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obtained based on a mean squared error expansion of the estimator of interest. An extensive
Monte Carlo experiment shows a remarkable improvement in performance when the bandwidth-
dependent robust inference procedure proposed by Cattaneo, Crump, and Jansson (2009) is
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dence intervals compare favorably to the alternative procedures available in the literature.
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1. INTRODUCTION
Semiparametric models, which include both a finite dimensional parameter of interest and an in-
finite dimensional nuisance parameter, play a central role in modern statistical and econometric
theory, and are potentially of great interest in empirical work. However, the applicability of semi-
parametric estimators is seriously hampered by the sensitivity of their performance to seemingly
ad hoc choices of “smoothing” and “tuning” parameters involved in the estimation procedure. Al-
though classical large sample theory for semiparametric estimators is now well developed, these
theoretical results are typically invariant to the particular choice of parameters associated with
the nonparametric estimator employed, and usually require strong untestable assumptions (e.g.,
smoothness of the infinite dimensional nuisance parameter). As a consequence, inference proce-
dures based on these estimators are in general not robust to changes in the choice of tuning and
smoothing parameters underlying the nonparametric estimator, and to departures from key unob-
servable model assumptions. Thus, classical asymptotic results for semiparametric estimators may
not always accurately capture their behavior in finite samples, posing considerable restrictions on
the overall applicability they may have for empirical work.

This paper proposes a robust data-driven inference procedure for the density-weighted average
derivative estimator, an important semiparametric estimator commonly used in empirical work.
The main idea is to develop a new data-driven bandwidth selector compatible with the small band-
width asymptotic theory presented in Cattaneo, Crump, and Jansson (2009). This alternative
(first-order) large sample theory encompasses the classical large sample theory available in the lit-
erature, and also enjoys several robustness properties. In particular, (i) it provides a valid inference
procedure for (small) bandwidth sequences that would render the classical results invalid, (i) it
permits the use of a second-order kernel regardless of the dimension of the regressors and therefore
removes strong smoothness assumptions, and (iii) it provides a limiting distribution that is not
invariant to the particular choices of smoothing and tuning parameters, without necessarily forcing
a slower than root-n rate of convergence (where n is the sample size). The key theoretical insight
behind these results is to accommodate bandwidth sequences that break down the asymptotic lin-
earity of the estimator of interest, leading to a more general first-order asymptotic theory that is no
longer invariant to the particular choices of parameters underlying the preliminary nonparametric
estimator. Consequently, it is expected that a new inference procedure based on this alternative
asymptotic theory would (at least partially) “adapt” to the particular choices of these parameters.

The preliminary simulation results in Cattaneo, Crump, and Jansson (2009) show that this
alternative asymptotic theory opens the possibility for the construction of a robust inference pro-
cedure, providing a range of (small) bandwidths for which the appropriate test statistic enjoys
approximately correct size. However, the bandwidth selectors available in the literature turn out
to be incompatible with these new results in the sense that they would not deliver a bandwidth

choice within the robust range. This paper presents a new data-driven bandwidth selector that



RoOBUST DATA-DRIVEN INFERENCE FOR AVERAGE DERIVATIVES 3

achieves this goal, thereby providing a robust automatic (i.e., fully data-driven) inference procedure
for the estimand of interest. These results are corroborated by an extensive Monte Carlo experi-
ment, which shows that the asymptotic theory developed in Cattaneo, Crump, and Jansson (2009)
coupled with the data-driven bandwidth selector proposed here lead to remarkable improvements
in inference when compared to the alternative procedures available in the literature. In particular,
the resulting new data-driven confidence intervals exhibit close-to-correct empirical coverage across
all designs considered. Among other advantages, these new data-driven statistical procedures allow
for the use of a second-order kernel, which is believed to deliver more stable results in applications
(see, e.g., Horowitz and Hardle (1996)), and appear to be considerably more robust to the impact
associated with the additional variability introduced by the estimation of the bandwidth selectors.
This paper contributes to the important literature of semiparametric inference for weighted
average derivatives. This population parameter of interest was originally introduced by Stoker
(1986), and has been intensely studied in the literature since then. Hérdle and Stoker (1989) and
Hérdle, Hart, Marron, and Tsybakov (1992) study general weighted average derivative estimators,
although their results are considerably complicated by the fact that their representation requires
handling stochastic denominators and appears to be very sensitive to the choice of trimming para-
meters. Fortunately, the density-weighted average derivative estimator circumvents this problem,
while retaining the desirable properties of the general weighted average derivative, and leads to a
simple and useful semiparametric estimator. Powell, Stock, and Stoker (1989) study the first-order
large sample properties of this estimator and provide sufficient (but not necessary) conditions for
root-n consistency and asymptotic normality. Nishiyama and Robinson (2000, 2001, 2005) study
its second-order large sample properties by deriving valid Edgeworth expansions for this estima-
tor (see also Robinson (1995)), while Hérdle and Tsybakov (1993) and Powell and Stoker (1996)
provide second-order mean squared error expansions for this estimator (see also Newey, Hsieh, and
Robins (2004)). Both types of higher-order expansions provide simple plug-in bandwidth selectors
targeting different properties of this estimator, and are compatible with the classical large sample
theory available in the literature. Ichimura and Todd (2007) provide a recent survey, with par-
ticular emphasis on implementation, of the results available in the literature. For an interesting
empirical example focusing on density-weighted average derivatives, see Deaton and Ng (1998).
The rest of the paper is organized as follows. Section 2 describes the model and reviews the main
results available in the literature regarding first-order large sample inference for density-weighted
average derivatives. Section 3 presents the higher-order mean squared error expansion and develops
the new (infeasible) theoretical bandwidth selector, while Section 4 describes how to construct a
feasible (i.e., data-driven) bandwidth selector and establishes its consistency. Section 5 summarizes

the results of an extensive Monte Carlo experiment. Section 6 concludes.
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2. MODEL AND PREVIOUS RESULTS
Let z; = (y;,2})', i = 1,...,n, be a random sample from a vector z = (y,2’)’, where y € R is a
dependent variable and x = (z1, - - ,xd)' € R? is a continuous explanatory variable with a density

f (+). The population parameter of interest is the density-weighted average derivative given by
0=E|f (@) g (@)
= z)=—g(x
axg )

where g (z) = E [y|z] denotes the population regression function. The following assumption collects

typical regularity conditions imposed on this model.

Assumption 1. (a) E [y*] < cc.
(b) E [02 (z) f (z)] > 0 and V [0e (z) /0x — yOf (z) /Ox] is positive definite, where o2 (z) =
Vyls] and e (z) = £ (2) g ().
(c) fis (Q + 1) times differentiable, and f and its first (Q + 1) derivatives are bounded, for
some () > 2.
(d) g is twice differentiable, and e and its first two derivatives are bounded.

(e) v is differentiable and

supega [0 (z) f () + v (2) [|0f (x) [0z + [|0v (z) /0x|] < o,
where [|-|| is the Euclidean norm and v (z) = E [y?|z] .
(£) limyjz—oo [f (2) + e (2)]] = 0.

Assumption 1 and integration by parts lead to § = —2E [y 0f (x)/ dz], which in turn motivates
the analogue estimator of Powell, Stock, and Stoker (1989) given by

where fm (+) is a “leave-one-out” kernel density estimator defined as
n

A 1 1 Tj—T
o=ty 5 e (557).

=Ly

for some kernel function K : RY — R and some positive (bandwidth) sequence h,,. Typical regularity
conditions on the kernel-based nonparametric estimator entering this semiparametric estimator 0,

are imposed in the following assumption.

Assumption 2. (a) K is even.
(b) K is differentiable, and K and its first derivative are bounded.
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(¢) Jga K (u) K (u)'du is positive definite, where K (u) = 0K (u) /du.
(d) For some P > 2,

/Rd K )] (1+ ) ") du+ /Rd |& @ (14 ul?) du < oc,

1, iflhi+---+13=0,
/ ulf- ~u£ldK(u)du: Hhte .
R 0, fo<lhi+---+lg<P

and

Powell, Stock, and Stoker (1989) showed that, under appropriate restrictions on the bandwidth
sequence and kernel function, the estimator 0, is asymptotically linear with influence function
given by L (z) = 2[0e(x)/ 0z —y Of (x)/ dx — 0]. Thus, the asymptotic variance of this estimator
is given by ¥ = E [L (2) L (2)']. The following result describes the exact conditions and summarizes

the main conclusion. (Limits are taken as n — oo unless otherwise noted.)

Result 1. (Powell, Stock, and Stoker (1989)) If Assumptions 1 and 2 hold, and ifnp2minPQ) g

and nhdt2 — oo, then
Vn(, — 0) IZL zi) + 0, (1) =g N (0,%).

Result 1 follows from noting that the estimator 6,, admits a n-varying U-statistic representation

given by

—1n—-1 n
I L N g (A4 [T T . .
en_<2> SN Ui, Uzih) = —hl >K<h><yzyj>,

=1 j=i+1

which leads to the Hoeffding decomposition @n =0, + L, + W,, where

n —_1n—1 n
enzg(hn)7 En:%ZL(zz,hn)v V_Vn: <T2L> Z Z W(thj;hn)’
i=1 i=1 j=it1
with
0(h) =E[U (zi,2;h)],  L(zi;h) =2[E (U (2, 255 h) [2:) — 0 (h)],

W (zi, 25 h) = U (21, zj; h) — [L (zi:h) + L (255 0)]/ 2 = 6 (h).

This decomposition makes clear the need for the conditions on the bandwidth sequence and

2min(PQ) _, 0 ensures that the bias of the estimator is

the kernel function: (i) condition nhy,
asymptotically negligible since 6, — 0 = O(hlﬁlm(P’Q)), and (ii) condition nhd*t? — oo ensures

that the “quadratic term” of the Hoeffding decomposition is also asymptotically negligible since
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Wy, = Op(n~thy, (d+2)/ 2). Under the same conditions, Powell, Stock, and Stoker (1989) also develop

a simple consistent estimator for X, which is given by the analogue estimator

I - 1 - )
Sp= 0D Lniln Lni=2| =5 > Ulzzjihn) =0
= j=1#i

Consequently, under the conditions imposed in Result 1, it is straightforward to form a stu-
dentized version of 9n, leading to a simple, asymptotically pivotal test statistic for the testing
problem:

Hy: 0 =0, VS. Hy: 0 # 0, (1)

which is based on \/ﬁflﬁl/Z(én —0) =4 N (0, 1), with ,, —, %.

As discussed in Newey (1994), asymptotic linearity of a semiparametric estimator has several
distinct features that may be considered attractive from a theoretical point of view. In particular,
asymptotic linearity is a necessary condition for semiparametric efficiency and leads to a limiting
distribution of the statistic of interest that is invariant to the choice of the nonparametric estima-
tor used in the construction of the semiparametric procedure. In other words, regardless of the
particular choice of preliminary nonparametric estimator used, the limiting distribution will not
depend on the specific nonparametric estimator whenever the semiparametric estimator admits an
asymptotic linear representation.

However, achieving an asymptotic linear representation of a semiparametric estimator imposes
several strong model assumptions and leads to a large sample theory than may not accurately
represent the finite sample behavior of the estimator. In the case of 9n, asymptotic linearity
would require P > 2 unless d = 1, which in turn requires strong smoothness conditions (@ > P).
Consequently, classical asymptotic theory will require the use of a higher-order kernel whenever
more than one covariate is included. In addition, classical asymptotic theory (whenever valid)
leads to a limiting experiment which is invariant to the particular choices of smoothing (K) and
tuning (h,) parameters involved in the construction of the estimator, and therefore it is unlikely
to be able to “adapt” to changes in these parameters. In other words, inference based on classical
asymptotic theory is silent with respect to the impact that these parameters may have on the finite
sample behavior of 0,,.

In an attempt to better characterize the finite sample behavior of 6,, Cattaneo, Crump, and
Jansson (2009) show that it is possible to increase the robustness of this estimator by considering
a different asymptotic experiment. In particular, instead of forcing asymptotic linearity of the
estimator, the authors develop an alternative first-order asymptotic theory that accommodates
(but does not require) weaker assumptions than those imposed in the classical first-order asymptotic

theory discussed above. The following result collects the main findings.
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Result 2. (Cattaneo, Crump, and Jansson (2009)) If Assumptions 1 and 2 hold, and if
min (nhf{ﬂ, 1) nh%mm(RQ) — 0 and n?h% — oo, then

(V[0n]) /20, — 0) —a N (0,1,),

where

-1
Vi =y m o]+ (5) mP A+ o),
with A = 2E [0? () f (2)] [ga K (u) K (u)'du. In addition,

1

—1
- n
== —(d+2) -1 —27 —(d+2)
o8 nz+2<2) he A+op<n +n2h; )

1
n

Result 2 shows that the conditions on the bandwidth sequence may be considerably weakened
without invalidating the limiting Gaussian distribution. In particular, whenever h,, is chosen so
that nh‘fﬁ2 is bounded, the limiting distribution will cease to be invariant with respect to the
underlying preliminary nonparametric estimator because 6,, is no longer asymptotically linear. (In
particular, note that nhjiJr2 — Kk > 0 retains the root-n consistency of én) In addition, because
h, is allowed to be “smaller” than usual, the bias of the estimator is controlled in a different way,
removing the need for higher-order kernels.

Result 2 also shows that the feasible classical testing procedure based on /n%;, 1/2 (6,,—0) will be
invalid unless nh&*? — oo, which corresponds to the classical large sample theory case (Result 1).
To solve this problem, Cattaneo, Crump, and Jansson (2009) propose two alternative corrections
to the standard error matrix ﬁ)n, leading to two options for “robust” standard errors. To construct
the first “robust” standard error formula, the authors introduce a simple consistent estimator for

A, under the same conditions of Result 2, which is given by the analogue estimator

—1n—1 n
o n o o o 1 /4 o N
Ay = hi+2<2> Z Z Wiii Wi ijo Wiij = U (zi,zj hn) = 5 (Ln,i + Ln,j) — 0.
=1 j=i+1
Thus, using this estimator,
N 1. n -1 _ R
Vip = EZ” - <2> ho@H2A, (2)

yields a consistent standard error estimate under small bandwidth asymptotics (i.e., under the
weaker conditions imposed in Result 2, which include in particular those imposed in Result 1). To
describe the second “robust” standard error formula, let i]n (H,) be the estimator f]n constructed
using a bandwidth sequence H,, (e.g., Sh =3, (hy) by definition). Then, under the same conditions
of Result 2,

‘72,71 _ %271 (21/(2+d)hn> (3)
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yields also a consistent standard error estimate under small bandwidth asymptotics.
Consequently, under the conditions imposed in Result 2, it is straightforward to form a studen-
tized version of 9n, leading to two simple, robust test statistics for the testing problem (1), which

are based on f/knlﬂ(@n —0) =4 N (0, 1), with Vk_an[@n] —p Ig, k=1,2.

Although an interesting theoretical improvement, these results have the obvious drawback of
depending on the choice of h,, which is unrestricted beyond the rate restrictions imposed in Result
2. A preliminary Monte Carlo experiment reported in Cattaneo, Crump, and Jansson (2009) shows
that the new, robust standard error formulas have the potential to deliver good finite sample
behavior if the initial A, is chosen to be small enough. As suggested above, this empirical finding
may be (partially) justified by the fact that for those “small” bandwidths asymptotic linearity
ceases to hold and therefore the limiting distribution is no longer invariant to the choice of the
smoothing and tuning parameters.

As mentioned in the introduction, the plug-in rules available in the literature for h,, fail to deliver
a choice of h,, that would enjoy the robustness property introduced by the new asymptotic theory
described in Result 2. This is not too surprising, since these bandwidth selectors are typically
constructed to balance (higher-order) bias and variance in a way that is “appropriate” for the

classical large sample theory.

3. MSE EXPANSION AND “OPTIMAL” BANDWIDTH SELECTORS

Higher-order expansions provide a simple and intuitive way of constructing plug-in bandwidth
selectors for semiparametric estimators. For the case of the density-weighted average derivative
there exist three bandwidth selectors of the plug-in variety. Hirdle and Tsybakov (1993) and
Powell and Stoker (1996) construct a bandwidth selector based on the minimization of the mean
squared error of @n, while Nishiyama and Robinson (2000, 2005) construct two plug-in bandwidth
selectors based on an KEdgeworth expansion for the one-sided and two-sided corresponding test
statistics. See Ichimura and Todd (2007, Section 6.3) for a general discussion on these results and
their implementation.

This paper also considers the mean squared error expansion of 9n as the starting point for the
construction of the plug-in “optimal” bandwidth selector. In order to compute such an expansion it
is necessary to strengthen the assumptions concerning the data generating process. The following
assumption contains a set of additional mild conditions sufficient to provide a valid higher-order

mean squared error expansion of @n, up to the order needed for this paper.

Assumption 3. (a) g is (@ + 1) times differentiable, and e and its first (Q + 1) derivatives are
bounded.

(b) v is three times differentiable, and vf and its first three derivatives are bounded.

(¢) lim g oo [0 (2) f (2) + (|00 () /O] f (x)] = O.
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(d) B[ |19 () /0z* f ()] < cc.

Assumptions 3(a) and 3(b) are natural and in agreement with those imposed in Powell and
Stoker (1996) and Nishiyama and Robinson (2000, 2005), while Assumption 3(c) is slightly stronger
than the analogue restriction imposed in those papers. Assumption 3(d) is used to ensure that the

higher-order mean squared expansion is valid up to the order needed.

Theorem 1. If Assumptions 1, 2 and 3 hold, then for s = min (P,Q) and f (z) = 8f ()/ oz,

2
+0 (n7th3) + o (072071 4 2,

gllat+la)
(Wf($)> g(fﬂ)] )

1 1
B [(9n —0) (6 — 9)’] - sy <n> hy @A 4 (Z) ho™V + h2 BB
mn

where

B= 2(;!1)5 > [/Rdulf '--uffK(u)du} E

and

2 /
v= [k (vB|o @) 5@+ (@) (5ro@) Fo)u) d

The result in Theorem 1 is similar to the one obtained by Hirdle and Tsybakov (1993) and
Powell and Stoker (1996), the key difference being that the additional term of order O (n™2h;, d) is
explicitly retained here. (Recall that Result 2 requires n?h% — 00.)

To motivate the new “optimal” bandwidth selector, recall that the “robust” variance matrix in
Result 2 is given by the first two terms of the mean squared error expansion presented in Theorem
1, which suggests considering the next two terms of the expansion to construct an “optimal”
bandwidth selector. (Note that, as it is common in the literature, this approach implicitly assumes
that both B and V are not equal to zero.) Intuitively, balancing these terms corresponds to the
case of nhﬁ+2 — K < oo, and therefore pushes the selected bandwidth to the “small bandwidth”
region. This approach may be considered “optimal” in a mean square error sense because it makes
the leading terms ignored in the general large sample approximation presented in Result 2 as small
as possible.

To describe the new bandwidth selector, let A € R? and consider (for simplicity) a bandwidth

that minimizes the next two terms of E[(X(6,, — 0))2]. This “optimal” bandwidth selector is given
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by ANV T o2
coJ = (2A'VA|>251+‘1 ~ 54 if VVA <0
we?) " 1

This new theoretical bandwidth selector is consistent with the “small bandwidth” asymptotics
described in Result 2, since n? (h*CCJ)d — oo. In addition, observe that n~'h$ = o (n=2h,9)
whenever nh™ — 0, which is satisfied when h, = h¥ -

This new bandwidth selector may be compared to the two competing plug-in bandwidth selec-
tors available in the literature, proposed by Powell and Stoker (1996) and Nishiyama and Robinson
(2005), and given by

1 1

/ 2s5+d+2 / 2s+d+2

*PS — w n_ 23+42d+2 , and hj‘VR — M n_ 2s+2d+2 7
s (N'B) (N'B)

respectively. Inspection of these bandwidth selectors shows that hi~; < hpg < hiyp, leading to a

bandwidth selection of smaller order.!

4. DATA-DRIVEN BANDWIDTH SELECTORS
The previous section described a new (infeasible) plug-in bandwidth selector that is compatible
with the small bandwidth asymptotic theory proposed by Cattaneo, Crump, and Jansson (2009).
In order to implement this selector in practice, as well as its competitors h, g and A}y, it is necessary
to construct consistent estimates for each of the leading constants. These estimates would lead to
a data-driven (i.e., automatic) bandwidth selector, denoted ﬁcc 7

A straightforward, somewhat unsatisfactory way of constructing estimates for the leading con-
stants is to provide a “rule-of-thumb” estimator, which is typically motivated by assuming a para-
metric distribution of the underlying model. However, it is well-known that this kind of rule-of-
thumb bandwidth selectors tend to underperform whenever the underlying distributional assump-
tions are invalid. As an alternative, it is possible to construct a plug-in bandwidth selector, which
nonparametrically estimates each quantity B, A and V using a preliminary bandwidth choice.

To describe the data-driven plug-in bandwidth selectors, let b,, be a preliminary positive band-
width sequence, which may be different for each estimator. A simple analogue estimator of A
was introduced in Section 2. In particular, let A, (by) be the estimator A,, constructed using a
bandwidth sequence b, (e.g., A, =A, (hy) by definition). Note that this estimator is a n-varying

U-statistic as well. Theorem 1 and the calculations provided in Cattaneo, Crump, and Jansson

!'Nishiyama and Robinson (2000) derives a third alternative bandwidth selector which is not explicitly discussed
here because this procedure is targeted for one-sided hypothesis testing. Nonetheless, inspection of this alternative
bandwidth selection procedure, denoted hj roo, shows that hi:o; < hvproo Whenever d + 8 > 2s. Therefore, ht o s
is of smaller order unless strong smoothness assumption are imposed in the model and a corresponding higher-order
kernel is employed.
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(2009) show that, if Assumptions 1, 2 and 3 hold, then

~

A (by) = A+ 02V 4+ 0,03 +n~ Y2 4 n b 9/2),

which gives the consistency of this estimator if b, — 0 and n?b — oc.

Next, consider the construction of consistent estimators of B and V, the two parameters entering
the new bandwidth selector hf, ;. To this end, let k£ be a kernel function, which may be different for
each estimator, and may be different from K. The following assumption collects a set of sufficient

conditions to establish consistency of the plug-in estimators proposed in this paper for B and V.

Assumption 4. (a) f, v and e are (s+ 1+ 5) times differentiable, and f, vf, e and their first
(s +1+.5) derivatives are bounded, for some S > 1.

(b) k is even.
(c) k is M times differentiable, and k and its first M derivatives are bounded, for some M > 0.
(

d) For some R > 2, [pa |k (u)] (1 + [ u®)du < oo, and

1 ifli+---4+103=0
/ ult -l (u) du = ’ l 1t +ia =0, :
Rd 0, fo<li+---+lg<R

For the bias, a plug-in estimator is given by

5 2(-1)° ! ! ;
B, =— oooudK dul Iy .. 1,
Z |:/[Rd ul ud (u) U ll) 7ld7

0<ly, lq<s
l1+-+lg=s

where

. 1 n n 6(11+...+ld) . Ti— T
iy la, n(n—1) Z Z axlf . axldd by, 4

i=1 j=1j#i

The estimator 29117.., 14.n is the sample analogue estimator of

9 g Hlat+la) f
ol = —f(x ,
Iy, ,lg 8x111 - 'anild ( ) Y

and is also a n-varying U-statistic estimator employing a leave-one-out kernel-based density esti-

mator.
For V, an obvious plug-in estimator would be (letting a “hat” denote a sample analogue esti-

mate)

[ R i @ () an & =B @ 55 @+ (2ew) (maw) Fe].
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However, this estimator has the unappealing property of requiring the estimation of several non-
parametric objects, some of which would require handling stochastic denominators. Thus, this
direct plug-in approach is likely to be less stable when implemented. Fortunately, it is possible to
construct an alternative, indirect estimator much easier to implement in practice. This estimator is
intuitively justified as follows: the results presented above show that, under appropriate regularity
conditions,

b2 (B (bn) = A) =V + Op (b + 0202 4 =1 4/272)
and therefore an estimator satisfying An = A+ op(b%) + Op(n*1/2 + nilb;dﬂ) would lead to
Vo = b2 (A (bn) — An) =V +0, (1),

if b, — 0, nbﬁ — 00 and n2b2+4 — 00. Under appropriate conditions, an estimator having these

properties is given by

An =08, | K(u)K (u) du, 5, = <Z> - nzl Zn: b=k <5”Jl)_”3> (i — ;)2

d
R i=1 j=i+1 "

In this case, d,, is a sample analogue estimator of § = 2 [02 (x) f (a:)], which is also a n-varying

U-statistic estimator employing a leave-one-out (higher-order) kernel-based density estimator.
Theorem 2. If Assumptions 1, 3 and 4 hold, then:

(i) For M > s+ 1,

{9 8(l1+“'+ld) .
idin=BEB|| ——————f (x
I1,,la, 8%111 L 8.’1'}5; f( ) Yy

(i) For R > 3,

+0, (b?in(R,S) +n 2y n—lb;(d+2+2s)/2) '

5, = 2 [0_2 (.’13) f (.CE)] + Op (bﬁin(R,s+1+S) + n—1/2 + n_lb,;d/2> ]

This theorem gives simple sufficient conditions to construct a robust data-driven bandwidth
selector consistent with the small bandwidth asymptotics derived in Cattaneo, Crump, and Jansson
(2009). In particular, define

1
’ 2s+d N
(d(A WQ) nTEE NS0

<2|X1’”A|> R i AV <0
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The following corollary establishes the consistency of the new bandwidth selector heey.

Corollary 1. If Assumptions 1, 2, 3 and 4 hold with M > s+ 1 and R > 3, and if b, — 0 and
p2pmxEAE2R) o then for A € RY such that N B #0 and NV # 0,

Lf” —, 1.

ccJ

(The analogous result also holds for hpg and hyg.)

The results presented so far are silent about the selection of the initial bandwidth choice b,
in applications, beyond the rate restrictions imposed by Corollary 1. A simple choice for the
preliminary bandwidth b,, may be based on some data-driven bandwidth selector developed for a
nonparametric object present in the corresponding target estimands B, A and V. Typical examples
of procedures which may be used include simple rule-of-thumbs, plug-in bandwidth selectors and
(smoothed) cross-validation. See, for example, Ichimura and Todd (2007).

As shown in the simulations presented in the next section, it appears that a simple data-driven
bandwidth selector from the literature of nonparametric estimation works well for the choice of
b,. Nonetheless, it may be desirable to improve upon this preliminary bandwidth selector in order
to obtain better finite sample behavior. Although beyond the scope of this paper, a conceptually
feasible (but computationally demanding) idea would be to compute second-order mean squared
error expansions for {9517... dasns A,, and §,,. Since these three estimators are n-varying U-statistics,
the results from Powell and Stoker (1996) may be applied to obtain a corresponding set of “optimal”
bandwidth choices. These procedures will, in turn, also depend on a preliminary bandwidth when
implemented empirically, which again would need to be chosen in some way. This idea mimics, in the
context of semiparametric estimation, the well-known second-generation direct plug-in bandwidth
selector (of level 2) from the literature of nonparametric density estimation. (See, e.g., Wand and
Jones (1995) for a detailed discussion.) Although the validity of such bandwidth selectors would
require stronger assumptions, by analogy from the nonparametric density estimation literature,
they would be expected to improve the finite sample properties of the bandwidth selector for h,,

and, in turn, the performance of the semiparametric inference procedure.

5. MONTE CARLO SIMULATIONS
This section reports the main findings from an extensive Monte Carlo experiment conducted to
analyze the finite sample properties of the robust data-driven procedure proposed in this paper as
well as its relative merits when compared to the other procedures available.
Following the results reported in Cattaneo, Crump, and Jansson (2009), we consider six different

models of the (“single index”) form, given by

vi =7 (y;), yi = xiB + e,
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where 7 () is a nondecreasing (link) function and &; ~ N (0,1) is independent of the vector of
regressors z; € R%. Three different link functions are considered: 7 (y*) = y*, 7 (y*) = 1 (y* > 0),
and 7 (y*) = y*1 (y* > 0), which correspond to a linear regression, probit, and Tobit model, re-
spectively. (1 (-) represents the indicator function.) The vector of regressors is generated using
independent random variables and standardized to have E[z;] = 0 and E [z;2}] = I, with the first
component z1; having either a Gaussian distribution or a chi-squared distribution with 4 degrees
of freedom (denoted x,), while the remaining components have a Gaussian distribution throughout
the experiment. All the components of 3 are set equal to unity, and for simplicity only results for

the first component of # (i.e., 1) are reported.

TABLE I: MONTE CARLO MODELS

Yi =Y; yi =1 (y; >0) yi = y;1(y; > 0)

x1; ~N(0,1)  Model 1: 6, = % Model 3: 61 = 87%/2 Model 5: 61 = %
Ty~ X%‘ Model 2: 6; = ﬁ Model 4: #; = 0.02795 Model 6: #; = 0.03906

Table I summarizes the Monte Carlo models, reports the value of the population parameter of
interest, and provides the corresponding label of each model considered. (Whenever unavailable
in closed form, the population parameters are computed by a numerical approximation.) The
simulation study considers three sample sizes (n = 100, n = 400 and n = 700), two dimensions of
the regressors vector (d = 2 and d = 4), and two kernel orders (P = 2 and P = 4). The kernel
function K (-) is chosen to be a standard Gaussian product kernel when P = 2, or a Gaussian
density-based multiplicative product kernel when P = 4. The preliminary kernel function & (-) is
chosen to be a fourth order Gaussian density-based multiplicative product kernel, since R > 3 is
required by Corollary 1. For all possible combinations of the parameters 10,000 replications are
carried out.

The simulation experiment considers the three (infeasible) population bandwidth choices de-
scribed in Section 3, denoted hpg, hyp and hf -, and their corresponding data-driven estimates,
denoted hpg, hygr and hocy. The three estimated bandwidth are obtained using the results de-
scribed in Section 4 with a common initial bandwidth plug-in estimate used to construct l’;’n, A,
and V,,. To provide a parsimonious data-driven procedure, the initial bandwidth b,, is constructed
as a sample average of a second-generation direct plug-in level-two estimate for the (marginal)
density of each dimension of the regressors vector, as described in, for example, Wand and Jones
(1995). Confidence intervals for 6, are constructed using each of the six bandwidth choices for the
classical test statistic of Powell, Stock, and Stoker (1989), denoted PSS, and the two alternative
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robust test statistics proposed by Cattaneo, Crump, and Jansson (2009) based on the robust stan-
dard errors given by equation (2) and equation (3), and denoted by CCJ1 and CCJ2, respectively.
Notice that the classical inference procedure PSS is only theoretically valid when P = 4, while the
robust procedures CCJ1 and CCJ2 are always valid across all simulation designs.

Figures 1 through 8 plot the empirical coverage for the three competing 95% confidence intervals
as a function of the choice of bandwidth for each of the six models. To facilitate the comparison
only a restricted range of bandwidths is plotted and two additional horizontal lines at 0.90 and
at the nominal coverage rate 0.95 are included for reference. In addition, the three population
bandwidth selectors h}g, by and h§; are plotted as vertical lines. (Note that h},g = hjp for
the case d = 2 and P = 2.) Each figure depicts the results for a combination of P, d and n,
although results for n = 700 are not included to conserve space. For example, Figure 2 plots the
simulation results using a standard Gaussian product kernel (P = 2), d = 2 and n = 400. In all
cases, these figures highlight the potential robustness properties that the test statistics CCJ1 and
CCJ2 may have when using the new data-driven plug-in bandwidth selector. In particular, the
theoretical bandwidth selector Ay, ; lays within the robust region for which both CCJ1 and CCJ2
have correct empirical coverage for a range of bandwidths. This, in turn, suggests that (at least)
some of the variability introduced by the estimation of this bandwidth selector will not affect the
performance of these (robust) test statistics. In contrast, these figures show that this property is
unlikely to be enjoyed by the classical procedure, denoted PSS.

To further describe the properties of the new bandwidth selector, Figures 9 through 13 plot
corresponding kernel density estimates for the test statistic PSS coupled with either h}g and A}y,
and for the test statistics CCJ1 and CCJ2 coupled with hf,-;. To facilitate the comparison the
density of the standard normal is also depicted, and to conserve space only the case n = 400 is
included. These figures show that the Gaussian approximation of the robust test statistics using
the new bandwidth selector is considerably better than the corresponding approximation for PSS
when constructed using either of the classical bandwidth selectors.

To analyze the performance of the new data-driven bandwidth selector, and the resulting ro-
bust data-driven confidence intervals, Tables 1 through 4 present the empirical coverage of each
possible confidence interval (PSS, CCJ1 and CCJ2) when using each possible bandwidth selector
(the infeasible h}g, bz and hi o, and the feasible h PS, hy r and ﬁcc 7). In general, these tables
provide concrete evidence of the superior performance of the robust test statistics when coupled
with the new estimated bandwidth ﬁcc J, leading to two robust data-driven confidence intervals.
For example, Table 2 reports the case of P = 2 and d = 2 for all three sample sizes. This table
shows that the theoretical bandwidth hf; and the empirical bandwidth izcc 7 deliver approxi-
mately correct coverage for all models and sample sizes when using either CCJ1 or CCJ2, while
this is not the case for the test statistic PSS. However, this case is not theoretically justified for the

classical procedure, which may partially explain its poor performance. Nonetheless, for example,
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Table 3 shows that even when P = 4 and d = 2, the classical procedure PSS coupled with either
h pS or hy r is unable to achieve correct coverage. On the other hand, CCJ1 or CCJ2 using flco s do
provide close-to-correct coverage across models and sample sizes. This provides additional evidence
of the robustness properties of the new procedures.

In addition, it is interesting to note that the good performance of CCJ1 or CCJ2 using hoey is
maintained even when the dimension grows, which provides empirical evidence of the relatively low
sensitivity of the new robust data-driven procedures to the so-called “curse of dimensionality.” This
finding may be (heuristically) justified by the fact that under the small bandwidth asymptotics,
the limiting distribution is not invariant to the “parameter” d, which in turn may lead to further
robustness properties of CCJ1 and CCJ2 in this additional direction.

Finally, as suggested by the good Gaussian approximation reported in Figures 9 through 13 for
the new procedures, the main findings summarized in this section continue to hold if other nominal
confidence levels are considered. In particular, although not reported to conserve space, the same

results are found when 90% or 99% confidence intervals are considered.

6. FINAL REMARKS
This paper introduced a new data-driven plug-in bandwidth selector compatible with the small
bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density-weighted
average derivatives. This new bandwidth selector is of the plug-in variety, and is obtained based on
a mean squared error expansion of the estimator of interest. An extensive Monte Carlo experiment
showed a remarkable improvement in performance of the resulting new robust data-driven inference
procedure. In particular, the new data-driven confidence intervals provide approximately correct
coverage in cases where there does not exist valid alternative inference procedures (i.e., using a
second-order kernel with at least two regressors), and also compares favorably to the alternative,

classical confidence intervals when they are theoretically justified.
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7. APPENDIX

Proof of Theorem 1. To save notation, for any function a : R* — R let a (x) = da (z) /0x and
i (x) = da (x) /8z02’. A Hoeffding decomposition of 6, gives

E [(én —0)B, —0)] = VB + (E[én] - 0) (E[@n] - 9)'
= V[L,] + V[W,] + hZ*BB' + o (k%)

where the bias expansion follows immediately by a Taylor series expansion.

For V[L,], using integration by parts,

E[U, (21, )| ] = /R é (2 + uhn) K (u) du — y; /Rdf(”“ uhn) K (u) du,

and therefore A )
VILn] = ~VIB[Un (2, 2)) [2i] = 0] = =3+ O (n"'h3) .

For V[W,,], by standard calculations,

n

V[Wn] = (2) . E [Un (ZZ', Zj) U, (Zz'7 Zj>/] + 0 (n*2)

-1
— (Z) hy D[ K (u) K (u) T (2, uby) dedu + O (n72),
Rd

with T'(z,u) = (v(z) +v(z+u) —29(z)g(x+u)) f(x) f(x+u). Then, using a Taylor series
expansion, T (z,uhy,) = Ty () + T (z) uhy, + w'Ts (z) uh? + o (h2), where

Ti(@) =2 (@) (@), Tale)=20%(2) [ (2) f (&) +  (2)2 6 (@),
Ta(0) = (0) 1 0) F (0) + £ )6 () @) + (5 0) 9 @) 0)) 1 (o)

Clearly,
/ K (u) K (u) Tt (z) dadu = / K (u) K (1) 202 (2) f ()2 dodu = A,
Rd JRA Rd JRd
and, using integration by parts,
hn/ K (u) K (u) (T3 (z)' u) dzdu
Rd JRA

—hy | KWK () [(/Rd [02 (2)2f (z) f () + f ()% &2 (33)] dx)lu] du = 0.

Rd
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Finally, using integration by parts and the fact that 62 (z) = ¥ (z) — 29 (x) g (z)' — 29 () § (z),

h2 y K (u) K (u)’ (W'T3 () u) dzdu

i [ ke v ([ Fwires |

Rd

3 (@) g (@) f(2) dx) u} du.
Therefore,
-1 -1
- n n
_ —(d+2) —d 2, —d
VW, <2> hy DA <2> h; V+0<n he )
which establishes the result. |

Proof of Theorem 2. For part (i), note that {9517... 1,,n may be written as a n-varying U-statistic

(assuming without loss of generality that s is even), given by

n —1n—-1 n
1911,~-~,ld7n == <2> Z Z ul (Zi,Zj;bn>,

i=1 j=i+1

with (recall that s =13 + -+ + )

Cdiiis *
ug (21, 2j;0) = b ) | = () (yi — ;) -
axll ctt al’dCl g— PR .
r=(x;—x;)/b
First, change of variables and integration by parts give
Blun (225 00) 5 = [ k) ( o f (o) v — i (@) du
1 1y <) VN 7 Rd 83:%[1 . axild N ¢ 8:1;.? . 8335; N )

min(R,S) )

Second, a Taylor series expansion gives Eluq (2, 2j;b,)] = Y, ... 1, + O(bn . Next, letting

Oy = {9117,.. 1,.n to save notation, a Hoeffding decomposition gives V[1),] = V[¥; ] + V[92,,], where
. 1 &
Ln = ; [Blux (2i, 253 bn) [2i] — Blua (i, 23 ba)]]
and

n—1 n
- n
V2n = (2) ;j;l [u1 (2, 2j; bn) — Blua (23, 255 bn) |21] — Blua (23, 255 0n) |25] + Blua (2i, 23 bn)]] -

Finally, using standard calculations, V[91,,] = O (n~') and Vo] = O(n*Qb;(dHHS)), and

the conclusion follows by Markov’s Inequality.



RoOBUST DATA-DRIVEN INFERENCE FOR AVERAGE DERIVATIVES 19

For part (ii), note that by, is also a n-varying U-statistic, given by

—1n—1 n
R n _ Ti — Ty 2
Oy = (2> E E u2 (2i, 255 bn) uz (2, 2j;0) = b U (Jb> (i —v5)"-

i=1 j=i+1

First, change of variables gives

Elus (2i, 2j; by) |2i] = /Rd k(u) (yff (x; —uby) + v (x; —uby) f(x; — uby) — 2ye (x; — ubn)) du.

Second, a Taylor’s expansion gives E[d,,] = 2E [0? (z) f (2)] +O(pRinsT1T9))  Next, a Hoeffd-

ing decomposition gives V[5,,] = V[01.,] + V[02.], where

; 1 &

Ln = ; [Bluz (2i, 255 bn) [2i] — Bluz (2, 253 bn)]]
and

n—1 n

- n

bun = (5) X0 2 T G 25300) ~ Bl G i) 5]~ Bl s 25 6) 5] + Bl o 25,1
i=1 j=it1

Finally, using standard calculations, V[1,,] = O (n!) and V[bg.n] = O (n=2b¢), and the con-
clusion follows by Markov’s Inequality. |
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Table 1: Empirical Coverage Rates of 95% Confidence Intervals: P =2 and d = 2.
Model 1 Model 3 Model 5

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.345 0.928 0.854 0.851 0.367 0.929 0.858  0.853 0.365 0.906 0.844  0.842
Ryr 0.345 0.928 0.854 0.851 0.367 0.929 0.858 0.853 0.365 0.906 0.844  0.842

hias 0.192 0.991 0.928 0.943 0.175 0.994 0.933  0.949 0.199 0988 0.914 0.934

hpg 0.327 0.884 0.808 0.805 0.330 0.897 0.815 0.810 0.331 0.888 0.823 0.822

hng 0.327 0.884 0.808 0.805 0.330 0.897 0.815 0.810 0.331 0.888 0.823  0.822

hccoy 0.182 0.971 0.916 0.927 0.198 0.972 0.906 0.924 0.194 0.968 0.900 0.919

n = 400 Rbg 0.244 0.931 0.878 0.876 0.260 0.939 0.887 0.881 0.258 0.929 0.885 0.880
Ry R 0.244 0931 0.878 0.876 0.260 0.939 0.887 0.881 0.258 0.929 0.885  0.880

hios 0.121 0.994 0.948 0.952 0.110 0.995 0.947 0.954 0.125 0.993 0.947 0.951

hpg 0.248 0.870 0.817  0.809 0.255 0.883  0.819  0.809 0.252 0.887 0.833  0.823

hngr 0.248 0.870 0.817  0.809 0.255 0.883 0.819  0.809 0.252 0.887 0.833 0.823

hcog 0.113  0.980 0.937  0.940 0.132  0.976 0.932  0.932 0.120 0.981 0.938 0.941

n =700 hbg 0.212 0.940 0.892 0.889 0.226 0.942 0.895 0.889 0.224 0936 0.900 0.895
5 0.212 0.940 0.892 0.889 0.226 0.942 0.895 0.889 0.224 0.936 0.900 0.895

hics 0.100 0.993 0.949 0.952 0.091 0.994 0.951  0.952 0.104 0.993  0.947  0.949

hpg 0.220 0.871 0.820 0.811 0.225 0.886 0.834  0.825 0.224 0.892 0.846  0.838

hng 0.220 0.871 0.820 0.811 0.225 0.886 0.834 0.825 0.224 0.892 0.846  0.838

hccoy 0.095 0.984 0.939 0.941 0.108 0.982 0.944 0.946 0.098 0.985 0.947 0.949

Model 2 Model 4 Model 6

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.227 0972 0.910 0.911 0.243 0.977 0.916 0.918 0.279 0.957 0.895  0.900
Ry R 0.227 0.972 0.910 0.911 0.243 0.977 0916 0.918 0.279 0.957 0.895  0.900

hios 0.128 0.992 0.935 0.946 0.148 0.993 0.932 0.946 0.119 0.995 0.930 0.949

hps 0.278 0.864 0.789 0.775 0.282 0.908 0.835 0.820 0.284 0919 0.838  0.840

hngr 0.278 0.864 0.789  0.775 0.282 0.908 0.835 0.820 0.284 0919 0.838 0.840

hcog 0.167 0.961 0.898  0.905 0.182 0.968 0.907 0.915 0.170 0.976 0.919 0.934

n = 400 R 0.161 0.970 0.921 0.916 0.172 0.978 0.935 0.931 0.197 0.968 0.920 0.919
5 0.161 0.970 0.921 0.916 0.172 0.978 0.935 0.931 0.197 0.968 0.920 0.919

hiag 0.081 0.994 0.944 0.946 0.093 0.993 0.947 0.949 0.074 0.995 0.946  0.950

hpg 0.201 0.858 0.796 0.780 0.208 0.903 0.851 0.838 0.212 0.920 0.860 0.854

hng 0.201 0.858 0.796 0.780 0.208 0.903 0.851 0.838 0.212 0.920 0.860 0.854

hceoy 0.104 0.972 0.916 0.919 0.119 0.973 0.929  0.930 0.105 0.986 0.943  0.946

n = 1700 hbg 0.140 0.970 0.919 0.914 0.150 0.977 0.934  0.932 0.172 0.969 0.927 0.926
Ryr 0.140 0.970 0.919 0.914 0.150 0.977 0.934  0.932 0.172 0.969 0.927 0.926

hios 0.067 0.993 0.946 0.947 0.077 0.994 0.951 0.954 0.062 0.994 0.951 0.952

hps 0.178 0.849 0.796 0.783 0.182 0.902 0.849 0.836 0.185 0.922 0.869 0.862

hnR 0.178 0.849 0.796  0.783 0.182 0.902 0.849 0.836 0.185 0.922 0.869 0.862

hcog 0.088 0.973 0.926 0.925 0.100 0.978 0.938  0.936 0.085 0.989 0.951 0.952

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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Table 2: Empirical Coverage Rates of 95% Confidence Intervals: P =2 and d = 4.
Model 1 Model 3 Model 5

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.410 0.900 0.788  0.796 0.440 0.888 0.783  0.788 0.431 0876 0.764 0.773
Ryr 0.393 0.921 0.815 0.828 0.422 0.912 0.811 0.817 0.414 0.898 0.790 0.804

hEcg 0.300 0.977 0.903 0.922 0.252 0.976  0.898  0.939 0.312 0.968 0.882  0.908

hpg 0.297 0.948 0.856  0.882 0.297 0.950 0.865  0.903 0.297 0.944 0.850 0.884

hng 0.286 0.957 0.869  0.898 0.285 0.955 0.876 0.917 0.285 0.950 0.859  0.898

hccoy 0.218 0.971 0.912  0.950 0.222 0.943 0.879 0.944 0.224 0955 0.887  0.935

n = 400 Rbg 0.311 0.926 0.820 0.820 0.333  0.920 0.826 0.822 0.327 0910 0.811 0.813
Ry g 0.208 0.945 0.847 0.853 0.319 0.940 0.851 0.852 0.314 0932 0.838 0.846

hios 0.213  0.992 0.940 0.946 0.174 0.995 0.948  0.952 0.220 0.990 0.929 0.936

hpg 0.230 0.960 0.886  0.893 0.230 0.970 0.903  0.909 0.230 0.967 0.893  0.904

hngr 0.221 0.967 0.900 0.906 0.221 0.975 0.914  0.921 0.220 0.973 0.905 0.916

hcog 0.151 0.988 0.955 0.962 0.152 0.989 0.957 0.974 0.155 0.989 0.953  0.966

n =700 hbg 0.278 0.932 0.830 0.832 0.298 0.926 0.831 0.826 0.292 0.922 0.831 0.832
5 0.267 0.950 0.860 0.862 0.286 0.945 0.859  0.859 0.281 0.943 0.858 0.861

hias 0.185 0.992 0.941 0.944 0.155 0.996 0.948  0.951 0.192 0.992 0.938 0.944

hpg 0.205 0.963 0.892  0.896 0.207 0.971  0.907 0.910 0.207 0.971 0.905 0.911

hng 0.197 0.970 0.905 0.910 0.199 0.977 0.916 0.920 0.199 0976 0.916 0.921

hccoy 0.130  0.992 0.956  0.962 0.132  0.992 0.961 0.970 0.135 0.991 0.956 0.968

Model 2 Model 4 Model 6

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.325 0.946 0.844 0.859 0.314 0.960 0.871 0.892 0.339 0.946 0.848  0.868
Ry R 0.312 0.955 0.862 0.878 0.302 0.966 0.878  0.902 0.326 0.952 0.858  0.878

hios 0.207 0.98 0.919 0.946 0.223 0.966 0.892 0.939 0.197 0.972 0.903 0.948

hps 0.256 0.953 0.866  0.891 0.256 0.953 0.876 0.918 0.257 0.958 0.875 0.914

hnRr 0.246 0.959 0.877  0.904 0.246 0.955 0.881  0.927 0.247 0.960 0.883  0.923

hcog 0.192 0.968 0.908 0.951 0.197 0.932 0.868 0.939 0.201 0.957 0.889  0.945

n = 400 R 0.246 0.962 0.874  0.877 0.238 0.980 0.913 0.915 0.257 0.970 0.894 0.898
5 0.237 0971 0.894 0.895 0.228 0.983 0.920 0.924 0.247 0.976 0.904 0.910

hiag 0.146  0.995 0.946  0.952 0.157 0.996 0.946 0.953 0.136  0.996 0.949  0.960

hpg 0.190 0.969 0.904 0.911 0.189 0.980 0.917 0.926 0.191 0.980 0.916 0.927

hng 0.182 0.974 0.913 0.922 0.181 0.984 0.926 0.937 0.183 0.984 0.925 0.938

hceoy 0.128 0.990 0.957 0.969 0.130 0.988 0.959 0.981 0.135 0.989 0.957 0.976

n = 1700 hbg 0.220 0.963 0.874 0.875 0.213 0.984 0.925 0.925 0.230 0.975 0.902 0.904
Ryr 0.212 0.972 0.894 0.894 0.204 0.986 0.930 0.932 0.221 0.980 0.912 0.914

hios 0.127 0.995 0.954 0.957 0.137 0.995 0.949 0.954 0.121 0.997 0.949 0.954

hps 0.169 0.970  0.908 0.910 0.168 0.982 0.925 0.930 0.168 0.982 0.925 0.930

hnR 0.162 0.975 0.917  0.922 0.161 0.986 0.932  0.936 0.161 0985 0.931 0.938

hcog 0.110 0.992 0.964 0.967 0.111 0.992 0.968 0.979 0.114 0.993 0.963 0.973

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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Table 3: Empirical Coverage Rates of 95% Confidence Intervals: P = 4 and d = 2.
Model 1 Model 3 Model 5

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.592 0.949 0.909 0.901 0.607 0.951 0.907 0.899 0.614 0.933 0.900 0.892
Ryr 0.627 0.936 0.898 0.885 0.643 0.939 0.898 0.884 0.650 0.924 0.892  0.880

hias 0.442 0.979 0.930 0.936 0.439 0.984 0.932 0.938 0.450 0.971 0.919 0.926

hpg 0.373 0.980 0.905 0.917 0.374 0.982 0.903 0.921 0.374 0970 0.897 0.911

hng 0.395 0.976 0.903 0.912 0.397 0.978 0.902 0.914 0.397 0.966 0.896  0.907

hccoy 0.271 0.992 0.928  0.948 0.284 0.991 0.918  0.940 0.280 0.988 0.916  0.940

n = 400 Rbg 0.470 0.949 0.926  0.920 0.483 0.951 0.930 0.921 0.488 0.941 0.925 0.918
Ry R 0.498 0.940 0.920 0.912 0.512  0.943 0.925 0.912 0.517 0935 0.918 0.910

hios 0.335 0.978 0.942 0.943 0.333  0.981 0.945 0.945 0.342 0.975 0.940 0.941

hpg 0.200 0.978 0.921 0.924 0.290 0.980 0.922 0.923 0.290 0.979 0.923 0.926

hngr 0.308 0.975 0.921  0.922 0.307 0.977 0.921  0.921 0.308 0.975 0.921  0.922

hcog 0.187 0.993 0.949 0.953 0.198 0.994 0.948 0.954 0.192 0.995 0.949 0.954

n =700 hbg 0.428 0.951 0.930 0.925 0.438 0.950 0.934  0.927 0.444 0948 0.933  0.927
5 0.453 0.942 0.924 0.916 0.464 0.944 0.930 0.920 0.471 0941 0.928 0.921

hics 0.209 0.978 0.946 0.946 0.298 0.978 0.943  0.942 0.306 0.976 0.944  0.945

hpg 0.261 0.980 0.923 0.924 0.261 0.981 0.931  0.930 0.260 0.978 0.925 0.926

hng 0.276 0.976 0.923  0.922 0.277 0.976  0.929 0.928 0.276 0974 0.925 0.926

hccoy 0.161 0.993 0.952 0.956 0.171 0.994 0.953 0.955 0.164 0.994 0.952 0.954

Model 2 Model 4 Model 6

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.409 0.966 0.912  0.905 0.426 0.971 0.926 0.918 0.461 0.960 0.918 0.918
Ry g 0.433 0.955 0.903 0.893 0.451 0.964 0.922 0911 0.489 0.954 0.914 0.911

hios 0.336  0.982 0.929 0.933 0.361 0.983 0.932 0.933 0.200 0.988 0.925 0.944

hps 0.322 0.970 0.898  0.903 0.322 0.980 0.910 0.920 0.323 0.980 0.900 0.914

hnRr 0.341 0.962 0.892 0.894 0.341 0.977 0.907 0.913 0.342 0976 0.898 0.910

hcog 0.246 0.987 0.922 0.934 0.253  0.990 0.922  0.939 0.246 0.991 0.921 0.943

n = 400 R 0.325 0.951 0.917 0.907 0.338  0.964 0.938  0.927 0.366 0.962 0.936  0.931
5 0.344 0.940 0.909 0.897 0.358 0.958 0.933  0.922 0.388 0.956 0.931 0.926

hiag 0.254 0.977 0.940 0.939 0.273  0.982 0.945 0.943 0.220 0.990 0.945 0.949

hpg 0.239 0975 0.912 0.911 0.241 0.981 0.925 0.925 0.241 0986 0.922 0.925

hng 0.254 0.967 0.908 0.906 0.255 0.976 0.925 0.921 0.256 0.981 0.919  0.921

hceoy 0.166 0.991 0.942 0.945 0.175 0.993 0.943 0.948 0.164 0995 0.951 0.958

n = 1700 hbg 0.296 0.947 0.916  0.909 0.307 0.964 0.937 0.931 0.333 0.962 0.936 0.934
Ry g 0.313 0.937 0.907 0.896 0.326 0.956 0.935  0.926 0.353 0.956 0.934 0.929

hios 0.227 0.976 0.937 0.936 0.245 0.980 0.947 0.944 0.195 0.990 0.950 0.952

hps 0.213 0.970 0.918 0.916 0.212 0.983 0.928  0.928 0.212 0.984 0.927 0.928

hnR 0.225 0.963 0.915 0.913 0.225 0.980 0.928  0.924 0.225 0.982 0.926 0.927

hcog 0.143 0.991 0.948 0.949 0.151 0.991 0.947  0.950 0.138 0.995 0.950 0.954

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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Table 4: Empirical Coverage Rates of 95% Confidence Intervals: P = 4 and d = 4.
Model 1 Model 3 Model 5

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.679 0.951 0.878 0.882 0.705 0.942 0.875 0.875 0.703 0.928 0.858 0.863
Ryr 0.693 0.946 0.873 0.875 0.719 0.935 0.867 0.864 0.717 0919 0.850 0.853

hEcg 0.575 0.977 0.913 0.925 0.528 0.983 0.913 0.931 0.589 0.966 0.896 0.912

hpg 0.374 0.987 0.908 0.936 0.374 0.979 0.902 0.943 0.373 0.980 0.898 0.934

hng 0.382 0.98 0.907 0.933 0.381 0.980 0.902 0.938 0.381 0.980 0.896 0.932

hccoy 0.324 0.989 0.925 0.957 0.332  0.974 0.905 0.958 0.330 0.980 0.908 0.953

n = 400 Rbg 0.556 0.955 0.905 0.902 0.579 0.947 0.899  0.892 0.578 0.946 0.899  0.895
Ry g 0.567 0.949 0.897 0.894 0.591 0.941 0.894 0.884 0.590 0.940 0.892  0.888

hios 0.456 0.984 0.936  0.939 0.422 0.990 0.940 0.943 0.468 0.980 0.934 0.939

hpg 0.291 0.994 0.931 0.938 0.291 0.994 0.937 0.944 0.290 0.995 0.932 0.941

hngr 0.297 0.993 0.929 0.936 0.297 0.994 0.934 0.942 0.296 0.994 0.930 0.939

hcog 0.233  0.996 0.953 0.961 0.237 0.998 0.955 0.966 0.239 0.996 0.953 0.965

n =700 hbg 0.514 0.955 0.914 0.911 0.535 0.952 0.912 0.904 0.532 0.949 0.910 0.907
5 0.524 0.950 0.908 0.904 0.546 0.948 0.906 0.896 0.543 0.943 0.906 0.901

hics 0.416 0.986 0.938  0.941 0.387 0.990 0.944 0.946 0.427 0.982 0.937 0.941

hpg 0.260 0.993 0.931 0.936 0.262 0.994 0.936  0.941 0.262 0.994 0.930 0.938

hng 0.266 0.992 0.928 0.934 0.268 0.994 0.934  0.939 0.267 0.994 0.928  0.937

hcos 0.203 0.996 0.953 0.958 0.208 0.998 0.956 0.961 0.209 0.996 0.956 0.961

Model 2 Model 4 Model 6

BW PSS CCJI CCJ2 BW PSS CCJI CCJ2 BW PSS CCJI CCJ2

n =100 hbg 0.513 0.966 0.893  0.904 0.516 0.969 0.895  0.908 0.545 0.963 0.886  0.902
Ry g 0.523 0.963 0.889  0.897 0.527 0.966 0.892  0.903 0.557 0.961 0.881  0.899

hios 0.423 0.983 0.917 0.932 0.454 0.980 0.909 0.924 0.386 0.983 0.911 0.937

hps 0.323 0.987 0.911 0.937 0.322 0.975 0.903 0.950 0.322 0.980 0.906 0.944

hngr 0.330 0.986 0.909 0.933 0.328 0.976  0.903  0.947 0.329 0981 0.905 0.941

hcog 0.286 0.987 0.921 0.956 0.293 0.971 0.902 0.957 0.293 0.978 0.906 0.956

n = 400 R 0.421 0.970 0.904  0.903 0.423  0.979 0.923  0.922 0.447 0.974 0.916 0.919
5 0.429 0.965 0.898  0.897 0.432  0.977 0.922 0.919 0.456 0.971 0.914 0.914

hics 0.334 0.990 0.938  0.939 0.361 0.989  0.938  0.939 0.302 0.993 0.943  0.947

hpg 0.240 0.994 0.935 0.942 0.240 0.996 0.939 0.946 0.240 0.995 0.934 0.945

hng 0.245 0.993 0.934 0.939 0.245 0.996 0.936  0.943 0.245 0.995 0.931 0.942

hceoy 0.199 0.997 0.954 0.964 0.201 0.997 0.959 0.971 0.203 0.998 0.953  0.969

n = 1700 hbg 0.388 0.964 0.902  0.900 0.390 0.978 0.925 0.921 0.413 0975 0.923 0.924
Ry g 0.396 0.959 0.896 0.894 0.399 0.975 0.922 0.917 0.422 0972 0.921  0.920

hios 0.304 0.989 0.940 0.941 0.328 0.989 0.944 0.943 0.279 0.993 0.944 0.946

hps 0.213 0.994 0.941 0.944 0.213 0.996 0.938 0.943 0.213 0.996 0.935 0.940

hnR 0.217 0.994 0.938  0.940 0.217 0.995 0.935  0.940 0.217 0.995 0.933 0.937

hcog 0.171 0.997 0.957 0.963 0.174 0.998 0.958 0.966 0.176 0.998 0.957 0.964

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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