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1 Introduction

Generalized method of moments (GMM) and its special cases instrumental variables (IV)

and two-stage least squares (2SLS) are frequently used to estimate parametric models in

econometrics. These models specify moments as functions of data and a finite-dimensional

parameter vector. The functional form is assumed to be known, apart from the parame-

ters. In many applications, it is desirable to test the validity of the assumed functional

form. In some cases there may be an obvious alternative model to test against. Often,

however, there are no obvious alternatives. In this paper, we develop a test of func-

tional form, which has power against models which specify the moments as functions of

data, a finite-dimensional parameter vector, and a real function (an infinite-dimensional

parameter vector).

Our test is based on the ideas of Aerts, Claeskens, and Hart (1999). They consid-

ered testing a parametric fit against a nonparametric alternative within several estima-

tion frameworks: maximum likelihood, quasi-maximum likelihood, and general estimating

equations. Their test is based on a sequence of LM test statistics, each designed to test

against a specific parametric alternative. The sequence nests the null model, and in the

limit it spans the class of models which can be written as functions of data, a finite-

dimensional parameter vector and a real function. The LM statistics are divided by their

degrees of freedom, and a single test statistic is constructed as the largest of these weighted

LM statistics.

In this paper we extend these ideas to the testing of models which are formulated

as restrictions on moment functions. Such models include regression models, models

estimated by IV and, more generally, models estimated by GMM. In particular, our

extension is applicable in overidentified models. There are two important new issues to

consider when extending the original test to a GMM framework, namely identification of

the model under the alternative and the selection of moment restrictions to use in the

construction of the LM statistics. We discuss two approaches to the selection issue. For

simplicity we shall refer to our extension as the GMM-ACH test.

Our test is relatively simple to implement. In particular, the asymptotic distribution
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and hence the asymptotic critical values of the test are known. Moreover, since the test is

based on LM statistics it is not necessary to estimate any alternative models, which is an

advantage in some applications. We anticipate that in most applications performing the

test involves, in principle, nothing more complicated than taking derivatives and inverting

matrices.

There already exists specification tests for models that are formulated as restrictions

on conditional moment functions (see Bierens, 1990; Whang, 2001; Donald, Imbens, and

Newey, 2003; Tripathi and Kitamura, 2003; Horowitz, 2006). Horowitz’s (2006) simula-

tion evidence suggests that his test has significantly better power than the other tests.

Implementing Horowitz’s test can be nontrivial, in part because it is not asymptotically

pivotal. This implies that the critical values must be computed specifically for each ap-

plication.

We compare the performance of our test to some of the existing tests in a Monte Carlo

study. The results confirm the finding in earlier papers regarding the performance of the

existing tests, namely, that the test by Horowitz tends to have the better power. Our

test, however, has power close to (and some cases better than) that of Horowitz’s test in

these simulations.

The paper is structured as follows. Section 2 introduces the GMM-ACH test in a simple

IV setting. Section 3 contains the general extension to the GMM setting. We develop the

test for the case where the infinite-dimensional parameter vector is an unknown function

of a real variable. We briefly discuss the extension to functions of several variables in the

concluding section. Section 4 presents examples. Section 5 concludes.

Throughout the paper, 0(a×b) denotes an a×b-dimensional matrix of 0s and I(j) denotes

the j-dimensional identity matrix. The symbol 0 is also used to denote a function which

maps the real line to the number 0.

2 A simple IV model

In this section, we use a simple IV setup to explain how the GMM-ACH test is constructed.

In the first subsection, we consider a version of the GMM-ACH test which uses the



3

minimum number of moment restrictions required for each LM statistic. In the second

subsection, we discuss a version which uses the same set of moment restrictions for all

LM statistics. In the last subsection we present the results of a Monte Carlo study.

2.1 Minimum number of moment restrictions

The objective is to test a given parametric model against a nonparametric alternative

model. Using subscript i to indicate a generic observation, let yi be a scalar left-hand

side variable, let xi be a scalar right-hand side variable, and let zi be a scalar instrument.

Assume n independent observations are available. In this section the parametric model

of interest is

yi = x′
0iβ

∗ + ui, E(ui|zi) = 0, β∗ ∈ R
2, (1)

where x0i = (1, xi)
′, β∗ is an unknown two-dimensional parameter vector and ui is an un-

observed random variable. The nonparametric alternative model is the general nonlinear

model given by

yi = x′
0iβ

∗ + γ∗(xi) + ui, E(ui|zi) = 0, β∗ ∈ R
2, γ∗ ∈ Γ, (2)

where γ∗ : R → R is a function and Γ is a set of continuous functions. We assume that

0 ∈ Γ, so that model (2) nests model (1). In terms of (2), the null hypothesis is that

γ∗ = 0 and the alternative hypothesis is that γ∗ �= 0.

The GMM-ACH test is based on four steps. The first step is to construct a sequence

of nested parametric alternative models which approximate the nonparametric model (2).

A series expansion of γ is used for this purpose. Let b1, b2, . . . be a sequence of basis

functions (bk : R → R for k = 1, 2, . . . ) and assume that for each γ ∈ Γ there are

coefficients αγ1, αγ2, . . . such that given any ε > 0,

P

(∣∣∣∣γ(xi) −
j∑

k=1

αγkbk(xi)

∣∣∣∣ > ε

)
→ 0 as j → ∞. (3)
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It is not difficult to satisfy (3). For example, if xi is bounded and bk(xi) = xk−1
i for k = 1,

2, . . . (a basis of power functions), then (3) follows from the Weierstrass theorem.1 The

sequence of nested parametric alternative models is based on the partial sums of the series

expansion. Define the functions g1, g2, . . . by

gj(xi, θj) =

j∑
k=1

θjkbk(xi), j = 1, 2, . . . , (4)

where θj = (θj1, . . . , θjj)
′ is a j-dimensional parameter vector. Condition (3) means that

γ∗ can be approximated arbitrarily well by gj(·, θj) by taking j large enough and choosing

the appropriate θj. Let θ∗1, θ∗2, . . . denote these “pseudo-true” parameter vectors. A

sequence of approximate alternative models can therefore be constructed as2

yi = x′
0iβ

∗ + gj(xi, θ
∗
j ) + ui, E(ui|zi) � 0, β∗ ∈ R

2, θ∗j ∈ R
j, j = 1, 2, . . . . (5)

The notation E(ui|zi) � 0 is short-hand for E(ui|zi) → 0 as j → ∞. In terms of (5), the

null hypothesis is that θ∗j = 0(j×1) for all j = 1, 2, . . . and the alternative hypothesis is

that θ∗j �= 0(j×1) for some j = 1, 2, . . ..

The second step in the GMM-ACH test concerns the identification of the parameters

in the null model and in the approximate alternative models. We have chosen to specify

the models using the conditional moment restriction E(ui|zi) = 0. We assume that this

conditional moment restriction identifies the parameters under the null as well as under

the alternative. In practice, if xi is continuously distributed, then it is convenient to

base estimation and testing on unconditional moment restrictions. Since E(ui|zi) = 0

implies E(uit(zi)) = 0 for any choice of (measurable) function t : R → R, arbitrarily

many unconditional moment restrictions can easily be constructed. At least 2 moment

restrictions are needed to identify and estimate β∗, and at least 2+ j moment restrictions

are needed to identify and test hypotheses about (β∗′, θ∗j
′)′. A natural choice of instrument

1For an introduction to the use of series in econometrics, see for example Pagan and Ullah (1999).
2In practice, it may happen that x0i and the basis functions used in the construction of gj are collinear.

Indeed, this happened in the power function basis example offered just above. Since we are not interested
in the latter per se, the offending terms may simply be omitted from gj .
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for identifying the coefficient on bk(xi) is bk(zi).

We proceed here by constructing an GMM-ACH test based on using the minimum

number of moment restrictions required in each calculation. In the next section we discuss

a version of the test which uses the same set of moment restrictions in all calculations.

Under the null, assume β∗ in (1) is identified by the two unconditional moment restrictions,

E
(
z0i(yi − x′

0iβ
∗)

)
= 0(2×1), β∗ ∈ R

2, (6)

where z0i = (1, zi)
′. Under the alternatives, assume that (β∗′, θ∗j

′)′ is identified by the

2 + j unconditional moment restrictions

E
(
zji(yi − x′

0iβ
∗ − gj(xi, θ

∗
j ))

) � 0(2+j×1), β∗ ∈ R
2, θ∗j ∈ R

j, j = 1, 2, . . . , (7)

where zji = (1, zi, b1(zi), . . . , bj(zi))
′ for j = 1, 2, . . ..

The third step in the GMM-ACH test is to calculate a statistic for testing the null

against each of the approximate alternative models. There are several statistics which

can be used to test model (1) against the models given in (5). Here we follow Aerts,

Claeskens, and Hart (1999) and use LM statistics. First we estimate the model un-

der the null by solving the empirical analogues of (6). That is, the estimator, β̃ =(
n−1

∑n
i=1 z0ix

′
0i

)−1(
n−1

∑n
i=1 z0yi

)
, is the solution in β to

n−1

n∑
i=1

z0i(yi − x′
0iβ) = 0(2×1). (8)

Then we construct an LM test based on the fact that if the null is true, then the empirical

analogues of (7) should be (approximately) satisfied when evaluated at the parameter

estimate obtained under the null; that is, at β = β̃ and θj = 0(j×1). Let Mj denote the

empirical moments evaluated at the estimator obtained under the null; that is,3

Mj = n−1

n∑
i=1

zji(yi − x′
0iβ̃), j = 0, 1, . . . . (9)

3For simplicity the dependence of Mj (and other random matrices defined below) on n is suppressed
in the notation.
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Note that by construction the first two components of Mj are 0. For given j, the LM sta-

tistic has the form Rj = M ′
jVar(Mj)

−Mj, where Var(Mj)
− is a generalized inverse of the

variance matrix of Mj or an estimate of that matrix. Define xji = (1, xi, b1(xi), . . . , bj(xi))
′

and the matrices

Aj = −n−1

n∑
i=1

zjix
′
ji, j = 0, 1, . . . (10)

and

Bj =
1

n

(
n−1

n∑
i=1

(yi − x′
0iβ̃)2zjiz

′
ji

)
, j = 0, 1, . . . . (11)

Define also the matrices

Hj =

[
0(j×2) I(j)

]
, j = 1, 2, . . . . (12)

Then the LM test statistics can be defined as4

Rj = M ′
j(A

−1
j )′H ′

j

(
HjA

−1
j Bj(A

−1
j )′H ′

j

)−1
HjA

−1
j Mj, j = 1, 2, . . . (13)

Given j, Rj has an asymptotic χ2
j -distribution under the null. For a discussion of this

particular variant of the LM statistic, see Section 3 and Appendix A.

The fourth and final step in the GMM-ACH test is to construct an overall test statistic

by taking the maximum over a sequence of weighted LM statistics. The weights are the

reciprocal of the degrees of freedom of the individual statistics. Specifically, the GMM-

ACH test statistic is

Sr = max
1≤j≤r

(Rj/j), (14)

4The simple IV setup with exact identification is almost a special case of the GEE setup considered
by Aerts, Claeskens, and Hart (1999). Their LM statistic is valid only if Aj is symmetric (e.g. if zi = xi).
They stated the LM statistic in a different form. Let [X]j denote the lower right j × j-submatrix of the
(2 + j) × (2 + j)-matrix X or the last j elements of the (2 + j)-vector X, then Rj can be expressed as
Rj = [Mj ]′j [A

−1
j ]j

(
[A−1

j BjA
−1
j ]j

)−1[A−1
j ]j [Mj ]j .
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where r is treated as a constant.5 In Section 3, we argue that the distribution of Sr under

the null converges, as r → ∞ and n → ∞, to a distribution which does not depend on any

unknown population characteristics. Hart (1997, p178) tabulated this distribution, and

the 1%, 5% and 10% critical values are 6.75, 4.18 and 3.22. The requirement that r → ∞
is not important; Aerts, Claeskens, and Hart (1999, p872) claimed that the asymptotic

approximation is usually fine for critical values less than 10% as long as r > 5.

The weighting of the LM statistics means that the ordering of the terms in the series

approximation matters for the numerical value of the GMM-ACH test statistic. This issue

also arises in nonparametric estimation based on series. The advice from that literature

is to ensure that “important terms” are at the beginning of the series (see e.g. Gallant,

1981).

2.2 Same set of moment restrictions

The version of the GMM-ACH test presented above is based on using the minimum

number of moment restrictions required to identify the parameters under the null and

the alternative hypotheses. The literature on hypothesis testing in IV and GMM settings

(e.g. Engle, 1984; Newey and McFadden, 1994) usually recommends using the same set

of moment restrictions under both the null and the alternative. In this case, (6) and (7)

are replaced by

E
(
zri(yi − x′

0iβ
∗)

)
= 0(2+r×1), β∗ ∈ R

2, (15)

and

E
(
zri(yi − x′

0iβ
∗ − gj(xi, θ

∗
j ))

) � 0(2+r×1), β∗ ∈ R
2, θ∗j ∈ R

j, j = 1, . . . , r. (16)

5In a likelihood framework, rejecting the null if Sr is large is equivalent to rejecting the null if the
Akaike Information Criterion (AIC) of one of the alternative models is sufficiently larger than the AIC of
the null model. For further discussion of the connection between the GMM-ACH and the AIC statistics,
see Aerts, Claeskens, and Hart (1999).



8

Except in the case where j = r there are more equations than unknown parameters in

(15) and (16).

The 2SLS estimator, β̃, of β∗ based on (15) is

β̃ = (A′
0WrA0)

−1A′
0Wr

(
n−1

n∑
i=1

zriyi

)
, (17)

where A0 = −n−1
∑n

i=1 zrix
′
0i, and the weight matrix is Wr =

(
n−1

∑n
i=1 zriz

′
ri

)−1
. For

each j, LM statistics for testing θ∗j = 0(j×1) against θ∗j �= 0(j×1) using (16) can be con-

structed as

Rj = M ′
rWrAjJjA

′
jWrMr, j = 1, 2, . . . . (18)

where

Mr = n−1

n∑
i=1

zri(yi − x′
0iβ̃), (19)

Aj = −n−1

n∑
i=1

zrix
′
ji, j = 0, . . . , r, (20)

Br =
1

n

(
n−1

n∑
i=1

(yi − x′
0iβ̃)2zriz

′
ri

)
, (21)

Cj = (A′
jWrAj)

−1A′
jWrBrWrAj(A

′
jWrAj)

−1, j = 1, . . . , r, (22)

Jj = (A′
jWrAj)

−1H ′
j

(
HjCjH

′
j

)−1
Hj(A

′
jWrAj)

−1, j = 1, . . . , r, (23)

and Hj is defined in (12). Finally, the GMM-ACH statistic is Sr = max1≤j≤r(Rj/j), as

before.

The asymptotic distributions of the LM statistics and the GMM-ACH statistic are

the same as in the previous section. Detailed arguments are given in Section 3 and

Appendix A.

When the minimum number of moment restrictions are used, the LM statistics are

large if the additional instruments in zji are correlated with the residuals from the null
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model. The LM statistics do not depend on the last j components of xji. When the same

set of moment restrictions are used, zri is fixed and there are no additional instruments.

The LM statistics are large if the columns in Aj corresponding to the additional regressors

in xji are not orthogonal to the weighted empirical moments from the null model, WrMr.

Since the first depends on additional instruments and the other on additional regressors,

the two versions of the test may have different power properties. The next subsection

presents a small Monte Carlo study which compares the two versions of the GMM-ACH

test.

2.3 A small Monte Carlo study

In the remainder of this section we present and discuss simulation results on the finite-

sample behavior of several versions of the GMM-ACH test for the simple IV model. We

consider both the test based on the minimum number and on the same set of moment

restrictions, and we calculate the tests using both power and Fourier flexible form bases

in the series approximation. We compare the GMM-ACH tests with the tests developed

by Donald, Imbens, and Newey (2003) and Horowitz (2006), as well as with simple ad

hoc t and LM tests.

The test by Donald, Imbens, and Newey (2003) is based on the well-known Sargan

(Hansen) test for overidentifying restrictions. In general, the Sargan test does not have

power against nonparametric alternatives. Donald, Imbens, and Newey modified the

Sargan test by letting the number of overidentifying restrictions depend on the sample

size. As the sample size increases, the test gains power against a larger set of alternatives.

The additional moment restrictions are generated from a conditional moment restriction,

as described in Section 2.1.

Horowitz (2006) developed a test based on estimating the difference between the para-

metric null model and the nonparametric alternative. He proved that the power of his

test is arbitrarily close to 1 uniformly over a class of alternatives whose distance from the

null hypothesis is of order n−1/2.

Other specification tests in the context of GMM estimation have been developed by
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Bierens (1990) and Tripathi and Kitamura (2003).6 These test have inferior power proper-

ties in the simulations conducted by Horowitz (2006), and for simplicity we do not report

on them here.

As a benchmark, we report a simple t test based on the model obtained by adding

one additional term to the null model. Since in most cases this alternative coincides with

the data-generating process, we expect this t test to have very good power properties. In

practice, the data-generating process is likely to be more complicated and we would then

expect a t test to have less favorable power properties.

Finally, to illustrate the effect of taking the maximum of weighted LM test statistics

against a sequence of parametric alternatives, we also report on the properties of an

ordinary LM test against the largest (rth) parametric alternative.

The designs, and some of the results, are taken from Horowitz (2006). The data-

generating process for all these experiments is

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ui, (24)

xi = Φ
(
ρv1i + (1 − ρ2)1/2v2i

)
, (25)

zi = Φ(v1i), (26)

ui = 0.2(ηv2i + (1 − η2)1/2v3i), (27)

where Φ denotes the standard normal distribution function, v1i, v2i and v3i are independent

standard normal random variables, and β0, β1, β2, β3, ρ and η are scalar parameters which

vary across designs.

The results are shown in Table 1. Technical details of the implementation are given in

the table notes. The results in the first part of the table show that the different versions

of the GMM-ACH test have good level control. The only exception is the design where

the GMM-ACH test is based on 2SLS and a power function basis. In that design the

GMM-ACH test rejects too much and, perhaps surprisingly, so does the t test. In most

other cases the level is correct within Monte Carlo sampling error (±1.4 percentage point

6See also Whang (2001).
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for a 5% test) or it is too low. This may cause lower power.

The second part of Table 1 shows that the GMM-ACH tests have powers comparable

to Horowitz’s test in these designs, and in some cases even better power. The test by

Donald, Imbens, and Newey has significantly lower powers in most of the designs. Notice

also that the idea of combining a sequence of LM test statistics into the GMM-ACH test

generally has a positive effect on power. For many of the designs, there is a power loss of

about 20 percentage points when doing a single LM test rather than doing the GMM-ACH

test.

In sum, it appears that the GMM-ACH test has good properties. The level is well

controlled, and the power is close to that of Horowitz’s test and much better than Donald,

Imbens, and Newey’s test. A power basis seems to yield better power than a Fourier

flexible form basis. However, this is not surprising given that the data generating process

is polynomial. The simulations do not show a clear favorite between using the minimum

number or the same set of moment restrictions in the GMM-ACH test. Finally, we note

that the power of the GMM-ACH test is generally higher than the power of the ad hoc

LM test.

3 A GMM-based specification test

The previous section presented the main ideas of the GMM-ACH test in the context of

a simple linear IV model. In this section we develop the GMM-ACH test for a general

nonlinear model identified by moment restrictions. Our framework includes many models

of interest in economics such as system of equations models (typically estimated by two-

stage least squares) and dynamic panel data models with fixed effects (typically estimated

by GMM). When the parameters are overidentified, these models are not included in the

frameworks discussed by Aerts, Claeskens, and Hart (1999).

Some econometric models are stated in terms of conditional and others in terms of

unconditional moment restrictions. Ultimately the estimation of most models is based on

unconditional moment restrictions, and we therefore specify the general model in terms

of unconditional moment restrictions. As mentioned in Section 2.1, parameters in a
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model identified by conditional moment restrictions can relatively easily be identified by

unconditional moment restrictions derived from the conditional moment restrictions.7

3.1 The general setup

The setting is the following. Assume n independent observations are available for analysis.

Let vi be a generic random vector of data, let β∗ be an unknown h-vector of parameters,

and let γ∗ : R → R be an unknown function. Let F be a known infinite-dimensional

vector of functions of these three quantities. The econometric model is cast in terms of a

vector of moment restrictions,

E
(
F (vi, β

∗, γ∗)
)

= 0(∞×1), β∗ ∈ R
h, γ∗ ∈ Γ, (28)

where again Γ is a set of continuous functions. We assume that 0 ∈ Γ. We also assume

that (28) identifies β∗ and γ∗. In general it is not possible to identify a function (equivalent

to an infinitely-dimensional parameter) such as γ∗ from a finite set of moment restrictions,

which is why we allow F to be infinitely-dimensional. In general, γ∗ can be any continuous

function. In terms of (28), the null hypothesis is that γ∗ = 0. The alternative hypothesis

is that γ∗ �= 0.

The range of null and alternative models which can be cast in the form of (28) is

very wide. We provide a few examples in Section 4. The generality of (28) and the fact

that we have made few assumptions about γ∗ and how γ∗ interacts with vi and β∗ are

great strengths of the GMM-ACH approach. Often, γ∗ will simply be a function of one

of the components of vi. In multiple-equation models, γ∗ may be a function of a different

component of vi in each equation. In general, the argument of γ∗ may be a function

involving both vi and β∗ as in single-index models.

The GMM-ACH approach to testing the null against the nonparametric alternative is

based on approximating the unknown γ∗ with a sequence of nested parametric alternatives,

g1, g2, . . . ; the construction of this sequence is explained in Section 2.1. Since only a finite

7Under certain conditions, a conditional moment restriction and a countable number of unconditional
moment restrictions are equivalent, see e.g. Donald, Imbens, and Newey (2003, p58).
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number of parameters are unknown under the null and the parametric alternatives, they

may be identified from a finite set of moment restrictions. For j = 1, 2, . . ., let Fj denote

the first lj components of F . Under the null, assume without loss of generality that β∗ is

identified (possibly overidentified) by the l0 moment restrictions

E
(
F0(vi, β

∗, 0)
)

= 0(l0×1), β∗ ∈ R
h. (29)

Under the parametric alternatives j = 1, 2, . . ., assume similarly that β∗ and θ∗j are iden-

tified (possibly overidentified) by the lj moment restrictions8

E
(
Fj(vi, β

∗, gj(·, θ∗j ))
) � 0(lj×1), β∗ ∈ R

h, θ∗j ∈ R
j, j = 1, 2, . . . . (30)

In terms of the parameters of the approximating models, the null hypothesis can be

restated as θ∗j = 0(j×1) for all j = 1, 2, . . ., while the alternative hypothesis is that θ∗j �=
0(j×1) for at least one of j = 1, 2, . . ..

We now review GMM estimation and LM testing. For convenience, define δ0 = β

and δj = (β′, θ′j)
′ for j = 1, 2, . . .. Then define f0(·, δ0) = F0(·, β, 0) and fj(·, δj) =

Fj(·, β, gj(·, θj)) for j = 1, 2, . . .. The GMM criterion functions, qj, are

qj(δj) = (1/2)mj(δj)
′Wjmj(δj), j = 0, 1, . . . , (31)

where Wj are some lj × lj symmetric weight matrices, and mj are estimators of the

moments E
(
fj(vi, δj)

)
, as a function of δj, defined by

mj(δj) = n−1

n∑
i=1

fj(vi, δj), j = 0, 1, . . . . (32)

For each j = 0, 1, . . ., the first-order condition for a minimum at δ̃j is Dqj(δ̃j) = 0(h+j×1).

8As in Section 2.1, θ∗1 , θ∗2 , . . . denote “pseudo-true” values. The notation E
(
Fj(vi, β

∗, gj(·, θ∗j ))
) �

0(lj×1) is short-hand for E
(
Fj(vi, β

∗, gj(·, θ∗j ))
) → 0(lj×1) as j → ∞.
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The derivatives of qj with respect to δj are

Dqj(δj) = aj(δj)
′Wjmj(δj), j = 0, 1, . . . , (33)

where aj are the gradients of mj,

aj(δj) = n−1

n∑
i=1

Dfj(vi, δj), j = 0, 1, . . . . (34)

Here Dfj denotes the lj × h + j-matrix of partial derivative functions of fj with respect

to δj. In many applications, the moment functions are linear in the parameters and the

first-order conditions can be solved analytically for δ̃j.

Define the “pseudo-true” parameter vector δ∗j = (β∗′, θ∗j
′)′ and define the restricted

estimator as δ̃0j = (δ̃′0, 0
′
(j×1))

′ for j = 1, 2, . . .. Define the matrices

Hj =

[
0(j×h) I(j)

]
, j = 1, 2, . . . . (35)

With this notation, the null hypothesis can then be expressed as Hjδ
∗
j = 0(j×1) for j =

1, 2, . . ., while the alternative is that Hjδ
∗
j �= 0(j×1) for some j = 1, 2, . . ..

LM statistics are based on the fact that if the null is true, then the derivative of the

GMM criterion function for model j should be close to 0(h+j×1) when evaluated at δ̃0j.

For each j, LM statistics for testing Hjδ
∗
j = 0(j×1) against Hjδ

∗
j �= 0(j×1) have the form

Rj = Dqj(δ̃0j)
′Var(Dqj(δ̃0j))

−Dqj(δ̃0j), j = 1, 2, . . . , (36)

where Var(Dqj(δ̃0j))
− is a generalized inverse of the variance matrix of the gradient

Dqj(δ̃0j) or an estimate of that matrix. Note that the rank of Var(Dqj(δ̃0j)) is j. We

discuss estimation of Var(Dqj(δ̃0j)) and Var(Dqj(δ̃0j))
− below.

The GMM-ACH statistic, Sr, is the maximum of a sequence of weighted LM statistics

for testing the null hypothesis against the alternatives in the sequence, where the weights
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are the reciprocal of the statistic’s degrees of freedom. Specifically,9

Sr = max
1≤j≤r

(Rj/j), (37)

where r is some appropriately large integer.

In the theorems below we describe two cases where Sr is asymptotically pivotal; that

is, under the null its asymptotic distribution does not depend on any unknown population

quantities. Specifically, the asymptotic distribution is a transformation of the generalized

arc-sine distribution, namely

P(Sr ≤ s) → exp

(
−

∞∑
k=1

P(χ2
k > ks)

k

)
as r → ∞ and n → ∞, (38)

where χ2
k has a chi-square distribution with k degrees of freedom. As mentioned in Sec-

tion 2.1, asymptotic critical values have been tabulated by Hart (1997) and the asymptotic

approximation is expected to be a good for critical values less than 10% as long as r > 5.

The nesting properties of the moment restrictions are important in the derivation of the

asymptotic distribution of the LM statistics and the GMM-ACH statistic. In particular,

the nesting properties are used to ensure that each LM statistic is asymptotically χ2
j -

distributed and the differences between Rj−1 and Rj for j = 2, 3, . . . are asymptotically

uncorrelated. For ease of reference, we state them as Assumption 1.

Assumption 1 Let l0 ≤ l1 ≤ · · · . For j = 1, 2, . . ., the first lj−1 components of fj(vi, δj)

equal fj−1(vi, δj−1) for all (vi, δj) such that δj = (δ′j−1, 0)′, and the restricted estimator is

δ̃0j = (δ̃′0, 0
′
(j×1))

′.

Define Mj = mj(δ̃0j) and Aj = aj(δ̃0j). The main technical implications of Assumption 1

are that the upper l0-subvector of Mj equals M0 and that the upper left l0 × h-submatrix

Aj equals A0.

The theorems below require that each LM statistic is asymptotically χ2
j -distributed

under the null. Our setup is not quite standard, and we have been unsuccessful in finding

9While the LM statistic is convenient, alternatively one could base the GMM-ACH test on Wald or
distance metric tests.
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the necessary results in the literature. Standard treatments of LM statistics assume

that Wj is an estimate of the optimal weight matrix and that the restricted estimator is

obtained from minimizing Dqj with respect to δj subject to the restrictions Hjδ
∗
j = 0(j×1)

(see e.g. Newey and McFadden, 1994, Section 9). In the present case, the weight matrix,

Wj, is arbitrary and the LM statistic is evaluated at δ̃0j, which is obtained from solving a

different problem, namely the unrestricted minimization of Dq0 with respect to δ0. Using

Assumption 1, an estimator of Var(Dqj(δ̃0j)) is derived in Appendix A.1.

3.2 Minimum number of moment restrictions

The first case we consider is where the number of moment restriction used under the null

and each parametric alternative equals the number of parameters in the corresponding

model. The simple IV model discussed in Section 2.1 is an example of such a setup.

In this case, the parameters are exactly identified both under the null and approximate

alternative hypotheses. Only a minimum number of moment restrictions are used in each

step. When lj = h + j for all j = 0, 1, . . ., then Dqj(δ̃0j)
′Var(Dqj(δ̃0j))

−Dqj(δ̃0j) is the

same as M ′
jVar(Mj)

−Mj. Define

Bj =
1

n

(
n−1

n∑
i=1

fj(vi, δ̃0j)fj(vi, δ̃0j)
′
)

, j = 0, 1, . . . , (39)

Cj = A−1
j Bj(A

′
j)

−1, j = 1, 2, . . . , (40)

and

Jj = (A−1
j )′H ′

j

(
HjCjH

′
j

)−1
HjA

−1
j , j = 1, 2, . . . , (41)

then Jj is an estimator of Var(Mj)
−. In Appendix A.2, we show that the LM statistics

simplify to10

Rj = M ′
jJjMj, j = 1, 2, . . . . (42)

10This formula has the same form as the LM statistic based on the quasi-maximum likelihood estimator
given in Theorem 3.5 in the article by White (1982).
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Of course, this is the same formula as (13) used in Section 2.1. IV estimators are invariant

to the choice of weight matrix, which therefore also drops out of the formula for the LM

statistics.

Theorem 1 below states sufficient conditions for Rj to be asymptotically χ2
j -distributed

and provides the corresponding asymptotic distribution of Sr.
11

Theorem 1 Assumption 1 holds and technical regularity conditions are satisfied. For

each j = 1, 2, . . ., suppose lj = h + j and Aj is invertible. For each j = 1, 2, . . ., sup-

pose there exists a nonstochastic matrix, Σj, such that n1/2Mj →d N(0(h+j×1), Σj) and

Var(Mj) →p Σj as n → ∞ and such that the first h rows and columns of Σj consist of

0s and the lower right j × j submatrix of Σj is positive definite. Then under the null the

asymptotic distribution of Sr is given in (38).

3.3 Same set of moment restrictions

The second case we consider is where the same set of moment restrictions and weight

matrix are used in the null model as well as in each of the r alternatives. That is, lj = l0

and Wj = W0 for all j = 1, 2, . . .. This is the case usually considered in the literature

on hypothesis testing in IV and GMM settings (e.g. Engle, 1984; Newey and McFadden,

1994). The 2SLS setup in Section 2.2 provides an example. Using Assumption 1, we show

in Appendix A.3 that Jj is an estimator of Var(Dqj(δ̃0j))
−, where

Jj = (A′
jWrAj)

−1H ′
j

(
HjCjH

′
j

)−1
Hj(A

′
jWrAj)

−1, j = 1, 2, . . . , (43)

Cj = (A′
jWrAj)

−1A′
jWrBrWrAj(A

′
jWrAj)

−1, j = 1, 2, . . . , (44)

11For simplicity we do not spell out the standard regularity conditions required for Taylor expansions
to be valid, central limit theorems to hold, etc. As indicated in (38), the limiting distribution is valid for
r → ∞ as n → ∞. To bound the behavior of the test statistic as r → ∞, it is assumed that, for given
π > 1 and for every ε > 0, there is a positive integer j0 such that P

(
maxj0≤j≤r Rj/j ≤ (π + 1)/2

)
< ε

for all sufficiently large n. Here π denotes the critical value used in the test.
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and Bj is defined in (39). The LM statistics simplify to12

Rj = M ′
rWrAjJjA

′
jWrMr, j = 1, 2, . . . . (45)

The theorem below is the equivalent of Theorem 1.

Theorem 2 Assumption 1 holds and technical regularity conditions are satisfied. For

each j = 1, 2, . . ., suppose lj = l0 and Wj = W0. For each j = 1, 2, . . ., suppose

there exists a nonstochastic matrix, Σj, such that n1/2Dqj(δ̃0j) →d N(0(h+j×1), Σj) and

Var(Dqj(δ̃0j)) →p Σj as n → ∞ and such that the first h rows and columns of Σj consist

of 0s and the lower right j × j submatrix of Σj is positive definite. Then under the null

the asymptotic distribution of Sr is given in (38).

The proofs of the theorems are omitted, since they are similar to the proof of Theorem 3

by Aerts, Claeskens, and Hart (1999).

3.4 Remarks

We conclude this section with some remarks. First, because of the LM approach, parame-

ter estimates need only be calculated once. In some applications, not having to estimate

the model under the alternative is an advantage. For example, it is often difficult to

estimate models when the first-order conditions are nonlinear in the parameters.

Second, note that essentially the same assumptions underpin both Theorem 2 and

Theorem 1. In practice, one therefore has a choice of whether to implement the test using

the same set of moment restrictions in each step or using the minimum number of moment

restrictions.

Third, when the same set of moment restrictions and the same weight matrix are used

under the null as well as under the parametric alternatives, then the estimator, with 0s

appended as appropriate, computed by solving the unrestricted problem of minimizing

q0(δ0) with respect to δ0 is identical to the estimators obtained by solving the restricted

12If an optimal weight matrix is used, so Wr and B−1
r are equivalent, then Rj in (18) is the same

as LM2n in Table 2 in the article by Newey and McFadden (1994). In this case Jj simplifies to Jj =
(A′

jWrAj)−1H ′
j(Hj(A′

jWrAj)−1H ′
j)

−1Hj(A′
jWrAj)−1 for j = 1, 2, . . ..
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problem of minimizing qj(δj) with respect to δj subject to Hjδj = 0(j×1) for j = 1, 2, . . ..

This can be seen from inspecting the first-order conditions.

Fourth, it is possible that there are other cases where Sr is asymptotically pivotal.

A key property of the LM statistics under Theorem 2 is that the first j − 1 components

of Dqj(δ̃0j) equal Dqj−1(δ̃0,j−1) for all j = 1, . . . , r. Mathematically, there are ways of

achieving this which do not require using the same set of moment restrictions for all

j = 0, 1, . . .. Examining the first-order conditions, (33), reveals that the key property is

also satisfied if the partial derivatives of the last lj − lj−1 components of the empirical

moment function with respect to the first j − 1 components of the parameter vector are

all 0 and the weight matrix is block-diagonal with 0s in the first lj−1 rows (columns) of

the last lj − lj−1 last columns (rows). The first requirement means that the additional

lj − lj−1 moment restrictions must not depend on the previous j − 1 parameters. If the

moment restrictions are constructed by multiplying instruments and “residuals”, then

the additional lj − lj−1 instruments must be orthogonal to the partial derivatives of the

residuals with respect to the previous j − 1 parameters.13 Thus, while it may be possible

to construct other LM-based GMM-ACH test statistics, the requirements are complicated

and seem less generalizable. Hence, we do not further pursue this possibility.

4 Examples

In this section we consider two GMM-ACH tests for a linear model with endogenous right-

hand side variables. We focus on testing the specification of the conditional mean function,

because we believe this is the testing problem most often faced by applied researchers.

Consider a linear model where one or more of regressors are endogenous. Let yi be a

scalar random variable as in Section 2, but now let xi and zi be random vectors. Also,

partition xi = (w1i, w
′
2i)

′ where w1i is scalar. A constant may be included in xi and zi.

13If the weight matrix is constructed using the second moments of a set of instruments, then the
additional lj − lj−1 instruments must also be orthogonal to the previous j − 1 instruments.



20

Suppose the parametric model of interest is

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + ui, E(ui|zi) = 0, β∗ ∈ R

h, (46)

where β∗ = (β∗
1 , β

∗
2
′)′ is an unknown parameter vector and ui is an unobserved random

variable. As before, assume that n independent observations are available.

Equations of this form arises often in economics. For example, let (46) represent an

Engel curve where yi is the share of total expenditure spent on certain items in household i,

w1i is the log of total expenditure on nondurables (as an indicator of permanent income),

w2i represents household characteristics, and zi includes the variables in w2i as well as

household income as the instrument for total expenditure. Then this is the well-known

Working-Leser specification of the Engel curve relationship.

As another example, consider a simultaneous equation system representing demand

and supply of a certain good. Let yi be the log of the total (equilibrium) quantity of

the good traded in market i, let w1i be the log of the (equilibrium) price of the good, let

w2i represent the characteristics of buyers in market i, and let zi include the variables in

w2i as well as characteristics of suppliers. Then (46) represents the structural demand

equation.

4.1 Nonlinear effect of a single regressor

The first alternative specification we consider allows for a nonlinear effect in w1i. In

the Engel curve example, the alternative model represents a nonlinear permanent income

effect. In the market demand example, the alternative model allows for a nonlinear price

elasticity. Formally, the nonparametric alternative model is

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + γ∗(w1i) + ui, E(ui|zi) = 0, β∗ ∈ R

h, γ∗ ∈ Γ, (47)
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where again Γ is a set of continuous functions with 0 ∈ Γ. The approximate alternative

models are

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + gj(w1i, θ

∗
j ) + ui, E(ui|zi) � 0, β∗ ∈ R

h, θ∗j ∈ R
j,

j = 1, 2, . . . , (48)

where g1, g2, . . . are series approximations of γ and θ∗1, θ∗2, . . . are pseudo-true values as

defined earlier.

The main issue in applying the GMM-ACH test is to choose moment restrictions to

estimate β∗ under the null and to identify θ∗1, θ∗2, . . . under the alternative. There are

many potential restrictions to choose from in this model, since the conditional moment

restriction implies an infinite number of unconditional moment restrictions which can be

used for estimation and testing. In practice, under the null, the model is virtually always

estimated using the restrictions

E
(
zi(yi − w1iβ

∗
1 − w′

2iβ
∗
2)

)
= 0(l0×1), β∗ ∈ R

h, (49)

where l0 is the dimension of zi. Section 3 shows that there are two ways to proceed under

the alternative.

If the number of instruments is equal to the number of endogenous variables and the

null model is exactly identified, one has the option to base the test on Theorem 1. Define

z0i = zi and zji = (zi, b1(z
1
i ), . . . , bj(z

1
i ))

′ for j = 1, 2, . . ., where z1
i denotes one of the

instruments and b1, b2, . . . are the basis functions used in the series approximations. If

w1i is exogenous, the natural choice for z1
i is w1i itself. If w1i is endogenous, the natural

choice is one of the variables excluded from xi.
14 The moment restrictions are then

E
(
zji(yi − w1iβ

∗
1 − w′

2iβ
∗
2 − gj(w1i, θ

∗
j ))

) � 0(lj×1), β∗ ∈ R
h, θ∗j ∈ R

j,

j = 1, 2, . . . , (50)

14It is possible to derive optimal instruments when the unconditional moment restrictions are based
on a conditional moment restriction, see e.g. Newey and McFadden (1994, Sections 5.3–5.4).
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where the number of moment restrictions is lj = h + j for j = 0, 1, . . ..

Define x0i = (w1i, w
′
2i)

′ and xji = (w1i, w
′
2i, b1(w1i), . . . , bj(w1i))

′ for j = 1, 2, . . .. For-

mally the matrices which are used in the LM statistics and the GMM-ACH test statistic

are exactly as given in (9)–(13) in Section 2.1, with the symbols xji and zji as defined

in the present section and with β̃ being the usual IV estimator. To base this test on

Theorem 2 instead of Theorem 1, simply use formulae (17)–(23) in Section 2.2.

If the null model is overidentified, it is most natural to base testing on Theorem 2. In

this case, the need to choose which moment restrictions to use to identify θ∗1, θ∗2, . . . is

perhaps even more apparent. At one extreme one can use powers of a single variable as

in the previous case. At the other extreme one can use power of all instruments. In the

latter case, zri is redefined as zri = (zi, b1(z
1
i ), . . . , br(z

1
i ), . . . , b1(z

p
i ), . . . , br(z

p
i ))

′, where

z1, . . . , zp are the nonconstant elements of zi. In either case, the test is calculated using

formulae (17)–(23).

4.2 Nonlinear effect of an index

The second alternative specification we consider allows for a nonlinear effect in the index

w′
2iβ

∗. Specifically,

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + γ∗(w′

2iβ
∗) + ui, E(ui|zi) = 0, β∗ ∈ R

h, γ∗ ∈ Γ. (51)

This alternative is related to the well-known RESET test for functional form. In the Engel

curve and the market demand examples, one might consider this alternative in order to

check the robustness of β̃1 to misspecification of the influence of household characteristics

or buyer characteristics.

The approximate alternative models are

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + gj(w

′
2iβ

∗, θ∗j ) + ui, E(ui|zi) � 0, β∗ ∈ R
h, θ∗j ∈ R

j,

j = 1, 2, . . . . (52)

Since there are no obvious single candidate instruments for the index, Theorem 2 is better



23

suited than Theorem 1. Let xji and zji be as discussed in the last paragraph of Section 4.1.

The test statistics based on Theorem 2 is given in (17)–(23), except for the Aj matrices

which for j > 0 become

Aj = −n−1

n∑
i=1

zri

[
x′

0i D1gj(w
′
2iβ̃, 0(j×1))

]
, j = 1, . . . , (53)

where D1gj denotes the partial derivative of gj with respect to its first argument. If a

power basis is used, then D1gj(w
′
2iβ̃, 0(j×1)) =

(
(w′

2iβ̃)2, . . . , (w′
2iβ̃)1+j

)
.

4.3 Empirical example

In this subsection, we apply the GMM-ACH test to the Engel curve model described ear-

lier. We use the same data as Blundell, Duncan, and Pendakur (1998); BDP henceforth.15

The data come from the 1980–1982 British Family Expenditure Survey. The extract is

limited to married or cohabiting couples with one or two children, living in Greater Lon-

don or south-east England, where the head of the household is currently employed. For

further details about the sample, including summary statistics, please see BDP’s article.

One of the models considered by BDP has the form (46). In our notation, yi is the

share of total expenditure spent on certain items, w1i is log of total expenditure, w2i is a

dummy for having two instead of one child in the family, and zi includes w2i as well as

total disposable income.

The alternative specification is given in (47). (Since w2i is a dummy, the alternative

given in (51) is not relevant.) Table 2 shows estimation results using different parametric

specifications and different estimation methods. The OLS estimates are similar to those

reported in Tables II-VII by BDP, although not identical. The GMM-ACH tests reject

the linear specification for fuel, transport and (marginally) for other goods. To help

understand the outcome of the GMM-ACH tests, the last panel of Table 2 shows IV

estimates for a model which is quadratic in the log of total expenditure. The statistical

significance of the t-statistics for the coefficients on the squared terms agree with the

GMM-ACH tests in all cases (the marginal case of other goods is only significant at the

15These data are available from the Journal of Applied Econometrics’ data archive.
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5.7% level).

BDP also tested the linear model against a nonparametric alternative. Their approach

is much more complicated than ours and involves estimating the model under the nonpara-

metric alternative, a notoriously difficult problem. Their conclusions are different from

ours. They rejected the linear specification for alcohol and other goods and no other cat-

egories. While the differences in conclusions are interesting, further investigation beyond

the scope of the present paper.

5 Concluding remarks

Inspired by Aerts, Claeskens, and Hart (1999), we suggest an GMM-ACH specification

test of a parametric function against a nonparametric alternative. The test is developed

for models which are identified by moment restrictions. The test requires only estimation

under the null, and hence nonparametric estimation is not involved. The GMM-ACH test

is asymptotically pivotal, which makes it easy to obtain critical values.

In a small Monte Carlo study, the GMM-ACH test has good level and power properties

compared to existing tests. The test developed by Horowitz (2006) appears to have the

best power of all, but it is difficult to perform. The GMM-ACH test has power that is

close to that of Horowitz’s test, and it is easy to carry out. The simulations also show that

the GMM-ACH test has substantially higher power than an LM test of the null against a

single, high-order parametric alternative. Hence, the idea of combination of test statistics

against a sequence of parametric alternatives proves to be valuable.

We have focused on testing against a nonparametric function of a single variable. In

some applications, it would be useful to be able to test against a function of several vari-

ables (or perhaps against several functions). Based on the analysis by Aerts, Claeskens,

and Hart (2000), we anticipate that the main issues regarding this extension are related

to its practical implementation, since the basis functions will be functions of several vari-

ables. The asymptotic theory presented in the present paper should remain valid.

Originally, our interest in testing for functional form in GMM settings was motivated

by dynamic panel data models with fixed effects. This particular application is relatively
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complex, partly because these models have several equations per subject and each equation

has its own set of instruments, and partly because GMM estimation of these models in

practice is often troubled by weak instruments. We intend to publish our results for this

case separately.

A Estimating the variance of the GMM gradient

In this appendix, we derive the estimators of Var(Dqj(δ̃0j))
− given in Section 3. Sec-

tion A.1 shows that Var(Dqj(δ̃0j)) can be estimated consistently. Section A.2 shows that

the LM statistic (36) simplifies to (42) in the case where lj = h + j for all j = 1, 2, . . ..

Section A.3 establishes (43) for the case where lj = l0 for all j = 1, 2, . . .. Throughout

this appendix j is a fixed integer.

Our arguments in Section A.1 are similar to those given by Newey and McFadden

(1994, Section 9). The main differences are that we consider the case where the restricted

estimator may be based on a subset of the moment restrictions and where the weight

matrix, Wj, is arbitrary. Newey and McFadden considered the case where the moment

restrictions are identical under the null and the alternative and where Wj is an estimate

of the optimal weight matrix.

A.1 The general case

In this section, we show that Var(Dqj(δ̃0j)), which appears in (36) in Section 3, can be

estimated as

Var(Dqj(δ̃0j)) = TjBjT
′
j , j = 0, 1, . . . , (54)

where Bj is given in (39) and Tj are the matrices defined by

Tj = A′
jWj

[
I(lj) − AjN1j

(
A′

0W0A0

)−1
A′

0W0N2j

]
, j = 0, 1, . . . , (55)
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with

N1j =

⎡
⎢⎣ I(h)

0(j×h)

⎤
⎥⎦ , j = 0, 1, . . . , (56)

and

N2j =

[
I(l0) 0(l0×lj−l0)

]
, j = 0, 1, . . . . (57)

We use two key properties of the testing problem set up in Section 3, namely that the

restricted estimator is δ̃0j = (δ̃′0, 0
′
(j×1))

′ where δ̃0 is the solution to the unrestricted min-

imization problem Dq0(δ̃0) = 0(h×1), and that the first l0 components of mj(δ̃0j) equal

m0(δ̃0). These properties are implied by Assumption 1.

In general, the GMM gradient evaluated at the unrestricted estimator is identically

equal to 0(h+j×1). However, this is not the case when evaluated at the restricted estimator.

A Taylor series expansion of mj(δ̃0j) around the “pseudo-true” value, δ∗j , implies

n1/2Dqj(δ̃0j) = aj(δ̃0j)
′Wj

[
n1/2mj(δ

∗
j ) + aj(δ̃0j)n

1/2(δ̃0j − δ∗j )
]
+ op(1), (58)

where Dqj, mj and aj are defined in (31), (32) and (34) and Wj is a given weight matrix.

Under standard regularity conditions, aj(δ̃0j) and Wj converge in probability to matrices

of (finite) constants. Therefore the main sources of variation for n1/2Dqj(δ̃0j) are the

empirical moments, n1/2mj(δ
∗
j ), and the estimated parameters, n1/2(δ̃0j − δ∗j ).

In the present context, the restricted estimator has the form δ̃0j = (δ̃′0, 0
′
(j×1))

′, where

δ̃0 is the solution to the (unrestricted) estimation problem, Dq0(δ̃0) = 0(h×1). Under the

null, the “pseudo-true” value can be similarly partitioned, δ∗j = (δ∗0
′, 0′(j×1))

′. To derive

the distribution of n1/2(δ̃0 − δ∗0), note that a Taylor series expansion similar to (58) yields

n1/2Dq0(δ̃0) = a0(δ̃0)
′W0

[
n1/2m0(δ

∗
0) + a0(δ̃0)n

1/2(δ̃0 − δ∗0)
]
+ op(1). (59)
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Since Dq0(δ̃0) = 0(h×1), it follows that

n1/2(δ̃0 − δ∗0) = −(
a0(δ̃0)

′W0a0(δ̃0)
)−1

a0(δ̃0)
′W0n

1/2m0(δ
∗
0) + op(1). (60)

An approximation for n1/2(δ̃0j − δ∗j ) follows by appending rows of zeros. With N1j as

defined in (56), n1/2(δ̃0j−δ∗j ) = N1jn
1/2(δ̃0−δ∗0). Before inserting into (58), it is convenient

to express m0(δ
∗
0) in terms of mj(δ

∗
j ). This will facilitate keeping track of the covariance

between the empirical moments and the estimated parameters in (58). By construction,

estimation under the null is based on the first l0 moment restrictions out of a total of

lj restrictions under alternative j. This means that if δ0j = (δ′0, 0
′
(j×1))

′, then m0(δ0) =

N2jmj(δ0j), where N2j is defined in (57). It follows that

n1/2(δ̃0j − δ∗j ) = −N1j

(
a0(δ̃0)

′W0a0(δ̃0)
)−1

a0(δ̃0)
′W0N2jn

1/2mj(δ
∗
0) + op(1). (61)

Inserting (61) into (58) then gives

n1/2Dqj(δ̃0j) = Tjn
1/2mj(δ

∗
j ) + op(1), (62)

where Tj is defined in (55).

A central limit theorem implies n1/2mj(δ
∗
j ) →d N(0(h+j×1), Ωj), where Ωj is defined by

Ωj = E
(
fj(vi, δ

∗
j )fj(vi, δ

∗
j )

′) and fj is defined in Section 3. It follows that the asymptotic

variance of Dqj(δ̃0j) can be estimated by TjΩjT
′
j . Replacing Ωj with the estimator Bj

defined in (39) yields (54).

A.2 The case of lj = h + j

This section shows that the LM statistic (36) with variance estimator (54) simplifies to

(42) in the case where lj = h + j, Aj is invertible and its upper left submatrix is A0, and

Wj is any nonsingular matrix.
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When Aj and Wj are invertible, the LM statistic simplifies to

Rj = M ′
jWjAj

(
TjBjT

′
j

)−
A′

jWjMj

= M ′
j

(
UjBjU

′
j

)−
Mj,

(63)

where

Uj = I(lj) − AjN1jA
−1
0 N2j. (64)

Partition Aj and A−1
j as

Aj =

⎡
⎢⎣A00 A0j

Aj0 Ajj

⎤
⎥⎦ and A−1

j =

⎡
⎢⎣A00 A0j

Aj0 Ajj

⎤
⎥⎦ , (65)

where A00 and A00 are h-dimensional and Ajj and Ajj are j-dimensional square matrices.

Assumption 1 implies that A00 = A0. (Generally A00 �= A−1
0 .) Using this result, Uj can

be written

Uj =

⎡
⎢⎣ 0(h×h) 0(h×j)

−Aj0A
−1
00 I(j)

⎤
⎥⎦ . (66)

Partition Bj similarly to Aj. Then

UjBjU
′
j =

⎡
⎢⎣0(h×h) 0(h×j)

0(j×h) Kj

⎤
⎥⎦ , (67)

where Kj is defined as

Kj = Aj0A
−1
00 B00(A

−1
00 )′A′

j0 − Bj0(A
−1
00 )′A′

j0 − Aj0A
−1
00 B′

j0 + Bjj. (68)



29

Partition Mj as

Mj =

⎡
⎢⎣M0

M�j

⎤
⎥⎦ , (69)

where M0 = 0(h×1) by the definition of the IV estimator and M�j is a j-vector. Since Kj

is nonsingular, then

Rj = M ′
�jK

−1
j M�j. (70)

Rules for inverting partitioned matrices imply that Aj0A
−1
00 = (Ajj)−1Aj0. Substituting

this into (68) and rearranging yield

Kj = (Ajj)−1Aj0B00(A
j0)′(Ajj)−1′ − Bj0(A

j0)′(Ajj)−1′ − (Ajj)−1Aj0B0j + Bjj

= (Ajj)−1
(
Aj0B00(A

j0)′ − AjjBj0(A
j0)′ − Aj0B0j(A

jj)′ + AjjBjj(A
jj)′

)
(Ajj)−1′.

(71)

Recall that Hj = [0(j×h) I(j)]. From the last line in the previous expression it follows that

Kj = (Ajj)−1HjA
−1
j Bj(A

−1
j )′H ′

j(A
jj)−1′. (72)

Finally, noting that HjA
−1
j Mj = AjjM�j yields

Rj = M ′
�j

(
(Ajj)−1HjA

−1
j Bj(A

−1
j )′H ′

j(A
jj)−1)′

)−1
M�j

= M ′
�j(A

jj)′
(
HjA

−1
j Bj(A

−1
j )′H ′

j

)−1
AjjM�j

= M ′
j(A

−1
j )′H ′

j

(
HjA

−1
j Bj(A

−1
j )′H ′

j

)−1
HjA

−1
j Mj.

(73)

The last line is identical to (42).

A.3 The case of lj = l0

As noted by e.g. Engle (1984, p795), the form of LM statistics simplifies when the

same set of moment restrictions is used both under the null and under the alterna-
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tive; that is, when l0 = lj and W0 = Wj. Define Ej = A′
jWjAj and Gj = I(h+j) −

E
−1/2
j H ′

j(HjE
−1
j H ′

j)
−1HjE

−1/2
j . Assumption 1 implies that the first h columns of Aj equal

A0. Using this fact and formulae for inverting partitioned matrices, it can be verified that

N1j

(
A′

0W0A0

)−1
A′

0W0N2j = E
−1/2
j GjE

−1/2
j A′

jWj. (74)

This result can be used to simplify the expression for Tj in (55),

Tj = A′
jWj

[
I(lj) − AjE

−1/2
j GjE

−1/2
j A′

jWj

]

=
[
I(h+j) − A′

jWjAjE
−1/2
j GjE

−1/2
j

]
A′

jWj

=
[
I(h+j) − E

1/2
j GjE

−1/2
j

]
A′

jWj

=
[
I(h+j) −

(
I(h+j) − H ′

j(HjE
−1
j H ′

j)
−1HjE

−1
j

)]
A′

jWj

= H ′
j(HjE

−1
j H ′

j)
−1HjE

−1
j A′

jWj.

(75)

It follows that TjBjT
′
j simplifies to

TjBjT
′
j = H ′

j(HjE
−1
j H ′

j)
−1HjE

−1
j A′

jWjBjWjAjE
−1
j H ′

j(HjE
−1
j H ′

j)
−1Hj. (76)

Using the definition of a generalized inverse, it is straightforward to verify that the expres-

sion E−1
j H ′

j

(
HjE

−1
j A′

jWjBjWjAjE
−1
j H ′

j

)−1
HjE

−1
j is a generalized inverse of TjBjT

′
j . The

resulting estimator of Var(Dqj(δ̃0j)) is Jj given in (43). The corresponding LM statistic

is given in (45).
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Table 1: Monte Carlo results for simple IV model (nominal size 5%)

ρ η HOR t DIN ACH Min ACH Same LM Min LM Same
P F P F P F P F

Null is true

Null: yi = 0.5xi + ui; DGP: yi = 0.5xi + ui

0.8 0.1 5.1 5.2 4.8 5.2 5.2 5.6 5.0 4.1 4.2 4.2 4.2
0.8 0.5 3.0 3.4 4.3 4.1 3.4 3.5 3.1 3.6 5.6 3.7 5.8
0.7 0.1 4.9 5.2 4.5 5.1 5.2 5.4 4.6 4.3 4.1 4.3 4.1

Null: yi = 0.5xi − 0.5x2
i + ui; DGP: yi = 0.5xi − 0.5x2

i + ui

0.8 0.1 5.3 4.0 4.8 5.0 4.3 5.1 4.2 4.4 4.1 4.5 4.2
0.8 0.5 4.6 7.7 5.0 7.5 3.4 3.8 2.0 5.7 5.7 7.2 6.1
0.7 0.1 5.6 3.6 4.3 5.6 4.3 5.4 4.5 4.5 4.2 4.9 4.3

Null is false

Null: yi = 0.5xi + ui; DGP: yi = 0.5xi − 0.5x2
i + ui

0.8 0.1 65.8 71.4 44.7 69.2 69.8 71.1 70.0 39.3 39.3 39.7 39.4
0.8 0.5 72.1 82.7 45.9 78.4 78.2 81.0 79.1 49.9 50.3 50.2 50.4
0.7 0.1 42.1 44.4 25.9 42.1 42.7 45.2 46.9 22.8 22.1 22.8 22.3

Null: yi = 0.5xi + ui; DGP: yi = 0.5xi − x2
i + x3

i + ui

0.8 0.1 68.4 67.1 49.8 64.0 62.7 65.1 64.1 40.3 39.0 40.4 39.0
0.8 0.5 66.3 58.0 48.0 56.6 52.6 55.6 54.5 30.7 34.1 32.0 35.4
0.7 0.1 42.4 41.2 26.2 36.2 36.1 38.3 37.9 17.8 17.1 18.4 16.8

Null: yi = 0.5xi + x2
i + ui; DGP: yi = 0.5xi − x2

i + 4x3
i + ui

0.8 0.1 89.0 90.0 72.2 86.8 56.8 93.4 74.8 68.3 65.0 69.1 65.8
0.8 0.5 97.2 98.7 68.5 98.0 82.3 97.7 80.4 83.8 78.0 85.3 79.3
0.7 0.1 52.7 59.0 29.8 49.1 18.2 67.1 34.8 27.6 25.9 29.5 27.2

Legend: HOR: test by Horowitz (2006); t: ordinary t test for adding one additional term to the null model;
DIN: the IV test by Donald, Imbens, and Newey (2003); ACH Min: implemented as in Section 2.1; ACH
Same: implemented as in Section 2.2; LM Min: the rth LM statistic from the ACH Min calculations; LM
Same: the rth LM statistic from the ACH Same calculations; P: based on power basis; F: based on Fourier
flexible form basis. Notes: HOR, t and DIN quoted from Horowitz (2006). There are 500 observations in each
sample and 1000 samples per experiment. In the calculations of the GMM-ACH tests, r = 6 and all additional
terms under the alternative are orthogonalized to reduce multicollinearity. For the last set of experiments,
the dgp process is incorrectly stated in Horowitz’s article with the term 2x3

i instead of 4x3
i .
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Table 2: Engel curve estimates

Share of total expenditures
Food Fuel Clothes Alcohol Transport Other

Summary statistics for dependent variable
Mean .3565 .0910 .1072 .0606 .1324 .2523

Simple linear model, OLS estimates

β̃1 −.1338∗ −.0472∗ .0813∗ .0198∗ .0394∗ .0406∗

(.0060) (.0032) (.0059) (.0041) (.0069) (.0067)

Linear model with demographics, OLS estimates

β̃1 −.1384∗ −.0474∗ .0819∗ .0216∗ .0411∗ .0412∗

(.0060) (.0032) (.0059) (.0042) (.0069) (.0068)

β̃2 .0338∗ .0012 −.0045 −.0129∗ −.0130∗ −.0047
(.0048) (.0026) (.0047) (.0033) (.0055) (.0054)

Linear model with demographics, IV estimates

β̃1 −.1412∗ −.0274∗ .0473∗ .0156 .0295∗ .0762∗

(.0122) (.0067) (.0123) (.0085) (.0142) (.0140)

β̃2 .0341∗ −.0005 −.0015 −.0124∗ −.0119∗ −.0077
(.0048) (.0026) (.0049) (.0034) (.0056) (.0055)

GMM-ACH test of the linear model with demographics
ACH Min 0.719 6.556∗ 2.145 0.530 14.268∗ 3.950
ACH Same 1.200 15.594∗ 1.013 0.531 16.243∗ 5.033∗

Quadratic model with demographics, IV estimates

β̃1 −.0618 −2.1008∗ .9794 −.0855 2.7383∗ −1.4708
(.6782) (.5065) (.6938) (.4740) (.9295) (.8135)

β̃2 .0336∗ .0112∗ −.0068 −.0119∗ −.0273∗ .0011
(.0063) (.0047) (.0064) (.0044) (.0086) (.0075)

β̃3 (w2
1i) −.0086 .2256∗ −.1014 .0110 −.2947∗ .1683

(.0736) (.0549) (.0752) (.0514) (.1008) (.0882)

Legend: β̃1: coefficient on log total expenditure; β̃2: coefficient on indicator of two children; β̃3:
coefficient on the square of log total expenditure; ACH Min: implemented using the minimum
number of moment restrictions; ACH Same: implemented using the same set of moment restrictions;
standard errors in ( ) parentheses; ∗: statistical significance at the 5% level. Notes: Constant
included in all models, but not reported. GMM-ACH tests based on a power basis, r = 6, and all
additional terms under the alternative are orthogonalized to reduce multicollinearity. Data from
Blundell, Duncan, and Pendakur (1998). Number of observations: 1519.
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