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Abstract

The objective of this paper is to introduce the break preserving local linear

(BPLL) estimator for the estimation of unstable volatility functions. Breaks in

the structure of the conditional mean and/or the volatility functions are common

in Finance. Markov switching models (Hamilton, 1989) and threshold models

(Lin and Teräsvirta, 1994) are amongst the most popular models to describe the

behaviour of data with structural breaks. The local linear (LL) estimator is not

consistent at points where the volatility function has a break and it may even

report negative values for finite samples. The estimator presented in this paper

generalises the classical LL. The BPLL maintains the desirable properties of the

LL with regard to the bias and the boundary estimation, it estimates the breaks

consistently and it ensures that the volatility estimates are always positive.
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1 Introduction

The authors are interested in estimating the volatility function at a given point x,

which is denoted by σ2(x) hereafter. This volatility function is non–stochastic, in the

sense that the dynamics in model (1) below come from the process and not from the

behaviour of the volatility over the dimension t. In addition, the conditional mean

and volatility functions may be discontinuous i.e. they may present a finite number

of breaks which may be of different magnitudes. Breaks are abrupt changes in the

structure of the function due to sudden events. These breaks may be caused by a

financial crisis (see Cerra and Saxena, 2005 and Hamilton, 2005), or an abrupt change

in the government policy (Hamilton, 1988 amongst others).

Let {(Yt, Xt)} be a two–dimensional strictly stationary process, distributed as (Y,X)

and defined by the model:

Yt = m(Xt) + σ(Xt)εt, (1)

where the conditional mean function m(x) is also non–stochastic and it possibly has

breaks. The innovations εt, t = 1, . . . , n, are distributed as ε and satisfy E(ε|X) = 0

and E(ε2|X) = 1. Clearly, E(Yt|Xt = x) = m(x) and E(r2
t |Xt = x) = σ2(x) for rt =

Yt−m(Xt). Thus, it is natural to estimate the conditional mean and the volatility with

a regression of Yt and r2
t respectively. The conditional mean function is estimated using

the technique in Gijbels et al. (2007) which combines the smooth preserving properties

of the classical LL (Fan and Gijbels, 1996) and the break preserving properties of the

estimator in Qiu (2003). Their conditional mean estimator is uniformly consistent in

the points of continuity and pointwise consistent at the breaks, with bias of Op(h2
1) for

the bandwidth h1 > 0. In their study, three estimators of the conditional mean are

found at each point x: i) the LL estimator, âc(x); ii) the right estimator, âr(x); and

iii) the left estimator âl(x) whose mathematical expressions are given in the general

formula,

âk(x) =
n∑
t=1

YtKk

(
Xt − x
h1

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2

k,1

for k = c, l, r (2)

where sk,j =
∑

(Xt−x)jKk

(
Xt − x
h1

)
and Kc(·) is a symmetric kernel centred around

zero with support on [−1
2 ,

1
2 ]. The other two kernels are the right and left kernels defined

as Kl(x) = Kr(−x) = Kc(x) when x ∈ [−1
2 , 0] and zero otherwise. The estimator m̂(x)
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is the appropriate value chosen amongst those three estimators.

Fan and Yao (1998) show that σ2(·) is consistently estimated with the LL estimator

over the series of estimated squared residuals r̂2
t = (Yt− m̂(Xt))2. In fact, although the

bias of m̂(x) is of order Op(h2
1), “its contribution to σ̂2(x) is only of op(h2

1)”. However,

the LL estimator is not consistent at break points. Intuitively, any estimator which

uses a centred kernel is expected to lie in the middle of the two values at the break,

independently of the data size n, and therefore it is inconsistent. The BPLL estimator

uses the LL for the continuous parts, and chooses between the left or right estimators

at the breaks neighbourhoods. The LL is asymptotically positive but this is not always

true for finite samples. This paper suggests using the exponential local linear (ELL)

estimator (see Ziegelmann, 2002) when negative values occur.

The contribution of the BPLL to the existing literature is at different levels. The

main contribution of this paper is that the BPLL estimates volatility functions with

breaks. Second, the parametric forms of the conditional mean and volatility functions

are unknown, although they satisfy certain regularity conditions which are detailed in

Appendix A. Third, the BPLL estimates the breaks consistently, in contrast to other

existing kernel smoothing estimators of the volatility, and it ensures that the volatility

estimates are always positive. Fourth, contrary to parametric structural break models,

the BPLL is independent of the nature of the breaks. Finally, the BPLL is a one step

estimator while popular structural break models find the location of the break first and

then proceed to the estimation.

The paper is organised as follows. In Section 2 the left, right and centred estimators

for the volatility and their statistical inference are introduced. Section 3 introduces the

BPLL as a combination of the three estimators and the asymptotic theory. The results

of Monte Carlo experiments are shown in Section 4 where the BPLL performance is

compared to the LL performance. The conclusions are laid out in Section 5 and the

proofs are left to the Appendixes.

2 The left, right and centred estimators

First, let the variable X have support in [a, b] and {xq : q = 1, . . . ,m} be the finite

set of breaks which, for simplicity, do not correspond with boundary points. Defining

h2 > 0 as the bandwidth, then two regions are differentiated: i) D1 is the region

where the volatility function is continuous, and ii) D2 contains the breaks and their
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neighbourhoods:

D1 =
[
a+

h2

2
, b− h2

2

]
\D2

D2 =
m⋃
q=1

[
xq −

h2

2
, xq +

h2

2

] (3)

The LL volatility estimator, also named centred estimator, is σ̂2
c (x) = â for:

(â, b̂) = arg min
(a,b)

n∑
t=1

[
r̂2
t − a− b(Xt − x)

]2
Kc

(
Xt − x
h2

)
(4)

The centred estimator is smooth because it uses the information obtained from data

points on the right and left sides of x. For this reason though, it is inconsistent where

σ2(x) is discontinuous. Two other estimators of the volatility (left and right) may be

found using the asymmetric kernels Kl(·) and Kr(·) defined in the introduction. The

technique of choosing between the left and right estimator has been previously reported,

for instance: i) Hamrouni (1999) uses it to locate the breaks of the conditional mean

function, and ii) Qiu (2003) and Gijbels et al. (2007) use it to estimate the conditional

mean with breaks. A general expression of the three estimators is given by,

σ̂2
k(x) =

n∑
t=1

r̂2
tKk

(
Xt − x
h2

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2

k,1

for k = c, l, r. (5)

using also h2 in calculating the quantities sk,j .

The expression of the volatility first–order derivative is given by,

ˆ̇σ2
k(x) =

n∑
t=1

r̂2
tKk

(
Xt − x
h2

)
sk,0(Xt − x)− sk,1
sk,0sk,2 − s2

k,1

for k = c, l, r. (6)

Proposition 2.1 Under regularity conditions (C1) to (C4) the expression of the mean

squared error (MSE) for each estimator is as follows:

For a given point x ∈ D1,

MSE(σ̂2
k(x)) =

[
h2

2σ̈
2(x)
2

µ2
k,2 − µk,1µk,3
µk,2µk,0 − µ2

k,1

]2

+
(E(ε4|X = x)− 1)σ4(x)

nh2fX(x)
Vk+op

(
h2

1 + h2 +
1
nh2

)

For a given point x ∈ D2 such that x = xq + τh2 with τ ∈ [0, 1
2 ], where the break is of
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magnitude dq, the left and centred estimators have an Op(1) bias:

MSE(σ̂2
l (x)) =

[
dq

∫ 1
2

τ

Kl(u)
µl,2 − µl,1u
µl,0µl,2 − µ2

l,1

du

]2

+
(E(ε4|X = x)− 1)σ4(x)

nh2fX(x)
Vl + op

(
1
nh2

)

MSE(σ̂2
c (x)) =

[
dq

∫ 1
2

τ

Kc(u)du

]2

+
(E(ε4|X = x)− 1)σ4(x)

nh2fX(x)
Vc + op

(
1
nh2

)

For a given point x ∈ D2 such that x = xq + τh2 with τ ∈ [−1
2 , 0] where the break is of

magnitude dq, the right and centred estimators have an Op(1) bias:

MSE(σ̂2
r(x)) =

[
dq

∫ τ

− 1
2

Kr(u)
µr,2 − µr,1u
µr,0µr,2 − µ2

r,1

du

]2

+
(E(ε4|X = x)− 1)σ4(x)

nh2fX(x)
Vr + op

(
1
nh2

)

MSE(σ̂2
c (x)) =

[
dq

∫ τ

− 1
2

Kc(u)du

]2

+
(E(ε4|X = x)− 1)σ4(x)

nh2fX(x)
Vc + op

(
1
nh2

)

for µk,j =
∫
ujKk(u)du and Vk =

∫
K2
k(u)

[
µk,2 − µk,1u
µk,0µk,2 − µ2

k,1

]2

du.

Proposition 2.1 shows that under regularity conditions imposed on the conditional

mean and volatility functions, and if h1, h2 → 0 and nh2 → ∞ as n → ∞ is satisfied,

then the centred, left and right estimators of the volatility function converge in proba-

bility and they are consistent for points x ∈ D1. At points x ∈ D2, the right estimator

is consistent when x is in a neighbourhood at the right of the break xq; and the left

estimator is consistent in a neighbourhood at the left of xq.

The weighted residual mean squares (WRMS) measures how well each estimator is

fitted to the data:

WRMSk(x) =

∑n
t=1[r̂2

t − σ̂2
k(x)− ˆ̇σ2

k(x)(Xt − x)]2Kk

(
Xt − x
h2

)
∑n

t=1Kk

(
Xt − x
h2

) .

Proposition 2.2 Under regularity conditions (C1) to (C4), asymptotical expressions
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of the WRMS are as follows:

For a given point x ∈ D1,

WRMSk(x) = σ4(x)(E(ε4|X = x)− 1) +Rk,1(x)

For a given point x ∈ D2 such that x = xq + τh2 with τ ∈ [0, 1
2 ], where the break is of

magnitude dq,

WRMSl(x) = σ4(x)(E(ε4|X = x)− 1) + d2
qC

2
l,τ +Rl,2(x)

WRMSr(x) = σ4(x)(E(ε4|X = x)− 1) +Rr,2(x)

WRMSc(x) = σ4(x)(E(ε4|X = x)− 1) + d2
qC

2
c,τ +Rc,2(x)

For a given point x ∈ D2 such that x = xq + τh2 with τ ∈ [−1
2 , 0] where the break is of

magnitude dq,

WRMSl(x) = σ4(x)(E(ε4|X = x)− 1) +Rl,3(x)

WRMSr(x) = σ4(x)(E(ε4|X = x)− 1) + d2
qC

2
r,τ +Rr,3(x)

WRMSc(x) = σ4(x)(E(ε4|X = x)− 1) + d2
qC

2
c,τ +Rc,3(x)

where

C2
k,τ = Mk

∫ 1
2

−τ

[∫ −τ
− 1

2

Kk(z)(µk,2 − µk,1z)dz − u
∫ 1

2

−τ
Kk(z)(µk,0z − µk,1)dz

]2

K(u)du

+Mk

∫ −τ
− 1

2

[∫ 1
2

−τ
Kk(z)(µk,2 − µk,1z)dz + u

∫ 1
2

−τ
Kk(z)(µk,0z − µk,1)dz

]2

K(u)du,

and Mk = {µk,0(µk,2µk,0 − µk,1)2}−1.

The residuals Rk,j for k = c, l, r and j = 1, 2, 3 are asymptotically zero with probability
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1 and uniformly in x.

3 The break preserving local linear estimator

Although the three estimators have the same asymptotical bias for x ∈ D1, in practice

the centred estimator is best because it is smoother. The left estimator should be

chosen to estimate points in a small interval on the left side of the break and the right

estimator is the only one consistent in a small interval on the right side of the break.

Thus, this paper proposes an estimator that combines all appropriately:

σ̂2
BPLL(x) =


σ̂2
c (x) diff(x) < u

σ̂2
l (x) diff(x) ≥ u and WRMSl(x) < WRMSr(x)

σ̂2
r(x) diff(x) ≥ u and WRMSl(x) > WRMSr(x)

(σ̂2
l (x) + σ̂2

r(x))/2 diff(x) ≥ u and WRMSl(x) = WRMSr(x)

(7)

where diff(x) = max(WRMSc(x)−WRMSr(x),WRMSc(x)−WRMSl(x)). Proposi-

tion 2.2 shows that for a given point x ∈ D1, diff(x) is very close to zero. However for

a given point x in an interval of the break xq, diff(x) = d2
qC

2
c,τ + o(1) a.s. Therefore,

0 < u < maxq(d2
q)C

2
c,τ .

Remark. As the σ̂2
BPLL(x) chooses the appropriate estimator at every point, its

bias at a given point x is:

βk(x) =
h2

2σ̈
2(x)
2

µ2
k,2 − µk,1µk,3
µk,2µk,0 − µ2

k,1

. (8)

Theorem 3.1 Under conditions (C1) to (C6),
√
nh2(σ2(x) − σ̂2

BPLL(x) − βk(x)) is

asymptotically normal with mean 0 and variance

(E(ε4|X)− 1)σ4(x)
fX(x)

∫
K2
k(u)

[
µk,2 − µk,1u
µk,0µk,2 − µ2

k,1

]2

du+ op

(
1
nh2

)
,

where βk is as in equation (8).

3.1 Ensuring positiveness

The fact that the LL estimator is sometimes negative for finite samples is widely

known. Asymptotically, this is not the case and the number of negative values de-
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creases as n increases. A solution to this problem must be found for this estima-

tor to be useful. The simplest solution is to discard those negative values. A much

better solution is the re–weighted Nadaraya–Watson estimator (see Hall et al., 1999;

Cai, 2001; and Phillips and Xu, 2007). However, the re–weighted Nadaraya–Watson

estimator cannot be extended to estimate volatility functions with breaks because∑n
t=1(Xt−x)wt(x)Kk

(
Xt − x
h2

)
= 0 for k = l, r cannot be satisfied for wt ≥ 0 weights

adding up to one. The exponential local linear (ELL) estimator has been proposed by

Ziegelmann (2002) for continuous volatility functions. It is outside the scope of this

paper to study a break preserving ELL estimator. However, the ELL left, right and

centred estimators would have similar properties to the LL left, right and centred esti-

mators because they are both a nonparametric local linear estimator. In fact, the LL

and the ELL have the same variance. Regarding the bias, the ELL may have a smaller

bias than the LL if certain conditions are satisfied. Therefore, the occasional use of the

ELL does not distort the results of the BPLL.

The solution proposed here is to substitute any negative values of σ̂2
k(x) by σ̂2

k,ELL(x)

for k = c, l, r where σ̂2
k,ELL(x) = exp(ĉ) such that

(ĉ, d̂) = arg min
b,c

∑
[r̂2
t − exp(c+ d(Xt − x))]2Kk

(
Xt − x
h2

)
.

3.2 Bandwidth selection

The expressions of the optimal global and local bandwidths, as the values that min-

imise the mean integrated squared error (MISE) and the MSE, depend on unknown

functions such as fX(x) and σ2(x), for which plug–in estimators are needed. Instead,

the authors propose to use the leave-one-out cross validation to find the bandwidth

and the threshold value u when {X} is an iid process. A two dimensional minimisation

must be performed in the following way,

(hcv2 , u
cv) = arg min

h2,u

n∑
t=1

[
r̂2
t − σ̂2

−t(Xt)
]2

where σ̂2
−t(Xt) is the estimator obtained when the pair (Yt, Xt) is left out.

In case that the lag of dependency in {Y,X} is of size l, the authors propose the
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leave an l–block–out cross validation,

(hl2, u
l) = arg min

h2,u

n∑
t=1

[
r̂2
t − σ̂2

−lt
]2

where σ̂2
−lt is calculated without using the 2l+1 pairs (Xt−l, Y

2
t−l), . . . , (Xt, Y

2
t ), . . . , (Xt+l, Y

2
t+l).

4 Simulation experiments

The theoretical results for finite samples are tested in this section. The first experiment

tests the performance of the BPLL when (Yt, Xt) is and iid process. Experiment 2

assumes that there is an AR(1) dependency within Xt.

4.1 Experiment 1: iid variables

The model Yt = m(Xt) + σ(Xt)εt considered is based on Example 2 in Fan and Yao

(1998), with Xt
iid∼U [−2, 2] and innovations εt

iid∼ N(0, 1). The points of estimation x are

T = 250 equidistant values in [-1.8,1.8]. Processes of size n = 500, 1000 and 2000 where

simulated N = 200 number of times. The centred kernel used is the Epanechnikov

kernel: Kc(u) = 12/11(1− u2)I[−1
2 ≤ u ≤

1
2 ].

The volatility function σ2 : < → <+ is bounded and continuous everywhere except

for x1 = −1 and x2 = 1. Therefore the two differentiated regions are D1 = [−2, 2] \D2

and D2 = [−1 − h2
2 ,−1 + h2

2 ]
⋃

[1 − h2
2 , 1 + h2

2 ]. The volatility function second–order

derivative exists and is bounded in x ∈ D1. The left and right second derivatives at x1

and x2 exist and are bounded. The volatility expression is:

σ(x) =


0.4 exp(−2x2) + 0.2 x ≤ −1

0.4 exp(−2x2) −1 < x ≤ 1

0.4 exp(−2x2) + 0.1 x > 1

(9)

The estimator m̂(Xt) is obtained with the methodology in Gijbels et al. (2007).

The authors distinguish amongst four scenarios:

Scenario I: the conditional mean function is known, this is equivalent to: m ≡ 0.

Scenario II: the conditional mean is unknown and continuous in the support of x:

m(x) = 0.5(x+ 2 exp(−16x2)).
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Scenario III: the conditional mean is unknown and has one break at x3 = 0. Its second

derivative exists and is bounded for the continuous part and the left and right second

derivatives exist and are bounded in x3 = 0:

m(x) =

 0.5(x+ 2 exp(−16x2)) x ≤ 0

0.5(x+ 2 exp(−16x2))− 0.7 x > 0
(10)

Scenario IV: the conditional mean is unknown and it has breaks at the same points

as the volatility function. Its second derivative exists for the continuous part and is

bounded in the continuous points and the left and right second derivatives exist and

are bounded in x1 and x2.

m(x) =


0.5(x+ 2 exp(−16x2))− 0.5 x ≤ −1

0.5(x+ 2 exp(−16x2)) −1 < x ≤ 1

0.5(x+ 2 exp(−16x2)) + 0.9 x > 1

(11)

Comparison of the two models MISE is a way to compare their global performance.

A numerical approximation of the estimator MISE may be obtained by

M̂ISE =
1
N

N∑
k=1

ÎSEk ÎSEk =
T−1∑
t=1

SEk(xt) + SEk(xt+1)
2T

(12)

where SEk(xt) is the squared error of the kth–simulated sample. Around the points

of break xq: ÎSEq,k =
∑T−1

t=1
SEk(xt)+SEk(xt+1)

2T I[xq − 0.1 < xt < xt+1 < xq + 0.1]. The

local MISE estimator is:

M̂ISEq =
1
N

m∑
q=1

N∑
k=1

ÎSEk,q. (13)

The MISE comparison of the two estimators for each scenario is shown in Table 1.

The first thing to notice is that the MISE decreases as the sample size increases which

demonstrates the convergence results. The values of the MISE are statistically the

same amongst the four different scenarios because the error committed in estimating

the conditional mean does not affect the volatility estimation. The global MISE for the

LL is better than the global MISE of the BPLL when the sample size is n = 500 but

this advantage disappears as the sample size increases. The BPLL performs strikingly

better than the LL in the points of break for all the cases and sizes. In fact, the global
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MISE for the LL estimator mainly comes from the error committed at the breaks when

n = 2000.

Method LL BPLL
M̂ISE M̂ISEq M̂ISE M̂ISEq

n = 500
Scenario I 0.0089 0.0060 0.0098 0.0039
Scenario II 0.0098 0.0062 0.0120 0.0039
Scenario III 0.0093 0.0061 0.0109 0.0040
Scenario IV 0.0107 0.0067 0.0123 0.0042
n = 1000
Scenario I 0.0047 0.0034 0.0037 0.0015
Scenario II 0.0044 0.0032 0.0043 0.0018
Scenario III 0.0048 0.0034 0.0045 0.0017
Scenario IV 0.0044 0.0032 0.0040 0.0016
n = 2000
Scenario I 0.0021 0.0016 0.0012 0.0005
Scenario II 0.0020 0.0016 0.0012 0.0006
Scenario III 0.0020 0.0016 0.0012 0.0006
Scenario IV 0.0022 0.0016 0.0013 0.0005

Table 1: MISE of LL and BPLL comparison for Experiment 1.

For a further comparison of the two estimators, the authors also calculate the mean

absolute deviation error (MADE) which is more robust to outliers than the MISE. Its

expression is given by:

MADEk =
1
T

T∑
t=1

|σ(xt)− σ̂(xt)|

where k refers to the kth–simulated sample. A local MADE is also obtained for points

in the neighbourhood of the breaks,

MADEq,k =
1
T

m∑
q=1

{
T∑
t=1

|σ(xt)− σ̂(xt)|I[xq − 0.1 < xt < xq + 0.1]

}
.

The boxplot of the MADE for scenario IV is shown in Figure 1. A similar interpre-

tation than with the MADE results is drawn here. Figures 1(a), 1(c) and 1(e) display

the results with the global MADE. The LL estimator has a lower MADE when n is
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small than the BPLL. Although, as it can be seen in Figures 1(b), 1(d) and 1(f), the

local MADE referring to the point–wise performance at the breaks is better estimated

by the BPLL. Moreover, the mean of the LL local MADE is around 0.035 and does not

decrease as n increases, which shows its inconsistency.

Figure 2 compares the LL with the BPLL estimator. Figures 2(a) and 2(b) cor-

respond to the LL estimator for sets of length n = 500 and n = 2000 respectively.

Figures 2(c) and 2(d) correspond to the BPLL estimator counterparts. The solid line

draws σ(x). The the dashed line corresponds to the estimate whose MADE is equal

to its median amongst the 200 different samples. The dotted lines correspond to the

5%, 95% confidence interval. The LL estimator is smoother than the BPLL estimator

in the points of continuity, as expected. One also appreciates that the LL estimator is

inconsistent in x1 and x2, its confidence intervals do not include these points. On the

other hand, the BPLL estimator of the volatility at x1 and x2 improves as n increases.

4.2 Experiment 2: a square-root diffusion

The first to assume that the interest rates behave like a square–root diffusion process

was Cox et al. (1985) with the CIR model. In this model, the X is an AR(1) and there-

fore it is a good example to show that the BPLL also works when there is dependency

in the data.

The process is of the form:

dXt = κ(θ −Xt)dt+ σ
√
XtdBt

where κ is the persistence of Xt, θ is the long–run mean of Xt, σ > 0 is the instantaneous

standard deviation and Bt is a Brownian process. The process was generated following

the algorithm in Section 3.4 of Glasserman (2004).

The conditional mean and volatility functions have breaks at x1 = 0.07 and x2 =

0.10. The values of the model parameters are taken from Aı̈t–Sahalia (1996) and

Chapman and Pearson (2000). These are: κ1 = 0.21459, σ1 = 0.07830, κ2 = 0.85837,

σ2 = 0.15660 and θ = 0.085711 and were estimated from the U.S. interest rates and the

Eurodollar data sets. The expressions of the conditional mean and volatility functions

used for the simulation are as follows:

12



m(x) =

 κ1(θ − x) 0.07 < x ≤ 0.1

κ2(θ − x) otherwise
(14)

σ(x) =

 σ1
√
x 0.07 < x ≤ 0.1

σ2
√
x otherwise

(15)

The bandwidths h1 and h2 are obtained using the l–block–out cross validation

for the lag l = 1. A set of N=400 simulations were performed for series of length

n = 500, 1000 and 2000. The points of estimation x are T = 250 equidistant values in

[0.03, 0.12]. Figures 3(a) and 3(b) correspond to the LL estimator for sets of length

n = 500 and n = 2000 respectively. Figures 3(c) and 3(d) correspond to the BPLL

estimator counterparts. This is clearly a more difficult problem than Experiment 1 and

needs more points to ensure a good estimation. In fact, Chapman and Pearson (2000)

simulate sets of length 7500 and 15000. Therefore the estimator for n = 500 is not very

good. The LL estimator is too smooth, staying in the middle of the different values of

the function. However the BPLL, although it is more variable, estimates the function

better, reaching the points of break. The LL also performs worse in the boundaries.

There are not many points in the neighbourhood of 0.03 and the performance of the

centred estimator is worse than the performance of the right estimator in those points.

The LL needs a larger bandwidth to compensate this problem in the boundaries. In

fact, the average bandwidth for the LL when n = 2000 is 0.024, while its average value

is 0.016 for the BPLL. Graphically this issue is shown in Figures 2 (b) and 2 (d).

The global performance of the two estimators is compared in Table 2 and Figure

4. Both the global and local MISE are better for the BPLL estimator. The same

behaviour pointed out in Experiment 1 is found here. The inconsistency of the LL

estimator manifests on the local MADE results whose mean stays fixed independently

of the process size.

Method LL BPLL
M̂ISE M̂ISEq M̂ISE M̂ISEq

n = 500 0.0241 0.0083 0.0114 0.0057
n = 1000 0.0120 0.0041 0.0039 0.0022
n = 2000 0.0059 0.0021 0.0013 0.0008

Table 2: MISE of LL and BPLL comparison for Experiment 2.
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5 Conclusions

This paper introduces a novel one step estimator, the BPLL, for a volatility function

with breaks. Although the number of breaks and their location are unknown, this

procedure is able to estimate the volatility function consistently at any point. The

simulation experiments illustrate the asymptotic results for both, when (Y,X) is an

independent two–dimensional process and when (Y,X) satisfies the β–mixing condition.

In fact, it is important to point out that the BPLL performs strikingly better than the

LL in the latter scenario.

Since the availability of intra–daily data, much work has gone into the estimation

and forecasting of the stochastic spot volatility. Certainly, kernel smoothing techniques

have developed further in this area as well, for example Kristensen (2007) and Bandi

and Renò (2008) amongst others. The extension of the BPLL to the estimation of

the spot volatility with breaks is not straightforward. A priori, i) the process (Y,X)

must be independent, ii) jumps in the sense of extreme shocks must be considered, and

iii) microstructure noise may cause a heavy bias on the BPLL estimator. Therefore,

research into the estimation of the spot volatility with breaks is left for future work.
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Appendix A

Define fX(·) as the marginal density function of X with support in [a, b], fε|X(·) as

the conditional density function of ε given X, m(·) as the conditional mean function,

σ2(·) > 0 as the volatility function, K(·) is a symmetric kernel with support in [−1
2 ,

1
2 ],

h1 > 0 is the bandwidth used in the estimation of the conditional mean and h2 > 0 is

the bandwidth in the estimation of the volatility. The following regularity conditions

are assumed.

(C1) The kernel Kc(·), fX(·) and fε|X(·) are Lipschitz continuous.

(C2) For some δ ∈ [0, 1), E(Y 4(1+δ)) <∞.

(C3) Functions m(·) and σ2(·) have continuous second–order derivatives, m̈(·) and

σ̈2(·), in x ∈ D1.

(C4) The function m(·) has left and right bounded second–order derivatives in its dis-

continuities xq, m̈−(xq) and m̈+(xq). Similarly, σ2(·) has left and right bounded

second–order derivatives in its discontinuities xp, σ̈2
−(xp) and σ̈2

+(xp).

(C5) hi → 0, nhi →∞ and lim inf nh4
i > 0, for i = 1, 2 as n→∞.

(C6) The strictly stationary process {(Xi, Yi)} satisfies the β–mixing condition (see

Bradley, 2005 for definition).

Remarks. Conditions (C2) and (C6) refer to the degree of dependency of the process

{(Xi, Yi)}. In the case of an independent process, δ = 0. Condition (C6) implies that

although there is dependency within {(Xi, Yi)}, it does not last forever.

Appendix B: Proof Proposition 2.1

First, notice that using the Lipschitz property of the kernel, Lemma A.2 in Gijbels et

al. (2007) is extended for the case of a random variable X,

sk,j = nhj+1
2 fX(x)µk,j +Op

(
1
nh2

)
. (B.1)

Also,

r̂2
i = r2

i + 2[m(Xi)− m̂(Xi)]σ(Xi)εi + [m(Xi)− m̂(Xi)]2 (B.2)
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For a given point x ∈ D1, substituting (B.2) in expression (5),

σ̂2
k(x)− σ2(x) =

∑n
i=1(r2i − σ2(x))Kk

(
Xt − x
h2

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2k,1

+2
∑n
i=1[m(Xi)− m̂(Xi)]σ(Xi)εiKk

(
Xt − x
h2

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2k,1

+
∑n
i=1[m(Xi)− m̂(Xi)]2Kk

(
Xt − x
h2

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2k,1

= I1 + I2 + I3
(B.3)

Applying (B.1) and that the bias of the conditional mean estimator is Op
(
h2

1

)
, it

follows:

I3 =
1

nh2fX(x)

n∑
i=1

[m(Xi)− m̂(Xi)]2Kl

(
Xt − x
h2

)
µl,2 − µl,1(Xi−x

h2
)

µl,0µl,2 − µ2
l,1

+Op

(
1
nh2

)
(B.4)

Therefore E(I3) = Op

(
h4

1 +
1
nh2

)
. Similarly E(I2) = Op

(
h2

2 +
1
nh2

)
. Applying that

r2
i = σ2(Xi)(ε2i − 1) + σ2(Xi), that E(ε2i |Xi = x) = 1 and the result in (B.1):

E(I1) = E

(
[σ2(Xi)(ε2i − 1) + σ2(Xi)− σ2(x)]Kk

(
Xt − x
h2

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2k,1

)
=

∫
(ω2 − 1)fε|X(ω)

∫ [
σ2(x) + h2σ̇

2(x) +
h2

2u
2σ̈2(x)
2

+ op(h2
2)
]
Kk(u)

× µk,2 − µk,1u
µk,0µk,2 − µ2

k,1

[fX(x) + op(1)]dudω

+
∫ [

h2σ̇
2(x) +

h2
2u

2σ̈2(x)
2

+ op(h2
2)
]
Kk(u)

µk,2 − µk,1u
µk,0µk,2 − µ2

k,1

[fX(x) + op(1)]du

(B.5)

Adding all the terms in (B.3):

Bias(x) =
h2

2σ̈
2(x)
2

µ2
k,2 − µk,1µk,3
µk,0µk,2 − µ2

k,1

+Op

(
h2

1 +
1
nh2

)
(B.6)

Performing the same type of calculations, the variance:

V ar(σ̂2
k(x)) = E

[(r2i − σ2(x))Kk

(
Xt − x
h2

)
sk,2 − sk,1(Xt − x)
sk,0sk,2 − s2k,1

]2
+ lower order terms

=
σ4(x)(E(ε4|X = x)− 1)

nh2fX(x)

∫
K2
k(u)

[
µk,2 − µk,1u
µk,0µk,2 − µ2

k,1

]2

du+ op

(
1
nh2

)
(B.7)

For a given point x ∈ D2 such that x = xq + τh2 with τ ∈ [−1
2 , 0] where the jump is

of magnitude dq, and if conditions (C3) and (C4) are satisfied then the right estimator
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is given by,

σ̂2
r (x) =

∑
Xi<xq

[σ2
−(xq) + op(1)]Kr

(
Xt − x
h2

)
sr,2 − sr,1(Xt − x)
sr,0sr,2 − s2

r,1

+
∑
Xi≥xq

[σ2
−(xq) + dq + op(1)]Kr

(
Xt − x
h2

)
sr,2 − sr,1(Xt − x)
sr,0sr,2 − s2

r,1

= σ2
−(xq) +

∑
Xi≥xq

dqKr

(
Xt − x
h2

)
sr,2 − sr,1(Xt − x)
sr,0sr,2 − s2

r,1

+ op(1)

= σ2
−(xq) + dq

∫ 0

τ
Kr(z)

µr,2 − µr,1u
µr,0µr,2 − µ2

r,1

dz + op(1).

(B.8)

The expression of the centred estimator may be obtained similarly applying that

µc,0 = 1 and µc,1 = 0. A similar expression for the left and centred estimators can be

obtained for τ ∈ [0, 1
2 ]. Thus, equations (B.6)–(B.8) prove Proposition 2.1.

Appendix C: Proof Proposition 2.2

WRMSk(x) =

∑n
i=1[r̂2

i − σ̂2
k(x)− ˆ̇σ2

k(x)(Xi − x)]2Kk

(
Xt − x
h2

)
∑n

i=1Kk

(
Xt − x
h2

) .

By the ergodic theorem, the denominator:

D(x) =
n∑
i=1

Kk

(
Xt − x
h2

)
p→ nh2µk,0fX(x). (C.1)

The numerator:

N(x) =
∑n
i=1[r̂2i − σ̂2

k(x)− ˆ̇σ2
k(x)(Xi − x)]2Kk

(
Xt − x
h2

)
=

∑n
i=1(ε2i − 1)2σ4(Xi)Kk

(
Xt − x
h2

)
+2
∑n
i=1(ε2i − 1)σ2(Xi)[σ2(Xi)− σ̂2

k(x)− ˆ̇σ2
k(x)(Xi − x)]Kk

(
Xt − x
h2

)
+
∑n
i=1[σ2(Xi)− σ̂2

k(x)− ˆ̇σ2
k(x)(Xi − x)]2Kk

(
Xt − x
h2

)
= N1 +N2 +N3

(C.2)

Given x ∈ D1:

ˆ̇σ2
k(x) =

n∑
i=1

r̂2
iKk

(
Xt − x
h2

)
sk,0(Xt − x)− sk,1
sk,0sk,2 − s2

k,1

(C.3)
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and σ̇2(x)− ˆ̇σ2
k(x) = op(1/h2). Therefore,

N3 =
∑n

i=1[σ2(Xi)− σ̂2
k(x)]2Kk

(
Xt − x
h2

)
2
∑n

i=1[σ2(x)− σ̂2
k(x)][σ̇2(x)− ˆ̇σ2

k(x)](Xi − x)Kk

(
Xt − x
h2

)
∑n

i=1[σ̇2(x)− ˆ̇σ2
k(x)]2(Xi − x)2Kk

(
Xt − x
h2

)
+ op(nh2)

= op(nh2).

(C.4)

It is easy to see that N2 = 0 because E(ε2i |Xi = x) = 1. On the other hand, using

similar derivations than in the Appendix B,

N1 = nh2(E(ε4|Xi = x)− 1)σ4(x)µk,0fX(x) + op(nh2) (C.5)

and therefore

N(x)
D(x)

= (E(ε4i |Xi = x)− 1)σ4(x) + op(1) (C.6)

For a given point x ∈ D2 such that x = xq + τh2 with τ ∈ [−1
2 , 0] where the jump is

of magnitude dq, and if conditions (C3) and (C4) are satisfied then the right estimator

of the first–order derivative of σ2(·) is given by,

ˆ̇σ2
r (xq) =

dq
h2

∫ 0

τ
Kr(z)

µr,0u− µr,1
µr,0µr,2 − µ2

r,1

dz + op(1/h2). (C.7)

Using equations (B.8) and (C.7), the expression of N3 from the left estimator is:
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N3 =
∑
Xi<xq

[
σ2(Xi)− σ2

−(xq)− dq
∫ 1/2

τ
Kr(z)

µr,2 − µr,1u
µr,0µr,2 − µ2

r,1

dz

− dq
h2

∫ 1/2

τ
Kr(z)

µr,0u− µr,1
µr,0µr,2 − µ2

r,1

dz(Xi − x)

]2

Kr

(
Xt − x
h2

)
∑
Xi≥xq

[
σ2(Xi)− σ2

−(xq)− dq
∫ 1/2

τ
Kr(z)

µr,2 − µr,1u
µr,0µr,2 − µ2

r,1

dz

− dq
h2

∫ 1/2

τ
Kr(z)

µr,0u− µr,1
µr,0µr,2 − µ2

r,1

dz(Xi − x)

]2

Kr

(
Xt − x
h2

)
+ op(nh2)

= nh2fX(x)
∫ τ

0

[
dq

∫ 1/2

τ
Kr(z)

µr,2 − µr,1u
µr,0µr,2 − µ2

r,1

dz + udq

∫ 1/2

τ
Kr(z)

µr,0u− µr,1
µr,0µr,2 − µ2

r,1

dz

]2

Kr(u)du

+nh2fX(x)
∫ 1/2

τ

[
dq

∫ τ

0
Kr(z)

µr,2 − µr,1u
µr,0µr,2 − µ2

r,1

dz − udq
∫ 1/2

τ
Kr(z)

µr,0u− µr,1
µr,0µr,2 − µ2

r,1

dz

]2

Kr(z)du

+op(nh2)

= d2
qC

2
r,τnh2fX(x) + op(nh2).

(C.8)

When Xi < xq, the volatility is approximated in a small interval around xq by σ2(Xi) =

σ2
−(xq) + op(1) a.s. However when Xi ≥ xq, σ2(Xi) = σ2

−(xq) + dq + op(1) a.s. Due to

WRMSr(x) = N(x)/D(x), then Proposition 2.2 is proven.

Appendix D: Proof Theorem 3.1

Fan and Yao (1998) show that under the regularity conditions in Appendix A, the cen-

tred estimator is asymptotically normal. The right estimator is asymptotically normal

in the points of continuity and in the points to the right of a discontinuity. Further-

more, the left estimator is asymptotically normal in the points of continuity and in the

points to the left of a discontinuity. These two last results have been proven for the

conditional mean estimator in Lambert (2005).

Following the idea in the proof of Theorem 3.2 of Gijbels et al. (2007), the estimator

BPLL can be rewritten as:

σ̂2
BPLL(x) = σ̂2

c (x)An(x) + σ̂2
l (x)Bn(x) + σ̂2

r (x)Cn(x) +
σ̂2
l (x) + σ̂2

r (x)
2

Dn(x) (D.1)
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where An(x), Bn(x), Cn(x) and Dn(x) are the regions regarding each of the inequalities

in equation (7). It is easy to see that these regions are mutually exclusive and that for

any x ∈ [a, b], I(An(x)) + I(Bn(x)) + I(Cn(x)) + I(Dn(x)) = 1 a.s.

For a given x ∈ D1, by Proposition (2.2), the value of diff(x) is asymptotically zero

and therefore the threshold value u also tends to zero which means that I(An(x)) tends

to 1 a.s. and I(Bn(x)) + I(Cn(x)) + I(Dn(x)) tends to zero a.s. Therefore σ̂2
BPLL(x) =

σ2
c (x) a.s. in that region.

For x = xq + τh2 ∈ D2 where −1
2 ≤ τ ≤ 0, with a magnitude of jump dq,

diff(x) = max(d2
qC

2
c,τ +Rc,3(x)−Rl,3(x), d2

q(C
2
c,τ − C2

r,τ ) +Rc,3(x)−Rr,3(x)). (D.2)

We have,

lim
n→∞

diff(x) = d2
q max(C2

c,τ , C
2
c,τ − C2

r,τ ) = d2
qC

2
c,τ (D.3)

Since, 0 < u < d2
qC

2
c,τ then diff(x) > u and I(An) = 0 a.s. Now, is it WRMSr(x) >

WRMSl(x)?

WRMSr(x)−WRMSl(x) = d2
qC

2
r,τ +Rl,3 −Rr,3 → d2

qC
2
r,τ > 0 as n→∞, (D.4)

therefore I(Bn(x)) = 1 a.s. and σ̂2
BPLL(x) = σ̂2

l (x). Equivalently, I(Cn(x)) = 1 a.s. for

points on a small interval to the right of a discontinuity and I(Dn(x)) = 1 a.s for points

on a small interval of a discontinuity where WRMSl(x) = WRMSr(x). As each of the

estimators is asymptotically normal in the areas where they are chosen then σ2
BPLL is

asymptotically normal and Theorem 3.1 is proven.
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Figure 1: Boxplot of the MADE for scenario IV of Experiment 1.
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Figure 2: Comparison between the LL and the BPLL estimators from Scenario II of Experiment
1. The real function σ(x) is plotted with a solid line, the estimate whose MADE correspond to
the 50% quantile is plotted with a dashed line, and the 5% and the 95% confidence interval is
plotted with a dotted line.
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Figure 3: Comparison between the LL and the BPLL estimators of the CIR model (Experiment
2). The real function σ(x) is plotted with a solid line, the estimate whose MADE correspond
to the 50% quantile is plotted with a dashed line, and the 5% and the 95% confidence interval
is plotted with a dotted line.
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Figure 4: Boxplot of the MADE for Experiment 2.
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