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Abstract

This paper reviews basic notions of return variation in the context of
a continuous-time arbitrage-free asset pricing model and discusses some
of their applications. We first define return variation in the infeasible
continuous-sampling case. Then we introduce realized measures obtained
from high-frequency observations which provide consistent and asymp-
totically normal estimates of the underlying return variation. The paper
discusses applications of these measures for reduced-form volatility mod-
eling and forecasting as well as testing for the presence of jumps.
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Many financial markets effectively operate in continuous time with multi-
ple transaction prices and quotes recorded each second. Although such “ultra
high-frequency” data are not useful for assessing the expected mean return of
the underlying asset, it is highly informative regarding the strength of another
key financial characteristic, namely return volatility. In particular, it is feasible
to estimate the realized return volatility over a fixed time period directly from
high-frequency return with good precision without imposing a specific para-
metric structure on the return dynamics. Hence, as access to tick-by-tick data
became more commonplace and the first empirical links between cumulative
absolute return measures and the underlying volatility were established in the
mid 1990’s, the literature on extracting time-varying return variation measures
from high-frequency data has grown dramatically. The initial developments
focused on measures reflecting the actual squared return variation, loosely de-
noted realized volatility, over daily and weekly frequencies. However, extended
measures capturing different return moments and/or providing more robust in-
ference regarding the continuous versus jump components of the return variation
process are now an integral part of this literature. The potential applications
to areas such as risk management, derivatives pricing, portfolio choice, market
microstructure and general asset pricing are basically unlimited. This entry
briefly reviews the main developments in this literature.

A general no-arbitrage setting for a continuously evolving logarithmic asset
price is given by a jump-diffusive process. Formally, on an appropriate proba-
bility space, the stochastic logarithmic price process Xt is defined via1

Xt = X0 +
∫ t

0

bsds+
∫ t

0

σsdWs +
∑

0≤s≤t

∆Xs, (1)

where the predictable drift component, bs, signifies the instantaneous (con-
tinuously compounded) mean return, the diffusive coefficient, σs, reflects the
strength of the diffusive volatility, Ws denotes a standard Brownian motion,
and ∆Xs := Xs − Xs− indicates the jump size and is non-zero only if the
price jumps exactly at time s. In addition, we require that the drift, diffusive
and jump processes satisfy some (mostly) regularity conditions, see, e.g., Jacod
(2008)2. Equation (1) is a generic representation of the jump diffusive stochastic
volatility model that serves as a work horse for continuous time finance.

We are interested in inference regarding the actual volatility displayed by
X over a given interval of time [0, T ]. In the (infeasible) scenario where we
have access to a continuous record of Xt we can directly determine the actual

1In this definition of Xt we implicitly assume that the jumps are of finite variation (so
that we do not need to compensate them). Most results below apply to more general jump
specifications, see Barndorff-Nielsen et al. (2006), Jacod (2008), Ait-Sahalia and Jacod (2009),
Jacod and Todorov (2009).

2Most importantly, X must be an Ito semimartingale which essentially requires the drift,
diffusion and jump compensator to be absolutely continuous with respect to time.
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realization of the so-called quadratic variation of X,

QV[0,T ] =
∫ T

0

σ2
sds+

∑
0≤s≤T

|∆Xs|2. (2)

Importantly, in the continuous-record case, we may also perfectly identify the
jumps in the sample path and we thus “observe” the continuous and discontin-
uous parts of the quadratic variation and obtain the decomposition,

QV c[0,T ] =
∫ T

0

σ2
sds and QV d[0,T ] =

∑
0≤s≤T

|∆Xs|2. (3)

The quadratic variation is of particular interest as it is closely related to the
(variance) risk of the asset. This is most transparent in a simplified setting.
For a pure diffusion, if the (stochastic) volatility process is independent from
the return innovations, and ignoring the (negligible) return variation induced
by innovations to the mean drift, the returns are conditionally Gaussian with
variance governed by QV c[0,T ]. If the return interval is small, such as a day, we
may safely ignore the mean drift altogether and for simplicity equate it to zero.
We then have the distributional result,3

(XT −X0)
∣∣∣∣{σs}0≤s≤T ∼ N

(
0,
∫ T

0

σ2
sds

)
. (4)

Notice that the Gaussian distributional result is conditional on the realization
of the so-called integrated variance which a priori is stochastic. In other words,
the returns follow a Gaussian mixture distribution with the realization of the
(diffusive) quadratic variation governing the actual return variation. If this in-
tegrated variance process is persistent, i.e., displays pronounced positive serial
correlation, then the return distribution is symmetric, but displays both uncon-
ditional and conditional leptokurtosis along with volatility clustering. The main
features which may modify this characterization and induce both asymmetries
and more extreme outliers in the conditional return distribution are correlation
between the return innovations and the volatility, the so-called leverage effect,
and the presence of jumps. Nonetheless, the interpretation of QV[0,T ] as the
relevant return variation measure remains intact. Moreover, the multivariate
version of equation (4) applies as stated in Andersen et al. (2003).

In practice we do not observe financial series continuously but rather obtain
transaction price and quote data referring to specific points in time. Hence,
the challenge is to design estimators from the discrete observations of X that
can estimate continuous-time quantities like the quadratic variation and its de-
composition into continuous and jump components. A closely related issue is
the development of tests for the presence of jumps in the (partially) observed
path of X. Suppose we observe X at 0, ..., i∆n, ...[T/∆n]∆n, where ∆n is a

3Detailed discussion about the associated conditions and the interpretation of these rela-
tionships may be found in Andersen et al. (2007a).
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small positive sampling interval and [y] denotes the integer part of y. Since
the time interval, T , is fixed, we cannot exploit standard “large (sample length)
T ” asymptotics for developing estimation and testing procedures but instead
appeal to continuous record asymptotics, i.e., ∆n → 0. For example, we may
think of [0, T ] as one trading day and assume we observe the price process every
10 minutes, 5 minutes, 1 minute, etc. The exposition is split in three parts. We
first define realized volatility as a feasible estimator of quadratic variation and
discuss its relation to the underlying return distribution. Next, the notion of
multipower variation is introduced and we outline its use for robust inference
regarding critical aspects of the quadratic return variation. In the following
section we discuss the application of realized multipower variation in formal
testing for the presence of jumps. Finally, we briefly touch on procedures de-
signed to mitigate the impact of market microstructure noise, which potentially
allow for more efficient inference, as well as some multivariate generalizations of
the results discussed in this survey.

1 Realized Volatility

Realized Volatility, also interchangeably referred to as Realized Quadratic Vari-
ation, is defined as

RVT =
[T/∆n]∑
i=1

|∆n
i X|2, (5)

where ∆n
i X := Xi∆n −X(i−1)∆n

4. Hence, RVT is simply a cumulative sum of
squared high-frequency observations. Its usefulness stems from the fact that it
consistently estimates the (unobservable) quadratic variation as ∆n → 0, i.e.

RVT
P−→ QVT . (6)

A few comments are in order. First, the estimator is model-free and applies very
broadly independently of parametric model assumptions. Moreover, it remains
valid in the multivariate case as well. Second, the measure speaks to the return
variation over an interval and not to the underlying spot volatility at any given
point. In fact, inference regarding spot volatility is very challenging without re-
strictive assumptions due to the lack of a continuous record of price observations
and the impact of microstructure frictions at ultra-high frequencies. Third, RVT
resembles a rolling sample variance estimator. This statistic, labeled “historical
volatility” has precedents in the literature5. Fourth, Merton (1980) notes that,
in theory, high-frequency data can provide perfect inference whenever volatility
is locally constant. Direct linkage of an empirical realized volatility measure
based on intraday returns to an underlying (stochastic) quadratic return vari-
ation appears first in Andersen and Bollerslev (1998a). Fifth, one trading day

4Some authors label RVT the Realized Variance, and refer to its square root as the realized
volatility. However, in this entry we follow the early literature and term RVT realized volatility.

5It is, e.g., employed to construct annual and monthly return variation measures from
monthly and daily squared returns by Officer (1973) and French et al. (1987), respectively.
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is the natural measurement period due to the pronounced intraday volatility
patterns and significant news announcement effects. These features render in-
terpretation of realized return variation over intraday periods much more com-
plex, see, e.g., Andersen and Bollerslev (1998b)6. Finally, it is important to
recognize that RVT provides an ex-post estimate of the return variation which
is conceptually distinct from the ex-ante conditional return variance.

In order to assess the accuracy with which RVT measures QVT , a Central
Limit Theorem (CLT) - characterizing its behavior as the sampling frequency in-
creases - is useful. In the simplest case without jumps7 it follows from Barndorff-
Nielsen and Shephard (2002, 2004b) and Barndorff-Nielsen et al. (2005) that

1√
∆n

(RVT −QVT ) L−s−→ ε×

√
2
∫ T

0

σ4
sds, (7)

where L−s−→ means stable convergence in law8 (see, e.g., Jacod and Shiryaev
(2003) for exposition and references) and ε is a standard normal variable, defined
on an extension of the original probability space9. Moreover, for two non-
overlapping intervals, the measurement errors for the quadratic variation are
serially uncorrelated. Evidently, the precision of RVT can be gauged formally
only if we can obtain a measure of the so-called “Integrated Quarticity,” IQT =∫ t

0
σ4
sds, from a given set of discrete price observations. This is, in fact, feasible

through the general realized multipower variation statistics introduced below.
Another reason to consider the general multipower variation statistics is the
desire to decompose the quadratic variation into continuous and jump parts.
The realized variation provides a consistent estimate of the combined quadratic
variation. The statistics introduced in the next section enable us to isolate the
effect of jumps, thus allowing for direct identification of the continuous part,
QV cT .

2 Multipower Variation

The initial example of a multipower variation process is the so-called bipower
variation proposed by Barndorff-Nielsen and Shephard (2004c, 2006a) and de-

6Other early uses of high-frequency data for volatility estimation include work by Olsen &
Associates summarized in Dacorogna et al. (2001) as well as Hsieh (1991) and Zhou (1996).
Moreover, Comte and Renault (1998) mention the possibility of estimating spot volatility from
increments to quadratic variation approximated over short horizons.

7More generally, the “observed” path may contain jumps and the associated CLT is derived
in Jacod (2008). Veraart (2007) discusses different feasible estimators of the asymptotic
variance in the special case when the jumps in price and volatility do not arrive together.

8Stable convergence in law strengthens the usual convergence in law by guaranteeing that
the convergence in (7) is joint with any random variable defined on the original probability
space. This property is critical for feasible asymptotic inference as well as application of the
delta method.

9Bootstrapping is an alternative approach for inference and may well improve precision
obtained from a fairly large, but finite, number of intraday observations, see Goncalves and
Meddahi (2009).
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fined as

BVT =
π

2

[T/∆n]∑
i=2

|∆n
i−1X||∆n

i X|. (8)

Barndorff-Nielsen and Shephard (2004c, 2006a), Barndorff-Nielsen et al. (2006)
prove that, even in the presence of a jump process10,

BVT
P−→ QV cT . (9)

Hence, it provides a consistent estimator for the integrated variance and we may
thus further consistently estimate the jump contribution to quadratic variation
via the difference between RVT and BVT .

More generally we may define Realized Multipower Variation by raising m
successive absolute price increments to arbitrary powers, indexed by the vector
p = (p1, ..., pm), where pj ≥ 0, j = 1, ...,m.

V (X; p; ∆n)T = (µp1 . . . µpm)−1

[T/∆n]∑
i=m

|∆n
i−m+1X|pm . . . |∆n

i X|p1 , (10)

for µa denoting the a-th absolute moment of a standard normal. By appropriate
scaling of the realized multipower variation, in the absence of jumps, we obtain
corresponding convergence result

∆1−p/2
n V (X; p; ∆n)T

P−→
∫ T

0

σpsds, (11)

where p = p1 + ...+ pm. In analogy to the bipower variation case, this result is
robust to the presence of jumps provided max{pi}i=1,...,m < 2, see Barndorff-
Nielsen et al. (2006). Further generalizations and asymptotic properties are
explored in Barndorff-Nielsen et al. (2005) for X continuous11.

A prominent special case of multipower variation arises when p is a scalar.
Then V (X; p; ∆n)T is labeled Realized Power Variation of order p. Obviously,
V (X; 2; ∆n)T coincides with the realized volatility estimator. In addition, a
natural estimator of integrated quarticity under the null hypothesis of no jumps
may be based on the realized fourth power variation, V (X; 4; ∆n)T . While
this statistic is inconsistent under the jump alternative, many realized multi-
power variation statistics are consistent in the presence of jumps, including the
so-called realized tripower variation with p = (4/3, 4/3, 4/3) and the realized
quadpower variation with p = (1, 1, 1, 1).

An alternative way of estimating the continuous part of the quadratic varia-
tion is to use the truncated squared power variation proposed by Mancini (2001,

10Unfortunately, the CLT for the Bipower Variation derived under the assumption that X
does not have jumps on the observed path does not hold in presence of jumps.

11Some of these properties are extended to the case when X contains jumps in Barndorff-
Nielsen et al. (2006)
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2009) and also analyzed by Jacod (2008). It is formally defined as

Ṽ (X, 2,∆n)T =
[T/∆n]∑
i=1

|∆n
i X|21{|∆n

i X|≤α(∆n)ξ}, (12)

for arbitrary α > 0 and ξ ∈ (0, 1/2). The intuition is simple - we discard incre-
ments higher than a given threshold in the summation of the squared returns,
thus effectively discarding the impact of jumps.

Given their consistency for QVT and QV cT and the absence of serial correla-
tion in the associated measurement errors, RVT and BVT serve as a natural basis
for measuring and forecasting return volatility. The literature is too extensive
for a thorough review so we only provide an account of a few established find-
ings. First, Andersen et al. (2003) demonstrate that reduced form time series
models for realized volatility within the ARFIMA class generate forecasts which
dominate traditional stochastic volatility and GARCH models estimated from
daily return data. The long memory dependence incorporated in the ARFIMA
setting is invariably highly significant and an important factor in forecast perfor-
mance12. Another key feature in the superior forecast performance is the ability
of RVT to adapt quickly to shifts in the underlying level of volatility. This al-
lows forecasts to be conditioned on a more accurate assessment of the current
volatility state compared to models based on daily returns. Second, Andersen
et al. (2007b) find that forecast performance may be boosted further through a
decomposition of RVT into the continuous and jump part. The diffusive volatil-
ity is the main source of long range dependence so separating out the jumps
allows for a more refined measure of the relevant volatility state and improves
forecast precision correspondingly13. Third, Andersen et al. (2006) document
that this type of reduced form time series forecasts, at a minimum, perform on
par with market based forecasts such as implied volatility forecasts extracted
from option prices. Andersen et al. (2004) provides an analytic framework for
gauging the performance of reduced form realized volatility forecasts across a
broad class of popular diffusive stochastic volatility specifications, finding that
the loss of predictive ability is minor relative to using (infeasible) forecasts based
on the true underlying model. The usefulness of reduced form realized volatility
and (in the multivariate extension) covariation forecast models from practical
perspectives is documented, e.g., in Fleming et al. (2003) and Bandi et al. (2008)
for portfolio allocation, in Andersen et al. (2006) for dynamic estimation of sys-
tematic (beta) market risk, in Andersen and Benzoni (2009) for specification
testing of term structure models and in Bandi et al. (2008) for option pricing
and associated trading strategies.

Realized multipower variation also facilitates estimating general parametric
continuous-time models which is challenging due to the latency of the stochastic

12Typical estimates for the parameter indicating the degree of fractional integration fall
in the range of 0.30 to 0.47, suggesting a strictly stationary but highly persistent volatility
dynamics.

13An alternative approach exploiting a mix of different realized power variation statistics
for forecasting is the so-called MIDAS regressions proposed by Ghysels et al. (2006).
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volatility and the presence of price jumps. Bollerslev and Zhou (2002) estimate
affine jump-diffusion models by treating the realized volatility as the unobserv-
able Quadratic Variation in a method-of-moments procedure14. They show via
simulations that the impact of the measurement error on the parameter esti-
mates is small15. Corradi and Distaso (2006) provide formal justification for the
estimator of Bollerslev and Zhou (2002). They consider joint asymptotics, both
long time span and continuous record, and show that (in the general case) when
the intra-period sampling frequency increases faster than sample length, the
measurement error of realized volatility (and in some cases bipower variation) is
asymptotically negligible. Todorov (2009) further generalizes these results. He
proves the uniform integrability of realized multipower variation statistics un-
der general specifications for the price jump process and demonstrates that the
realized multipower variation can be used effectively in making semi-parametric
inference about general classes of continuous-time models.

3 Jump Testing

Another important application of realized multipower variation is to determine
whether, on a given path, the process X contains jumps or not. This may again
be accomplished in entirely model-independent fashion, i.e., without imposing
additional structure on X besides specification (1). Barndorff-Nielsen and Shep-
hard (2004c, 2006a) propose testing for jumps by determining whether QV d[0,T ]

is statistically different from zero. For this purpose they derive the joint asymp-
totic distribution of RV and BV conditional on the path of X not containing
jumps.

Huang and Tauchen (2005) discusses various transformations of these tests
which often lead to significant improvements in finite sample test performance.
They also document that these procedures generally provide reliable tests. Al-
ternative tests for the null hypothesis of no jumps can be derived by replacing
the bipower variation with other realized multipower variation estimates of QV cT
or with the truncated squared power variation16.

Recently Ait-Sahalia and Jacod (2009) propose an attractive alternative to
these tests. They construct a test statistic as a ratio of power variation of order
four computed over two different frequencies,

Φ(j)
n =

V (X; 4; k∆n)T
V (X; 4; ∆n)T

, (13)

14A similar approach is adopted in Garcia et al. (2006) in the estimation of objective and
risk-neutral distributions.

15Barndorff-Nielsen and Shephard (2002, 2006b) consider also estimation of continuous-time
models by using realized volatility and Todorov (2006) adds also the realized fourth power
variation in the inference. These papers compute moments in closed-form. Similarly, Meddahi
(2002) derives moments in closed form for the general eigenfunction stochastic volatility models
and uses them to study the difference between quadratic variation and realized volatility (in
the case of no jumps). Moments of realized multipower variation statistics (e.g., bipower
variation) are not known in general, unlike the moments of their continuous-time counterparts.

16See also Jiang and Oomen (2008) for an alternative but related jump test.
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where k ≥ 2 is an integer (typically 2 or 3). This test statistic behaves very
differently depending on whether X contains jumps on the (partially) observed
path or not, since,

Φ(j)
n

P−→
{

1 if X contains jumps
k if X does not contain jumps, (14)

Ait-Sahalia and Jacod (2009) derive the CLT for Φ(j)
n both when the given path

of X contains jumps and when it does not. This allows for tests of both the
null of no jumps (like above) and the null of jumps.

Finally, Lee and Mykland (2008) pursue a different strategy as they test for
jumps at each single high-frequency observation. The motivation is that, under
the null hypothesis of no jumps, the high-frequency increments, standardized
by the estimated local volatility, are asymptotically normally distributed. It
has the convenient feature that the exact timing of significant jumps within the
trading period is identified17.

4 Some Important Extensions

An important feature ignored in our exposition is the impact of so-called market
microstructure noise. This refers to the patterns induced in high-frequency
returns due to features such as a discrete price grid, the absence of continuous
trading, and the presence of a bid-ask spread. Hence, the observed price may be
seen as a noisy indicator of an underlying ideal price contaminated by a (small)
noise process. This noise component induces a bias in the empirical RV measures
which tends to grow with increasing sampling frequency. As such, when realized
volatility is computed from ultra high-frequency returns, it is critical to adjust
for the impact of microstructure noise. Andersen et al. (2000) suggest gauging
the highest sampling frequency at which the systematic bias induced by the noise
is negligible, via a so-called volatility signature plot, and use that frequency for
realized volatility computations. However, it is potentially more efficient to
sample more frequently and adjust for the noise component. This approach is
pursued in a number of papers in recent years, see, e.g., Zhang et al. (2005),
Bandi and Russell (2006), Hansen and Lunde (2006), Barndorff-Nielsen et al.
(2008) and Zhang (2006). While the asymptotic theory has developed for the
case of a pure diffusive price process, the properties of the various procedures in
the presence of jumps remain largely unknown. Recently, Podolskij and Vetter
(2009) propose to modify the bipower variation in a way which is robust both
to the microstructure noise and price jumps (of finite activity).

17Andersen et al. (2007) explore a similar strategy determining the exact location of, poten-
tially multiple, jumps from uniform test statistics across all high-frequency returns over each
trading day. Another alternative is to invoke a sequential test where, conditional on the jump
statistic being significant at a given level, the most dominant jump is identified and removed
and the jump test procedure then repeated until the jump statistic no longer is significant at
the given test level. This strategy is employed by Andersen et al. (2007).
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In addition, our exposition has focused on the univariate case. If X is con-
tinuous, the multivariate extension is conceptually straightforward and has been
done in Barndorff-Nielsen and Shephard (2004b), Barndorff-Nielsen et al. (2005)
(although the practical application can be challenging). If X contains jumps
matters are much more complicated, as realized multipower variation can be-
have very differently depending on whether the jumps in individual series arrive
jointly or not. This is exploited in Jacod and Todorov (2009) who propose tests
for both whether the jumps in the individual components arrive together or not
without any restriction on the possible jump dependence (Barndorff-Nielsen and
Shephard (2004a) consider measuring whether the covariation induced by jumps
is zero as a way to test for common jumps). Jacod and Todorov (2009) docu-
ment a non-trivial number of days with common arrival of jumps in exchange
rates. Todorov and Bollerslev (2007) consider linear dependence between in-
dividual stock and market jumps and show that the associated discontinuous
market betas can behave very differently from the continuous ones.

In summary, realized volatility and the related realized multipower variation
literature is vibrant. Given the large efficiency gains obtained from volatility
measurements exploiting high-frequency data relative to daily data and the
increasing availability of tick-by-tick data, both the theoretical and empirical
research within this area will surely continue to grow in coming years.
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cesses. Journal of Econometrics 131, 217–252.

Barndorff-Nielsen, O., N. Shephard, and M. Winkel (2006). Limit Theorems for
Multipower Variation in the Presence of Jumps in Financial Econometrics.
Stochastic Processes and Their Applications 116, 796–806.

12



Bollerslev, T. and H. Zhou (2002). Estimating Stochastic Volatility Diffu-
sionusing Conditional Moments of Integrated Volatility. Journal of Econo-
metrics 109, 33–65.

Comte, F. and E. Renault (1998). Long Memory in Continuous-Time Stochastic
Volatility Models. Mathematical Finance 8, 291–323.

Corradi, V. and W. Distaso (2006). Semiparametric Comparision of Stochastic
Volatility Models Using Realized Measures. Review of Economic Studies 73,
635–667.

Dacorogna, M., R. Gencay, U. Muller, R. Olsen, and O. Pictet (2001). An In-
troduction to High-Frequency Finance (1st ed.). San Diego: Academic Press.

Fleming, J., C. Kirby, and B. Ostdiek (2003). The Economic Value of Volatility
Timing using Realized Volatility. Journal of Financial Economics 67, 473–
509.

French, K., G. Schwert, and R. Stambaugh (1987). Expected Stock Returns
and Volatility. Journal of Financial Economics 19, 3–29.

Garcia, R., M. Lewis, S. Pastorello, and E. Renault (2006). Estimation of
Objective and Risk-neutral Distributions based on Moments of Integrated
Volatility. Working paper, Universite de Montreal.

Ghysels, E., P. Santa-Clara, and R. Valkanav (2006). Predicting Volatility: how
to get most out of Returns Data Sampled at Different Frequencies. Journal
of Econometrics 131, 59–95.

Goncalves, S. and N. Meddahi (2009). Bootstrapping Realized Volatility. Econo-
metrica 77, 283–306.

Hansen, P. and A. Lunde (2006). Realized Variance and Market Microstructure
Noise. Journal of Business and Economic Statistics 24, 127–161.

Hsieh, D. (1991). Chaos and Nonlinear Dynamics: Applications to Financial
Markets. Journal of Finance 46, 1839–1877.

Huang, X. and G. Tauchen (2005). The Relative Contributions of Jumps to
Total Variance. Journal of Financial Econometrics 3, 456–499.

Jacod, J. (2008). Asymptotic Properties of Power Variations and Associ-
ated Functionals of Semimartingales. Stochastic Processes and their Applica-
tions 118, 517–559.

Jacod, J. and A. N. Shiryaev (2003). Limit Theorems For Stochastic Processes
(2nd ed.). Berlin: Springer-Verlag.

Jacod, J. and V. Todorov (2009). Testing for Common Arrivals of Jumps for
Discretely Observed Multidimensional Processes. Annals of Statistics 37,
1792–1838.

13



Jiang, G. and R. Oomen (2008). A New Test for Jumps in Asset Prices. Journal
of Econometrics 144, 352–370.

Lee, S. and P. Mykland (2008). Jumps in Financial Markets: A New Nonpara-
metric Test and Jump Dynamics. Review of Financial Studies 21, 2535–2563.

Mancini, C. (2001). Disentangling the Jumps of the Diffusion in a Geomet-
ric Jumping Brownian Motion. Giornale dell’Instituto Italiano degli At-
tuari LXIV, 19–47.

Mancini, C. (2009). Nonparametric Threshold Estimation for Models with
Stochastic Diffusion Coefficient and Jumps. Scandinavian Journal of Statis-
tics 36.

Meddahi, N. (2002). Theoretical Comparision Between Integrated and Realized
Volatility. Journal of Applied Econometrics 17, 479–508.

Merton, R. (1980). On Estimating the Expected Return on the Market. Journal
of Financial Economics 8, 323–361.

Officer, R. (1973). The Variability of the Market Factor of the New York Stock
Exchange. Journal of Business 46, 434–453.

Podolskij, M. and M. Vetter (2009). Estimation of Volatility Functionals in
the Simultaneous Presence of Microstructure Noise and Jumps. Bernoulli 15,
634–658.

Todorov, V. (2006). Econometric Analysis of Jump-Driven Stochastic Volatility
Models. Working paper, Duke University.

Todorov, V. (2009). Estimation of Coninuous-time Stochastic Volatility Models
with Jumps using High-Frequency Data. Journal of Econometrics 148, 131–
148.

Todorov, V. and T. Bollerslev (2007). Jumps and Betas: A New Theoreti-
cal Framework for Disentangling and Estimating Systematic Risks. Working
paper, Northwestern University and Duke University.

Veraart, A. (2007). Feasible Inference for Realized Variance in the Presence of
Jumps. Working paper.

Zhang, L. (2006). Efficient Estimation of Stochastic Volatility using Noisy Ob-
servations: A Multi-scale Approach. Bernoulli 19, 1019–1043.

Zhang, L., P. Mykland, and Y. Ait-Sahalia (2005). A Tale of Two Time Scales:
Determining Integrated Volatility with Noisy High Frequency Data. Journal
of the Americal Statistical Association 100, 1394–1411.

Zhou, B. (1996). High-Frequency Data and Volatility in Foreign-Exchange
Rates. Journal of Business and Economic Statistics 8, 45–52.

14



Research Papers 
2009 

 
 

 
 
 
2009-36: Tom Engsted and Thomas Q. Pedersen: The dividend-price ratio does 

predict dividend growth: International evidence 

2009-37: Michael Jansson and Morten Ørregaard Nielsen: Nearly Efficient 
Likelihood Ratio Tests of the Unit Root Hypothesis 

2009-38: Frank S. Nielsen: Local Whittle estimation of multivariate 
fractionally integrated processes 

2009-39: Borus Jungbacker, Siem Jan Koopman and Michel van der Wel: 
Dynamic Factor Models with Smooth Loadings for Analyzing the Term 
Structure of Interest Rates 

2009-40: Niels Haldrup, Antonio Montañés and Andreu Sansó: Detection of 
additive outliers in seasonal time series 

2009-41: Dennis Kristensen: Pseudo-Maximum Likelihood Estimation in Two 
Classes of Semiparametric Diffusion Models 

2009-42: Ole Eiler Barndorff-Nielsen and Robert Stelzer: The multivariate 
supOU stochastic volatility model 

2009-43: Lasse Bork, Hans Dewachter and Romain Houssa: Identification of 
Macroeconomic Factors in Large Panels 

2009-44: Dennis Kristensen: Semiparametric Modelling and Estimation: A 
Selective Overview 

2009-45: Kim Christensen, Silja Kinnebrock and Mark Podolskij: Pre-averaging 
estimators of the ex-post covariance matrix  

2009-46: Matias D. Cattaneo, Richard K. Crump and Michael Jansson: Robust 
Data-Driven Inference for Density-Weighted Average Derivatives 

2009-47: Mark Podolskij and Mathias Vetter: Understanding limit theorems for 
semimartingales: a short survey 

2009-48: Isabel Casas and Irene Gijbels: Unstable volatility functions: the 
break preserving local linear estimator 

2009-49: Torben G. Andersen and Viktor Todorov: Realized Volatility and 
Multipower Variation 

 


