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1 Introduction

Recently, the issue of the evaluation of volatility forecasts has received increasing

attention.1 With the advent of high-frequency (HF) data, volatility measurement

has undergone a substantial development to the extend that various techniques for

obtaining consistent volatility estimates under general assumptions are now available.2

Many studies have subsequently aimed to address the question of whether HF data

can also bring benefits in terms of improved volatility forecasts. The fact that ex-

post volatility is at best available as a proxy, has motivated Hansen & Lunde (2006)

and Patton (2009) to derive necessary and sufficient conditions for loss functions to

be robust to the presence of noise in the volatility measure. A number of papers

employ so-called economic evaluation criteria which can potentially fully circumvent

the need of having to know the true volatility ex-post. Recent studies include Fleming,

Kirby & Ostdiek (2001, 2003), Liu (2009), Şerban, Brockwell, Lehoczky & Srivastava

(2007), Clements, Doolan, Hurn & Becker (2009). Economic evaluation criteria involve

comparing realized Sharpe ratios, tracking error variance, variance of hedging errors,

etc. In this paper, we show that such criteria can be misleading in the sense that will

be formalized in the theoretical section, referring to the inability of these criteria to

rank forecasts correctly even asymptotically, as the number of observations on which

the comparison is based tends to infinity. The reason for this failure can be found in

the unconditional nature of the above-mentioned evaluation criteria. While volatility

models forecast the next-period (or multi-period) conditional volatility, the ex-post

comparison is based on an unconditional measure (say portfolio variance). The two

are not the same, meaning that what these criteria compare, is not what we have

forecast (although it is obviously related).

It might be argued that an economically meaningful loss function has more practical

appeal, and should not necessarily lead to the same ranking as a statistical crite-

rion, such as root mean squared forecast error. While this is a reasonable point, it

requires the econometrician to pose the optimization problem correspondingly, e.g.,

as a multiperiod problem. If the forecast which minimizes the economic loss is the

1See e.g., Andersen & Bollerslev (1998), Andersen, Bollerslev, Diebold & Labys (2003), Andersen,
Bollerslev, Christoffersen & Diebold (2006), among others.

2see, e.g., Hayashi & Yoshida (2005), Zhang, Mykland & Äıt-Sahalia (2005), Zhang (2006b), Zhang
(2006a), Griffin & Oomen (2006), Barndorff-Nielsen, Hansen, Lunde & Shephard (2008a), Barndorff-
Nielsen, Hansen, Lunde & Shephard (2008b), Barndorff-Nielsen, Hansen, Lunde & Shephard (2009),
Jacod, Li, Mykland, Podolskij & Vetter (2009), Christensen, Kinnebrock & Podolskij (2009), Voev
& Lunde (2007), Nolte & Voev (2007), among others.
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one which would minimize a standard statistical loss function (which would be the

case if the conditions in Hansen & Lunde (2006) are satisfied by the economic and

the statistical loss function), the sole aim of switching to an economically motivated

loss is to “translate” the differences in forecasting performance into more intuitive and

meaningful terms, e.g., losses/gains in basis points as in Fleming, Kirby & Ostdiek

(2003).

The paper is structured as follows: the next Section 2 looks at the theoretical aspect

of the problem, Section 3 contains results from a simulation study, Section 4 provides

an empirical application and Section 5 concludes.

2 Theory

We consider a risk-averse myopic investor who is maximizing expected utility on a

period-by-period basis within a mean-variance framework, and therefore requires a

forecast of future conditional volatility. Let us consider the global minimum variance

portfolio (GMVP) problem at each t (any suitable period of time, e.g., a day):

min
wt+1

w′
t+1Σ̂t+1|twt+1 s.t. ι′wt+1 = 1, (1)

where Σ̂t+1|t is a forecast of the covariance of the n×1 vector of returns rt+1, Σt+1, ι is

an n×1 vector of ones, and wt+1 is a portfolio allocation vector. The “t+1|t”notation

is used to denote forecasts conditional on some information set Ft. We analyze this

simple optimization problem for several reasons: it is not affected by a forecast of

the mean return and has an easy analytical solution. More importantly, it does not

imply that our investor is necessarily a variance minimizer: a version of the two-fund

separation result states that any mean-variance efficient portfolio can be constructed

as a linear combination of the minimum variance and the so called “slope” portfolios.

For the purposes of this paper, we distinguish between two forecasting “models”: the

oracle forecast which assumes that the investor possesses perfect foresight and knows

the true conditional covariance matrix Σt+1, and a (weakly) dominated forecast Σ̂t+1|t.
3

3In practice, the oracle forecast is not available. However, all results remain valid, if we assume that
the models are not asymptotically equivalent, i.e., they provide different forecasts. This assumption
can be violated, e.g., if we compare nested specifications which encompass the true data generating
process. Clark & McCracken (2001) discusses testing for equal predictive ability with nested models.
With volatility forecasting, recently the focus has been on comparing models using daily data to
models using high-frequency data. These are obviously non-nested.
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Note that volatility is not observable even ex-post, so in this case the oracle forecast is

not available even after rt+1 has been realized. Of course, as mentioned above, various

techniques based on high frequency (HF) data are available to consistently estimate

Σt+1. Denote by w∗
t+1 the portfolio weights based on the oracle forecast, i.e.,

w∗
t+1 = argmin

wt+1

w′
t+1Σt+1wt+1 s.t. ι′wt+1 = 1,

whose solution is given by w∗
t+1 =

Σ
−1

t+1
ι

ι′Σ−1

t+1
ι
, i.e., it depends exclusively on (the forecast

of) Σt+1. The dominated forecast Σ̂t+1|t is any forecast which produces an allocation

ŵt+1 6= w∗
t+1, that is necessarily such that w∗′

t+1Σt+1w
∗
t+1 ≤ ŵ′

t+1Σt+1ŵt+1.

Let us now conjecture that our investor rebalances his portfolio for each t = t0, . . . , T

(out-of-sample period), where we implicitly assume that a historical sample of daily or

higher frequency returns and possibly other variables of interest is available at t0 (in-

sample period) on which the investor bases his first forecast Σ̂t0+1|t0 . As time evolves,

the newly available data is incorporated in the information set Ft. We denote the

ex-post realized portfolio returns resulting from the oracle and the dominated forecast

by rp∗

t+1 ≡ w∗′

t+1rt+1 and rp̂
t+1 ≡ ŵ′

t+1rt+1, respectively.

Since Σt+1 is only available as a proxy, standard loss functions should be applied with

care (see Hansen & Lunde (2006), Patton (2009), and Laurent, Rombouts & Violante

(2009)). To have a more intuitive measure of forecasting ability, “economic”evaluation

criteria have been proposed in the literature, motivating the portfolio optimization

problem above. For our simple example, a common way to evaluate volatility forecasts

generated by various models, which avoids having to know Σt+1, would be to compare

the sample variances of the realized portfolio returns over the out-of-sample period,

defined as

V̂T [rp
t+1] =

1

T − t0

T−1
∑

t=t0

(

rp
t+1 − r̄p

T

)2
,

where p is a generic token (p = p∗ or p = p̂, for the oracle and dominated forecast,

respectively) and r̄p
T = 1

T−t0

∑T−1

t=t0
rp
t+1. Having computed the ex-post out-of-sample

portfolio variances, V̂T [rp
t+1], for the forecasting models under consideration, it is then

concluded that a given model produces better volatility forecasts, if the portfolio re-

turns it has generated have a smaller variance (possibly in some statistically significant

sense). We index the variance and mean estimators by T , because we consider their

asymptotic behavior as T → ∞.
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The question we pose, can be formulated as whether the following implication holds:

w∗
t+1, ŵt+1 : w∗′

t+1Σt+1w
∗
t+1 ≤ ŵ′

t+1Σt+1ŵt+1, ∀t = t0, . . . , T, (condition •)
⇒ plim

T→∞
V̂T [rp∗

t+1] ≤ plim
T→∞

V̂T [rp̂
t+1] as T → ∞, (implication ⋆)

that is, whether a model which implies portfolio compositions with a smaller condi-

tional variance for every period will also in the asymptotic (probability) limit have

generated the portfolio with the smallest ex-post unconditional variance. We consider

asymptotic behavior, as we want to abstract from the influence of estimation error

in V̂T [rp
t+1] and r̄p

T on the results. The reason for this is that while in small samples

incorrect ranking can occur due to estimation error, asymptotically a valid criterion

should rank the models correctly. In the terminology of Hansen & Lunde (2006), we

are interested in the objective-bias, while we abstract from sampling error. It is worth

emphasizing that in Hansen & Lunde (2006) and Laurent et al. (2009) it is the use of a

proxy, instead of the true volatility which is responsible for the possible inconsistency

in the model ranking. In this study, it is rather the fact that the considered evalua-

tion methods refrain from using any volatility proxy and look instead at unconditional

volatility which leads to the inconsistency. For this reason, the issue we are dealing

with here, does not fall into the theoretical framework of the two aforementioned

papers.

Let us denote the conditional mean of rt+1 by µt+1, Et[rt+1] = µt+1. For the estimator

of the unconditional variance of the returns of a generic portfolio p we have that

VT [rp
t+1] =

1

T − t0

T−1
∑

t=t0

(

rp
t+1 − r̄p

T

)2
=

1

T − t0

T−1
∑

t=t0

(

rp2

t+1 − 2rp
t+1r̄

p
T + r̄p2

T

)

=
1

T − t0

T−1
∑

t=t0

rp2

t+1 − 2r̄p
T

1

T − t0

T−1
∑

t=t0

rp
t+1 +

1

T − t0

T−1
∑

t=t0

r̄p2

T

=
1

T − t0

T−1
∑

t=t0

w′
t+1rt+1r

′
t+1wt+1 −

(

1

T − t0

T−1
∑

t=t0

w′
t+1rt+1

)2

, (2)

since rp2

t+1 = w′
t+1rt+1r

′
t+1wt+1 and −2r̄p

T
1

T−t0

∑T−1

t=t0
rp
t+1 + 1

T−t0

∑T−1

t=t0
r̄p2

T = −2r̄p2

T +
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T−t0
T−t0

r̄p2

T = −r̄p2

T . Using the continuous mapping theorem, it follows that4

plim
T→∞

VT [rp
t+1] = E[w′

t+1rt+1r
′
t+1wt+1] − E[w′

t+1rt+1]
2

= E[w′
t+1Et[rt+1r

′
t+1]wt+1] − E[w′

t+1Et[rt+1]]
2

= E[w′
t+1(µt+1µ

′
t+1 + Σt+1)wt+1] − E[w′

t+1µt+1]
2

= E[w′
t+1µt+1µ

′
t+1wt+1] + E[w′

t+1Σt+1wt+1] − E[w′
t+1µt+1]

2, (3)

where we have made use of the law of iterated expectations and the fact that wt+1 is

Ft-measurable. Setting vt+1 ≡ w′
t+1µt+1 we obtain

plim
T→∞

V̂T [rp
t+1] = E[w′

t+1Σt+1wt+1] + V[vt+1]. (4)

For the oracle and dominated forecast, (4) takes the form

plim
T→∞

V̂T [rp∗

t+1] = E[w∗′

t+1Σt+1w
∗
t+1] + V[v∗

t+1]

plim
T→∞

V̂T [rp̂
t+1] = E[ŵ′

t+1Σt+1ŵt+1] + V[v̂t+1],

with v∗
t+1 ≡ w∗′

t+1µt+1 and v̂t+1 ≡ ŵ′
t+1µt+1, respectively. Condition (•) ensures that

E[ŵ′
t+1Σt+1ŵt+1] ≥ E[w∗′

t+1Σt+1w
∗
t+1], but the relation between V[v̂t+1] and V[v∗

t+1] is

not determined. As expected, (⋆) is not satisfied, unless

E[ŵ′
t+1Σt+1ŵt+1] − E[w∗′

t+1Σt+1w
∗
t+1] ≥ V[v∗

t+1] − V[v̂t+1], (5)

i.e., unless the difference in performance is large enough to outweigh the difference in

the bias terms. If the conditional mean is constant at µ, V[vt+1] = µ′V[wt+1]µ and

the ambiguity is not resolved since then we still do not know the sign and magnitude

of µ′V[ŵt+1]µ − µ′V[w∗
t+1]µ. Only if µ = 0, we can be certain that (•) implies (⋆).

In (5), the left-hand side is always positive by assumption, while the right-hand side

can be both positive or negative. In case it is negative (the truly worse model has a

larger bias), it follows that the presence of a bias makes the better model look even

better, which is a “positive” distortion. Obviously, if the right-hand side is negative,

the truly better model has a larger bias and might eventually fare worse according to

the unconditional variance criterion. In practically relevant situations, we would not

4Throughout the paper, we assume that returns satisfy the mild regularity conditions required for a
law of large numbers to hold, see, e.g., White (2001)
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know which the truly better model is, so that we would be unable to say whether we

are facing the first or second distortion.

2.1 Economic evaluation criteria involving the mean

Even though the two-fund separation result motivates the interest in the global mini-

mum variance portfolio, often the problem (1) is deemed too simple to represent what

investors really do or care about. In Fleming, Kirby & Ostdiek (2001, 2003), for

example, the agent minimizes volatility subject to a target return or maximizes the

expected return subject to a given level of volatility. The problem can be formulated

as

min
wt+1

w′
t+1Σ̂t+1|twt+1 s.t. ι′wt+1 = 1, w′

t+1µ̂t+1|t = µp, (6)

where µ̂t+1|t is a mean forecast and µp is the target portfolio return. The constraint

ι′wt+1 = 1 is optional and if not imposed implies that there is a risk-free asset that

takes the weight 1 − ι′wt+1 as in, e.g., Fleming, Kirby & Ostdiek (2001, 2003). If the

constraint is imposed then all wealth is invested in the risky assets as in, e.g., Şerban

et al. (2007). A complication which arises here is the need of a mean forecast which

is usually extremely noisy and from the point of view of evaluating volatility forecasts

can be regarded as a nuisance parameter. Best & Grauer (1991) succinctly summarize

the problem: “When only a budget constraint is imposed on the investment problem,

the analytical results indicate that an MV-efficient portfolio’s weights, mean, and

variance can be extremely sensitive to changes in asset means.” From our perspective,

this implies that whether one has a good volatility forecast might not really matter

for the choice of weights. One can argue, however, that all models are treated equally

since the mean forecast is kept the same (e.g., at the sample mean of the data) and only

the volatility forecast eventually matters in a comparison. A concern that remains is

that a noisy mean forecast can clout the results to the extend that no conclusion is

possible regarding the quality of the volatility forecasts. To address this issue Fleming

et al. (2003) resort to Monte Carlo (MC) simulations in which the mean forecast is

drawn anew at each simulation run and the portfolio performance is evaluated across

the MC runs.

In this evaluation setup the investor is interested in obtaining the best mean-variance

trade-off, and so the model ranking can be based on the realized ex-post Sharpe ratio

6



of the portfolio given by

SRp
T =

r̄p
T − rf

√

V̂T [rp
t+1]

, (7)

where rf is the return on the risk-free asset, if there is one, or zero otherwise. If

the target mean return is chosen reasonably5 then the portfolio will likely be able to

match the required return and the results concerning the Sharpe ratio, will be driven

by the volatility. Thus, we expect to see the same distortions in the ranking as in the

GMVP case exacerbated by the uncertain mean forecast.

2.2 Implications and Remarks

An important result we obtained is that comparing unconditional portfolio variances

as a tool for gauging the forecasting ability of conditional volatility models depends

crucially on the behavior of the conditional mean of the return process. While at

short horizons (say intradaily or daily), µt = 0 can be a reasonable assumption,

at lower frequencies the mean is not negligible. Thus the objective-bias we derived

can be substantial, if we envision investors who rebalance their portfolios relatively

infrequently, which is not unreasonable if they face high transaction costs.

Another factor that can drive the magnitude of the objective-bias and remained some-

what hidden in the theoretical analysis is the number of assets in the portfolio n. The

objective-bias term can be written as

V[vt+1] = V

[

n
∑

i=1

wi,t+1µi,t+1

]

, (8)

where the subscript i stands for the ith element of the corresponding vector. Increasing

n by one implies 2n+1 additional terms in the sum: one variance and 2n covariances.

Generally, it is not possible to determine the sign of the sum of these additional terms

and while it might be negative, increasing n further cannot make the overall bias

non-positive, so that the theoretical lower bound is zero. In the other extreme, the

bias has no upper bound and can become arbitrarily large.

One of the reasons that the examined forecast evaluation criteria fail is that they

penalize for the variability of portfolio weights. This is easily seen if we assume that

µt is constant, implying V[vt+1] = µ′V[wt+1]µ. If the weights are constant, which would

5By “reasonably”, we mean that it is achievable given the data; e.g., targeting a return of 20% p.a.,
when the stocks in the portfolio return at most 10% would be unreasonable.
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be the case if we have a constant volatility forecast, then V[vt+1] = 0. The minimum

of the bias is thus achieved for a constant volatility model, which is unlikely to provide

a good forecast. This has interesting implications for the findings in the literature on

volatility forecasting. In Fleming et al. (2003), for example, it is documented that a

GARCH-type model using on HF data-based volatility estimates performs better (in

terms of an unconditional Sharpe ratio criterion) than its daily-data counterpart. It

is also noted that the coefficient on the innovation term is roughly twice larger for

the model using HF data. The consequence of this is that the forecasts from the HF

data-based model are more variable, capturing the variation in true volatility much

better, and thus the implied portfolio weights change more rapidly in order to adapt

to the changes in the volatility. Given our results, it is likely that the objective-

bias is larger for the HF-based model and thus the documented gains understate

the true gains from employing HF data. Thinking further along these lines, we can

conclude that documented economic gains resulting from the use of HF data, based

on unconditional portfolio performance, are generally understated. In many studies,

increased turnover is explicitly taken into account and it is examined what is the

maximal level of transaction costs that a given model can absorb to still realize net

gains compared to a benchmark. In this aspect, our analysis suggests that these cost

levels are underestimated, i.e., HF-based models are able to deliver gains at higher

levels of transaction costs, than previously found.

Interestingly, even if volatility is indeed constant, but we have variation in the con-

ditional mean, the bias is generally positive and correct ranking of the models is not

guaranteed. This reveals another source of failure, namely that the unconditional cri-

terion involves the variability of the conditional mean, which is not a factor playing a

role in the optimization problem (1) and thus should not affect the evaluation.

The question which arises given the failure of the unconditional criteria to rank con-

ditional volatility forecasts, is what we should do instead. If one is purely interested

in the ranking of the models, the answer is fairly straightforward: use a loss function,

satisfying the conditions in Hansen & Lunde (2006) and Laurent et al. (2009) in con-

junction with a good HF measure of realized volatility. What if we are interested in

some economic measure of improved performance, however? The suggested strategy

in this case would be to base the evaluation on conditional measures of portfolio per-

formance as in Chiriac & Voev (2009) and in the simulation and empirical study in

this paper. This, of course, implies that one still needs an ex-post measure of realized

volatility, which the unconditional criteria do not require. To our opinion, the use
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of an ex-post volatility measure is unavoidable, if we want to ensure correct model

ranking.

3 Simulation Study

In this simulation study, we analyze empirically the consequences of using the evalu-

ation criteria described in the previous section on the ranking of volatility forecasting

models. We simulate a 5-variate (n = 5) daily return series, with time varying co-

variance driven by a DCC (Engle (2002)) model. The mean equation is specified

as

rt = µt + εt

where µt is the conditional mean and

εt = Σ
1/2

t zt,

with zt a multivariate standard normal variable. Σ
1/2

t is the Cholesky decomposition

of the time varying conditional variance of rt. The conditional variance series evolve

as GARCH(1,1) processes

σ2

i,t = ωi + αε2

i,t−1 + βσ2

i,t−1, i = 1, . . . , n,

where σ2
i,t is the i-th diagonal element of Σt. The conditional correlation Rt from the

decomposition DtRtDt with Dt = diag(σ1,t, . . . , σn,t) is given by

Rt = (diag(Qt))
− 1

2 Qt(diag(Qt))
− 1

2 ,

where Qt is an n × n symmetric and positive definite matrix given by

Qt = (1 − θ1 − θ2)Q̄ + θ1ut−1u
′
t−1 + θ2Qt−1,

where ut = D−1
t εt and Q̄ is the unconditional covariance of ut. The parameters of the

data generating process (DGP) are (ω′, α, β, θ1, θ2)
′ = (0.1, 0.15, 0.2, 0.25, 0.3, 0.05, 0.9,

0.05, 0.9) and vech(Q̄) = (1, 0.5, 0.3, 0.4, 0.1, 1, 0.2, 0.35, 0.4, 1, 0.15, 0.6, 1, 0.25, 1)′. All

correlations are positive as typical with financial data (e.g., stocks) and the population

values of the unconditional volatility of εi,t are 22.36, 27.39, 31.62, 35.35 and 38.73

% p.a., i = 1, . . . , 5, respectively. The specification of the conditional mean function

9



µt plays a crucial role in the analysis, as it is the decisive factor in the objective-

bias. Often financial returns are assumed to have a constant conditional mean which

is justified from a theoretical perspective, since returns behave as semi-martingales if

markets are arbitrage-free. In our simulations, we initially experiment with two values

for µt: µt = 0 and µt = µ̄ = (0.02, 0.028, 0.04, 0.052, 0.06)′, corresponding to expected

returns of 5, 7, 10, 13 and 15 % p.a. In the third specification, we let µt follow a

VAR(1) process:

µt = c + Φrt−1,

with c = (I −Φ)µ̄ where the unconditional mean µ̄ = (0.02, 0.028, 0.04, 0.052, 0.06)′ is

as in the case with non-zero constant mean. The elements of the autoregressive matrix

Φ are drawn from a uniform distribution on [−0.2, 0.2], allowing for a low degree of

persistence.6

The oracle forecast Σ∗
t+1|t = Σt+1 implies portfolio weights w∗

t+1 which minimize the

objective function in (1). We compare these weights to a forecast of a misspecified

DCC model with the correct unconditional correlation Q̄ but with α̂ = θ̂1 = 0.02

and β̂ = θ̂2 = 0.96. The value of ω̂ is set to match the unconditional variance of rt:

ω̂ = V̂T [rt](1−α̂− β̂). The misspecified model is “smoother” than the true DGP in the

sense that it produces less variable time series covariance matrices, due to a smaller α

and lager β, resulting in smoother portfolio weights, denoted by ŵt+1. The reason to

choose a smoother misspecified model is that the true DGP is supposed to mimic a

series of covariance matrices constructed with high-frequency data. It is well known,

that such series are typically much more variable then GARCH processes with small

α and large β, as often obtained empirically (see Shephard & Sheppard (2009)).

In order to analyze how the variability of portfolio weights affects the evaluation in

a more controlled way, we include in the comparison 10 smoothed versions of the

oracle forecast given by Σ̃t+1|t = (1 − λs)Σt+1 + λsΣ̄, s = 1, . . . , 10, where λs = s/10

controls the smoothness and Σ̄ = V̂T [rt] is the unconditional covariance of returns.

The smoothed forecasts can be regarded as an application of shrinkage, whereby the

forecast is shrunk towards a constant matrix.7 The value s = 10 represents the extreme

case of constant volatility and thus constant portfolio weights. To summarize, we

6We note that the existence of transaction costs and other market imperfections can lead to a small
degree of return forecastability without violating absence of arbitrage.

7Note that while shrinkage is usually beneficial in realistic settings (see, e.g., Ledoit & Wolf (2004)),
here we shrink the oracle forecast and thus it represents a perturbation.
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consider 12 “models”: the oracle forecast, 10 smoothed versions of it, and a forecast

from a misspecified model. The results for the GMVP problem are collected in Table

1. The table is separated in three blocks corresponding to the different conditional

mean specifications. In each block, the first column is the realized portfolio variance

(the forecast evaluation criterion), the second column is the true model performance

in terms of expected conditional variance, the third column is the term representing

the objective-bias, and the last column is the sum of columns two and three which

given our theoretical analysis, should equal the value in the first column, apart from

MC variation. In the zero mean scenario, V[vt+1] is zero and thus not surprisingly,

the model ranking is correct. In the constant mean scenario, we see that the objective

bias term is increasing as the weight variability increases, but the difference in true

performance is large enough to offset this effect. As a result, while V[rp] is not a

valid evaluation criterion, it still ranks the oracle forecast as the best one. In the last

block, we observe that the portfolio variance fails dramatically to rank the models

correctly. The oracle forecast ranks 9th out of 12 due to the massive objective-bias.

The misspecified GARCH forecast turns out to be smooth enough and not too bad in

terms of real performance to rank higher than the oracle.

µt = 0 µt = µ̄ µt =VAR(1)

V[rp] E[w′Σw] V[v] Sum V[rp] E[w′Σw] V[v] Sum V[rp] E[w′Σw] V[v] Sum

p0 15.5626 15.5651 0 15.5651 15.5626 15.5651 0.0374 15.5652 16.1075 15.5651 4.1514 16.1092

p1 15.5664 15.5686 0 15.5686 15.5665 15.5686 0.0334 15.5686 16.0807 15.5686 4.0325 16.0824

p2 15.5768 15.5786 0 15.5786 15.5768 15.5786 0.0295 15.5786 16.0636 15.5786 3.9237 16.0651

p3 15.5932 15.5947 0 15.5947 15.5933 15.5947 0.0258 15.5947 16.0552 15.5947 3.8236 16.0566

p4 15.6157 15.6168 0 15.6168 15.6157 15.6168 0.0222 15.6168 16.0551 15.6168 3.7313 16.0564

p5 15.6441 15.6449 0 15.6449 15.6441 15.6449 0.0186 15.6450 16.0631 15.6449 3.6461 16.0642

p6 15.6789 15.6794 0 15.6794 15.6789 15.6794 0.0150 15.6794 16.0793 15.6794 3.5678 16.0802

p7 15.7204 15.7207 0 15.7207 15.7205 15.7207 0.0113 15.7207 16.1040 15.7207 3.4959 16.1048

p8 15.7697 15.7698 0 15.7698 15.7698 15.7698 0.0077 15.7698 16.1381 15.7698 3.4307 16.1386

p9 15.8280 15.8278 0 15.8278 15.8280 15.8278 0.0039 15.8278 16.1827 15.8278 3.3724 16.1831

p10 15.8972 15.8966 0 15.8966 15.8972 15.8966 0.0000 15.8966 16.2399 15.8966 3.3217 16.2400

p11 15.6528 15.6550 0 15.6550 15.6529 15.6550 0.0343 15.6550 16.0986 15.6549 3.7635 16.1009

Table 1: Performance results of GMVP’s. V[rp], E[w′Σw] and V[v] are shorthand notations for
V̂T [rp

t+1], E[w′
t+1Σt+1wt+1], and V[vt+1], respectively, with vt+1 ≡ w′

t+1µt+1. “Sum” is the sum
of E[w′Σw] and V[v]. p0 is the portfolio based on the oracle forecast, p1 – p10 are the smoothed
versions for s = 1, . . . , 10 (thus, p10 is the constant-weight portfolio), and p11 is the portfolio based
on the misspecified DCC model. The simulations are based on T = 800000. All numbers are in
annualized volatility terms, i.e., the reported values are

√
250 × daily value. Thus, the annualized

value of “Sum” is not equal to the sum of the annualized values of E[w′Σw] and V[v].
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In the following, we present the results for the evaluation criteria involving the mean,

referring to the portfolio optimization problem defined in (6). Here, apart from a

volatility forecast, the investor requires as an input a mean return forecast. We set

this equal to µ̄ =
∑T

t=1
rt, that is the sample average over the whole sample. The

reason for using the mean over the whole sample is that we want to minimize the

impact of estimation error in the mean on the optimization problem.8 The target

return, µp, is set to the cross-sectional average of µ̄. Tables 2 and 3 refer to the

case when portfolio is fully invested in the risky assets, i.e., imposing the constraint

ι′wt+1 = 1, while Tables 4 and 5 refer to the case when the latter constraint is not

imposed and the amount 1 − ι′wt+1 is invested in the risk free asset. In this last case

we set the return on the risk-free asset to be rf = µp − 0.02, i.e., the risk-free asset

returns 5% less on an annualized basis than the average return of the risky assets.

Tables 2 and 4 are structured in the same way as Table 1, while in Tables 3 and 5

we look at the realized portfolio mean return and Sharpe ratio. The Sharpe ratio

could now be used as a ranking criterion, since here we are not purely interested in

minimizing the portfolio variance, but rather in an optimal mean-variance trade-off.

8Note that this estimates the correct conditional mean in the constant mean scenarios. As for the
VAR(1) case, attempting to estimate Φ is rather hopeless, given its relatively small magnitude and
would most probably lead to rather imprecise forecasts, due to the large estimation uncertainty.
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µt = 0 µt = µ̄ µt =VAR(1)

V[rp] E[w′Σw] V[v] Sum V[rp] E[w′Σw] V[v] Sum V[rp] E[w′Σw] V[v] Sum

p0 16.2426 16.2544 0 16.2544 16.5087 16.5072 0.0029 16.5072 16.6432 16.3975 2.8569 16.6446

p1 16.2462 16.2576 0 16.2576 16.5115 16.5098 0.0026 16.5098 16.6255 16.4001 2.7348 16.6266

p2 16.2559 16.2669 0 16.2669 16.5193 16.5174 0.0023 16.5174 16.6150 16.4077 2.6217 16.6158

p3 16.2715 16.2823 0 16.2823 16.5319 16.5298 0.0020 16.5298 16.6111 16.4199 2.5169 16.6117

p4 16.2931 16.3035 0 16.3035 16.5491 16.5469 0.0017 16.5469 16.6135 16.4367 2.4197 16.6138

p5 16.3208 16.3309 0 16.3309 16.5710 16.5686 0.0015 16.5686 16.6221 16.4581 2.3301 16.6222

p6 16.3548 16.3646 0 16.3646 16.5977 16.5951 0.0012 16.5951 16.6370 16.4842 2.2479 16.6368

p7 16.3956 16.4053 0 16.4053 16.6296 16.6268 0.0009 16.6268 16.6583 16.5155 2.1735 16.6579

p8 16.4442 16.4536 0 16.4536 16.6671 16.6641 0.0006 16.6641 16.6866 16.5523 2.1075 16.6859

p9 16.5014 16.5106 0 16.5106 16.7111 16.7079 0.0003 16.7079 16.7227 16.5954 2.0510 16.7217

p10 16.5689 16.5779 0 16.5779 16.7626 16.7592 0.0000 16.7592 16.7676 16.6460 2.0054 16.7663

p11 16.3171 16.3291 0 16.3291 16.5833 16.5842 0.0027 16.5842 16.6621 16.4726 2.5270 16.6653

Table 2: Performance results of return targeting portfolios in the absence of a risk-free as-
set (weights sum up to one). V[rp], E[w′Σw] and V[v] are shorthand notations for V̂T [rp

t+1],
E[w′

t+1Σt+1wt+1], and V[vt+1], respectively, with vt+1 ≡ w′
t+1µt+1. “Sum” is the sum of E[w′Σw]

and V[v]. p0 is the portfolio based on the oracle forecast, p1 – p10 are the smoothed versions for
s = 1, . . . , 10 (thus, p10 is the constant-weight portfolio), and p11 is the portfolio based on the mis-
specified DCC model. The simulations are based on T = 800000. All numbers are in annualized
volatility terms, i.e., the reported values are

√
250 × daily value. Thus, the annualized value of

“Sum” is not equal to the sum of the annualized values of E[w′Σw] and V[v].

µt = 0 µt = µ̄ µt =VAR(1)

E[rp] V[rp] SRp E[rp] V[rp] SRp E[rp] V[rp] SRp

p0 0.4396 16.2426 0.0271 10.5357 16.5087 0.6382 10.3883 16.6432 0.6242

p1 0.4535 16.2462 0.0279 10.5387 16.5115 0.6383 10.3884 16.6255 0.6249

p2 0.4680 16.2559 0.0288 10.5424 16.5193 0.6382 10.3895 16.6150 0.6253

p3 0.4832 16.2715 0.0297 10.5469 16.5319 0.6380 10.3913 16.6111 0.6256

p4 0.4991 16.2931 0.0306 10.5522 16.5491 0.6376 10.3940 16.6135 0.6256

p5 0.5158 16.3208 0.0316 10.5583 16.5710 0.6372 10.3974 16.6221 0.6255

p6 0.5334 16.3548 0.0326 10.5652 16.5977 0.6365 10.4015 16.6370 0.6252

p7 0.5520 16.3956 0.0337 10.5729 16.6296 0.6358 10.4065 16.6583 0.6247

p8 0.5716 16.4442 0.0348 10.5816 16.6671 0.6349 10.4122 16.6866 0.6240

p9 0.5926 16.5014 0.0359 10.5913 16.7111 0.6338 10.4188 16.7227 0.6230

p10 0.6149 16.5689 0.0371 10.6023 16.7626 0.6325 10.4265 16.7676 0.6218

p11 0.4819 16.3171 0.0295 10.5254 16.5833 0.6347 10.3768 16.6621 0.6228

Table 3: Annualized realized ex-post means, standard deviations and Sharpe ratios of return
targeting portfolios in the absence of a risk-free asset (weights sum up to one). E[rp], V[rp] and
SRp are shorthand notations for ÊT [rp

t+1], V̂T [rp
t+1], and SR

p

T , respectively. The simulations are
based on T = 800000.
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µt = 0 µt = µ̄ µt =VAR(1)

V[rp] E[w′Σw] V[v] Sum V[rp] E[w′Σw] V[v] Sum V[rp] E[w′Σw] V[v] Sum

p0 14.0618 14.0775 0 14.0775 15.6595 15.6630 0.0030 15.6630 15.6499 15.4682 2.4215 15.6566

p1 14.0674 14.0825 0 14.0825 15.6639 15.6669 0.0027 15.6669 15.6346 15.4721 2.2892 15.6405

p2 14.0826 14.0971 0 14.0971 15.6757 15.6783 0.0024 15.6783 15.6294 15.4833 2.1708 15.6347

p3 14.1074 14.1213 0 14.1213 15.6946 15.6968 0.0021 15.6968 15.6338 15.5013 2.0654 15.6383

p4 14.1418 14.1551 0 14.1551 15.7203 15.7222 0.0018 15.7222 15.6471 15.5262 1.9725 15.6510

p5 14.1862 14.1988 0 14.1988 15.7531 15.7545 0.0015 15.7545 15.6692 15.5579 1.8922 15.6725

p6 14.2413 14.2532 0 14.2532 15.7930 15.7940 0.0012 15.7940 15.7003 15.5966 1.8250 15.7030

p7 14.3080 14.3193 0 14.3193 15.8408 15.8414 0.0009 15.8414 15.7409 15.6430 1.7716 15.7430

p8 14.3878 14.3984 0 14.3984 15.8973 15.8974 0.0006 15.8974 15.7918 15.6980 1.7335 15.7934

p9 14.4828 14.4927 0 14.4927 15.9637 15.9635 0.0003 15.9635 15.8544 15.7627 1.7123 15.8554

p10 14.5959 14.6051 0 14.6051 16.0422 16.0415 0.0000 16.0415 15.9307 15.8392 1.7105 15.9313

p11 14.1746 14.1885 0 14.1885 15.7664 15.7720 0.0028 15.7720 15.7144 15.5747 2.1473 15.7221

Table 4: Performance results of return targeting portfolios in the presence of a risk-free asset (unre-
stricted weights). V[rp], E[w′Σw] and V[v] are shorthand notations for V̂T [rp

t+1], E[w′
t+1Σt+1wt+1],

and V[vt+1], respectively, with vt+1 ≡ w′
t+1µt+1. “Sum” is the sum of E[w′Σw] and V[v]. p0 is the

portfolio based on the oracle forecast, p1 – p10 are the smoothed versions for s = 1, . . . , 10 (thus,
p10 is the constant-weight portfolio), and p11 is the portfolio based on the misspecified DCC model.
The simulations are based on T = 800000. All numbers are in annualized volatility terms, i.e., the
reported values are

√
250 × daily value. Thus, the annualized value of “Sum” is not equal to the

sum of the annualized values of E[w′Σw] and V[v].

µt = 0 µt = µ̄ µt =VAR(1)

E[rp] V[rp] SRp E[rp] V[rp] SRp E[rp] V[rp] SRp

p0 3.2110 14.0618 0.2284 5.9843 15.6595 0.3821 6.0386 15.6499 0.3859

p1 3.2423 14.0674 0.2305 5.9770 15.6639 0.3816 6.0281 15.6346 0.3856

p2 3.2727 14.0826 0.2324 5.9715 15.6757 0.3809 6.0195 15.6294 0.3851

p3 3.3024 14.1074 0.2341 5.9677 15.6946 0.3802 6.0125 15.6338 0.3846

p4 3.3314 14.1418 0.2356 5.9655 15.7203 0.3795 6.0071 15.6471 0.3839

p5 3.3598 14.1862 0.2368 5.9649 15.7531 0.3787 6.0031 15.6692 0.3831

p6 3.3878 14.2413 0.2379 5.9659 15.7930 0.3778 6.0006 15.7003 0.3822

p7 3.4154 14.3080 0.2387 5.9684 15.8408 0.3768 5.9995 15.7409 0.3811

p8 3.4425 14.3878 0.2393 5.9725 15.8973 0.3757 5.9998 15.7918 0.3799

p9 3.4694 14.4828 0.2396 5.9783 15.9637 0.3745 6.0015 15.8544 0.3785

p10 3.4960 14.5959 0.2395 5.9858 16.0422 0.3731 6.0048 15.9307 0.3769

p11 3.3158 14.1746 0.2339 5.9368 15.7664 0.3765 6.0121 15.7144 0.3826

Table 5: Annualized realized ex-post means, standard deviations and Sharpe ratios of return
targeting portfolios in the presence of a risk-free asset (unrestricted weights). E[rp], V[rp] and SRp

are shorthand notations for ÊT [rp
t+1], V̂T [rp

t+1], and SR
p

T , respectively. The simulations are based
on T = 800000.
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The conclusions we draw from Table 2 are very similar to the findings we obtained

for the GMVP case. In the constant mean scenarios, the minimum realized portfolio

variance is obtained for the oracle forecast. Again, we emphasize that for the case

µt = µ̄ results can easily change, if we increase the value of µ, because this could lead

to the objective-bias more than offsetting the difference in true performance. In the

case of time-varying mean, portfolio p3 has the smallest variance, indicating again the

failure of the realized ex-post portfolio variance to consistently rank the models. If

we use the Sharpe ratio to rank our models, the randomness of the realized return

affects the comparison gravely: the oracle forecast is never ranked first for any of

the conditional mean specifications. For the unconstrained portfolio, the Sharpe ratio

results in Table 5 are surprising: the Sharpe ratio is actually highest for the oracle

forecast exactly in the scenarios where the volatility fails as a comparison criterion.

In the zero mean case, where the volatility ranks the model correctly, the Sharpe

ratio ranks the oracle forecast last. These results reinforce the detrimental effect of

including the realized portfolio return as an input in criteria supposed to rank volatility

forecasts.

4 Empirical Study

To illustrate how volatility forecasting model evaluation is affected by using condi-

tional vs. an unconditional measures of portfolio performance in a real-world setting,

we use a dataset and a range of models used in Chiriac & Voev (2009). The data

consists of tick-by-tick bid and ask quotes from the NYSE Trade and Quotations

(TAQ) database sampled from 9:30 until 16:00 for the period 01.01.2000 – 30.07.2008

(T = 2156 trading days) on six highly liquid stocks: American Express Inc. (AXP),

Citigroup (C), General Electric (GE), Home Depot Inc. (HD), International Business

Machines (IBM) and JPMorgan Chase & Co (JPM).9 We employ the previous-tick

interpolation method, described in Dacorogna, Gençay, Müller, Olsen & Pictet (2001)

and obtain 78 intraday returns by sampling every 5 minutes. The daily series of real-

ized covariance (RC) matrices computed using the 5-minute returns and subsampling

are used as an input for the HF-data based models.10 The “benchmark” model is a

9We are grateful to Asger Lunde for providing us with the data.
10For details on the subsampled realized covariance estimator, we refer the reader to Chiriac & Voev

(2009), which also contains detailed description of the implementation of the forecasting models
which we very briefly sketch below. A full description of the models is not central to the issue at
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DCC specification, which only requires daily returns as an input. The four HF-based

models considered here are succinctly described in the following. To make use of the

long memory of volatility, Chiriac & Voev (2009) propose a multivariate ARFIMA

model (see Sowell (1989)), which is applied to the series of Cholesky factors of the

original RC series. At each step, the forecast of the Cholesky factors is “squared” to

ensure that the out-of-sample covariance forecast is positive definite. As an alternative

to the ARFIMA process, the second model uses HAR dynamics (see Corsi (2009)) on

the Cholesky factors. The positivity of the matrix forecast can also be guaranteed

by the Wishart Autoregressive (WAR) model of Gourieroux, Jasiak & Sufana (2009),

which constitutes the third model in our comparison. A HAR-type extension to the

original WAR specification completes the list of HF-data based models (see Bonato,

Caporin & Ranaldo (2009)). We use the following acronyms for the four HF-based

models: ARFIMA, HAR, WAR, and WAR-HAR, respectively.

For the purposes of forecast evaluation, we split the data into an in-sample pe-

riod (01.01.2000 – 31.12.2005, t0 = 1508) and an out-of-sample period (01.01.2006

– 30.07.2008) so that the model evaluation is based on T − t0 = 648 observations.

Obviously, sampling error will have to be accounted for, whenever we attempt to rec-

ognize whether a given model is significantly better than another one. Nevertheless,

as we shall see, the role of the objective bias is also rather pronounced. In order to

have some kind of benchmark loss function, we also rank the models with respect to

their root mean squared forecast error (RMSFE) based on the Frobenius norm11 of

the matrix forecast error

et+1 ≡ Σt+1 − Σ̂t+1|t, t = t0, . . . , T − 1, (9)

where Σ̂t+1|t is a forecast from one of the five volatility models and the true volatility

Σt is proxied by the subsampled RC matrix for day t. We note that the RMSFE

as a loss function is robust to the use of volatility proxy in the place of the true

unobservable volatility. In order to have a notion of statistically significant differences

in performance we rely on a recent methodology proposed by Hansen, Lunde & Nason

(2009), the model confidence set (MCS), which determines the set of models containing

the best one given a user-defined loss function and a level of confidence. Using the

MCS method12, we can attempt to distinguish whether a given model (or models)

hand here and would necessarily involve replications of large portions of the above mentioned study.
11The Frobenius norm of a real m × n matrix A is defined as ||A|| =

∑m

i=1

∑n

j=1
a2

ij .
12In terms of implementation, we use the Ox package MulCom v1.00 provided by the authors.
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significantly outperforms the rest given a RMSFE or a GMVP loss criterion. The

results are summarized in Table 6. Unfortunately, the true conditional mean of the

return series is unknown, so we cannot report the value of the bias term. Considering

the RMSFE criterion, the DCC is outperformed substantially by the HF-based models,

which is most likely due to the fact that it uses much less data, but could also be

attributed to its lack of long memory dynamics. The ARFIMA model is the only

model in the 95% MCS, although it seems to only marginally improve over the HAR

specification. The reasons for the differences in performance in the models is not

something we want to address here and is discussed at length in Chiriac & Voev

(2009). Focusing on the last two columns of the table, we recognize that using a

conditional portfolio variance criterion, the ARFIMA model is again the only model

in the 95% MCS. In comparison with the DCC, the ARFIMA model enables the

investor to construct a portfolio with a 0.7 % lower volatility on average. According

to the unconditional criterion, this difference is less than 0.05 % due to the presence

of objective-bias. A further drawback of the unconditional criteria in general, is that

they are not amenable to standard testing procedures for significance as there is no

underlying series of forecast errors. Thus, the MCS approach, or any other test for

equal or superior predictive ability, is not applicable.

It is instructive to compare the results of this small empirical study to the findings in

Fleming et al. (2003) related to volatility timing strategies (Table 4, Panel A in their

paper). In their study, the HF data-based model outperforms the model using daily

data in terms of unconditional Sharpe ratio, and still does so after accounting for the

randomness in the mean return.

Model RMSFE V[rp] E[w′Σw]

DCC 5.1991 13.9740 13.2236

ARFIMA 3.8971∗ 13.9282 12.5221∗

HAR 3.9398 13.9284 12.5299

WAR 4.9904 14.6427 12.8018

WAR-HAR 4.5967 14.3905 12.6770

Table 6: Root mean squared forecast error and annualized unconditional volatility and mean
of conditional volatility of GMVP’s based on covariance forecasts from the five conditional covari-
ance models in the first column. V[rp] and E[w′Σw] are shorthand notations for V̂T [rp

t+1] and
E[w′

t+1Σt+1wt+1], respectively. An asterisk (∗) signifies that the model belongs to the 95% MCS
of Hansen et al. (2009).
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Comparing the unconditional volatilities of portfolios generated by both models, how-

ever, reveals that they are indistinguishable at least up to one decimal point which is

the precision of the reported results. Given our analysis, we believe that not only is

the HF-data based model better, but it is potentially much better than found, which

would imply considerably higher fees that investors would be willing to pay to switch

from the daily to the HF model.

5 Conclusion

In this paper, we study the suitability of so-called economic criteria for evaluation

of volatility forecasts. The common feature of these criteria is that they are based

on the unconditional performance (volatility, mean, tracking error, etc.) of some

optimally chosen portfolios for which a forecast of the conditional covariance matrix

of the components is needed.

We show that generally such evaluation approaches do not ensure correct ranking,

due to their unconditional nature, which generates a source of objective-bias. This

bias is positively related to the variability of implied portfolio weights and condi-

tional mean of returns. The consequence is that a truly better conditional covariance

forecast implying more variable portfolio compositions can be ranked as inferior to a

worse forecast, if the penalty (bias) is large enough to outweigh the difference in true

performance.

Our theoretical results and simulations indicate that the behavior of the conditional

mean is a key driver of the objective-bias. Furthermore, we show that using more

sophisticated decision problems involving the mean return adds an additional source

of distortion in the evaluation, which is related to the sensitivity of mean-variance

efficient portfolios to changes in the mean of the assets.

Finally, the empirical study shows that the presence of objective-bias can significantly

affect the evaluation of volatility forecasting models in a realistic situation. Further-

more, the fact that the unconditional evaluation is only based on a single number and

not on a series of forecast errors, implies that statistical tests for equal or superior

predictive ability are not applicable.
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Zhang, L., Mykland, P. A. & Äıt-Sahalia, Y. (2005), ‘A tale of two time scales:

Determining integrated volatility with noisy high frequency data’, Journal of the

American Statistical Association 100, 1394–1411.

21



Research Papers 
2009 

 
 

 
 
 
2009-43: Lasse Bork, Hans Dewachter and Romain Houssa: Identification of 

Macroeconomic Factors in Large Panels 

2009-44: Dennis Kristensen: Semiparametric Modelling and Estimation: A 
Selective Overview 

2009-45: Kim Christensen, Silja Kinnebrock and Mark Podolskij: Pre-averaging 
estimators of the ex-post covariance matrix  

2009-46: Matias D. Cattaneo, Richard K. Crump and Michael Jansson: Robust 
Data-Driven Inference for Density-Weighted Average Derivatives 

2009-47: Mark Podolskij and Mathias Vetter: Understanding limit theorems for 
semimartingales: a short survey 

2009-48: Isabel Casas and Irene Gijbels: Unstable volatility functions: the 
break preserving local linear estimator 

2009-49: Torben G. Andersen and Viktor Todorov: Realized Volatility and 
Multipower Variation 

2009-50: Robinson Kruse, Michael Frömmel, Lukas Menkhoff and Philipp 
Sibbertsen: What do we know about real exchange rate non-
linearities? 

2009-51: Tue Gørgens, Christopher L. Skeels and Allan H. Würtz: Efficient 
Estimation of Non-Linear Dynamic Panel Data Models with 
Application to Smooth Transition Models 

2009-52: Torben G. Andersen, Dobrislav Dobrev and Ernst Schaumburg: Jump-
Robust Volatility Estimation using Nearest Neighbor Truncation 

2009-53: Florian Heinen, Philipp Sibbertsen and Robinson Kruse: Forecasting 
long memory time series under a break in persistence 

2009-54: Tue Gørgens and Allan Würtz: Testing a parametric function against 
a nonparametric alternative in IV and GMM settings 

2009-55: Michael Jansson and Morten Ørregaard Nielsen: Nearly Efficient 
Likelihood Ratio Tests for Seasonal Unit Roots 

2009-56: Valeri Voev: On the Economic Evaluation of Volatility Forecasts 

 


	Introduction
	Theory
	Economic evaluation criteria involving the mean
	Implications and Remarks

	Simulation Study
	Empirical Study
	Conclusion

