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Abstract. In an important generalization of zero frequency autore-
gressive unit root tests, Hylleberg, Engle, Granger, and Yoo (1990) developed
regression-based tests for unit roots at the seasonal frequencies in quarterly time
series. We develop likelihood ratio tests for seasonal unit roots and show that
these tests are “nearly effi cient”in the sense of Elliott, Rothenberg, and Stock
(1996), i.e. that their local asymptotic power functions are indistinguishable
from the Gaussian power envelope. Currently available nearly effi cient testing
procedures for seasonal unit roots are regression-based and require the choice
of a GLS detrending parameter, which our likelihood ratio tests do not.
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1. Introduction
Determining the number and locations of unit roots in non-annual economic time
series is a problem that has attracted considerable attention over the last couple of
decades. In a important generalization of the work of Dickey and Fuller (1979, 1981),
Hylleberg, Engle, Granger, and Yoo (1990, henceforth HEGY) developed regression-
based tests of the subhypotheses comprising the seasonal unit root hypothesis in a
quarterly context. Subsequent work has further generalized the HEGY tests in various
ways, including to models with seasonal intercepts and/or trends and to non-quarterly
seasonal models (e.g., Smith, Taylor, and Castro (2009)).
From the point of view of statistical effi ciency, the properties of the HEGY tests

are analogous to those of their zero frequency counterparts, the Dickey-Fuller tests. In
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Likelihood Ratio Seasonal Unit Root Tests 2

particular, in models without deterministic components the HEGY t-tests are “nearly
effi cient”in the sense of Elliott, Rothenberg, and Stock (1996, henceforth ERS), i.e.
their local asymptotic power functions are indistinguishable from the Gaussian power
envelope. However, the HEGY t-tests are asymptotically ineffi cient in models with
intercepts and/or trends. To improve power of seasonal unit root tests, Rodrigues
and Taylor (2007, henceforth RT) have extended the asymptotic power envelopes of
ERS and Gregoir (2006) to seasonal models and have developed feasible tests that are
nearly effi cient in seasonal contexts. As do their zero frequency counterparts due to
ERS, the nearly effi cient tests of RT involve so-called GLS detrending, implementation
of which requires the choice of a vector of “non-centrality”parameters. The purpose
of this paper is to propose nearly effi cient seasonal unit root tests that enjoy the
(aesthethically) appealing feature that they do not require the choice of such non-
centrality parameters.
To do so, we generalize the analysis of Jansson and Nielsen (2009, henceforth

JN), who propose nearly effi cient likelihood ratio tests of the zero frequency unit root
hypothesis, to models appropriate for testing for seasonal unit roots. Specifically, the
paper proceeds as follows. Section 2 is concerned with testing for seasonal unit roots
in quarterly time series in the simplest possible setting, namely a Gaussian AR(4)
model with standard normal innovations and with presample observations assumed to
be equal to their expected values. We develop likelihood ratio unit root tests in this
model and show that these tests are nearly effi cient. Section 3 discusses extensions to
models with serially correlated and/or non-Gaussian errors and to tests for seasonal
unit roots in non-quarterly time series. Proofs of our results are provided in Section
4.

2. Likelihood Ratio Tests for Seasonal Unit Roots
2.1. No Deterministic Component. Suppose {yt : 1 ≤ t ≤ T} is an observed
univariate quarterly time series generated by the zero-mean Gaussian AR(4) model

ρ (L) yt = εt, (1)

where ρ (L) is a lag polynomial of order four, εt ∼ i.i.d. N (0, 1) , and the initial
conditions are y−3 = . . . = y0 = 0.1 Following RT we assume that ρ (L) admits the
factorization

ρ (L) = (1− ρZL) (1 + ρNL)
(
1 + ρAL

2
)
, (2)

1The initial values assumption can be relaxed to max (|y−3| , . . . , |y0|) = oP

(√
T
)
without inval-

idating the asymptotic results reported in Theorem 1 below.
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where ρZ , ρN , and ρA are (unknown) parameters.
2

Under the quarterly unit root hypothesis

H0 : ρZ = 1, ρN = 1, ρA = 1,

the polynomial ρ (L) simplifies to ∆4 = 1 − L4, implying that {yt} is a quarterly
random walk process. Defining Hk

0 : ρk = 1 for k ∈ {Z,N,A} , the quarterly unit
root hypothesis H0 can be expressed as

H0 = HZ
0 ∩HN

0 ∩HA
0 .

The hypotheses HZ
0 and HN

0 correspond to a unit root at the zero and Nyquist
frequencies ω = 0 and ω = π, respectively, whileHA

0 yields a pair of complex conjugate
unit roots at the frequencies ω = π/2 (i.e., the annual frequency) and ω = 3π/2.
The likelihood ratio test statistic associated with the problem of testing H0 vs.

HZ
1,0 : ρZ < 1, ρN = ρA = 1 is given by

LRZ
T = maxρ̄Z≤1 LT (ρ̄Z , 1, 1)− LT (1, 1, 1) ,

where LT (ρZ , ρN , ρA) = −
∑T

t=1 [(1− ρZL) (1 + ρNL) (1 + ρAL
2) yt]

2
/2 is the log

likelihood function. Developing a likelihood ratio test of HZ
0 under the “as if” as-

sumption that ρN = ρA = 1 is analytically convenient, as LT (·, 1, 1) is a quadratic
function. Moreover, remark 3.2 of RT suggests that the large sample properties of
LRZ

T should be invariant with respect to local departures of ρN and/or ρA from unity.
Theorem 1 below confirms this conjecture and further shows that the test which
rejects for large values of LRZ

T is a nearly effi cient test of H
Z
0 vs. H

Z
1 : ρZ < 1.

By analogy with LRZ
T , define

LRN
T = maxρ̄N≤1 LT (1, ρ̄N , 1)− LT (1, 1, 1)

and

LRA
T = maxρ̄A≤1 LT (1, 1, ρ̄A)− LT (1, 1, 1) .

2In the notation of RT, we study a model with periodicity S = 4 and parameters ρZ , ρN , and ρA
given by ρZ = α0, ρN = α2, and ρA = α2

1, respectively. The local-to-unity parameters in Theorems
1 and 2 of this paper are related to those in (2.5) − (2.6) of RT as follows: cZ = c0, cN = c2, and
cA = c1 +O

(
T−1

)
.
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As defined, LRN
T is the likelihood ratio test statistic associated with the problem of

testing H0 vs. HN
1,0 : ρN < 1, ρZ = ρA = 1, but it will be shown below that the

test based on LRN
T is nearly effi cient when testing H

N
0 vs. HN

1 : ρN < 1. Again, the
asymptotic invariance of LRN

T with respect to local departures of ρZ and/or ρA from
unity is to expected in light of remark 3.2 of RT. Similarly, it turns out that a nearly
effi cient test of HA

0 vs. HA
1 : ρA < 1 can be based on LRA

T , the likelihood ratio test
statistic associated with the problem of testing H0 vs. HA

1,0 : ρA < 1, ρZ = ρN = 1.
To characterize the local-to-unity asymptotic behavior of the likelihood ratio sta-

tistics LRZ
T , LR

N
T , and LR

A
T , we proceed as in JN. For k ∈ {Z,N,A} , the likelihood

ratio statistic LRk
T admits a representation of the form

LRk
T = maxc̄≤0

[
c̄SkT −

1

2
c̄2Hk

T

]
, (3)

where the large-sample behavior of the pair
(
SkT , H

k
T

)
is well understood from the

work of RT (and others). As a consequence, we obtain the following result, in which

W k
ck

(r) =

∫ r

0

exp [ck (r − s)] dW k (s) , k = Z,N,A,

where WZ (·) , WN (·) , and WA (·) are independent Wiener processes of dimensions
1, 1, and 2, respectively.

Theorem 1. Suppose {yt} is generated by (1) . If cZ = T (ρZ − 1) , cN = T (ρN − 1) ,
and cA = T (ρA − 1) /2 are held fixed as T →∞, then the following hold jointly:

LRk
T →d maxc̄≤0 Λk

ck
(c̄) for k = Z,N,A,

where

Λk
ck

(c̄) = c̄ · tr
[∫ 1

0

W k
ck

(r) dW k
ck

(r)′
]
− 1

2
c̄2tr

[∫ 1

0

W k
ck

(r)W k
ck

(r)′ dr

]
.

Theorem 1 implies in particular that the local asymptotic properties of each LRk
T

depends on the local-to-unity parameters (cZ , cN , cA) only through ck. This result,
which is unsurprising in light of remark 3.2 of RT, provides a (partial) statistical
justification for developing tests of each Hk

0 under the “as if” assumption that the
parameters not under test are equal to unity, as it implies that LRk

T is asymptot-
ically pivotal under Hk

0 . In particular, the test which rejects when LR
k
T exceeds κ

has asymptotic null rejection probability given by Pr
[
maxc̄≤0 Λk

0 (c̄) > κ
]
under the
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assumptions of Theorem 1. Therefore, if α ≤ Pr
[
maxc̄≤0 Λk

0 (c̄) > 0
]
then the (asymp-

totic) size α test based on LRk
T has a critical value κ

k
LR (α) defined by the requirement

Pr
[
maxc̄≤0 Λk

0 (c̄) > κkLR (α)
]

= α.3

In addition to being asymptotically pivotal under Hk
0 , the statistic LR

k
T enjoys

the property that it can be used to perform nearly effi cient tests of Hk
0 vs. H

k
1 . In

the case of k ∈ {Z,N} , this optimality result follows from Theorem 3.1 of RT and
the discussion following Theorem 1 of JN. Moreover, a variant of the same argument
establishes optimality when k = A. For completeness, we briefly discuss the k = A
case here. In all cases, we can exploit the fact (also used in the proof of Theorem 1)
that maxc̄≤0 Λk

ck
(c̄) admits the representation

maxc̄≤0 Λk
ck

(c̄) =
min

(
tr
[∫ 1

0
W k
ck

(r) dW k
ck

(r)′
]
, 0
)2

2tr
[∫ 1

0
W k
ck

(r)W k
ck

(r)′ dr
] . (4)

The representation (4) shows that (for conventional significance levels) the test based
on LRA

T is asymptotically equivalent to the HEGY t-test, which in turn implies that
the likelihood ratio test is nearly effi cient because it follows from Gregoir (2006, Fig-
ure 1) and Theorem 3.1 of RT that the HEGY t-test is nearly effi cient in the absence
of deterministic terms.

Remark. For specificity we have only considered tests for a unit root at a single
frequency. Tests of joint hypotheses, such as H0, can be based on the sum of the
relevant single frequency statistics. It is an open question whether such tests are
nearly effi cient, but remark 3.3 of RT suggests that this might be the case.

2.2. Deterministics. To explore the extent to which the “near effi ciency”results
of the previous subsection extend to models with deterministics, we consider a model
in which {yt : 1 ≤ t ≤ T} is generated by the Gaussian AR(4) model

yt = β′dt + ut, ρ (L)ut = εt, (5)

where dt = 1 or dt = (1, t)′ , β is an unknown parameter, ρ (L) is parameterized as in
(2) , εt ∼ i.i.d. N (0, 1) , and u−3 = . . . = u0 = 0.4

In this case, the log likelihood function LdT (·) is conveniently expressed as
3The condition α ≤ Pr

[
maxc̄≤0 Λk0 (c̄) > 0

]
is satisfied at conventional significance levels since

Pr
[
maxc̄≤0 ΛZ0 (c̄) > 0

]
= Pr

[
maxc̄≤0 ΛN0 (c̄) > 0

]
≈ 0.6827 and Pr

[
maxc̄≤0 ΛA0 (c̄) > 0

]
≈ 0.6322.

4To conserve space we do not consider seasonal frequency intercepts and/or trends. Accommo-
dating such dt should be conceptually straightforward, but is left for future research.
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LdT (ρZ , ρN , ρA, β) = −1

2
(Yρ −Dρβ)′ (Yρ −Dρβ) ,

where, setting y−3 = . . . = y0 = 0 and d−3 = . . . = d0 = 0, Yρ and Dρ are matrices
with row t = 1, . . . , T given by ρ (L) yt and ρ (L) d′t, respectively.
The likelihood ratio test associated with the problem of testing H0 vs. HZ

1,0 rejects
for large values of

LRZ,d
T = maxρ̄Z≤1,β L

d
T (ρ̄Z , 1, 1, β)− LdT (1, 1, 1, β)

= maxρ̄Z≤1 LdT (ρ̄Z , 1, 1)− LdT (1, 1, 1) ,

where

LdT (ρZ , ρN , ρA) = maxβ L
d
T (ρZ , ρN , ρA, β) = −1

2
Y ′ρYρ +

1

2

(
Y ′ρDρ

) (
D′ρDρ

)−1 (
D′ρYρ

)
is the profile log likelihood function obtained by maximizing LdT (ρZ , ρN , ρA, β) with
respect to the nuisance parameter β. Analogously, the likelihood ratio statistics as-
sociated with tests of H0 against HN

1,0 and H
A
1,0 are given by

LRN,d
T = maxρ̄N≤1 LdT (1, ρ̄N , 1)− LdT (1, 1, 1)

and

LRA,d
T = maxρ̄A≤1 LdT (1, 1, ρ̄A)− LdT (1, 1, 1) ,

respectively.
As in the case of LRk

T , the large sample behavior of LR
k,d
T can be analyzed by

proceeding as in JN.

Theorem 2. Suppose {yt} is generated by (5) and suppose cZ = T (ρZ − 1) , cN =
T (ρN − 1) , and cA = T (ρA − 1) /2 are held fixed as T →∞.

(a) If dt = 1, then the following hold jointly:

LRk,d
T →d maxc̄≤0 Λk

ck
(c̄) for k = Z,N,A.
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(b) If dt = (1, t)′ , then the following hold jointly:

LRk,d
T →d maxc̄≤0 Λk

ck
(c̄) for k = N,A

and

LRZ,d
T →d maxc̄≤0 ΛZ,τ

cZ
(c̄) ,

where

ΛZ,τ
cZ

(c̄) = ΛZ
cZ

(c̄) +
1

2

[
(1− c̄)WZ

cZ
(1) + c̄2

∫ 1

0
rWZ

cZ
(r) dr

]2

1− c̄+ c̄2/3
− 1

2
WZ
cZ

(1)2 .

It follows from Theorem 2 that each LRk,d
T enjoys properties that are qualitatively

similar to those enjoyed by LRk
T in the model without deterministics. Specifically,

Theorem 2 implies that each LRk,d
T is asymptotically pivotal under Hk

0 . Moreover,
Theorem 3.2 of RT and the discussion following Theorem 2 of JN implies that LRk,d

T

can be used to perform nearly effi cient tests of Hk
0 vs. H

k
1 .

Simulated critical values κk,dLR(α) associated with LRk,d
T are reported in Table 1.

TABLE 1 ABOUT HERE

The profile log likelihood function LdT (ρZ , ρN , ρA) is invariant under transforma-
tions of the form yt → yt + b′dt, so that LR

k,d
T and any other test statistic that can

expressed as a functional of LdT (ρZ , ρN , ρA) shares this invariance property. It there-
fore makes sense to compare the local asymptotic power properties of the likelihood
ratio tests LRk,d

T with the Gaussian power envelopes for invariant tests derived in
ERS, Gregoir (2006), and RT.

FIGURE 1 ABOUT HERE

The local asymptotic power function (with argument c ≤ 0) of the size α likelihood
ratio test is given by Pr[maxc̄≤0 Λk

ck
(c̄) > κk,dLR (α)] in case of dt = 1 (any k) or

dt = (1, t)′ , k = N,A and by Pr[maxc̄≤0 ΛZ,τ
cZ

(c̄) > kZ,τLR (α)] in case of dt = (1, t)′ , k =

Z, where κk,dLR (α) satisfies Pr[maxc̄≤0 Λk,d
0 (c̄) > κk,dLR (α)] = α and κZ,τLR (α) satisfies

Pr[maxc̄≤0 ΛZ,τ
0 (c̄) > κZ,τLR (α)] = α. Figure 1 plots these functions for α = 0.05 in the

three cases: k ∈ {Z,N} without trend or k = N with trend (Panel A), k = A with or
without trend (Panel B), and k = Z with trend (Panel C). Also plotted in each panel
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of Figure 1 are the corresponding Gaussian power envelopes, which (for size α tests)

are given by Pr[Λk
ck

(c̄) > κk,dc̄ (α)]
∣∣∣
c̄=ck

in case of dt = 1 (any k) or dt = (1, t)′ , k =

N,A and by Pr[ΛZ,τ
cZ

(c̄) > κZ,τc̄ (α)]
∣∣∣
c̄=cZ

in case of dt = (1, t)′ , k = Z, where κk,dc̄ (α)

satisfies Pr[Λk,d
0 (c̄) > κk,dc̄ (α)] = α and κZ,τc̄ (α) satisfies Pr[ΛZ,τ

0 (c̄) > κZ,τc̄ (α)] = α.
The local asymptotic power functions of the likelihood ratio tests are indistinguishable
from the Gaussian power envelopes in each case, so that near optimality claims can
be made on the part of the likelihood ratio tests.

3. Extensions
The results of the previous section can be generalized in a variety of ways. This
section briefly discusses two such extensions.

3.1. Serial Correlation and Unknown Error Distribution. One natural ex-
tension is to relax the AR(4) specification and the normality assumption on the part
of the innovations {εt} . To that end, suppose {yt : 1 ≤ t ≤ T} is generated by the
model

yt = β′dt + ut, ρ (L) γ (L)ut = εt, (6)

where dt = 1 or dt = (1, t)′ , β is an unknown parameter, ρ (L) is parameterized as
in (2) , γ (L) = 1 − γ1L − . . . − γpLp is a lag polynomial of (known, finite) order p
satisfying min|z|≤1 |γ (z)| > 0, the initial conditions are u−p−3 = . . . = u0 = 0, and
the εt are i.i.d. errors from a distribution with mean zero and unknown variance σ2.
In this case, the Gaussian quasi-log likelihood function can be expressed as

LdT
(
ρZ , ρN , ρA, β;σ2, γ

)
= −T

2
log σ2 − 1

2σ2
(Yρ,γ −Dρ,γβ)′ (Yρ,γ −Dρ,γβ) ,

where, setting y−p−3 = . . . = y0 = 0 and d−p−3 = . . . = d0 = 0, Yρ,γ and Dρ,γ are
matrices with row t = 1, . . . , T given by ρ (L) γ (L) yt and ρ (L) γ (L) d′t, respectively.
The profile quasi-log likelihood function obtained by profiling out β is given by
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LdT
(
ρZ , ρN , ρA;σ2, γ

)
= maxβ L

d
T

(
ρZ , ρN , ρA, β;σ2, γ

)
= −T

2
log σ2 − 1

2σ2
Y ′ρ,γYρ,γ +

1

2σ2

(
Y ′ρ,γDρ,γ

) (
D′ρ,γDρ,γ

)−1 (
D′ρ,γYρ,γ

)
.

By analogy with JN, it seems natural to consider likelihood ratio-type test statistics
of the form

L̂R
Z,d

T = maxρ̄Z≤1 LdT
(
ρ̄Z , 1, 1; σ̂2

T , γ̂T
)
− LdT

(
1, 1, 1; σ̂2

T , γ̂T
)
,

L̂R
N,d

T = maxρ̄N≤1 LdT
(
1, ρ̄Z , 1; σ̂2

T , γ̂T
)
− LdT

(
1, 1, 1; σ̂2

T , γ̂T
)
,

L̂R
A,d

T = maxρ̄A≤1 LdT
(
1, 1, ρ̄A; σ̂2

T , γ̂T
)
− LdT

(
1, 1, 1; σ̂2

T , γ̂T
)
,

where σ̂2
T and γ̂T are plug-in estimators of σ

2 and γ =
(
γ1, . . . , γp

)′
, respectively.

The statistic L̂R
k,d

T is straightforward to compute, requiring only maximization
with respect to the scalar parameter ρ̄k. Proceeding as in the proof of Theorem 3 of
JN, it should be possible to show that if {yt} is generated by (6) , cZ = T (ρZ − 1) ,
cN = T (ρN − 1) , and cA = T (ρA − 1) /2 are held fixed as T →∞ and if(

σ̂2
T , γ̂T

)
→P

(
σ2, γ

)
, (7)

then

L̂R
k,d

T →d maxc̄≤0 Λk
ck

(c̄) for k = Z,N,A (8)

if dt = 1, while

L̂R
k,d

T →d maxc̄≤0 Λk
ck

(c̄) for k = N,A (9)

and

L̂R
Z,d

T →d maxc̄≤0 ΛZ,τ
cZ

(c̄) (10)
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when dt = (1, t)′ .

Remarks. (i) The consistency condition (7) is mild. For instance, it is satisfied
by

σ̂2
T =

1

T − p− 4

T∑
t=p+5

(∆4yt − η̂′TZt)
2
, γ̂T = (0, Ip) η̂T ,

where

η̂T =

(
T∑

t=p+5

ZtZ
′
t

)−1( T∑
t=p+5

Zt∆yt

)
, Zt = (1,∆4yt−1, . . . ,∆4yt−p)

′ .

(ii) The assumption u−p−3 = . . . = u0 = 0 made when deriving the quasi-log

likelihood function can be relaxed to max (|u−p−3| , . . . , |u0|) = oP

(√
T
)
without

invalidating (8)− (10) .

3.2. Non-Quarterly Models. Another natural extension is to consider a model
with periodicity S 6= 4. Following RT, a natural generalization of (5) is given by the
Gaussian AR(S) model

yt = β′dt + ut, ρ (L)ut = εt, (11)

where dt = 1 or dt = (1, t)′ , β is an unknown parameter, u1−S = . . . = u0 = 0,
εt ∼ i.i.d. N (0, 1) , and ρ (L) is parameterized as

ρ (L) = (1− ρZL) (1 + ρNL)

b(S−1)/2c∏
k=1

(
1− 2ρk cosωkL+ ρ2

kL
2
)

(S even) ,

ρ (L) = (1− ρZL)

b(S−1)/2c∏
k=1

(
1− 2ρk cosωkL+ ρ2

kL
2
)

(S odd) ,

where ωk = 2πk/S for k = 1, . . . , b(S − 1) /2c .
In perfect analogy with the quarterly case, the profile log likelihood function

implied by the model (11) can be expressed as
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−1

2
Y ′ρYρ +

1

2

(
Y ′ρDρ

) (
D′ρDρ

)−1 (
D′ρYρ

)
,

where, setting y1−S = . . . = y0 = 0 and d1−S = . . . = d0 = 0, Yρ and Dρ are matrices
with row t = 1, . . . , T given by ρ (L) yt and ρ (L) d′t, respectively. Tests of individual
unit root hypotheses can be based on the natural counterparts of the LRk,d

T statistics
considered in the quarterly case and Theorem 2 should generalize in a natural way to
the model (11).5 Specifically, the results for test statistics associated with ρZ and ρN
should coincide with those for LRZ,d

T and LRN,d
T in the quarterly case, while the test

statistics associated with ρk, k = 1, . . . , b(S − 1) /2c , should exhibit the same large
sample behavior as LRA,d

T does in the quarterly case.

4. Proofs
4.1. Proof of Theorem 1. Let

SZT =
1

T

T∑
t=1

yZt−1∆4yt, HZ
T =

1

T 2

T∑
t=1

(
yZt−1

)2
,

SNT =
1

T

T∑
t=1

yNt−1∆4yt, HN
T =

1

T 2

T∑
t=1

(
yNt−1

)2
,

and

SAT =
1

T/2

T∑
t=1

yAt−2∆4yt, HA
T =

1

(T/2)2

T∑
t=1

(
yAt−2

)2
,

where yZt = (1 + L) (1 + L2) yt, y
N
t = − (1− L) (1 + L2) yt, and yAt = − (1− L) (1 + L) yt.

The validity of (3) follows from the fact that the log likelihood function LT (·)
admits the expansions

LT (ρ̄Z , 1, 1) = LT (1, 1, 1) + T (ρ̄Z − 1)SZT −
1

2
[T (ρ̄Z − 1)]2HZ

T ,

LT (1, ρ̄N , 1) = LT (1, 1, 1) + T (ρ̄N − 1)SNT −
1

2
[T (ρ̄N − 1)]2HN

T ,

5The statistics derived in the current environment are similar to the LRk,dT statistics in the
sense that they can be expressed as maximizers of rational polynomial functions, so they should be
amenable to asymptotic analysis using a slight modification of the proof of Theorem 2.
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and

LT (1, 1, ρ̄A) = LT (1, 1, 1) +
T

2
(ρ̄A − 1)SAT −

1

2

[
T

2
(ρ̄A − 1)

]2

HA
T .

Under the assumptions of Theorem 1, the following hold jointly (e.g., RT):(
SkT , H

k
T

)
→d

(
Skck ,H

k
ck

)
, k = Z,N,A, (12)

where

Skck = tr

[∫ 1

0

W k
ck

(r) dW k
ck

(r)′
]
, Hk

ck
= tr

[∫ 1

0

W k
ck

(r)W k
ck

(r)′ dr

]
.

Theorem 1 follows from (3) , (12) , and the continuous mapping theorem (CMT)
because

LRk
T = maxc̄≤0

[
c̄SkT −

1

2
c̄2Hk

T

]
=

min
(
SkT , 0

)2

2Hk
T

→d

min
(
Skck , 0

)2

2Hk
ck

= maxc̄≤0 Λk
ck

(c̄) ,

where the second and third equalities use simple facts about quadratic functions.

4.2. Proof of Theorem 2. Because LdT (·) is invariant under transformations of
the form yt → yt + b′dt, we can assume without loss of generality that β = 0. The
proofs of parts (a) and (b) are very similar, the latter being slightly more involved,
so to conserve space we omit the details for part (a). Likewise, the proofs for k = N
and k = A are very similar, so to conserve space we omit the details for k = A.
Accordingly, suppose k ∈ {Z,N} and suppose dt = (1, t)′ . Let ykt be as in the proof

of Theorem 1 and define d̃ZTt = (1 + L) (1 + L2) d̃Tt and d̃NTt = − (1− L) (1 + L2) d̃Tt,
where d̃Tt = 1

4
diag(1, 1/

√
T )dt. The linear trend likelihood ratio statistic can be

written as LRk,d
T = maxc̄≤0 F

(
c̄, Xk

T

)
, where

Xk
T =

(
SkT , H

k
T , A

k
T , B

k
T

)
,

AkT =
[
AkT (0) , AkT (1) , AkT (2)

]
,



Likelihood Ratio Seasonal Unit Root Tests 13

Bk
T =

[
Bk
T (0) , Bk

T (1) , Bk
T (2)

]
,

for

AkT (0) =
T∑
t=1

∆4d̃Tt∆4yt, Bk
T (0) =

T∑
t=1

∆4d̃Tt∆4d̃
′
Tt,

AkT (1) =
1

T

T∑
t=1

(∆4d̃Tty
k
t−1+d̃kT,t−1∆4yt), Bk

T (1) =
1

T

T∑
t=1

(∆4d̃Ttd̃
k′
T,t−1+d̃kT,t−1∆4d̃

′
T,t),

AkT (2) =
1

T 2

T∑
t=1

d̃kT,t−1y
k
t−1, Bk

T (2) =
1

T 2

T∑
t=1

d̃kT,t−1d̃
k′
T,t−1,

and

F (c̄, x) = c̄s− 1

2
c̄2h+

1

2
N (c̄, a)′D (c̄, b)−1N (c̄, a)− 1

2
N (0, a)′D (0, b)−1N (0, a)

with

N (c̄, a) = N [c̄, a (0) , a (1) , a (2)] = a (0)− c̄a (1) + c̄2a (2) ,

D (c̄, b) = D [c̄, b (0) , b (1) , b (2)] = b (0)− c̄b (1) + c̄2b (2) .

It follows from standard results (e.g., RT) that, under the assumptions of Theorem
2,

Xk
T →d X k

ck
=
(
Skck ,H

k
ck
,Akck ,B

k
)
, k = Z,N,

where

AZcZ =

[(
Y

WZ
cZ

(1)

)
,

(
0

WZ
cZ

(1)

)
,

(
0∫ 1

0
rWZ

cZ
(r) dr

)]
,
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BZ =

[(
K 0
0 1

)
,

(
0 0
0 1

)
,

(
0 0
0 1/3

)]
,

ANcN =

[(
Y

WN
cN

(1)

)
,

(
0
0

)
,

(
0
0

)]
,

BN =

[(
K 0
0 1

)
,

(
0 0
0 0

)
,

(
0 0
0 0

)]
,

Y ∼ (ε1 + ε2 + ε3 + ε4) /4 is a random variable independent of
[
WZ (·) ,WN (·)

]
, and

K = 1/4 is a positive constant.
The result now follows as in the proof of Theorem 2 of JN.
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Table 1: Simulated critical values of the LRk,d
T statistic

T 80% 85% 90% 95% 97.5% 99% 99.5% 99.9%
Panel A: k ∈ {Z,N} without trend or k = N with trend

100 1.1378 1.4706 1.9299 2.6846 3.4110 4.3365 5.0151 6.5243
250 0.8910 1.1824 1.6127 2.3611 3.1074 4.0786 4.8000 6.4382
500 0.8164 1.0681 1.4491 2.1459 2.8709 3.8379 4.5631 6.2526

1000 0.7878 1.0231 1.3726 2.0119 2.6884 3.6152 4.3229 5.9702
∞ 0.7612 0.9824 1.3068 1.8831 2.4820 3.2909 3.9180 5.4025

Panel B: k = A with or without trend
100 0.6781 0.9006 1.2202 1.7806 2.3533 3.1132 3.6949 5.0436
250 0.6901 0.9161 1.2435 1.8200 2.4090 3.2034 3.8084 5.2228
500 0.6946 0.9229 1.2527 1.8333 2.4296 3.2338 3.8523 5.3037

1000 0.6977 0.9257 1.2560 1.8397 2.4393 3.2456 3.8653 5.3322
∞ 0.6998 0.9284 1.2604 1.8458 2.4495 3.2670 3.8966 5.3806

Panel C: k = Z with trend
100 2.9038 3.2898 3.8094 4.6485 5.4402 6.4342 7.1564 8.7342
250 2.6775 3.0598 3.5851 4.4521 5.2893 6.3596 7.1488 8.9060
500 2.5671 2.9327 3.4410 4.2938 5.1225 6.1984 7.0026 8.8210

1000 2.5078 2.8604 3.3510 4.1748 4.9841 6.0401 6.8267 8.6359
∞ 2.4541 2.7946 3.2650 4.0512 4.8223 5.8230 6.5795 8.3009

Note: Entries for finite T are simulated quantiles of LRk,d
T with εt ∼ i.i.d.N (0, 1) ,

t = 1, . . . , T. In Panel A it is the k = Z test that is simulated. Entries for T = ∞
are simulated quantiles of the corresponding asymptotic distributions, where Wiener
processes are approximated by 10, 000 discrete steps with standard Gaussian white
noise innovations. All entries are based on ten million Monte Carlo replications.
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Figure 1: Power envelope and asymptotic local power of seasonal unit root LR tests
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Note: Simulated power envelopes and asymptotic local power functions based on
one million Monte Carlo replications, where Wiener processes were approximated by
T = 10, 000 discrete steps with standard Gaussian white noise innovations.
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