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1 Introduction

The development of panel data models and, in particular, of dynamic panel

data models continues to expand rapidly as the availability of panel data

increases.1 One of the challenges is how dynamic panel data models might

incorporate more complex dynamic structures. The difficulty here arises

because the nature of the non-linearity, and exactly how it interacts with

stochastic assumptions, matters. For example, we see different considera-

tions taking precedence when analysing random effects models on the one

hand (e.g. Heckman, 1981, Bhargava and Sargan, 1983, Arellano and Car-

rasco, 2003, Wooldridge, 2005) and fixed effects models on the other (e.g.

Wooldridge, 1997, Honoré and Kyriazidou, 2000, Hahn and Kuersteiner,

2002, Honoré, 2002, Hahn, Hausman, and Kuersteiner, 2007).

This paper explores efficient estimation in the class of non-linear dynamic

panel data models with additive unobserved individual effects, where the

models are specified by moment restrictions. Inasmuch as we are concerned

with efficient estimation our contribution is in the tradition of papers such as

Ahn and Schmidt (1995, 1997), Arellano and Bover (1995) and Hahn (1997).

There are many different types of non-linearity considered in the literature.

For example, non-linearities arise naturally when working with censored and

limited dependent variables in a panel context (e.g. Honoré, 2002, and the

references cited therein). In these models the unobserved individual-specific

effects are typically not additively separable and the specification of the mod-

els is often based on a likelihood approach. In contrast, the models considered

1For recent surveys, see Arellano and Honoré (2001), Hsiao (2001, 2003), Baltagi (2005)
and Arellano and Hahn (2007).
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here are specified by moment restrictions.

We apply our results to estimation of smooth transition models. Smooth

transition models are common non-linear models in time series analysis. They

have only been applied a few times with panel data (e.g. González, Teräsvirta,

and van Dijk, 2005, Fok, van Dijk, and Franses, 2005). We extend the lit-

erature by analysing smooth transitions in a dynamic model including the

case where the transition function itself depends on the lagged endogenous

variable. In a Monte Carlo experiment we find that estimation of the sep-

arate coefficients in the transition function may be difficult. The forecast

performance, however, may be significantly improved despite the difficulty of

estimating the separate coefficients.

The structure of the paper is as follows. In the next section we present

a non-linear first-order autoregressive panel data model and develop a set of

moment conditions upon which efficient GMM estimation might be based.

We also extend our results to higher-order autoregressive models. In Section

3 we focus attention on dynamic panel smooth transition models. We ex-

amine both exogenous and endogenous transitions and report a Monte Carlo

experiment on estimation precision and forecasts. To illustrate, Section 4 ap-

plies a dynamic panel smooth transition model to data on local government

expenditures in Sweden. Concluding remarks appear in Section 5.

2 Efficient Estimation

In this section we introduce our model of interest and extend the arguments

of Ahn and Schmidt (1995) to develop a set of moment conditions upon which
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an efficient GMM estimator can be based.

2.1 Dynamic Panel Data Models

Our starting point is a first-order autoregressive panel data model of the form

yit = α1yi,t−1 + uit, (1)

uit = ηi + vit, (2)

where t = 1, . . . , T and i = 1, . . . , N . The observations are assumed to be

independent across individuals (i), but not across time (t), and it is assumed

that y0 is known. In (1), α1 is an unknown parameter and uit is an unobserved

“error” term. Equation (2) decomposes the error term into two unobserved

individual-specific effects, one of which is constant over time, ηi, and the

other, vit, which varies with time. To fix the location, it is assumed that

E(vit) = 0 for t = 1, . . . , T . The model implies that yi,t−1 is correlated with

ηi.

Following the treatment of Ahn and Schmidt (1995), our assumptions for

the first-order autoregressive panel data model are

E(yi0vit) = 0, t = 1, . . . , T ; A1

E(ηivit) = 0, t = 1, . . . , T ; A2

E(visvit) = 0, s = 1, . . . , t − 1; t = 2, . . . , T. A3

This is a relatively weak set of assumptions. For instance, stationarity is not

assumed nor is the relationship between yi0 and ηi restricted. Bond (2002,
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p.6) and Hsiao (2003), inter alia, provide more complete discussions of initial

conditions; see also the discussion of Ahn and Schmidt (1995, p.7). Equations

(1) and (2) together with assumptions A1–A3, which we shall hereafter refer

to as Model 1, essentially comprise the model considered by Blundell and

Bond (1998) and others.

In this paper we consider models which are not linear in the lagged de-

pendent variable. The framework within which we shall work is

yit = α1yi,t−1 + δh(yi,t−1, wit, θ) + uit, t = 2, . . . , T, (3)

where we assume that h(yi,t−1, wit, θ) is a scalar-valued function, differentiable

with respect to the p-vector θ, that δ is an unknown parameter and that wit

is a j-vector of pre-determined variables.2 We shall define Model 2 to be the

set of equations (3) and (2), Assumptions A1–A3, together with Assumption

A4 which is discussed below.

This structure extends the panel smooth transition model of González

et al. (2005) to the dynamic case and also includes a variety of possible

extensions of non-linear time series models to the panel data context. As a

concrete example, consider the logistic transition function where θ = (θ1, θ2)
′

and

h(yi,t−1, wit, θ) =
1

1 + exp{−θ1(wit − θ2)} yi,t−1.

2The parameterization of equation (3) is attractive in that a null hypothesis of linearity
against the alternative of non-linearity is simply characterized as H0 : δ = 0 against
H1 : δ �= 0. The downside of this parameterization is that there is an inherent identification
problem whereby θ is unidentified if δ = 0. This means that inference on θ involves non-
standard distribution theory along the lines discussed in Teräsvirta (1994, Section 3); see
also Andrews and Ploberger (1994, 1995) for a very general treatment of this problem.
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Note that a threshold model obtains as a special case wherein θ1 → ∞ and

the threshold occurs at θ2.

Another class of models follows on choosing h(yi,t−1, wit, θ) to be a polyno-

mial in yi,t−1. For instance, setting h(yi,t−1, wit, θ) = y2
i,t−1, yields a quadratic

model of the form

yit = α1yi,t−1 + δy2
i,t−1 + uit.

The quadratic model can be thought of as a second-order Taylor approxima-

tion to an arbitrary twice-differentiable non-linear regression function. It can

also be seen as a class of dynamic models which includes the logistic map as

a special case. This map, which was analysed in the seminal paper of May

(1976), is known to exhibit complex dynamics, including chaotic behaviour

for certain parameter values.

In addition to A1–A3, we make the following assumption for the non-

linear dynamic panel data model

E

⎡
⎢⎣

⎛
⎜⎝

h(yi,s−1, wis, θ)

∂h(yi,s−1, wis, θ)

∂θ

⎞
⎟⎠ vit

⎤
⎥⎦ = 0, s = 1, . . . , t; t = 1, . . . , T. A4

It is possible to avoid involving the parameters by instead imposing the

stronger conditional moment restriction E[vit|yi,t−1, wit] = 0 which implies

that, for any function g, E[g(yi,t−1, wit)vit] = 0. Rather than making this

much stronger assumption, however, A4 only requires this implication to

hold for the particular g = [h, ∂h/∂θ′]′. Finally, we note in passing that A4

is analogous to assumptions that typically accompany non-linear regression

models.

5



At this point we defer discussions of assumptions relating to wit. This

is primarily because, at this stage, wit is best thought of as a place-holder

which provides our model with considerable flexibility, as illustrated above.

Assumption A4 provides a mild assumption on wit not to be contempora-

neously correlated with vit.
3 Until a particular wit is specified, however, it

remains to be determined what further assumptions are appropriate and so

they will need to be addressed on a case-by-case basis.

2.2 Efficient Moment Conditions for Estimation

In this section, we discuss moment conditions that can be used for estimation

of Models 1 and 2. For Model 1, assumptions A1–A3 imply the following

T (T − 1)/2 linear moment conditions

E(yisΔuit) = 0, s = 0, . . . , t − 2, t = 2, . . . , T. (4)

In addition, there are T − 2 quadratic moment conditions

E(uiT Δuit) = 0, t = 2, . . . , T − 1. (5)

Ahn and Schmidt (1995) prove that these are the only moment conditions

implied by A1–A3.4 Hence the set of moment conditions (4) and (5) provide

a basis for efficient estimation.

3More precisely, it is the functions of wit in A4 which are assumed to be contempora-
neously uncorrelated with vit.

4Ahn and Schmidt (1995, p.9) also remark that these conditions are implied if A1–A3
are replaced by assumptions that the moments are constant over time instead of zero.
That is, the values of these moments are not identified.
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For the non-linear dynamic panel data model, Model 2, Assumptions A1-

A3 imply the same moment conditions (4) and (5) as in the linear dynamic

panel data model. Assumption A4 implies the (p + 1)T (T − 1)/2 moment

conditions

E

⎡
⎢⎣

⎛
⎜⎝

h(yi,s−1, wis, θ)

∂h(yi,s−1, wis, θ)

∂θ

⎞
⎟⎠ Δuit

⎤
⎥⎦ = 0, s = 1, . . . , t − 1; t = 2, . . . , T. (6)

These results are summarized in the following theorem.

Theorem 1. In Model 2, specified by equations (3) and (2), assumptions A1–

A4 imply that a complete set of moment conditions for efficient estimation

are equations (4), (5) and (6). In total, there are T 2 − 2 + pT (T − 1)/2 such

moment conditions.

Proof. See Appendix.

Efficient estimation must fully utilize the information in the set of mo-

ment conditions given in Theorem 1. One possibility is the GMM estimator

based on an efficient weight matrix. Other possibilities include the empiri-

cal likelihood estimator (Owen, 1988) and the exponential tilting estimator

(Kitamura and Stutzer, 1997, Imbens, Spady, and Johnson, 1998) which, in

turn, are both special cases of the generalized empirical likelihood estimator

(Smith, 1997). All of these estimators are efficient. In the next section, we

investigate the GMM estimator with the panel smooth transition model.

There may be more moment conditions than listed in the Theorem 1

if additional assumptions about wit are appropriate. Some of the variables

included in wit may be assumed to be strictly exogenous. For example, time
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trends and time dummies would add further moment conditions.

As mentioned earlier, assumption A4 could be replaced by the stronger

conditional moment restriction E[vit|yi,t−1, wit] = 0. This restriction implies

for any choice of g, E[g(yi,t−1, wit)vit] = 0 and, thus, infinitely many un-

conditional moment restrictions. Under standard regularity conditions, it is

possible to represent this conditional moment restriction by a finite number

of unconditional moment restrictions by appropriate choice of g functions,

see e.g. Newey (1993). These g functions, however, typically need to be esti-

mated non-parametrically. The resulting unconditional moment restrictions

could replace the unconditional moment restrictions in A4 and be used for

efficient estimation as outlined in the theorem. In this paper, we only impose

the weaker unconditional moment restriction A4.

One might be concerned about the consequences for estimation of non-

stationarity of the dynamic models although, at this stage, we shall put the

problem to one side.5 In typical panel applications, where T is small and N

is large, such concerns are often less important and the modelling richness

afforded by the non-linearity may result in a superior approximation to the

data. We will return to practical implications of the specifications when we

discuss the case of the smooth transition model in subsequent sections.

2.3 Extension to Higher-Order Dynamic Model

In this subsection, we briefly describe how to extend the results to non-

linear dynamic panel data models, which includes higher-order lags of the

dependent variable.

5Some discussion of this issue can be found in Fonseca (2004).
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Consider the model

yit = α1yi,t−1 + · · · + αql
yi,t−ql

+ δh(yi,t−1, . . . , yi,t−qh
, wit, θ) + uit, (7)

for t = q, . . . , T , where q = max(ql, qh) is the largest lag included. We impose

similar moment conditions as in Model 2. The new assumptions A1*–A4*

are

E(yisvit) = 0, s = 0, . . . , q − 1; t = q, . . . , T. A1*

E(ηivit) = 0, t = q, . . . , T ; A2*

E(visvit) = 0, s = q, . . . , t − 1; t = q + 1, . . . , T. A3*

E

⎡
⎢⎣

⎛
⎜⎝

h(yi,s−1, .., yi,s−qh
, wis, θ)

∂h(yi,s−1, .., yi,s−qh
, wis, θ)

∂θ

⎞
⎟⎠ vit

⎤
⎥⎦ = 0,

s = qh, . . . , t;

t = q, . . . , T.
A4*

These moment conditions imply the following moment conditions, which

can be used for estimation

E(yisΔuit) = 0, s = 0, . . . , t − 2; t = q + 1, . . . , T. (8)

E(uiT Δuit) = 0, t = q + 1, . . . , T − q. (9)

E

⎡
⎢⎣

⎛
⎜⎝

h(yi,s−1, .., yi,s−qh
, wis, θ)

∂h(yi,s−1, .., yi,s−qh
, wis, θ)

∂θ

⎞
⎟⎠ Δuit

⎤
⎥⎦ = 0,

s = qh, . . . , t − 1;

t = q + 1, . . . , T.
(10)

There are ((T−1)T−(q−1)q)/2 moment restrictions in (8), T−2q moment

restrictions in (9) and (p + 1)((T − qh)(T − qh + 1)− (q − qh)(q − qh + 1))/2

moment restrictions in (10). Hence, it is necessary that T ≥ q + 1 for the
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system to be identified. In case T = q + 1 and q = qh, then the system

is exactly identified. In any other case for T ≥ q + 1, including the case

T = q + 1 and q > qh, the system is over-identified.

3 Dynamic Panel Smooth Transition Models

In the remaining part of the paper we analyse dynamic panel data models

with a smooth transition on the lagged dependent variable. Though smooth

transition models are familiar in time series analysis, they have so far only

been applied to a limited extent with panel data.

To our knowledge, there are no papers on transition models with panel

data that consider the case where the variables in the transition function are

lagged endogenous variables. Fok et al. (2005) consider a dynamic model

with smooth transition on the lagged endogenous variables. The transitions

are determined by an exogenous variable and the analysis is done on large N

large T asymptotics. Hence, they estimate the fixed effect and thereby avoid

estimation of a model similar to Model 2. González et al. (2005) consider a

non-dynamic transition model where all explanatory variables are assumed

exogenous. He and Sandberg (2005) test for a unit root against a first-

order panel smooth transition autoregressive model. The transition function

in their paper depends upon a time trend. Finally, the model considered

by Hansen (1999) is a non-dynamic model and the explanatory variables

included are exogenous.

In the next two subsections we consider the non-linear dynamic panel data

model, Model 2, with the function h specified as a logistic smooth transition
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function. These subsections address the two cases where the variable in the

transition function is exogenous or endogenous, respectively.

3.1 Exogenous Transitions

Consider the following logistic smooth transition model, where the transitions

are determined by wit and t = 2, . . . , T ,

yit = α1yi,t−1 + δhw(wit, θ)yi,t−1 + ηi + vit,

hw(wit, θ) =
1

1 + exp{−θ1(wit − θ2)} ,
(11)

As in many other non-linear models, identification of the parameters

is non-trivial. There are several identification problems. First, the model

with (α1, δ, θ1, θ2) is observationally equivalent to the model with (α1 +

δ,−δ,−θ1, θ2). Secondly, α1, δ and θ2 are not identified when θ1 = 0. In

our simulation experiments reported below we shall impose the identifying

restriction θ1 > 0, which is also convenient for the grid search used in the es-

timation program. Thirdly, θ1 and θ2 are not identified when δ = 0. Finally,

identification breaks down in the limit as θ1 → ∞ if θ2 is outside the support

of wit. We shall, hereafter, assume that θ2 is within the support of wit.

The Monte Carlo design is as follows. In all the experiments, ηi ∼
N(0, 1), vit ∼ N(0, 1), yi,−100 = ηi + vi,−100 with vi,−100 ∼ N(0, 1), and

wit = 2−1/2ηi + 2−1/2rit with rit ∼ N(0, 1). To eliminate the effect of the

initial observation, we simulate from t = −99 and discard the first 100 time

periods for each subject. With the parameter values we choose, this amounts

to drawing the initial observations from the stationary distribution of yi.
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Note, in the simulations ηi and wit are independent of vit. This could lead

to further moment restrictions than the ones derived from A1–A4. We will,

however, estimate the model using only assumptions A1–A4 to investigate

the usefulness of these assumptions.

The values of α1, δ, θ1 and θ2 vary across experiments as indicated in

the tables of results. The parameters are estimated by performing a grid

search over θ1 and θ2 and, for each value of θ1 and θ2, computing either IV

or two-step GMM estimates of α1 and δ. The grid search is restricted to

0.2 ≤ θ1 ≤ 8.0 and −2.0 ≤ θ2 ≤ 2.0. Initially, 112 equally spaced points in

the ranges [θ1−0.5, θ1+0.5] and [θ2−1.0, θ2+1.0] are evaluated. If the optimal

point is on the boundary of a range, the search area is widened in the relevant

direction (until the maximum range is reached). If the optimal point is in the

interior, 52 points are evaluated in the area between the optimal point and

its neighbouring points. The proportion of samples where the best estimator

is on the boundary of the maximum search range is indicated in the tables

under the heading “%Fail”. These boundary estimates are included in the

calculation of the root mean square errors etc.

The results are shown in Table 1. Estimation of the individual parameters

can be hard as also noted by Teräsvirta (1994) for the case of time series data.

In the table the root mean square error (RMSE) for each parameter estimator

is reported. The RMSE varies considerably depending on the true value of

the parameters. Estimation of α1 and δ can be considerably less precise

than is estimation of their sum α1 + δ. In the extreme where hw(wit, θ) = 1

(“regime 1”), the model is an AR(1) process with α1 +δ being the parameter

on the lagged endogenous variable. Similarly, in the other extreme with
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Table 1: Simulation results for exogenous smooth transition model (11)

θ1 θ2 Pr(H) RMSE A A B %Fail
θ1 θ2 α1 δ α1 + δ LIN

T = 2, IV estimation

α1 = 0.0, δ = 0.7
1.5 0.0 0.95 1.62 0.78 0.31 0.51 0.38 0.32 0.49 0.19 0.11
2.0 0.0 0.86 1.64 0.47 0.19 0.36 0.33 0.35 0.57 0.21 0.06
3.0 0.0 0.68 1.76 0.28 0.12 0.33 0.33 0.38 0.66 0.23 0.04
4.0 0.0 0.54 1.81 0.25 0.10 0.32 0.33 0.40 0.71 0.24 0.10

α1 = 0.7, δ = −0.7
1.5 0.0 0.95 1.67 0.72 0.48 0.62 0.35 0.35 0.49 0.22 0.10
2.0 0.0 0.86 1.71 0.42 0.38 0.45 0.24 0.37 0.56 0.23 0.03
3.0 0.0 0.68 1.84 0.23 0.31 0.33 0.14 0.39 0.65 0.24 0.05
4.0 0.0 0.54 1.94 0.19 0.29 0.30 0.12 0.40 0.69 0.24 0.13

T = 4, GMM estimation

α1 = 0.0, δ = 0.7
1.5 0.0 0.95 1.34 0.53 0.33 0.59 0.30 0.11 0.45 0.07 0.10
2.0 0.0 0.86 1.04 0.28 0.13 0.20 0.12 0.11 0.52 0.07 0.02
3.0 0.0 0.68 1.12 0.12 0.06 0.13 0.09 0.11 0.61 0.07 0.02
4.0 0.0 0.54 1.34 0.06 0.05 0.09 0.07 0.11 0.65 0.07 0.05

α1 = 0.7, δ = −0.7
1.5 0.0 0.95 1.37 0.37 0.26 0.47 0.24 0.11 0.45 0.07 0.04
2.0 0.0 0.86 1.44 0.27 0.21 0.32 0.13 0.11 0.52 0.07 0.04
3.0 0.0 0.68 1.29 0.09 0.07 0.09 0.05 0.11 0.61 0.07 0.02
4.0 0.0 0.54 1.39 0.06 0.06 0.07 0.04 0.11 0.66 0.07 0.04

Legend: Pr(H): Pr(0.05 < hw(wit, θ) < 0.95); RMSE: root mean square error; A: mean root mean square
regression function error; B: mean absolute regression function prediction error (MARFPE); %Fail: pro-
portion of samples with estimates of θ1 or θ2 on the boundary of the grid search range or with negative
definite GMM weight matrix (failed samples included in the calculation of RMSE and MARFPE); LIN:
linear model. Notes: Cor(yit, ηi) 	 0.82 and Cor(yit, vit) 	 0.45 in all cases. The standard deviation of yit

increases from about 2.10 to 2.35 as θ1 increases from 1.5 to 4.0. Sample size 1000 and 100 samples. The
efficient GMM estimator is implemented as the two-step estimator of α1 and δ taking θ1 and θ2 as fixed in
the computation of moment conditions and weight matrix, and performing a grid search over θ1 and θ2.
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hw(wit, θ) = 0 (“regime 0”), the model is an AR(1) process with α1 being

the parameter on the lagged endogenous variable. Hence, it is often easier to

estimate the extreme regimes than the regimes in between. Not surprisingly,

the larger time dimension, the more precise estimators.

Table 1 also reports the forecast performance of the model. Since the

models include a fixed effect, we compare forecasts of the regression function,

that is, the systematic part of the model. The forecast is compared with that

from the linear first-order autoregressive model, even though the latter will

be based upon an inconsistent estimator if the true data-generating process

is non-linear. The exogenous smooth transition model is better at forecasting

the regression function. This is especially the case for T = 4. Hence, even

though it may be hard to precisely estimate the individual parameters in the

exogenous smooth transition model, there is a considerable gain in average

forecast performance.

For a few of the designs approximately 10% of estimates of θ1 and θ2

fall on the boundary of the parameter space in the grid search. As is seen

in the forecast performance this does not mean that the model cannot fore-

cast on average. It simply means that it is hard to pinpoint the individual

parameters.

3.2 Endogenous Transitions

In this subsection, we discuss the logistic transition model, where the tran-

sitions are determined by the lagged endogenous variable. In the time series

literature (e.g. Teräsvirta, 1994), this model is also known as a smooth tran-
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sition first-order autoregressive (STAR(1)) model. For t = 2, . . . , T , it is

given by

yit = α1yi,t−1 + δhy(yi,t−1, θ)yi,t−1 + ηi + vit,

hy(yi,t−1, θ) =
1

1 + exp{−θ1(yi,t−1 − θ2)} ,
(12)

The identification of the parameters is equivalent to identification of the

parameters in the model above with an exogenous variable in the transition

function.

Table 2 shows the results. For our designs, it is harder to estimate the

smooth transition model when the transition is determined by the lagged

dependent variable. This is seen by the percentage of parameter estimates

of θ1 and θ2 on the boundary of the grid search. The RMSE on some of

the parameter estimators is also quite high. For example, it can be hard to

determine whether the effect on the lagged dependent variable comes from

α1 or δ but the sum of the two can be estimated much more precisely. It

is, however, not possible to give these conclusions uniformly over the various

experiments.

The forecasts of the regression function show that the correct smooth

transition specification may not be superior to the misspecified AR(1) model.

This is the case for T = 2. For T = 4, however, the smooth transition model

is considerable better at forecasting than the AR(1) model.
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Table 2: Simulation results for endogenous smooth transition model (12)

θ1 θ2 Pr(H) RMSE A A B %Fail
θ1 θ2 α1 δ α1 + δ LIN

T = 2, IV estimation

α1 = 0.0, δ = 0.7
1.5 0.0 0.66 1.75 0.95 0.38 2.76 2.62 1.19 0.65 0.66 0.08
2.0 0.0 0.53 1.84 0.81 0.31 2.62 2.50 1.21 0.70 0.70 0.06
3.0 0.0 0.37 2.01 0.63 0.20 1.29 1.20 0.90 0.73 0.60 0.05
4.0 0.0 0.28 2.06 0.56 0.19 1.02 0.94 0.82 0.73 0.59 0.15

α1 = 0.7, δ = −0.7
1.5 0.0 0.66 1.98 0.98 1.14 1.20 0.31 0.88 0.66 0.51 0.13
2.0 0.0 0.53 1.91 0.73 0.80 0.84 0.19 0.85 0.71 0.53 0.06
3.0 0.0 0.36 1.99 0.57 0.68 0.75 0.24 0.81 0.74 0.56 0.08
4.0 0.0 0.27 2.05 0.42 0.45 0.52 0.22 0.70 0.74 0.53 0.17

T = 4, GMM estimation

α1 = 0.0, δ = 0.7
1.5 0.0 0.66 2.09 0.65 0.30 0.43 0.19 0.15 0.55 0.09 0.12
2.0 0.0 0.53 1.84 0.49 0.29 0.42 0.16 0.15 0.59 0.10 0.08
3.0 0.0 0.37 2.41 0.29 0.14 0.17 0.07 0.12 0.61 0.10 0.14
4.0 0.0 0.28 2.55 0.18 0.06 0.09 0.06 0.12 0.60 0.10 0.26

α1 = 0.7, δ = −0.7
1.5 0.0 0.66 2.65 0.64 0.16 0.41 0.29 0.13 0.55 0.09 0.15
2.0 0.0 0.53 2.57 0.44 0.14 0.34 0.23 0.13 0.59 0.10 0.15
3.0 0.0 0.36 2.72 0.27 0.06 0.13 0.11 0.12 0.61 0.10 0.18
4.0 0.0 0.27 2.76 0.29 0.06 0.16 0.12 0.11 0.60 0.10 0.33

Legend: Pr(H): Pr(0.05 < hy(yi,t−1, θ) < 0.95); RMSE: root mean square error; A: mean root mean
square regression function error; B: mean absolute regression function prediction error (MARFPE); %Fail:
proportion of samples with estimates of θ1 or θ2 on the boundary of the grid search range or with negative
definite GMM weight matrix (failed samples included in the calculation of RMSE and MARFPE); LIN:
linear model. Notes: For Cor(yit, ηi) 	 0.85 and Cor(yit, vit) 	 0.40 in all cases. The standard deviation of
yit increases from about 2.40 to 2.55 as θ1 increases from 1.5 to 4.0. The θ1 and θ2 are scaled by dividing
yi,t−1 in hy with the standard deviation of yit (found by simulation). Sample size 1000 and 100 samples.
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4 Empirical Application

The determination of local government expenditures have been investigated

by several authors, e.g. Holtz-Eakin, Newey, and Rosen (1989) and Dahlberg

and Johansson (2000). The purpose is to understand the intertemporal links

between revenues and expenditures. Whether or not there exists a causal

link between revenues and expenditures has consequences for the validity of

various theories on the functioning of public institutions. To illustrate the

dynamic panel smooth transition model, this section considers an empirical

model proposed by Dahlberg and Johansson (2000). Their model is a linear

dynamic panel data model with fixed effects. We extend this model to a

dynamic panel smooth transition model.

The data used by Dahlberg and Johansson (2000) consist of annual obser-

vations on 265 municipalities in Sweden from 1979 to 1987. The variables are

total expenditures, total own-source revenues and total grants received. To-

tal expenditures includes both capital and current expenditures. Total own-

source revenues are local income taxes and fees for locally provided goods

and services. The government grants are transfers to support municipalities

with small tax capacity and support for certain investments. The variables

are deflated to 1985 SEK and measured in millions per capita.

One model considered by Dahlberg and Johansson (2000) is

eit = α1ei,t−1 + βt + uit, t = 2, . . . , T, (13)

where the eit are expenditures of municipality i at time t and where we have

specified a time trend instead of year dummies.
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Table 3: Estimation results

Parameter Model (13) Model (14)
Est SD z Est SD z

α 0.283 0.024 11.967 0.390 0.040 9.756
β −0.099 0.015 −6.529 −0.020 0.024 −0.871
δ −0.150 0.066 −2.279
θ1 1869.741 1081.965 1.728
θ2 0.005 0.000 16.780
#MR 29 113
DF 27 108

Legend: Est: parameter estimate; SD: standard deviation; z: z-statistic; #MR: number of mo-
ment restrictions; DF: degrees of freedom. Notes: Balanced sample, N = 265, T = 7, 1855
observations. One-step GMM estimates with Arellano-Bond’s initial weight matrix. Instruments
and weight matrix constructed with θ1 = 1420.916 and θ2 = 0.005. The trend is scaled by 1/1000.

We extend the empirical model (13) from Dahlberg and Johansson (2000)

to a logistic smooth transition model given by

eit = α1ei,t−1 +δ
1

1 + exp{−θ1(wit − θ2)}ei,t−1 +βt+uit, t = 2, . . . , T, (14)

We estimate the model using the asymptotically efficient GMM estimator.

As the predetermined variable, wit, we tried both lagged expenditures ei,t−1,

lagged revenues and lagged grants gi,t−1. As it turned out, only lagged grants,

gi,t−1, were statistically significant in the transition function.

The estimation results for (13) and (14) are reported in Table 3. In

the linear model, the autoregressive coefficient, α1, is 0.283. In the smooth

transition model, the effect of lagged expenditures varies from 0.240 (=0.39-

0.15) to 0.390 as the transition function varies between 0 and 1. Thus, the

autoregressive coefficient in the linear model is between the two extreme cases

in the smooth transition model.
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Figure 1: Fitted autoregressive effect (t − 1 ≥ 1980)
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The results show that the dynamics of expenditures depends on govern-

ments grants through the transition function. Figure 1 shows estimates of the

term which is multiplied by lagged expenditures in (14) for each data point.

The estimated autoregressive effect is lower for larger values values of lagged

grants. Since the effect in non-constant, the results suggest that government

grants influence the dynamic behaviour of municipal expenditures.

5 Conclusion

In this paper we have explored estimation of a class of non-linear dynamic

panel data models with additive unobserved individual-specific effects. The

models are specified by moment restrictions rather than by complete distri-

butional assumptions. The class includes the panel data AR(p) model, poly-

nomial dynamic models and panel smooth transition autoregressive models,

amongst others. By extending the analysis of Ahn and Schmidt (1995) we

derive a set of moment restrictions which provide a basis for efficient es-

timation. We subsequently extend these results to allow for higher-order

non-linear dynamics.

Having established results that apply to the entire class of models under

consideration we then specialize our analysis to consider estimation of panel

smooth transition models with fixed effects, where the transition may be

determined endogenously. The performance of the GMM estimator, both in

terms of estimation precision and forecasting performance, is examined in

a Monte Carlo experiment. We find that estimation of the parameters in

the transition function can be problematic but that there may be significant
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benefits in terms of forecast performance.
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Appendix: Proof of Theorem 1

Define τ = (p + 1)T and let

zit =

⎡
⎢⎣

h(yi,t−1, wit, θ)

∂h(yi,t−1, wit, θ)/∂θ

⎤
⎥⎦

Following the arguments of Ahn and Schmidt (1995), we see that the model

is comprised of τ + T + 1 functions of data; namely yi0, yi1, . . . , yiT and

zi1, zi2, . . . , zi,T . The unrestricted variance matrix of these variables have

(τ +T +1)(τ +T +2)/2 distinct components. By assumptions A1–A4, these

components can be written in terms of the fundamental parameters

(i) α1, δ, E(η2
i ), E(yi0ηi), E(y2

i0); (5 parameters)

(ii) E(v2
it), t = 1, . . . , T ; (T parameters)

(iii) E(yi0zit), t = 1, . . . , T ; (τ parameters)

(iv) E(zisz
′
it), s = 1, . . . , t; t = 1, . . . , T ; (τ(τ + 1)/2 parameters)

(v) E(viszit), s = 1, . . . , t − 1; t = 2, . . . , T ; (τ(T − 1)/2 parameters)

(vi) E(ηizit), t = 1, . . . , T . (τ parameters)

Hence the number of restrictions on the variance matrix is the difference be-

tween the number of its distinct components and the number of fundamental

parameters, namely (1 + p/2)T 2 − (p/2)T − 4. It follows that the number of

moment conditions available for the estimation of α1 and δ is no more than

(1 + p/2)T 2 − (p/2)T − 2. The proof is complete in observing that there are

(1 + p/2)T 2 − (p/2)T − 2 moment conditions in (4), (5) and (6).
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