of the literature on the intersection between macro and finance is Cochrane (2008, chap. 7).

2Our approach differs from the ‘analytical’ approach of Campbell (1994), as we obtain exact solutions.
3Recent contributions of continuous-time DSGE models include e.g. Corsetti (1997), Wälde (1999, 2002),

Steger (2005), Turnovsky and Smith (2006), and Posch (2009). An introduction is Turnovsky (2000).
4In subsequent papers, Gabaix (2008) and Wachter (2009) suggest variable intensity versions, which

generate a time-varying risk premium, as a viable explanation for several macro-finance puzzles.
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We find that non-linearities in DSGE models can generate time-varying and asymmetric

risk premia over the business cycle.5 Although these key features of the risk premium are

negligible in the standard real business cycle model, we show that they become relevant, and

asset market implications improve substantially when we allow for non-normalities in the

form of rare disasters (Rietz, 1988; Barro, 2006, 2009). This finding confirms the Barro-Rietz

rare disaster hypothesis as being a viable paradigm to reconcile asset pricing implications

of DSGE models with the observed data (among other remedies such as capital adjustment

cost, habit formation and/or recursive preferences). Our result is based on the finding that

the individual’s effective risk aversion is not constant for non-homogeneous consumption

functions (cf. Carroll and Kimball, 1996).6 We show that closed-form solutions are important

knife-edge cases which shed light on the properties of the risk premium, and we contribute

by providing a novel solution for DSGE models with endogenous labor supply.

One caveat of the traditional discrete-time models is the lack of analytical solutions.

To some extent, the gap between the literature of asset pricing models using endowment

models in finance and typically non-linear production economies in macro is due to the

difficulty of solving these models. In particular when focusing on the effects of uncertainty,

the traditional linear-quadratic approximation of models about the non-stochastic steady

state does not seem to provide an adequate framework. Alternatively, the literature suggests

risk-sensitive linear-quadratic objectives to compute approximate solutions (among others

Hansen, Sargent and Tallarini, 1999; Tallarini, 2000). Other up-and-coming strategies use

perturbation methods and higher-order approximation schemes (Schmitt-Grohé and Uribe,

2004; van Binsbergen, Fernández-Villaverde, Koijen and Rubio-Ramı́rez, 2009). Although

these numerical methods usually are locally highly accurate, the effects of large economic

shocks, such as rare disasters on approximation errors, are largely unexplored.

Our continuous-time formulation does not suffer from those limitations. First, we exploit

closed-form solutions, which are available for reasonable parametric restrictions, to study the

determinants of the risk premium analytically. Second, we use powerful numerical methods

to examine the properties of the risk premia for a broader parameter range without relying

on local approximations (Posch and Trimborn, 2009). We obtain optimal policy functions

allowing for rare events, while the closed-form solutions can be used to ensure accuracy. We

propose this formulation as a workable paradigm in the macro-finance literature.

This paper is related to the literature on the determinants of the risk premium. While

5While the time-varying feature is well documented empirically (Welch and Goyal, 2008), there is some
evidence that the risk premium increases more in bad times than it decreases in good times (Mele, 2008).

6Other potential solutions to the Mehra and Prescott (1985) equity-premium puzzle for endowment
economies of Epstein and Zin (1989); Abel (1990); Constantinides (1990); Campbell and Cochrane (1999);
Bansal and Yaron (2004), are generating time-varying risk aversion through different channels.
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it has been recognized that the risk premium in DSGE models is endogenous, only the

continuous-time formulation enables us to identify the channels through which non-linearities

affect the risk premium in production economies. As a result, our decomposition of the risk

premium into (i) default risk, (ii) disaster risk, and (iii) residual risk sheds light on the prices

that consumers are willing to pay for avoiding these particular risks.

The remainder of the paper is organized as follows. Section 2 solves in closed form a

continuous-time version of Lucas’ fruit-tree model with exogenous, stochastic production

and obtains the risk premium. Section 3 studies the effects of non-linearities on the risk

premium in Merton’s neoclassical growth model. Section 4 concludes.

2 An endowment economy

This section computes the risk premium from the implicit Euler equation in an endowment

economy. It shows how an extension to rare disasters can account for the observed equity

premium puzzle, which became known as the Barro-Rietz ‘rare disaster hypothesis’.

2.1 Lucas’ fruit-tree model with rare disasters

Consider a fruit-tree economy (one risky asset or equity), and a riskless asset in normal times

but with default risk (government bond) similar to Barro (2006).

2.1.1 Description of the economy

Technology. Consider an endowment economy (Lucas, 1978). Suppose production is entirely

exogenous: no resources are utilized, and there is no possibility of affecting the output of

any unit at any time, Yt = At where At is the stochastic technology. Output is perishable.

The law motion of At will be taken to follow a Markov process,

dAt = µ̄Atdt+ σ̄AtdBt + J̄tAt−dNt, (1)

where Bt is a standard Brownian motion, and Nt is a standard Poisson process. The jump

size is assumed to be proportional to its value an instant before the jump, At−, ensuring

that At does not jump negative. For illustration, the independent random variable J̄t has a

degenerated distribution J̄t ≡ exp(ν̄)− 1. This assumption is purely for reading convenience

and extensions to other distributions of the jump size J̄t pose no conceptional difficulties but

are notationally more cumbersome.

Suppose ownership of fruit-trees with productivity At is determined at each instant in a

competitive stock market, and the production unit has one outstanding perfectly divisible
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equity share. A share entitles its owner to all of the unit’s instantaneous output in t. Shares

are traded at a competitively determined price, pt. Suppose that for the risky asset,

dpt = µptdt+ σptdBt + pt−JtdNt (2)

and for a government bill with default risk

dp0(t) = p0(t)rdt+ p0(t−)DtdNt, (3)

where Dt is a random variable denoting a random default risk in case of a disaster, and q is

the probability of default (cf. Barro, 2006). For illustration, we assume

Dt =

{
0 with 1 − q

exp(κ) − 1 with q
,

which can be generalized without any difficulty.

Because prices fully reflect all available information, the parameters will be determined in

general equilibrium. The objective is to relate exogenous productivity changes to the market

determined movements in asset prices. In fact, the evolution of prices ensures that assets

are priced such that individuals are indifferent between holding more assets and consuming.

Given initial wealth, we are looking for the optimal consumption path.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes discounted

expected life-time utility

U0 ≡ E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0.

Assuming no dividend payments, the budget constraint reads

dWt = ((µ− r)wtWt + rWt − Ct) dt+ wtσWtdBt + ((Jt −Dt)wt− +Dt)Wt−dNt, (4)

where Wt is real financial wealth and wt denotes a consumer’s share holdings.

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and all shares will be held by capital owners.

2.1.2 The short-cut approach

Suppose that the only asset is the market portfolio,

dpM(t) = µMpM(t)dt+ σMpM(t)dBt − ζM(t−)pM(t−)dNt, (5)
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where ζM(t) is considered as an exogenous stochastic jump-size. With probability q it takes

the value ζM and with probability 1 − q it takes the value ζ 0

M (no default).

Consider the portfolio choice as an independent decision of the consumption problem.

The consumer obtains income and has to finance its consumption stream from wealth,

dWt = (µMWt − Ct) dt+ σMWtdBt − ζM(t−)Wt−dNt. (6)

One can think of the original problem with budget constraint (4) as having been reduced

to a simple Ramsey problem, in which we seek an optimal consumption rule given that

income is generated by the uncertain yield of a (composite) asset (cf. Merton, 1973).

Define the value function as

V (W0) ≡ max
{Ct}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (6), W0 > 0. (7)

The Bellman equation reads when choosing the control Cs ∈ R+ at time s

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1 − ζM)Ws)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Ws))λ
}
.

Because it is a necessary condition, the first-order conditions reads

u′(Cs) − VW (Ws) = 0 ⇒ VW (Ws) = u′(Cs) (8)

for any interior solution at any time s = t ∈ [0,∞).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) =
(
(ρ− µM + λ)u′(Ct) − σ2

MWtu
′′(Ct)CW − u′(C((1 − ζM)Wt))(1 − ζM)qλ

−u′(C((1 − ζ0

M)Wt))(1 − ζ0

M)(1 − q)λ
)
dt

+πu′(Ct)dBt + (u′(C((1 − ζM(t−))Wt−)) − u′(C(Wt−)))dNt, (9)

which implicitly determines the optimal consumption path, where the traditional market

price of risk can be defined as π ≡ σMWtu
′′(Ct)CW/u

′(Ct). We defined CW as the marginal

propensity to consume out of wealth, i.e., the slope of the consumption function. Using the

inverse function, we are able to determine the path for consumption (u′′ 6= 0).

To shed some light on the effects of uncertainty, we use the Euler equation (9), and obtain

ρ−
1

dt
E

[
du′(Ct)

u′(Ct)

]

= µM − E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2
M +

u′(C((1 − ζM)Wt))

u′(C(Wt))
ζMqλ

+
u′(C((1 − ζ0

M)Ws))

u′(C(Wt))
ζ0

M(1 − q)λ

]

, (10)
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which defines the certainty equivalent rate of return (shadow risk-free rate), i.e., the expected

rate of return on saving less the expected implicit risk premium,

RPt ≡ −
u′′(Ct)

u′(Ct)
CWWtσ

2
M + Eζ

[
u′(C((1 − ζM(t))Wt))

u′(C(Wt))
ζM(t)λ

]

. (11)

It gives the minimum difference an individual requires to accept an uncertain rate of return

between the expected value (conditioned on no disasters) and the certain rate of return

the individual is indifferent to. In equilibrium, this equals the expected cost of forgone

consumption, i.e., the rate of time preference, and the expected rate of change of marginal

utility in (10). The full expected rate of return on the market portfolio is µM − E(ζM(t))λ.

The implicit risk premium as from (11) extends the ‘proportional probability premium’

in static utility-of-wealth models (Pratt, 1964) to dynamic consumption-portfolio models. It

is related to the effective relative risk aversion of the indirect utility function,

RRAW = −
VWWWt

VW
= −

u′′(Ct)CWWt

u′(Ct)
. (12)

Hence, the indirect utility function, i.e., the value function, and the utility function are

intimately linked by the optimality condition (8). This condition demands that the marginal

utility of consumption equals the marginal utility of wealth (cf. Breeden, 1979, p.274).

2.1.3 A more comprehensive approach

Define the value function as

V (W0) ≡ max
{(wt,Ct)}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (4), W0 > 0. (13)

The Bellman equation reads when choosing the control (ws, Cs) ∈ R × R+ at time s

ρV (Ws) = max
(ws,Cs)

{
u(Cs) + ((µ− r)wsWs + rWs − Cs)VW + 1

2
w2
sσ

2W 2
s VWW

+
(
V ((eκ + (eν1 − eκ)ws)Ws)q

+V ((1 + (eν2 − 1)ws)Ws)(1 − q) − V (Ws)
)
λ
}
.

Because it is a necessary condition, the first-order conditions are

u′(Cs) − VW = 0 ⇒ VW = u′(Cs), (14)

0 = (µ− r)WsVW + wsσ
2W 2

s VWW + VW ((eκ + (eν1 − eκ)ws)Ws)(e
ν1 − eκ)Wsqλ

+VW ((1 + (eν2 − 1)ws)Ws)(1 − q)(eν2 − 1)Wsλ

⇒ ws = −
VW (Ws)

VWW (Ws)Ws

µ− r

σ2
−
VW ((eκ + (eν1 − eκ)ws)Ws)

VWW (Ws)Ws

eν1 − eκ

σ2
qλ

−
VW ((1 + (eν2 − 1)ws)Ws)

VWW (Ws)Ws

eν2 − 1

σ2
(1 − q)λ, (15)
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for any interior solution at any time s = t ∈ [0,∞). Therefore, without imposing further

restrictions an analytical solution for the optimal shares is no longer available.

It can be shown that the Euler equation for consumption is (cf. appendix)

du′(Ct) =
(
(ρ− ((µ− r)wt + r) + λ)u′(Ct) − w2

t σ
2WtVWW

−u′(C((eκ + (eν1 − eκ)wt)Wt))(e
κ + (eν1 − eκ)wt)qλ

−u′(C((1 + (eν2 − 1)wt)Wt))(1 + (eν2 − 1)wt)(1 − q)λ
)
dt+ wtσWtVWWdBt

+(u′(C((1 + (Jt −Dt)wt− +Dt)Wt−)) − u′(C(Wt−)))dNt. (16)

Before we proceed, it seems notable that the implicit risk premium from the Euler equation

in (16) coincides with the short-cut approach (11) defining

µM ≡ (µ− r)wt + r, σM ≡ wtσ, ζM(t) ≡ (Dt − Jt)wt −Dt. (17)

as the expected return and variance on the market portfolio conditioned on no disasters, and

the market portfolio jump, respectively.

As shown below, the implicit risk premium comprises the risk premium of the expected

market rate over the riskless rate (henceforth market risk premium) and the default risk.7

It is related to the traditional market price of risk (i.e., the Sharpe ratio) through

πσM = −
u′′(Ct)

u′(Ct)
CWWtσ

2
M = RPt − Eζ

[
u′(C((1 − ζM(t))Wt))

u′(C(Wt))
ζM(t)λ

]

. (18)

Both approaches can be employed to obtain the reward that investors demand and consumers

implicitly would be willing to pay for bearing/avoiding the systematic market risk.

2.1.4 Towards a security market plane

Given demand for the risky asset and market-clearing, one usually obtains the equilibrium

relation between expected return on any asset and the expected return on the market. It is

straightforward to show that the market price follows

dpM(t) = ((µ− r)wt + r) pM(t)dt+ wtσpM(t)dBt

+((Jt −Dt)wt− +Dt)pM(t−)dNt. (19)

Conditioned on no disasters, we define the instantaneous expected percentage change

µM ≡ (µ− r)wt + r, and its variance, σ2
M ≡ w2

t σ
2, whereas ζM(t) ≡ (Dt − Jt)wt −Dt. With

probability q the portfolio jump is ζM ≡ (ζM(t)|Dt = exp(κ) − 1) = 1 − eκ − (eν1 − eκ)wt,

7Whenever no ambiguity arises, we may use market premium and market risk premium interchangeably.
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and with probability 1− q it takes the value ζ 0

M ≡ (ζM(t)|Dt = 0) = (1− eν2)wt. Hence, the

unconditional expected rate of return on the market portfolio, which includes disasters, is

E

[
dpM(t)

pM(t−)

]

= µM − (ζMq + ζ0

M(1 − q))λ

= µM − (1 − (eν1 − eκ)wt − eκ) qλ− (1 − eν2)wt(1 − q)λ. (20)

Similarly, we obtain expected percentage change on equity, and on government bills,

E

[
dpt
pt−

]

= µ− (1 − eν1)qλ− (1 − eν2)(1 − q)λ, E

[
dp0(t)

p0(t−)

]

= r − (1 − eκ)qλ. (21)

Given the demand for risky assets, we obtain the conditional market premium. Use the

first-order condition for consumption, the optimal portfolio weights in (15) are

wt = −
u′(C(Wt))

u′′(Ct)CWWt

µ− r

σ2
−
u′(C((eκ + (eν1 − eκ)wt)Wt))

u′′(C(Wt))CWWt

eν1 − eκ

σ2
qλ

−
u′(C((1 + (eν2 − 1)wt)Wt))

u′′(C(Wt))CWWt

eν2 − 1

σ2
(1 − q)λ,

which is equivalent to

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M −

u′(C((1 − ζM)Wt))

u′(C(Wt))
(1 − ζM − eκ)qλ

+
u′(C((1 − ζ0

M)Wt))

u′(C(Wt))
ζ0

M(1 − q)λ, (22)

denoting the conditional market premium, i.e., conditioned on no disasters.

2.1.5 General equilibrium prices

This section shows that general equilibrium conditions pin down the prices in the economy.

From the Euler equation (16), we obtain

dCt =
(
(ρ− µM + λ)u′(Ct)/u

′′(Ct) − σ2
MWtCW − 1

2
u′′′(Ct)/u

′′(Ct)σ
2
MW

2
t C

2
W

−Eζ [u′(C((1 − ζM(t))Wt))(1 − ζM(t))]λ/u′′(Ct)
)
dt

+σMWtCWdBt + (C((1 − ζM(t))Wt−) − C(Wt−))dNt, (23)

where we employed the inverse function c = g(u′(c)) which has

g′(u′(c)) = 1/u′′(c), g′′(u′(c)) = −u′′′(c)/(u′′(c))3.

Economically, concave utility (u′(c) > 0, u′′(c) < 0) implies risk aversion, whereas convex

marginal utility, u′′′(c) > 0, implies a positive precautionary saving motive. Accordingly,
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−u′′(c)/u′(c) measures absolute risk aversion, whereas −u′′′(c)/u′′(c) measures the degree of

absolute prudence, i.e., the intensity of the precautionary saving motive (Kimball, 1990b).

Because output is perishable, using the market clearing condition Yt = Ct = At, and

dCt = µ̄Ctdt+ σ̄CtdBt + J̄tCt−dNt, (24)

the risk free rate and both market prices of risk are pinned down in general equilibrium. In

particular, we obtain Jt implicitly as function of J̄t, Dt (stochastic investment opportunities),

and the curvature of the consumption function, where C̃(Wt) ≡ C((1 − ζM(t))Wt)/C(Wt)

defines optimal consumption jumps. In equilibrium, market clearing requires the percentage

jump in aggregate consumption to match the size of the disaster, J̄t = C̃(Wt) − 1, and thus

J̄ = C((1 + (Jt −Dt)wt +Dt)Wt)/C(Wt) − 1 implies a constant jump size. For example, if

consumption is linearly homogeneous in wealth, the jump size of the risky asset satisfies8

ζM = ζ0

M ⇒ eν1 − eκ =
eν̄ − eκ

eν̄ − 1
(eν2 − 1). (25)

Without loss in generality, using the condition that the optimal jump in consumption is

constant, C((1 − ζM(t))Wt) = eν̄C(Wt), optimal portfolio weights satisfy

wt = −
u′(Ct)

u′′(Ct)CWWt

µ− r

σ2
−

(eν1 − eκ)q + (eν2 − 1)(1 − q)

σ2

u′(eν̄C(Wt))

u′′(C(Wt))CWWt

λ,

where the first term is the usual myopic demand for the risky asset, whereas the second term

reflects the demand for the risky asset as a vehicle to hedge against the disaster risk. This

illustrates that the market clearing condition in fact identifies the jump risk by restricting

admissible market portfolios and thus provides a closed-form solution for optimal weights.

Similarly, the market clearing condition pins down σMWtCW = σ̄Ct, and

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M −

u′(eν̄C(Wt))

u′(C(Wt))
((1 − eκ)q − ζM)λ.

Inserting our results back into (23), we obtain that consumption follows,

dCt = (ρ− r + λ)
u′(Ct)

u′′(Ct)
dt− 1

2

u′′′(Ct)

u′′(Ct)
σ2
MW

2
t C

2
Wdt− (1 − (1 − eκ)q)

u′(eν̄Ct)

u′′(Ct)
λdt

+σMWtCWdBt + (C((1 − ζM(t))Wt−) − C(Wt−))dNt.

This in turn determines the riskless rate of return as

r = ρ−
u′′(Ct)Ct
u′(Ct)

µ̄− 1
2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 + λ− (1 − (1 − eκ)q)

u′(eν̄Ct)

u′(Ct)
λ. (26)

8Conditioning on no default, (ζM (t)|Dt = 0) = ζ0

M
, gives eν̄ − 1 = (eν2 − 1)wt. Conditioning on default,

(ζM (t)|Dt = exp(κ) − 1) = ζM , demands eν̄ − 1 = eκ − 1 + (eν1 − eκ)wt.
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As a result, the higher the subjective rate of time preference, ρ, the higher is the general

equilibrium interest rate to induce individuals to defer consumption (cf. Breeden, 1986). For

convex marginal utility (decreasing absolute risk aversion), u′′′(c) > 0, a lower conditional

variance of dividend growth, σ̄2, a higher conditional mean of dividend growth, µ̄, and a

higher default probability, q, decrease the bond price and increases the interest rate.

2.1.6 Components of the risk premium

Observe that the implicit risk premium (11) in general equilibrium simplifies to

RPt = −
u′′(Ct)

u′(Ct)
CWWtσ

2
M

︸ ︷︷ ︸

residual risk

+
u′(eν̄C(Wt))

u′(C(Wt))
ζMλ

︸ ︷︷ ︸

total jump risk

(27)

whereas the conditional market premium reads

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M

︸ ︷︷ ︸

residual risk

+ (ζM − (1 − eκ)q)
u′(eν̄C(Wt))

u′(C(Wt))
λ

︸ ︷︷ ︸

disaster risk

= −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M

︸ ︷︷ ︸

residual risk

+
u′(eν̄C(Ws))

u′(C(Wt))
ζMλ

︸ ︷︷ ︸

total jump risk

− (1 − eκ) q
u′(eν̄C(Wt))

u′(C(Wt))
λ

︸ ︷︷ ︸

default risk

. (28)

Notice that ν̄ < 0 and κ < 0 are typical for a ‘disaster’ hypothesis.

In the presence of default risk, the conditional market premium differs from the implicit

risk premium. The reason is that we obtain the implicit risk premium from the certainty

equivalent rate of return (shadow risk-free rate), but the government bill has a risk of default.

This default risk is not rewarded in the market as there is no truly riskless asset, but is

reflected in the implicit risk premium. If there was no default risk, the implicit risk premium

would have the usual interpretation of the conditional market premium.

2.1.7 Explicit solutions

As shown in Merton (1971), the standard dynamic consumption and portfolio selection

problem has explicit solutions where consumption is a linear function of wealth. For later

references, we provide the solution for constant relative risk aversion (CRRA).

Proposition 2.1 (CRRA preferences) If utility exhibits constant relative risk aversion,

i.e., −u′′(Ct)Ct/u
′(Ct) = θ, then the optimal portfolio weights are constant, and the optimal

consumption function is proportional to wealth, Ct = C(Wt) = bWt, where

b ≡
(
ρ+ λ− (1 − θ)µM − (1 − ζM)1−θλ+ (1 − θ)θ 1

2
σ2
M

)
/θ.

10



Optimal portfolio weights are given by

w =
µ− r

θσ2
+ ((eν1 − eκ)q + (eν2 − 1)(1 − q))

(1 − ζM)−θλ

θσ2
. (29)

Proof. see Appendix A.1.4

Corollary 2.2 Use the policy function, Ct = C(Wt) = bWt, and the implicit risk premium

in general equilibrium (27), to obtain

RP ≡ θσ2
M + e−θν̄ζMλ. (30)

The riskless rate in (26) reads r = ρ+ θµ̄− 1
2
θ(1 + θ)σ̄2 + λ− (1 − (1 − eκ)q) e−θν̄λ. Hence,

the conditional market premium (28) and variance of the market portfolio, i.e., for a sample

conditioned on no disasters, is given by

µM − r = θσ2
M + e−θν̄ (ζM − (1 − eκ) q)λ, and σM = σ̄. (31)

The unconditional market premium, i.e., for long samples, is µM − ζMλ− (r − (1 − eκ)qλ).

As a result, for constant relative risk aversion, RRAW = θ, the risk premium is constant.

2.1.8 Stochastic discount factor

This section illustrates the link between the implicit risk premium and the stochastic discount

factor (SDF). Our approach can be used to compute the SDF in any continuous-time DSGE

model. We obtain the SDF from the Euler equation (9), which in general equilibrium is

du′(Ct) = (ρ− r)u′(Ct)dt+ (1 − eκ)u′(C(eν̄Wt))qλdt− (u′(C(eν̄Wt)) − u′(Ct))λdt

+πu′(Ct)dBt + (u′(C(eν̄Wt−)) − u′(C(Wt−)))dNt,

where the deterministic term consists of, firstly, the difference between the subjective rate

of time preference and the riskless rate, secondly, a term which transforms this rate into the

certainty equivalent rate of return (shadow risk-free rate) and, thirdly, the compensation

which transforms the Poisson process to a martingale. For s ≥ t, we may write

d lnu′(Ct) =

(
u′′(Ct)Ct
u′(Ct)

µ̄+ 1
2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 − 1

2
π2

)

dt

+πdBt + (ln u′(C(eν̄Wt−)) − ln u′(C(Wt−))) dNt

⇔
e−(s−t)ρu′(Cs)

u′(Ct)
= exp

(

−

∫ s

t

(

ρ−
u′′(Cv)Cv
u′(Cv)

µ̄− 1
2

u′′′(Cv)C
2
v

u′(Cv)
σ̄2 + 1

2
π2

)

dv

)

× exp

(∫ s

t

πdBv +

∫ s

t

(lnu′(C(eν̄Wt−)) − ln u′(C(Wt−))) dNv

)

,

11



i.e., equating discounted marginal utility in s and t. Therefore,

ms/mt ≡
e−(s−t)ρu′(Cs)

u′(Ct)
(32)

defines the stochastic discount factor (also known as the pricing kernel or state-price density)

which can be used to price any asset in this economy. For CRRA preferences, it reads

ms/mt = exp
(
−(r − e−θν̄(1 − eκ)qλ+ 1

2
(θσ̄)2 + (e−ν̄θ − 1)λ)(s− t)

)

× exp
(
θσ̄(Bs − Bt) − θν̄(Ns −Nt)

)

= exp
(
−(ρ + θµ̄− 1

2
θσ̄2)(s− t) + θσ̄(Bs − Bt) − θν̄(Ns −Nt)

)

which has the well known properties (cf. Campbell, 2000).

3 A neoclassical production economy

This section illustrates that non-linearities in a neoclassical DSGE model imply interesting

asset market implications, in particular these can generate a time-varying risk premium. We

use a version of Merton’ (1975) asymptotic theory of growth under uncertainty.

3.1 A model of growth under uncertainty

This section assumes that there is no truly riskless asset. We employ the certainty equivalent

rate of return, or the shadow risk-free rate, to obtain the implicit risk premium.

3.1.1 Description of the economy

Technology. At any time, the economy has some amounts of capital, labor, and knowledge,

and these are combined to produce output. The production function is a constant return to

scale technology Yt = AtF (Kt, L), where Kt is the aggregate capital stock, L is the constant

population size, and At is the stock of knowledge or total factor productivity (TFP), which

in turn is driven by a standard Brownian motion Bt

dAt = µ̄Atdt+ σ̄AtdBt. (33)

At has a log-normal distribution with E0(lnAt) = lnA0 +(µ̄− 1
2
σ̄2)t, and V ar0(lnAt) = σ̄2t.

The capital stock increases if gross investment exceeds stochastic capital depreciation,

dKt = (It − δKt)dt+ σKtdZt + JtKt−dNt, (34)

where Zt is a standard Brownian motion (uncorrelated with Bt), and Nt is a standard

Poisson process with arrival rate λ. Unlike in Merton’s (1975) model, the assumption of

12



stochastic depreciation introduces instantaneous riskiness making physical capital indeed

a risky asset (for similar examples see Turnovsky, 2000). The fundamental difference to

Lucas’ endowment economy is that the shares follow a stochastic process (i.e., not only the

production technology, but the number of trees is stochastic). The jump size is assumed to

be proportional where we assume that Jt ≡ exp(ν) − 1 is a degenerated distribution.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

life-time utility

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0 (35)

subject to

dWt = ((rt − δ)Wt + wLt − Ct)dt+ σWtdZt + JtWt−dNt. (36)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and wL
t is labor income.

The paths of factor rewards are taken as given by the representative consumer.

Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wLt = YL. The goods market clearing condition demands

Yt = Ct + It. (37)

Solving the model requires the aggregate capital accumulation constraint (34), the goods

market equilibrium (37), equilibrium factor rewards of perfectly competitive firms, and the

first-order condition for consumption. It is a system of stochastic differential equations

determining, given initial conditions, the paths of Kt, Yt, rt, w
L
t and Ct, respectively.

3.1.2 The short-cut approach

Define the value of the optimal program as

V (W0, A0) = max
{Ct}∞t=0

U0 s.t. (36) and (33) (38)

denoting the present value of expected utility along the optimal program. It can be shown

that the first-order condition for the problem is (cf. appendix)

u′(Ct) = VW (Wt, At), (39)

for any t ∈ [0,∞), making consumption a function of the state variables Ct = C(Wt, At).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) = (ρ− (rt − δ) + λ)u′(Ct)dt− u′(C(eνWt, At))e
νλdt− σ2VWWWtdt+ VAWAtσ̄dBt

+VWWWtσdZt + [u′(C(eνWt−, At−)) − u′(C(Wt−, At−))]dNt (40)

= (ρ− (rt − δ) + λ)u′(Ct)dt− u′(C(eνWt, At))e
νλdt− σ2u′′(Ct)CWWtdt

+u′′(Ct)(CAAtσ̄dBt + CWWtσdZt) + [u′(C(eνWt−, At−)) − u′(C(Wt−, At−))]dNt,

13



which implicitly determines the optimal consumption path. To shed some light on the effects

of uncertainty, we use the Euler equation and obtain the (implicit) risk premium from

du′(Ct)

u′(Ct−)
=

(

ρ− (rt − δ) + λ−
u′(C(eνWt, At))

u′(C(Wt, At))
eνλ−

u′′(Ct)

u′(Ct)
CWWtσ

2

)

dt

+
u′′(Ct)

u′(Ct)
(CAAtσ̄dBt + CWWtσdZt) +

[
u′(C(eνWt−, At−))

u′(C(Wt−, At−))
− 1

]

dNt

⇒
1

dt
E

[
du′(Ct)

u′(Ct)

]

= ρ− E(rt) + δ + E

[
u′(C(eνWt, At))

u′(C(Wt, At))
(1 − eν)λ−

u′′(Ct)

u′(Ct)
CWWtσ

2

]

.

Collecting terms, we find that the certainty equivalent rate of return equals the expected

return net of depreciation, E(rt − δ), less the expected implicit risk premium,

RPt ≡ −
u′′(Ct)

u′(Ct)
CWWtσ

2 +
u′(C(eνWt, At))

u′(C(Wt, At))
(1 − eν)λ. (41)

It is remarkable that the structure is equivalent to the endowment economy (27), but the

premium in (41) has quite interesting properties. Hence, the implicit risk premium indeed

refers to the rewards that investors demand for bearing the systematic risk, while it does

not directly account for the risk of a stochastically changing total factor productivity (33).

3.1.3 Explicit solutions

A convenient way to describe the behavior of the economy is in terms of the evolution of

Ct, At and Wt. Similar to the endowment economy there are explicit solutions available,

due to the non-linearities only for specific parameter restrictions. Below we use two known

restrictions where the policy function Ct = C(At,Wt) (or consumption function) is available,

and all economic variables can be solved in closed form.

Proposition 3.1 (linear-policy-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L

1−α, utility exhibits constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = θ,

and α = θ, then optimal consumption is linear in wealth.

α = θ ⇒ Ct = C(Wt) = φWt

where φ ≡ (ρ− (e(1−θ)ν − 1)λ+ (1 − θ)δ)/θ + 1
2
(1 − θ)σ2 (42)

Proof. see Appendix A.2.2

Corollary 3.2 Use the policy function Ct = C(Wt) = φWt and (41) to obtain

RP = θσ2 + e−θν(1 − eν)λ. (43)

14



Proposition 3.3 (constant-saving-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L

1−α, utility exhibits constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = θ,

and the subjective discount factor is

ρ̄ ≡ (e(1−αθ)ν − 1)λ− θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)
− (1 − αθ)δ,

then optimal consumption is proportional to current income (i.e., non-linear in wealth).

ρ = ρ̄ ⇒ Ct = C(Wt, At) = (1 − s)AtW
α
t , θ > 1, where s ≡ 1/θ (44)

Proof. see Appendix A.3.2

Corollary 3.4 Use the policy function Ct = C(Wt, At) = (1 − s)AtW
α
t and (41) to obtain

RP = αθσ2 + e−αθν(1 − eν)λ. (45)

We are now in a position to understand why the (implicit) risk premium depends on the

curvature of the policy function (or consumption function). Any homogenous consumption

function, where CW (Wt, At)Wt = kC(Wt, At) or equivalently C(cWt, At) = ckC(Wt, At) for

c, k ∈ R+, implies a constant risk premium. Technically, the policy function is homogenous

of degree k in wealth. Because these functions are obtained only for knife-edge restrictions,

we conclude that the (implicit) risk premium generally will be dependent on wealth, which

in turn implies that a time-varying behavior as wealth is changing stochastically.

Economically, the reason why the risk premium depends on the curvature of the policy

function (and can vary over time) is that the optimal response to disasters or shocks depends

on the level of wealth. An individual with high levels of financial wealth will adjust its

optimal expenditures for consumption differently from an individual that has no financial

wealth. Though the utility function has CRRA with respect to consumption, the indirect

utility function (the value function), except for the knife-edge cases above, does not exhibit

CRRA with respect to wealth. This finding is closely related to the link Kimball (1990a)

shows between the marginal propensity to consume and the effective risk aversion of the

value function. Accordingly, a higher marginal propensity to consume out of gross wealth

(inclusive of labor income) raises the effective risk aversion. A concave consumption function

implies that the effective level of risk aversion will fall more quickly with wealth than it would

if the marginal propensity to consume were constant (Carroll and Kimball, 1996, p.982).

There are two important differences to the earlier work. First, our consumption function

is defined by the optimal policy rule which gives consumption as a function of financial

wealth (exclusive of labor income), which is the only observable and tradable asset. Hence,

it cannot easily be interpreted as a function of gross wealth (inclusive of labor income) or
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total wealth (i.e., financial and human wealth). Thus, the marginal propensity to consume

out of wealth is defined by the slope of the consumption function with respect to financial

wealth. In contrast, the consumption and saving rates, in the tradition of the Solow model,

refers to current income (i.e., labor and capital income). Second, the effects of uncertainty are

studied in a general equilibrium environment which allows us to obtain analytical solutions

for linear and strictly concave consumption functions in a DSGE model for mild parametric

restrictions, while Carroll and Kimball restrict their focus on partial equilibrium models,

leaving the processes for labor income and capital returns exogenous.

Unfortunately, an analytical study of the structural parameters in the general case is

not possible. Though clearly being extreme cases, our explicit solutions are important to

understand the mechanism that affect the risk premium in DSGE models. Both solutions

imply that the consumption function is homogenous and thus the risk premium is constant.9

Below we study the implications when allowing the parameters to take different values.

3.1.4 Numerical solutions

This section implements the algorithm as in Posch and Trimborn (2009) to obtain a numerical

solution for the case where σ = σ̄ = µ̄ = 0, and with A = 1.10 As it is seen below, this

assumption does not affect our conclusions, but reduces the computational burden as the

reduced form representing the dynamics of the DSGE model can be summarized as

dWt = ((rt − δ)Wt + wLt − Ct)dt− (1 − eν)Wt−dNt,

dCt = −
u′(Ct)

u′′(Ct)
(rt − δ − ρ− λ)dt−

u′(C(eνWt))

u′′(C(Wt))
eνλdt+ [C(eνWt−) − C(Wt−)]dNt,

where rt = YK, and wLt = YL. For the case of Cobb-Douglas production, Yt = AKα
t L

1−α,

and CRRA preferences with relative risk aversion θ, we obtain from (41)

RP ≡
C(eνWt)

−θ

C(Wt)−θ
(1 − eν)λ.

Figure 1 illustrates the optimal policy function and the resulting (implicit) risk premium

for different values for the parameter of relative risk aversion. For θ = α the policy function is

a linear-homogenous function with slope φ, which refers to the analytical solution in (42). In

this singular case the risk premium is e−θν(1− eν)λ, which is equivalent to the risk premium

in the fruit-tree model. At each point, a change of the expected proportional decline in

9For α = θ, the consumption function becomes a linear function in wealth, i.e., is linearly homogeneous
or homogeneous of degree one. In the case of ρ = ρ̄, which is only possible for values θ > 1, the consumption
function becomes homogeneous of degree α.

10The numerical solution makes use of Waveform Relaxation, which solves the original (non-linear) system
of functional stochastic differential equations of retarded type (cf. Posch and Trimborn, 2009).
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Figure 1: Risk premia in a production economy
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Notes: These figures illustrate the optimal policy functions (left panel) and the risk premium (right panel) as a function of
financial wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0. The calibrations of other parameters
is (ρ, α, θ, δ, λ, 1− eν) = (.05, .75, ·, .1, .017, .4) where θ = .5 (dotdash), θ = .75 (dotted), θ = 1 (longdash), θ = 1.9406 (twodash)
which refers to the knife-edge case ρ = ρ̄ in (44) with a constant saving rate, θ = 4 (dashed), and θ = 6 (solid).

marginal utility equals the change in capital rewards, implying a constant risk premium.

For θ < α the policy function is convex, and the marginal propensity to consume increases

with wealth, C(eνWt) < eνC(Wt). This increase, however, is less rapid than the increase of

the consumption-wealth ratio, which lowers the effective level of risk aversion. Hence, the

risk premium is convex and has the upper bound e−αν(1− eν)λ for wealth approaching zero.

For θ > α, which is the empirically most plausible scenario, the consumption function has

the standard form, i.e., (strictly) concave such that the marginal propensity to consume is

decreasing with wealth, C(eνWt) > eνC(Wt). In this case, the properties of the risk premium

depend on whether the pure rate of time preference, ρ, exceeds or falls short of ρ̄.

At the knife-edge value of ρ = ρ̄ the policy function is homogeneous of degree α, which

refers to the analytical solution in (44), where the savings rate is constant, s = 1/θ, and

the risk premium is e−αθν(1 − eν)λ. For ρ < ρ̄ the individual prefers a higher savings rate,

s(Wt) > s, and the marginal propensity to consume out of wealth decreases more rapidly

than it would if the saving rate (or consumption-income ratio) were constant, which lowers

the effective risk aversion of the value function (Carroll and Kimball, 1996). Because the

saving rate is increasing in wealth and bounded by unity, s < s(Wt) < 1, the risk premium
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is convex and has the upper bound e−αθν(1 − eν)λ for wealth approaching zero. For ρ > ρ̄

the saving rate is smaller, s(Wt) < s, and the marginal propensity to consume out of wealth

decreases less rapidly than it would if the saving rate were constant, which raises the effective

risk aversion of the value function. Since the saving rate is decreasing in wealth, the risk

premium is concave with lower bound e−max(θ,1)αν(1 − eν)λ for wealth approaching zero.

In our numerical study, ρ̄ depends on the arrival rate, λ, the disaster size, eν − 1, the

output elasticity of capital, α, and the risk aversion, θ, which coincides with the inverse of

the intertemporal elasticity of substitution (IES), and the rate of depreciation, δ. For the

case αθ > 1, that is when the output elasticity of capital exceeds the IES, this critical value

is positive, ρ̄ > 0, and vice versa. Thus, for the empirically most plausible calibrations, e.g.,

for α ≈ 0.5 and θ ≈ 4, we find that αθ > 1 and obtain a positive knife-edge value, ρ̄ > 0.

For the general case, i.e., using the risk premium implicitly obtained from the Euler

equation (41), the same analysis could be conducted. Then, the consumption function will

be concave in wealth for θ ≥ α and the risk premium, conditional on the state variable At,

will have the same properties as in Figure 1. Moreover, the knife-edge value ρ̄ as from the

definition in (44) decreases in the mean, µ̄, but increases in the variance σ̄2 of TFP growth,

and for the case αθ > 1 increases in the variance of stochastic depreciation, σ2.

3.1.5 Human wealth and financial wealth

One interpretation is that the individual implicitly solves an optimal consumption problem

in a stochastically changing investment opportunity set. In this view, the state variables

which determine investment opportunities are the aggregate capital stock, Kt, and total

factor productivity At, whereas the risky asset returns rt = r(At, Kt) and the wage rate

wt = w(At, Kt) depend on the state variables. The DSGE model at hand is a specific case

where general equilibrium conditions pin down asset prices, as well as cost of capital and

leisure (hours) in the economy (cf. Campbell and Viceira, 2002, chap. 6).

In particular, as shown in Bodie, Merton and Samuelson (1992, p.431) one could think

of any optimal decisions of households in terms of financial wealth (physical assets) and

human wealth (present value of future labor income), since the individual’s human capital

is essentially the same as a financial asset, except that it is not traded, but valued by the

individual as if it were a traded asset. It therefore seems important to allow for flexible labor

supply when studying the risk premium. If we allow individuals to choose their amount of

leisure optimally, we can study the impact of adding one additional channel to mitigate the

presence of risk, which potentially has an effect on the properties of the premium.
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3.2 An extension: endogenous labor supply

This section allows for elastic labor supply in the neoclassical DSGE model. For reading

convenience, this section replicates some of the equations from the previous section.

3.2.1 Description of the economy

Technology. As before, the production function is a constant return to scale technology,

Yt = AtF (Kt, Ht), where Kt is the aggregate capital stock, Ht is total hours worked, L is

the constant population size, and At is total factor productivity, which in turn is driven by

a standard Brownian motion Bt

dAt = µ̄Atdt+ σ̄AtdBt. (46)

The capital stock increases if gross investment exceeds stochastic capital depreciation,

dKt = (It − δKt)dt+ σKtdZt + JtKt−dNt, (47)

where Zt is a standard Brownian motion (uncorrelated with Bt), and Nt is a standard Poisson

process with arrival rate λ. The jump size is assumed to be proportional where we assume

that Jt ≡ exp(ν) − 1 is a degenerated distribution.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers, such that Ct = Lct = ct and Ht = 1−lt.

The consumer maximizes expected life-time utility

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct, Ht)dt, uC > 0, uH < 0, uCC ≤ 0, uCCuHH − (uCH)2 ≥ 0, (48)

subject to

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt+ σWtdZt + JtWt−dNt. (49)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and Htw
H
t is labor

income. The paths of factor rewards are taken as given by the representative consumer.

Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wHt = YH . The goods market clearing condition demands

Yt = Ct + It. (50)

Solving the model requires the aggregate constraints for factor productivity (46), capital

(47), the goods market equilibrium (50), equilibrium factor rewards of perfectly competitive

firms, and the first-order condition for consumption and hours. It is a system of equations

determining, given initial conditions, the paths of Kt, Yt, rt, w
H
t , Ct and Ht, respectively.
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3.2.2 The short-cut approach

Define the value of the optimal program as

V (W0, A0) = max
{Ct,Ht}∞t=0

U0 s.t. (49) and (46), (51)

denoting the present value of expected utility along the optimal program. It can be shown

that the first-order conditions for any interior solution are (cf. appendix)

uC(Ct, Ht) = VW (Wt, At), (52)

−uH(Ct, Ht) = wHt VW (Wt, At), (53)

for any t ∈ [0,∞), making optimal consumption and hours functions of the state variables

Ct = C(Wt, At) and Ht = H(Wt, At), respectively (cf. Bodie et al., 1992, p.435). Specifically

it pins down the price (or opportunity cost) of leisure,

wHt = −
uH(Ct, Ht)

uC(Ct, Ht)
, (54)

which determines the amount of leisure the individual ‘purchases’.

It can be shown that the Euler equation for consumption is (cf. appendix)

duC = (ρ− (rt − δ) + λ)uCdt− uC(C(eνWt, At), H(eνWt, At))e
νλdt

−σ2 (uCC(Ct, Ht)CW + uCH(Ct, Ht)HW )Wtdt

+(CAAtσ̄dBt + CWWtσdZt)uCC + (HAAtσ̄dBt +HWWtσdZt)uCH

+

[
uC(C(eνWt−, At−), H(eνWt−, At−))

uC(C(Wt−, At−), H(Wt−, At−))
− 1

]

uC(Ct−, Ht−)dNt, (55)

which implicitly determines the optimal consumption path. To shed some light on the effects

of uncertainty, we may use this equation and obtain the (implicit) risk premium from

duC(Ct, Ht)

uC(Ct−, Ht−)
=

(

ρ− (rt − δ) + λ−
uC(C(eνWt, At), H(eνWt, At))

uC(C(Wt, At), H(Wt, At))
eνλ

)

dt

−
uCC(Ct, Ht)CW + uCH(Ct, Ht)HW

uC(Ct, Ht)
Wtσ

2dt

+(·)dBt + (·)dZt +

[
uC(C(eνWt−, At−), H(eνWt−, At−))

uC(C(Wt−, At−), H(Wt−, At−))
− 1

]

dNt,

which implies

1

dt
E

[
duC(Ct, Ht)

uC(Ct, Ht)

]

= ρ− E(rt − δ) + E

[
uC(C(eνWt, At), H(eνWt, At))

uC(C(Wt, At), H(Wt, At))
(1 − eν)λ

]

−E

[
uCC(Ct, Ht)CW + uCH(Ct, Ht)HW

uC(Ct, Ht)
Wtσ

2

]

.
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Collecting terms we obtain that the certainty equivalent rate of return equals the expected

return net of depreciation, E(rt − δ), less the expected implicit risk premium,

RPt ≡ −
uCCCW + uCHHW

uC(Ct, Ht)
Wtσ

2 +
uC(C(eνWt, At), H(eνWt, At))

uC(C(Wt, At), H(Wt, At))
(1 − eν)λ. (56)

Observe that the structure is equivalent to (41), with the notable difference that the curvature

of both the consumption function and the policy function for optimal hours matters for

effective risk aversion and therefore the risk premium.

3.2.3 Explicit solutions

As before, a convenient way to describe the behavior of the economy is in terms of the

evolution of Ct, Ht, At and Wt. Similar to the endowment economy there exist explicit

solutions, however, due to the non-linearities only for specific parameter restrictions. Below

we use one restriction where the policy functions Ct = C(At,Wt) and Ht = H(At,Wt), and

most economic variables of interest can be solved in closed form.

In what follows, we restrict our attention to the class of utility functions which exhibits

constant relative risk aversion with respect to consumption RRAC = −uCCCt/uC = θ, and

leisure RRAL = uHHHt/uH = 1 − (1 − θ)ψ,

u(Ct, Ht) =
(Ct(1 −Ht)

ψ)1−θ

1 − θ
, θ > 0, ψ ≥ 0. (57)

Similar to Turnovsky and Smith (2006), the parameter ψ measures the preference for leisure.

To ensure concavity, we restrict θ − (1 − θ)ψ ≥ 0. Observe that positive risk aversion with

respect to leisure requires (1 − θ)ψ < 1. For the case where ψ = 0, the explicit solutions in

Proposition 3.1 (linear policy-function) and Proposition 3.5 (constant-saving-function) apply

accordingly. For the broader case where ψ > 0, a closed-form solution can be obtained where

optimal hours are constant. In contrast to the previous cases, both this solution and the

numerical solution techniques used here are novel in the macro literature.

Proposition 3.5 (constant-saving-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t H

1−α
t and the rate of time preference is

ρ̄ ≡ (eν(1−αθ) − 1)λ− (1 − αθ)δ − θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − ασ)σ2

)
,

then optimal consumption is proportional to income, and optimal hours are constant.

ρ = ρ̄ ⇒ Ct = C(Wt, At) = (1 − s)AtW
α
t H

1−α, θ > 1, ψ 6= 0

where H =
θ(1 − α)

θ(1 − α) − ψ(1 − θ)
, s ≡ 1/θ.
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Proof. see Appendix A.3.2

Corollary 3.6 Use the policy function Ct = C(Wt, At) = (1− s)AtW
α
t H

1−α and (56) to get

RP = e−αθν(1 − eν)λ+ αθσ2, (58)

where we use CW = α(1 − s)AtW
α−1
t H1−α and

uC = C−θ
t (1 −H)(1−θ)ψ, uCC = −θC−θ−1

t (1 −H)(1−θ)ψ.

This particular rate of time preference, ρ̄, clearly is a knife-edge condition which ensures

that the optimal leisure, the saving rate and the implicit risk premium are constant. In this

singular case, the parameter measuring the preference for leisure, ψ, does not affect the risk

premium or the saving rate, though it affects hours. To study the dynamic effects of labor

supply flexibility for a broader parameter set, we employ numerical solutions.

3.2.4 Numerical solutions

This section again uses the algorithm as in Posch and Trimborn (2009) to obtain a numerical

solution for the case σ = σ̄ = µ̄ = 0 and A = 1. This procedure requires a reduced form

system of controlled stochastic differential equations under Poisson uncertainty. We employ

both first-order conditions (52) and (53) to substitute the costate VW in the evolution of the

costate variable and to obtain Euler equations for optimal consumption and optimal hours.

This was done for consumption in (55), which for our simplifying assumptions reduces to

duC = (ρ− rt + δ + λ)uCdt− uC(C(eνWt), H(eνWt))e
νλdt

+ (uC(C(eνWt−), 1 −H(eνWt−)) − uC(Ct−, Ht−)) dNt

⇔ dCt =
uC
uCC

(ρ− (rt − δ) + λ)dt−
uC
uCC

uC(C(eνWt), H(eνWt))

uC(C(Wt), H(Wt))
eνλdt

−
uCH
uCC

(dHt − (H(eνWt−) −H(Wt−))dNt) + (C(eνWt−) − C(Wt−))dNt.

Similarly, we use the first-order condition for hours, and replace VW by

d(uH/YH) = (ρ− (rt − δ) + λ)uH/YHdt− uH(C(eνWt), H(eνWt))/YH(eνWt, H(eνWt))e
νλdt

+

[
uH(C(eνWt−), H(eνWt−))

YH(eνWt−, H(eνWt−))
−
uH(C(Wt−), H(Wt−))

YH(Wt−, H(Wt−))

]

dNt

⇔ duH = (ρ− (rt − δ) + λ)uHdt− uH(C(eνWt), H(eνWt))
YH(Wt, Ht)

YH(eνWt, H(eνWt))
eνλdt

+uH/YH(dYH − (YH(Wt, Ht) − YH(Wt−, Ht−))dNt)

+(uH(Ct, Ht) − uH(Ct−, Ht−))dNt,
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where, because of the wage rate, YH = YH(Wt, Ht),

dYH = YHH(dHt − (Ht −Ht−)dNt) + YHK(dWt − (Wt −Wt−)dNt)

+(YH(Wt, Ht) − YH(Wt−, Ht−))dNt.

Defining ū = ū(C,H) ≡ uCHuHC − uCCuHH gives, after some tedious algebra,

dHt =
uHCuC − uCCuH

YHH/YHuHuCC + ū
(ρ− (rt − δ) + λ)dt

−
uCCuHYHK/YH

YHH/YHuHuCC + ū
((rt − δ)Wt +Htw

H
t − Ct)dt

−
uHCuC

YHH/YHuHuCC + ū

uC(C(eνWt), H(eνWt))

uC(C(Wt), H(Wt))
eνλdt

+
uCCuH

YHH/YHuHuCC + ū

uH(C(eνWt), H(eνWt))

uH(C(Wt), H(Wt))

YH(Wt, Ht)

YH(eνWt, H(eνWt))
eνλdt

+(Ht −Ht−)dNt.

Hence, our problem reduces to solving the controlled system of SDEs,

dCt = −
uC
uCC

(

rt − ρ− δ − λ+
uC(C(eνWt), H(eνWt))

uC(C(Wt), H(Wt))
eνλ

)

dt

−
uCH
uCC

(dHt − (H(eνWt−) −H(Wt−))dNt) + (C(eνWt−) − C(Wt−))dNt,

dHt =
uHCuC − uCCuH

YHH/YHuHuCC + ū
(ρ− (rt − δ) + λ)dt−

uCCuHYHK/YH
YHH/YHuHuCC + ū

((rt − δ)Wt +Htw
H
t − Ct)dt

−
uHCuC

YHH/YHuHuCC + ū

uC(C(eνWt), H(eνWt))

uC(C(Wt), H(Wt))
eνλdt+ (H(eνWt−) −H(Wt−))dNt

+
uCCuH

YHH/YHuHuCC + ū

uH(C(eνWt), H(eνWt))

uH(C(Wt), H(Wt))

YH(Wt, Ht)

YH(eνWt, H(eνWt))
eνλdt,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt− (1 − eν)Wt−dNt.

For the specific case of Cobb-Douglas production, Yt = AKα
t H

1−α
t , and CRRA utility as

from (57), optimal behavior from the first-order conditions (52) and (53) implies

−
uH(Ct, Ht)

uC(Ct, Ht)
= YH(Kt, Ht) ⇔ 1 −H(Wt) =

ψ

(1 − α)A
C(Wt)W

−α
t H(Wt)

α (59)

⇔ 1 −H(eνWt) =
ψ

(1 − α)A
C(eνWt)e

−ανW−α
t H(eνWt)

α.

This pins down the jump in consumption to

1 −H(eνWt) =
C(eνWt)

C(Wt)
e−αν

(
H(eνWt)

H(Wt)

)α

(1 −H(Wt))

⇒ C̃(Wt) =
1 − H̃(Wt)H(Wt)

1 −H(Wt)
H̃(Wt)

−αeαν, (60)
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where we define

C̃(Wt) ≡
C(eνWt)

C(Wt)
, H̃(Wt) ≡

H(eνWt)

H(Wt)
.

We can neglect the SDE for consumption as from (59) and (60), C(Wt) = C(H(Wt),Wt)

and C̃(Wt) = C̃(H(Wt)). Economically, optimal behavior of consumption is completely

described by optimal hours and financial wealth. Thus, a reduced form description is

dHt =
ρ− (1 − θ)rt + (1 − αθ)δ + λ− αθCt/Wt − C̃(Wt)

−θ+(1−θ)ψH̃(Wt)
(1−θ)ψαeν−(1−θ)ψανλ

αθH−1
t − (ψ − θψ − θ)(1 −Ht)−1

dt

+(H(eνWt−) −H(Wt−))dNt,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt− (1 − eν)Wt−dNt.

where for CRRA preferences, the risk premium (56) becomes

RPt = C̃(Wt)
(1−θ)ψ−θH̃(Wt)

(1−θ)ψαe−(1−θ)ψαν(1 − eν)λ. (61)

In the general case, the premium depends on the optimal jumps in consumption and hours.

3.2.5 Results

In what follows, we restrict our discussion to the empirically most relevant case where θ ≥ 1.

The key result is that effective risk aversion, except for the singular case ρ = ρ̄, is still a

function of financial wealth. This in turn implies a time-varying risk premium as wealth is

changing stochastically over time. As shown in the appendix, elastic labor supply, ψ 6= 0,

primarily has an effect on the optimal hours supplied, but does not substantially affect the

shape and properties of the risk premium (cf. Figure A.1).

This knife-edge value ρ = ρ̄ ensures that the individual’s optimal choice of leisure is

constant (cf. Bodie et al., 1992). Then, the expected proportional decline of marginal utility

with respect to consumption matches the expected rate of return apart from a constant.

Moreover, we obtain that the marginal propensity to save (to consume), s(Wt) = s, the

supplied hours, H(Wt) = H, and the risk premium are all constant measures over time

(consumption becomes a homogeneous function of degree α). For ρ < ρ̄ the individual

prefers a higher saving rate, s(Wt) > s, and supplies more hours, H(Wt) > H. Because both

optimal policy functions for consumption and hours are concave, the effective risk aversion

of the value function is lower than for ψ = 0. The risk premium is convex in financial wealth

and has the upper bound e−αθν(1−eν)λ for wealth approaching zero. For ρ > ρ̄ the marginal

propensity to save is smaller, s(Wt) < s, and the individual supplies less hours, H(Wt) < H,

which in fact raises the effective risk aversion of the value function. The marginal propensity

to consume out of wealth decreases less rapidly than it would if the saving rate were constant,
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while the optimal policy functions for hours is convex, which in fact raises the effective risk

aversion of the value function. Since the saving rate is decreasing in wealth, the risk premium

is concave with lower bound e−θαν(1 − eν)λ.

A empirically testable implication is the correlation between hours and consumption. In

the data, hours and consumption are positively correlated, which in turn implies a negative

correlation between consumption and leisure. We may infer this property directly from the

policy functions. For ρ = ρ̄ there is zero correlation, while for ρ < ρ̄ consumption and hours

are concave functions of financial wealth (which has the usual interpretation of the capital

stock per effective worker), and we obtain a positive correlation. It is only for ρ > ρ̄ that

the optimal policy function for hours is convex, which in turn would imply a counterfactual

negative correlation as long as the consumption function is concave.

4 Conclusion

In this paper we study how non-linearities in a neoclassical production economy affect as-

set pricing implications. For this purpose, we choose to formulate our DSGE models in

continuous-time because we believe that a clear understanding of these effects can best be

achieved by working out analytical solutions. We derive closed-form solutions of the Lucas’

fruit-tree model and compare the resulting risk premium to those obtained from models

which account for non-linearities in the form of a neoclassical production function. Our key

result is that these non-linearities can generate time-varying and asymmetric risk premia

over the business cycle. The economic intuition is that individual’s effective risk aversion,

except for singular cases, is no longer constant in a neoclassical production economy. We

show that non-normalities in the form of rare disasters substantially increases the economic

relevance of these (empirical) key features.

From a methodological point of view, this paper shows that formulating the endowment

economy or non-trivial production models in continuous-time gives analytical solutions for

reasonable parametric restrictions or functional forms. Analytical solutions are useful for

macro-finance models for at least two reasons. First, they are points of reference from which

numerical methods can be used to explore a broader class of models. Second, they shed light

on asset market implications without relying purely on numerical methods. This circumvents

problems induced by approximation schemes which could be detrimental when studying the

effects of uncertainty. Along these lines, we propose the continuous-time formulation of

DSGE models as a workable paradigm in macro-finance.
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A Appendix

A.1 Lucas fruit-tree model in continuous-time

A.1.1 Deriving the budget constraint

Consider a risky asset and a government bill with default risk. Suppose the price of the risky

asset follows

dpt = µptdt+ σptdBt + Jtpt−dNt,
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where µ denotes the instantaneous conditional expected percentage change in the price of

asset i, σ2 the instantaneous conditional variance, Bt is a standard Brownian motion, and Jt

is a random variable representing the sensitivity of the asset price with respect to a jump of

the Poisson process Nt at arrival rate λ. A government bill (riskless in normal times) obeys

dp0(t) = p0(t)rdt+DtdNt,

where Dt is a random variable denoting a random default risk during a contraction.

Consider a portfolio strategy which holds nt units of the risky asset and n0(t) units of

the riskless asset with default risk, such that

Wt = n0(t)p0(t) + ptnt

denotes the portfolio value. Using Itô’s formula, it follows

dWt = p0(t)dn0(t) + n0(t)p0(t)rdt+ ptdnt + ntptµdt+ ntptσdBt

+ (ntpt−Jt + n0(t)p0(t−)Dt) dNt

= p0(t)dn0(t) + n0(t)p0(t)rdt+ ptdnt + wtµWtdt+ wtσWdBt

+ (wt−Jt + (1 − wt−)Dt)Wt−dNt, (62)

where wtWt ≡ ntpt denotes the amount invested in the risky asset. Since investors use their

savings to accumulate assets, assuming no dividend payments, p0(t)dn0(t) + ptdnt = −Ctdt,

dWt = ((µ− r)wtWt + rWt − Ct) dt+ σwtWtdBt

+ ((Jt −Dt)wt− +Dt)Wt−dNt. (63)

A.1.2 The short-cut approach

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
Cs

{

u(Cs) +
1

dt
EsdV (Ws)

}

. (64)

Using Itô’s formula (see e.g. Protter, 2004; Sennewald, 2007),

dV (Ws) =
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

)
dt+ σMWsVWdBt + (V (Ws) − V (Ws−))dNt

=
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

)
dt+ σMWsVWdBt

+(V ((1 − ζM(t−))Ws−) − V (Ws−))dNt,

where σ2
M is the instantaneous variance of the risky asset’s return from the Brownian motion

increments. If we take the expectation of the integral form, and use the property of stochastic
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integrals, we may write using ζM ≡ E(ζM(t)|Dt = exp(κ) − 1) = 1 − eκ − (eν1 − eκ)w and

ζ0

M ≡ E(ζM(t)|Dt = 0) = (1 − eν2)w,

EsdV (Ws) =
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1 − ζM)Ws)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Ws))λ
)
dt.

Inserting into (64) gives the Bellman equation

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1 − ζM)Ws)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Ws))λ
}
.

The first-order condition (8) makes consumption a function of the state variable. Using

the maximized Bellman equation for all s = t ∈ [0,∞),

ρV (Wt) = u(C(Wt)) + (µMWt − C(Wt))VW + 1
2
σ2
MW

2
t VWW

+(V ((1 − ζM)Wt)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Wt))λ.

Use the envelope theorem to compute the costate

ρVW = (µMVW + (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2
MW

2
t VWWW

+(VW ((1 − ζM)Wt)(1 − ζM)q + VW ((1 − ζ0

M)Ws)(1 − ζ0

M)(1 − q) − VW (Wt))λ.

Collecting terms, we obtain

(ρ− µM + λ)VW = (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2
MW

2
t VWWW

+(VW ((1 − ζM)Wt)(1 − ζM)q + VW ((1 − ζ0

M)Ws)(1 − ζ0

M)(1 − q))λ. (65)

Using Itô’s formula, the costate obeys

dVW (Wt) = (µMWt − Ct)VWWdt + 1
2
σ2
MW

2
t VWWWdt+ σMWtVWWdBt

+(VW ((1 − ζM(t−))Wt−) − VW (Wt−))dNt

=
(
(ρ− µM + λ)VW − σ2

MWtVWW − VW ((1 − ζM)Wt)(1 − ζM)qλ

−VW ((1 − ζ0

M)Ws)(1 − ζ0

M)(1 − q)λ
)
dt

+σMWtVWWdBt + (VW ((1 − ζM(t−))Wt−) − VW (Wt−))dNt,

where we inserted the costate from (65). As a final step we insert the first-order condition

and obtain the Euler equation (9).
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A.1.3 A more comprehensive approach

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) +
1

dt
EsdV (Ws)

}

. (66)

Using Itô’s formula,

dV (Ws) =
(
((ws(µ− r) + r)Ws − Cs)VW + 1

2
w2
sσ

2W 2
s VWW

)
dt+ wsσWsVWdBt

+(V (Ws) − V (Ws−))dNt

=
(
((ws(µ− r) + r)Ws − Cs)VW + 1

2
w2
sσ

2W 2
s VWW

)
dt+ wsσWsVWdBs

+(V ((1 + (Js −Ds)wt− +Ds)Ws−) − V (Ws−))dNs.

Take the expectation of the integral form, and use the property of stochastic integrals,

EsdV (Ws) =
(
((ws(µ− r) + r)Ws − Cs)VW + 1

2
w2
sσ

2W 2
s VWW

+(E[V ((1 + (Js −Ds)ws +Ds)Ws)] − V (Ws))λ
)
dt

=
(
((ws(µ− r) + r)Ws − Cs)VW + 1

2
w2
sσ

2W 2
s VWW + (V ((eκ + (eν1 − eκ)ws)Ws)q

+V ((1 + (eν2 − 1)ws)Ws)(1 − q) − V (Ws))λ
)
dt.

The first-order conditions (14) and (15) make the controls a function of the state variable.

Using the maximized Bellman equation,

ρV (Wt) = u(C(Wt)) + ((µ− r)w(Wt)Wt + rWt − C(Wt))VW + 1
2
w(Wt)

2σ2W 2
t VWW

+
(
V ((eκ + (eν1 − eκ)w(Wt))Wt)q + V ((1 + (eν2 − 1)w(Wt))Wt)(1 − q)

−V (Wt)
)
λ. (67)

Use the envelope theorem to compute the costate

ρVW = ((µ− r)w(Wt) + r)VW + ((µ− r)w(Wt)Wt + rWt − C(Wt))VWW

+w(Wt)
2σ2WtVWW + 1

2
w(Wt)

2σ2W 2
t VWWW

+VW ((eκ + (eν1 − eκ)wt)Wt)(e
κ + (eν1 − eκ)wt)qλ

+VW ((1 + (eν2 − 1)wt)Wt)(1 + (eν2 − 1)wt)(1 − q)λ− VW (Wt)λ.

Collecting terms, we obtain

(ρ− ((µ− r)wt + r) + λ)VW = ((µ− r)wtWt + rWt − Ct)VWW

+w2
t σ

2WtVWW + 1
2
w2
t σ

2W 2
t VWWW

+VW ((eκ + (eν1 − eκ)wt)Wt)(e
κ + (eν1 − eκ)wt)qλ

+VW ((1 + (eν2 − 1)wt)Wt)(1 + (eν2 − 1)wt)(1 − q)λ.
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Using Itô’s formula, the costate obeys

dVW (Wt) = ((µ− r)wtWt + rWt − Ct)VWWdt+ 1
2
w2
t σ

2W 2
t VWWWdt+ wtσWtVWWdBt

+(VW ((1 + (Jt −Dt)wt− +Dt)Wt−) − VW (Wt−))dNt

=
(
(ρ− ((µ− r)wt + r) + λ)VW − w2

t σ
2WtVWW

−VW ((eκ + (eν1 − eκ)wt)Wt)(e
κ + (eν1 − eκ)wt)qλ

−VW ((1 + (eν2 − 1)wt)Wt)(1 + (eν2 − 1)wt)(1 − q)λ
)
dt

+wtσWtVWWdBt + (VW ((1 + (Jt −Dt)wt− +Dt)Wt−) − VW (Wt−))dNt,

where we inserted the costate from above. As a final step, we insert the first-order condition

for consumption to obtain the Euler equation (16).

A.1.4 Proof of Proposition 2.1

For constant relative risk aversion, θ, the utility function reads

u(Ct) =
C1−θ
t

1 − θ
, θ > 0. (68)

From (67) we have the maximized Bellman equation where we use functional equations from

first-order conditions (14) and (15),

C(Wt) = V
− 1

θ

W

w(Wt) =
C(Wt)

−θ

θC(Wt)−θ−1CWWt

µ− r

σ2
+
C((eκ + (eν1 − eκ)wt)Wt)

−θ

θC(Wt)−θ−1CWWt

eν1 − eκ

σ2
qλ

+
C((1 + (eν2 − 1)wt)Wt)

−θ

θC(Wt)−θ−1CWWt

eν2 − 1

σ2
(1 − q)λ.

We use an educated guess,

V̄ = C0
W 1−θ

t

1 − θ
, (69)

where V̄W = C0W
−θ
t , and V̄WW = −θC0W

−θ−1
t to solve the resulting equation. Note that

optimal consumption is linear in wealth, C(Wt) = C
−1/θ
0 Wt, which implies that the optimal

portfolio weight is constant and implicitly given by

w =
µ− r

θσ2
+ (eκ + (eν1 − eκ)w)−θ

eν1 − eκ

θσ2
qλ+ (1 + (eν2 − 1)w)−θ

eν2 − 1

θσ2
(1 − q)λ.

Using the result that w(Wt) = w is constant, and inserting the candidate policy function for

consumption into the maximized Bellman equation (67), we arrive at

ρC0
W 1−θ

t

1 − θ
=

C
− 1−θ

θ

0 W 1−θ
t

1 − θ
+ ((µ− r)wWt + rWt − C

− 1

θ

0 Wt)C0W
−θ
t − θ 1

2
w2σ2

C0W
1−θ
t

+
(
(eκ + (eν1 − eκ)w)1−θq + (1 + (eν2 − 1)w)1−θ(1 − q) − 1

)
C0
W 1−θ

t

1 − θ
λ.
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Defining µM ≡ (µ− r)w + r, σM ≡ wσ, ζM ≡ 1 − eκ − (eν1 − eκ)wt, and collecting terms,

ρ = C
− 1

θ

0 + (1 − θ)((µ− r)w + r − C
− 1

θ

0 ) − (1 − θ)θ 1
2
w2σ2

+
(
(eκ + (eν1 − eκ)w)1−θq + (1 + (eν2 − 1)w)1−θ(1 − q) − 1

)
λ

⇒ C0 =

(
ρ+ λ− (1 − θ)µM − (1 − ζM)1−θλ

θ
+ (1 − θ)1

2
σ2
M

)−θ

.

This proofs that the guess (69) indeed is a solution, and by inserting the guess together with

the constant, we obtain the policy functions for the portfolio weights and consumption.
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Table A.1: Calibrated model and the risk premium (endowment economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No Low High Low Low Low
disasters Baseline θ λ q µ̄ ρ

θ (coef. of relative
risk aversion) 4 4 3 4 4 4 4

σ̄ (s.d. of growth rate,
no disasters) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

ρ (rate of time
preference) 0.03 0.03 0.03 0.03 0.03 0.03 0.02

µ̄ (growth rate,
deterministic part) 0.025 0.025 0.025 0.025 0.025 0.020 0.025

λ (disaster probability) 0 0.017 0.017 0.025 0.017 0.017 0.017
q (default probability

in disaster) 0 0.4 0.4 0.4 0.3 0.4 0.4

1 − eν̄ (size of disaster) 0 0.4 0.4 0.4 0.4 0.4 0.4

1 − eκ (size of default) 0 0.4 0.4 0.4 0.4 0.4 0.4

Variables
Default risk 0 0.021 0.012 0.03 0.016 0.021 0.021
Disaster risk 0 0.031 0.019 0.046 0.036 0.031 0.031
Residual risk 0.002 0.002 0.001 0.002 0.002 0.002 0.002
Implicit risk premium 0.002 0.054 0.032 0.078 0.054 0.054 0.054

Expected market rate 0.128 0.06 0.067 0.028 0.06 0.04 0.05
Expected bill rate 0.126 0.031 0.051 -0.013 0.026 0.011 0.021
Market premium 0.002 0.029 0.016 0.041 0.033 0.029 0.029
Expected market rate,

conditional 0.128 0.066 0.074 0.038 0.066 0.046 0.056
Face bill rate 0.126 0.034 0.054 -0.009 0.028 0.014 0.024
Market premium, conditional 0.002 0.033 0.02 0.047 0.038 0.033 0.033
Sharpe ratio, conditional 0.08 1.641 0.996 2.366 1.901 1.641 1.641

Expected growth rate 0.025 0.016 0.016 0.012 0.016 0.011 0.016
Expected growth rate,

conditional 0.025 0.025 0.025 0.025 0.025 0.02 0.025
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Table A.2: Calibrated model and the risk premium (endowment economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No High High High Low Low
default Baseline σ̄ λ q 1 − eν̄ 1 − eκ

θ (coef. of relative
risk aversion) 4 4 4 4 4 4 4

σ̄ (s.d. of growth rate,
no disasters) 0.02 0.02 0.05 0.02 0.02 0.02 0.02

ρ (rate of time
preference) 0.03 0.03 0.03 0.03 0.03 0.03 0.03

µ̄ (growth rate,
deterministic part) 0.025 0.025 0.025 0.025 0.025 0.025 0.025

λ (disaster probability) 0.017 0.017 0.017 0.2 0.017 0.017 0.017
q (default probability

in disaster) 0 0.4 0.4 0.4 1 0.4 0.4

1 − eν̄ (size of disaster) 0.4 0.4 0.4 0.034 0.4 0.2 0.4

1 − eκ (size of default) 0.4 0.4 0.4 0.034 0.4 0.4 0.2

Variables
Default risk 0 0.021 0.021 0.003 0.052 0.007 0.01
Disaster risk 0.052 0.031 0.031 0.004 0 0.002 0.042
Residual risk 0.002 0.002 0.01 0.002 0.002 0.002 0.002
Implicit risk premium 0.054 0.054 0.062 0.009 0.054 0.01 0.054

Expected market rate 0.06 0.06 0.047 0.102 0.06 0.108 0.06
Expected bill rate 0.013 0.031 0.01 0.099 0.058 0.106 0.022
Market premium 0.047 0.029 0.037 0.002 0.002 0.003 0.038
Expected market rate,

conditional 0.066 0.066 0.054 0.108 0.066 0.112 0.066
Face bill rate 0.013 0.034 0.013 0.102 0.065 0.108 0.023
Market premium, conditional 0.054 0.033 0.041 0.006 0.002 0.003 0.043
Sharpe ratio, conditional 2.681 1.641 0.824 0.292 0.08 0.162 2.161

Expected growth rate 0.016 0.016 0.015 0.019 0.016 0.021 0.016
Expected growth rate,

conditional 0.025 0.025 0.024 0.025 0.025 0.025 0.025
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Table A.3: Calibrated model and the risk premium (production economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No High Low Low High High
disasters Baseline θ α δ λ |ν|

θ (coef. of relative
risk aversion) 4 4 6 4 4 4 4

α (output elasticity
of capital) 0.75 0.75 0.75 0.33 0.75 0.75 0.75

δ (capital depreciation,
deterministic part) 0.1 0.1 0.1 0.1 0.05 0.1 0.1

ρ (rate of time
preference) 0.05 0.05 0.05 0.05 0.05 0.05 0.05

σ (s.d. of stochastic
depreciation, no disasters) 0 0 0 0 0 0 0

σ̄ (s.d. of TFP growth) 0 0 0 0 0 0 0
µ̄ (growth rate TFP,

deterministic part) 0 0 0 0 0 0 0
λ (disaster probability) 0 0.017 0.017 0.017 0.017 0.02 0.017
1 − eν (size of disaster) 0 0.4 0.4 0.4 0.4 0.4 0.5

Variables
Implied knife-edge value ρ̄ 0.200 0.230 0.435 0.035 0.130 0.236 0.251

Implicit risk premium
steady state, conditional 0 0.024 0.034 0.014 0.027 0.028 0.045
zero wealth (left limit) 0 0.032 0.068 0.013 0.032 0.037 0.068

Market rate, steady state (gross) 0.150 0.131 0.116 0.147 0.077 0.128 0.122
Bill rate, steady state (gross) 0.150 0.107 0.081 0.133 0.051 0.101 0.078
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A.2 A model of growth under uncertainty

A.2.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs

{

u(Cs) +
1

dt
EsdV (Ws, As)

}

.

Using Itô’s formula yields

dV = VW (dWs − JsWs−dNt) + VAdAs + 1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt

+[V (Ws, As) − V (Ws−, As−)]dNt

= ((rs − δ)Ws + wLs − Cs)VWdt+ VWσWsdZs + VAµ̄Asdt+ VAσ̄AsdBs

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt+ [V (eνWs−, As−) − V (Ws−, As−)]dNt.

Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs

{
u(cs) + ((rs − δ)Ws + wLs − Cs)VW + 1

2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)

+VAµ̄As + [V (eνWs, As) − V (Ws, As)]λ}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (39) which makes optimal consumption a function of the state variables.

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At)) + ((rt − δ)Wt + wLt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ, (70)

where rt = r(Wt, At) and wLt = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt + wLt − Ct)VWW + (rt − δ)VW + 1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+VWWσ
2Wt + [VW (eνWt, At)e

ν − VW (Wt, At)]λ.

Collecting terms we obtain

(ρ− (rt − δ) + λ)VW = VAW µ̄At + ((rt − δ)Wt + wLt − Ct)VWW + 1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+σ2VWWWt + VW (eνWt, At)e
νλ.

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt+ VAW σ̄AtdBt +
1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
dt

+((rt − δ)Wt + wLt − Ct)VWWdt+ VWWσWtdZt + [VW (Wt, At) − VW (Wt−, At−)]dNt,
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where inserting yields

dVW = (ρ− (rt − δ) + λ)VWdt− VW (eνWt, At)e
νλ− σ2VWWWtdt+ VAWAtσ̄dBt + VWWWtσdZt

+[VW (eνWt−, At−) − VW (Wt−, At−)]dNt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (39) to obtain the Euler equation (40).

A.2.2 Proof of Proposition 3.1

The idea of this proof is to show that an educated guess of the value function, the maximized

Bellman equation (70) and the first-order condition (39) are both fulfilled. We guess that

the value function reads

V (Wt, At) =
C1W

1−θ
t

1 − θ
+ f(At). (71)

From (39), optimal consumption is a constant fraction of wealth,

C−θ
t = C1W

−θ
t ⇔ Ct = C

−1/θ
1 Wt.

Now use the maximized Bellman equation (70), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α
t , together with the transformationKt ≡ LWt,

and insert the solution candidate,

ρV (Wt, At) =
C

− 1−θ

θ

1 W 1−θ
t

1 − θ
+ ((rt − δ)Wt + wLt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ

⇔ ρ
C1W

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 W 1−θ
t

1 − θ
+ (αAtW

α−1
t Wt − δWt + (1 − α)AtW

α
t − C

−1/θ
1 Wt)C1W

−θ
t

−1
2
θC1W

1−θ
t σ2 − g(At) + (e(1−θ)ν − 1)

C1W
1−θ
t

1 − θ
λ,

where we defined g(At) ≡ ρf(At)− fAµ̄At−
1
2
fAAσ̄

2A2
t . When imposing the condition α = θ

and g(At) = C1At it can be simplified to

(ρ− (e(1−θ)ν − 1)λ)
C1W

1−θ
t

1 − θ
+ g(At) =

C
− 1−θ

θ

1 W 1−θ
t

1 − θ
+ (AtW

α−θ
t − δW 1−θ

t − C
−1/θ
1 W 1−θ

t )C1

−1
2
θC1W

1−θ
t σ2

⇔ (ρ− (e(1−θ)ν − 1)λ)W 1−θ
t = θC

−1/θ
1 W 1−θ

t − (1 − θ)δW 1−θ
t − 1

2
θ(1 − θ)W 1−θ

t σ2,

which implies that

C
−1/θ
1 =

ρ− (e(1−θ)ν − 1)λ+ (1 − θ)δ + 1
2
θ(1 − θ)σ2

θ
.

This proofs that the guess (71) indeed is a solution, and by inserting the guess together with

the constant, we obtain the optimal policy function for consumption.
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A.2.3 Proof of Proposition 3.5

The idea of this proof follows Section A.2.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1 − αθ
A−θ
t . (72)

From (39), optimal consumption is a constant fraction of income,

C−θ
t = C1W

−αθ
t A−θ

t ⇔ Ct = C
−1/θ
1 W α

t At.

Now use the maximized Bellman equation (70), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α, together with the transformationKt ≡ LWt,

and insert the solution candidate,

ρV (Wt, At) =
C

− 1−θ

θ

1 W α−αθ
t A1−θ

t

1 − θ
+ ((rt − δ)Wt + wLt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ,

which is equivalent to

(ρ− (e(1−αθ)ν − 1)λ)
C1W

1−αθ
t

1 − αθ
A−θ
t =

C
− 1−θ

θ

1 W α−αθ
t A1−θ

t

1 − θ
− θ

C1W
1−αθ
t

1 − αθ
µ̄A−θ

t

+
(

αAtW
α
t − δWt + (1 − α)AtW

α
t − C

−1/θ
1 W α

t At

)

C1W
−αθ
t A−θ

t

+1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

) C1W
1−αθ
t

1 − αθ
A−θ
t .

Collecting terms gives

(ρ− (e(1−αθ)ν − 1)λ) = (1 − αθ)
C

− 1−θ

θ
−1

1 W α−1
t At

1 − θ
− θµ̄+ (1 − αθ)AtW

α−1
t − (1 − αθ)δ

−(1 − αθ)C
−1/θ
1 W α−1

t At +
1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)

⇔ ρ+ θµ̄− 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)
+ (1 − αθ)δ =

(
θ

1 − θ
C

−1/θ
1 + 1

)

(1 − αθ)AtW
α−1
t ,

which has a solution for C
−1/θ
1 = (θ − 1)/θ and

ρ = (e(1−αθ)ν − 1)λ− θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)
− (1 − αθ)δ.

This proofs that the guess (72) indeed is a solution, and by inserting the guess together with

the constant, we obtain the optimal policy function for consumption.
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A.3 A model of growth under uncertainty with leisure

A.3.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs,Hs

{

u(Cs, Hs) +
1

dt
EsdV (Ws, As)

}

.

Using Itô’s formula yields

dV = VW (dWs − JsWs−dNt) + VAdAs + 1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt

+[V (Ws, As) − V (Ws−, As−)]dNt

= ((rs − δ)Ws +Hsw
H
s − Cs)VWdt+ VWσWsdZs + VAµ̄Asdt+ VAσ̄AsdBs

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt+ [V (eνWs−, As−) − V (Ws−, As−)]dNt.

Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs,Hs

{
u(Cs, Hs) + ((rs − δ)Ws +Hsw

H
s − Cs)VW

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
+ VAµ̄As + [V (eνWs, As) − V (Ws, As)]λ

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-

order conditions (52) and (53) which make optimal consumption and hours functions of the

state variables, Ct = C(Wt, At) and Ht = H(Wt, At), respectively.

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At), H(Wt, At)) + ((rt − δ)Wt +H(Wt, At)w
H
t − C(Wt, At))VW

+VAµ̄At +
1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ, (73)

where rt = r(Wt, At) and wLt = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt +Htw
H
t − Ct)VWW + (rt − δ)VW + 1

2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+VWWσ
2Wt + [VW (eνWt, At)e

ν − VW (Wt, At)]λ.

Collecting terms we obtain

(ρ− (rt − δ) + λ)VW = VAW µ̄At + ((rt − δ)Wt +Htw
H
t − Ct)VWW

+1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
+ σ2VWWWt + VW (eνWt, At)e

νλ.

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt+ VAW σ̄AtdBt +
1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
dt

+((rt − δ)Wt +Htw
H
t − Ct)VWWdt+ VWWσWtdZt + [VW (Wt, At) − VW (Wt−, At−)]dNt,
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where inserting yields

dVW = (ρ− (rt − δ) + λ)VWdt− VW (eνWt, At)e
νλ− σ2VWWWtdt+ VAWAtσ̄dBt + VWWWtσdZt

+[VW (eνWt−, At−) − VW (Wt−, At−)]dNt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (52) to obtain the Euler equation (55).

A.3.2 Proof of Proposition 3.5

The idea of this proof follows Section A.2.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1 − αθ
A−θ
t . (74)

From the first-order conditions (52) and (53), we obtain

C−θ
t (1 −Ht)

(1−θ)ψ = C1W
−αθ
t A−θ

t ,

ψC1−θ
t (1 −Ht)

(1−θ)ψ−1 = wHt C1W
−αθ
t A−θ

t ⇒ ψCt/(1 −Ht) = (1 − α)AtW
α
t H

−α
t .

Suppose that optimal hours are constant, Ht = H, then optimal consumption becomes

a constant fraction of income,

Ct = (1 − s)AtW
α
t H

1−α, 1 − s ≡ (1 − α)
1 −H

ψH
, ψ 6= 0.

Inserting everything into (73) gives

ρ
C1W

1−αθ
t

1 − αθ
A−θ
t =

C1−θ
t (1 −H)(1−θ)ψ

1 − θ
+ C1W

−αθ
t A−θ

t

{
AtW

α
t H

1−α − δWt − Ct
}

+VAµ̄At +
1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ (V (eνWt, At) − V (Wt, At))λ

=
(1 − s)1−θH(1−θ)(1−α)(1 −H)(1−θ)ψ

1 − θ
A1−θ
t W α−αθ

t

+C1W
α−αθ
t A1−θ

t H1−α − δC1W
1−αθ
t A−θ

t − (1 − s)C1W
α−αθ
t H1−αA1−θ

t

+
(
−θµ̄ + 1

2

(
θ(1 + θ)σ̄2 − αθ(1 − ασ)σ2

)) C1W
1−αθ
t

1 − αθ
A−θ
t

+(eν(1−αθ) − 1)λ
C1W

1−αθ
t

1 − αθ
A−θ
t .

Collecting terms, we may write

(
ρ + (1 − αθ)δ +

(
θµ̄− 1

2

(
θ(1 + θ)σ̄2 − αθ(1 − ασ)σ2

))
− (eν(1−αθ) − 1)λ

) C1W
1−αθ
t

1 − αθ
A−θ
t =

(
(1 − s)1−θH(1−θ)(1−α)(1 −H)(1−θ)ψ +

(
H1−α − (1 − s)H1−α

)
(1 − θ)C1

) A1−θ
t W α−αθ

t

1 − θ
.
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Hence, for ρ = ρ̄ and

C1 = −
(1 − s)1−θH(1−α)(1−θ)(1 −H)(1−θ)ψ

(1 − θ)H1−α − (1 − θ)(1 − s)H1−α
,

the constant saving rate is indeed the optimal solution. The optimal hours can be obtained

from the first-order condition for consumption

Ct(1 −H)−
1−θ

θ
ψ = C

−1/θ
1 W α

t At

⇔
1 − α

ψ
H−α(1 −H)1− 1−θ

θ
ψ = C

−1/θ
1 .

Inserting the condition for C1, we obtain
(

1 − α

ψ

)−θ

Hαθ(1 −H)−θ+(1−θ)ψ = −
(1 − s)1−θH(1−α)(1−θ)(1 −H)(1−θ)ψ

(1 − θ)H1−α − (1 − θ)(1 − s)H1−α

⇔
ψ

1 − α
= −

1 −H

(1 − θ)H − (1 − θ)(1 − α)(1 −H)/ψ
.

Collecting terms yields

ψ = −
(1 − α)(1 −H)

(1 − θ)H − (1 − θ)(1 − α)(1 −H)/ψ

⇔ −ψ(1 − θ)H = θ(1 − α)(1 −H)

⇔ H =
θ(1 − α)

θ(1 − α) − ψ(1 − θ)

which are admissible solutions if and only if 0 < H < 1, which holds for θ > 1.

A.3.3 Obtaining the reduced form

In order to keep notation simple, this section provides the full derivation for a deterministic

system. The complete derivation for the stochastic system is available on request from the

author. Observe that the system of ODEs reads

dCt = −
uC
uCC

(rt − ρ− δ) dt−
uCH
uCC

dHt,

dHt =
uHCuC − uCCuH

YHH/YHuHuCC + ū
(ρ− (rt − δ))dt

−
uCCuH

YHH/YHuHuCC + ū

YHK
YH

((rt − δ)Wt +Htw
H
t − Ct)dt,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt,

where we can neglect the first ODE because in equilibrium Ct = C(H(Wt)). We find that

dHt =
−(1 − θ)ψC−2θ

t (1 −Ht)
2(1−θ)ψ−1 − θψC−2θ

t (1 −Ht)
2(1−θ)ψ−1

YHH/YHθψC
−2θ
t (1 −Ht)2(1−θ)ψ−1 + ū

(ρ− (rt − δ))dt

−
θψC−2θ

t (1 −Ht)
2(1−θ)ψ−1

YHH/YHθψC
−2θ
t (1 −Ht)2(1−θ)ψ−1 + ū

YHK
YH

((rt − δ)Wt +Htw
H
t − Ct)dt,
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where

ū = (1 − θ)2ψ2C−2θ
t (1 −Ht)

2(1−θ)ψ−2 + (θψ2 − θ2ψ2 − ψθ)C−2θ
t (1 −Ht)

2(1−θ)ψ−2

=
(
(1 − θ)2ψ2 + θψ2 − θ2ψ2 − ψθ

)
C−2θ
t (1 −Ht)

2(1−θ)ψ−2

= ψ (ψ − θψ − θ)C−2θ
t (1 −Ht)

2(1−θ)ψ−2.

Hence, inserting ū and collecting terms yields

dHt =
−1

YHH/YHθ + ((1 − θ)ψ − θ) (1 −Ht)−1
(ρ− (rt − δ))dt

−
θ

YHH/YHθ + ((1 − θ)ψ − θ) (1 −Ht)−1

YHK
YH

((rt − δ)Wt +Htw
H
t − Ct)dt.

Inserting remaining partial derivatives yields,

dHt =
−ρ + rt − δ

−αθH−1
t + ((1 − θ)ψ − θ) (1 −Ht)−1

dt+
−θ(rt − αδ − αCt/Wt)

−αθH−1
t + ((1 − θ)ψ − θ) (1 −Ht)−1

dt

=
ρ− rt + δ + θ(rt − αδ − αCt/Wt)

αθH−1
t + (θ − (1 − θ)ψ) (1 −Ht)−1

dt.

To summarize, the reduced form description of the deterministic model can be written as

dHt =
ρ + (1 − αθ)δ − (1 − θ)rt − αθCt/Wt

αθH−1
t + (θ − (1 − θ)ψ) (1 −Ht)−1

dt

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt,

where Ct = C(H(Wt),Wt).
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Figure A.1: Risk premia in a production economy
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as a function of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.05, .75, ·, .1, .017, .4, 0) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as a function of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.05, .75, ·, .1, .017, .4, 1) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Figure A.2: Risk premia in a production economy
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as a function of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.03, .75, ·, .25, .017, .4, 0) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as a function of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.03, .75, ·, .25, .017, .4, 1) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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