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1. Introduction

Semiparametric models, which include both a �nite dimensional parameter of interest and an in-

�nite dimensional nuisance parameter, play a central role in modern statistical and econometric

theory, and are potentially of great interest in empirical work. However, the applicability of semi-

parametric estimators is seriously hampered by the sensitivity of their performance to seemingly

ad hoc choices of �smoothing�and �tuning�parameters involved in the estimation procedure. Al-

though classical large sample theory for semiparametric estimators is now well developed, these

theoretical results are typically invariant to the particular choice of parameters associated with

the nonparametric estimator employed, and usually require strong untestable assumptions (e.g.,

smoothness of the in�nite dimensional nuisance parameter). As a consequence, inference proce-

dures based on these estimators are in general not robust to changes in the choice of tuning and

smoothing parameters underlying the nonparametric estimator, and to departures from key unob-

servable model assumptions. Thus, classical asymptotic results for semiparametric estimators may

not always accurately capture their behavior in �nite samples, posing considerable restrictions on

the overall applicability they may have for empirical work.

This paper proposes a robust data-driven inference procedure for the density-weighted average

derivative estimator, an important semiparametric estimator commonly used in empirical work.

The main idea is to develop a new data-driven bandwidth selector compatible with the small band-

width asymptotic theory presented in Cattaneo, Crump, and Jansson (2009). This alternative

(�rst-order) large sample theory encompasses the classical large sample theory available in the lit-

erature, and also enjoys several robustness properties. In particular, (i) it provides a valid inference

procedure for (small) bandwidth sequences that would render the classical results invalid, (ii) it

permits the use of a second-order kernel regardless of the dimension of the regressors and therefore

removes strong smoothness assumptions, and (iii) it provides a limiting distribution that is not

invariant to the particular choices of smoothing and tuning parameters, without necessarily forcing

a slower than root-n rate of convergence (where n is the sample size). The key theoretical insight

behind these results is to accommodate bandwidth sequences that break down the asymptotic lin-

earity of the estimator of interest, leading to a more general �rst-order asymptotic theory that is no

longer invariant to the particular choices of parameters underlying the preliminary nonparametric

estimator. Consequently, it is expected that a new inference procedure based on this alternative

asymptotic theory would (at least partially) �adapt�to the particular choices of these parameters.

The preliminary simulation results in Cattaneo, Crump, and Jansson (2009) show that this

alternative asymptotic theory opens the possibility for the construction of a robust inference pro-

cedure, providing a range of (small) bandwidths for which the appropriate test statistic enjoys

approximately correct size. However, the bandwidth selectors available in the literature turn out

to be incompatible with these new results in the sense that they would not deliver a bandwidth

choice within the robust range. This paper presents a new data-driven bandwidth selector that
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achieves this goal, thereby providing a robust automatic (i.e., fully data-driven) inference procedure

for the estimand of interest. These results are corroborated by an extensive Monte Carlo experi-

ment, which shows that the asymptotic theory developed in Cattaneo, Crump, and Jansson (2009)

coupled with the data-driven bandwidth selector proposed here lead to remarkable improvements

in inference when compared to the alternative procedures available in the literature. In particular,

the resulting new data-driven con�dence intervals exhibit close-to-correct empirical coverage across

all designs considered. Among other advantages, these new data-driven statistical procedures allow

for the use of a second-order kernel, which is believed to deliver more stable results in applications

(see, e.g., Horowitz and Härdle (1996)), and appear to be considerably more robust to the impact

associated with the additional variability introduced by the estimation of the bandwidth selectors.

This paper contributes to the important literature of semiparametric inference for weighted

average derivatives. This population parameter of interest was originally introduced by Stoker

(1986), and has been intensely studied in the literature since then. Härdle and Stoker (1989) and

Härdle, Hart, Marron, and Tsybakov (1992) study general weighted average derivative estimators,

although their results are considerably complicated by the fact that their representation requires

handling stochastic denominators and appears to be very sensitive to the choice of trimming para-

meters. Fortunately, the density-weighted average derivative estimator circumvents this problem,

while retaining the desirable properties of the general weighted average derivative, and leads to a

simple and useful semiparametric estimator. Powell, Stock, and Stoker (1989) study the �rst-order

large sample properties of this estimator and provide su¢ cient (but not necessary) conditions for

root-n consistency and asymptotic normality. Nishiyama and Robinson (2000, 2001, 2005) study

its second-order large sample properties by deriving valid Edgeworth expansions for this estima-

tor (see also Robinson (1995)), while Härdle and Tsybakov (1993) and Powell and Stoker (1996)

provide second-order mean squared error expansions for this estimator (see also Newey, Hsieh, and

Robins (2004)). Both types of higher-order expansions provide simple plug-in bandwidth selectors

targeting di¤erent properties of this estimator, and are compatible with the classical large sample

theory available in the literature. Ichimura and Todd (2007) provide a recent survey, with par-

ticular emphasis on implementation, of the results available in the literature. For an interesting

empirical example focusing on density-weighted average derivatives, see Deaton and Ng (1998).

The rest of the paper is organized as follows. Section 2 describes the model and reviews the main

results available in the literature regarding �rst-order large sample inference for density-weighted

average derivatives. Section 3 presents the higher-order mean squared error expansion and develops

the new (infeasible) theoretical bandwidth selector, while Section 4 describes how to construct a

feasible (i.e., data-driven) bandwidth selector and establishes its consistency. Section 5 summarizes

the results of an extensive Monte Carlo experiment. Section 6 concludes.
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2. Model and Previous Results

Let zi = (yi; x
0
i)
0, i = 1; : : : ; n, be a random sample from a vector z = (y; x0)0, where y 2 R is a

dependent variable and x = (x1; � � � ; xd)0 2 Rd is a continuous explanatory variable with a density
f (�). The population parameter of interest is the density-weighted average derivative given by

� = E
�
f (x)

@

@x
g (x)

�
,

where g (x) = E [yjx] denotes the population regression function. The following assumption collects
typical regularity conditions imposed on this model.

Assumption 1. (a) E
�
y4
�
<1:

(b) E
�
�2 (x) f (x)

�
> 0 and V [@e (x) =@x� y@f (x) =@x] is positive de�nite, where �2 (x) =

V [yjx] and e (x) = f (x) g (x) :
(c) f is (Q+ 1) times di¤erentiable, and f and its �rst (Q+ 1) derivatives are bounded, for

some Q � 2:
(d) g is twice di¤erentiable, and e and its �rst two derivatives are bounded.

(e) v is di¤erentiable and

supx2Rd [v (x) f (x) + v (x) k@f (x) =@xk+ k@v (x) =@xk] <1;

where k�k is the Euclidean norm and v (x) = E
�
y2jx

�
:

(f) limkxk!1 [f (x) + je (x)j] = 0.

Assumption 1 and integration by parts lead to � = �2E [y @f (x)/ @x], which in turn motivates
the analogue estimator of Powell, Stock, and Stoker (1989) given by

�̂n = �2
1

n

nX
i=1

yi
@

@x
f̂n;i (xi) ,

where f̂n;i (�) is a �leave-one-out�kernel density estimator de�ned as

f̂n;i (x) =
1

n� 1

nX
j=1;j 6=i

1

hdn
K

�
xj � x
hn

�
,

for some kernel functionK : Rd ! R and some positive (bandwidth) sequence hn. Typical regularity
conditions on the kernel-based nonparametric estimator entering this semiparametric estimator �̂n
are imposed in the following assumption.

Assumption 2. (a) K is even.

(b) K is di¤erentiable, and K and its �rst derivative are bounded.
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(c)
R
Rd

_K (u) _K (u)0du is positive de�nite, where _K (u) = @K (u) =@u.

(d) For some P � 2,Z
Rd
jK (u)j

�
1 + kukP

�
du+

Z
Rd




 _K (u)


�1 + kuk2� du <1,
and Z

Rd
ul11 � � �u

ld
d K (u) du =

(
1; if l1 + � � �+ ld = 0;
0; if 0 < l1 + � � �+ ld < P

.

Powell, Stock, and Stoker (1989) showed that, under appropriate restrictions on the bandwidth

sequence and kernel function, the estimator �̂n is asymptotically linear with in�uence function

given by L (z) = 2 [@e (x)/ @x� y @f (x)/ @x� �]. Thus, the asymptotic variance of this estimator
is given by � = E

�
L (z)L (z)0

�
. The following result describes the exact conditions and summarizes

the main conclusion. (Limits are taken as n!1 unless otherwise noted.)

Result 1. (Powell, Stock, and Stoker (1989)) If Assumptions 1 and 2 hold, and if nh2min(P;Q)n ! 0

and nhd+2n !1, then

p
n(�̂n � �) =

1p
n

nX
i=1

L (zi) + op (1)!d N (0;�) .

Result 1 follows from noting that the estimator �̂n admits a n-varying U -statistic representation

given by

�̂n =

�
n

2

��1 n�1X
i=1

nX
j=i+1

U (zi; zj ;hn) , U (zi; zj ;h) = �h�(d+1) _K
�
xi � xj
h

�
(yi � yj) ,

which leads to the Hoe¤ding decomposition �̂n = �n + �Ln + �Wn, where

�n = � (hn) ; �Ln =
1

n

nX
i=1

L (zi;hn) ; �Wn =

�
n

2

��1 n�1X
i=1

nX
j=i+1

W (zi; zj ;hn) ,

with

� (h) = E [U (zi; zj ;h)] , L (zi;h) = 2 [E (U (zi; zj ;h) jzi)� � (h)] ,

W (zi; zj ;h) = U (zi; zj ;h)� [L (zi;h) + L (zj ;h)]/ 2� � (h) .

This decomposition makes clear the need for the conditions on the bandwidth sequence and

the kernel function: (i) condition nh2min(P;Q)n ! 0 ensures that the bias of the estimator is

asymptotically negligible since �n � � = O(h
min(P;Q)
n ), and (ii) condition nhd+2n ! 1 ensures

that the �quadratic term� of the Hoe¤ding decomposition is also asymptotically negligible since
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�Wn = Op(n
�1h

�(d+2)=2
n ). Under the same conditions, Powell, Stock, and Stoker (1989) also develop

a simple consistent estimator for �, which is given by the analogue estimator

�̂n =
1

n

nX
i=1

L̂n;iL̂
0
n;i, L̂n;i = 2

24 1

n� 1

nX
j=1;j 6=i

U (zi; zj ;hn)� �̂n

35 .
Consequently, under the conditions imposed in Result 1, it is straightforward to form a stu-

dentized version of �̂n, leading to a simple, asymptotically pivotal test statistic for the testing

problem:

H0 : � = �0 vs. H1 : � 6= �0, (1)

which is based on
p
n�̂

�1=2
n (�̂n � �)!d N (0; Id), with �̂n !p �.

As discussed in Newey (1994), asymptotic linearity of a semiparametric estimator has several

distinct features that may be considered attractive from a theoretical point of view. In particular,

asymptotic linearity is a necessary condition for semiparametric e¢ ciency and leads to a limiting

distribution of the statistic of interest that is invariant to the choice of the nonparametric estima-

tor used in the construction of the semiparametric procedure. In other words, regardless of the

particular choice of preliminary nonparametric estimator used, the limiting distribution will not

depend on the speci�c nonparametric estimator whenever the semiparametric estimator admits an

asymptotic linear representation.

However, achieving an asymptotic linear representation of a semiparametric estimator imposes

several strong model assumptions and leads to a large sample theory than may not accurately

represent the �nite sample behavior of the estimator. In the case of �̂n, asymptotic linearity

would require P > 2 unless d = 1, which in turn requires strong smoothness conditions (Q � P ).
Consequently, classical asymptotic theory will require the use of a higher-order kernel whenever

more than one covariate is included. In addition, classical asymptotic theory (whenever valid)

leads to a limiting experiment which is invariant to the particular choices of smoothing (K) and

tuning (hn) parameters involved in the construction of the estimator, and therefore it is unlikely

to be able to �adapt�to changes in these parameters. In other words, inference based on classical

asymptotic theory is silent with respect to the impact that these parameters may have on the �nite

sample behavior of �̂n.

In an attempt to better characterize the �nite sample behavior of �̂n, Cattaneo, Crump, and

Jansson (2009) show that it is possible to increase the robustness of this estimator by considering

a di¤erent asymptotic experiment. In particular, instead of forcing asymptotic linearity of the

estimator, the authors develop an alternative �rst-order asymptotic theory that accommodates

(but does not require) weaker assumptions than those imposed in the classical �rst-order asymptotic

theory discussed above. The following result collects the main �ndings.
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Result 2. (Cattaneo, Crump, and Jansson (2009)) If Assumptions 1 and 2 hold, and if

min
�
nhd+2n ; 1

�
nh

2min(P;Q)
n ! 0 and n2hdn !1, then

(V[�̂n])�1=2(�̂n � �)!d N (0; Id) ,

where

V[�̂n] =
1

n
[� + o (1)] +

�
n

2

��1
h�(d+2)n [� + o (1)] ,

with � = 2E
�
�2 (x) f (x)

� R
Rd

_K (u) _K (u)0du. In addition,

1

n
�̂n =

1

n
�+ 2

�
n

2

��1
h�(d+2)n �+ op

�
n�1 + n�2h�(d+2)n

�
.

Result 2 shows that the conditions on the bandwidth sequence may be considerably weakened

without invalidating the limiting Gaussian distribution. In particular, whenever hn is chosen so

that nhd+2n is bounded, the limiting distribution will cease to be invariant with respect to the

underlying preliminary nonparametric estimator because �̂n is no longer asymptotically linear. (In

particular, note that nhd+2n ! � > 0 retains the root-n consistency of �̂n.) In addition, because

hn is allowed to be �smaller�than usual, the bias of the estimator is controlled in a di¤erent way,

removing the need for higher-order kernels.

Result 2 also shows that the feasible classical testing procedure based on
p
n�̂

�1=2
n (�̂n��) will be

invalid unless nhd+2n !1, which corresponds to the classical large sample theory case (Result 1).
To solve this problem, Cattaneo, Crump, and Jansson (2009) propose two alternative corrections

to the standard error matrix �̂n, leading to two options for �robust�standard errors. To construct

the �rst �robust�standard error formula, the authors introduce a simple consistent estimator for

�, under the same conditions of Result 2, which is given by the analogue estimator

�̂n = h
d+2
n

�
n

2

��1 n�1X
i=1

nX
j=i+1

Ŵn;ijŴ
0
n;ij , Ŵn;ij = U (zi; zj ;hn)�

1

2

�
L̂n;i + L̂n;j

�
� �̂n.

Thus, using this estimator,

V̂1;n =
1

n
�̂n �

�
n

2

��1
h�(d+2)n �̂n (2)

yields a consistent standard error estimate under small bandwidth asymptotics (i.e., under the

weaker conditions imposed in Result 2, which include in particular those imposed in Result 1). To

describe the second �robust�standard error formula, let �̂n (Hn) be the estimator �̂n constructed

using a bandwidth sequenceHn (e.g., �̂n = �̂n (hn) by de�nition). Then, under the same conditions

of Result 2,

V̂2;n =
1

n
�̂n

�
21=(2+d)hn

�
(3)
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yields also a consistent standard error estimate under small bandwidth asymptotics.

Consequently, under the conditions imposed in Result 2, it is straightforward to form a studen-

tized version of �̂n, leading to two simple, robust test statistics for the testing problem (1), which

are based on V̂ �1=2k;n (�̂n � �)!d N (0; Id), with V̂
�1
k;nV[�̂n]!p Id, k = 1; 2.

Although an interesting theoretical improvement, these results have the obvious drawback of

depending on the choice of hn, which is unrestricted beyond the rate restrictions imposed in Result

2. A preliminary Monte Carlo experiment reported in Cattaneo, Crump, and Jansson (2009) shows

that the new, robust standard error formulas have the potential to deliver good �nite sample

behavior if the initial hn is chosen to be small enough. As suggested above, this empirical �nding

may be (partially) justi�ed by the fact that for those �small� bandwidths asymptotic linearity

ceases to hold and therefore the limiting distribution is no longer invariant to the choice of the

smoothing and tuning parameters.

As mentioned in the introduction, the plug-in rules available in the literature for hn fail to deliver

a choice of hn that would enjoy the robustness property introduced by the new asymptotic theory

described in Result 2. This is not too surprising, since these bandwidth selectors are typically

constructed to balance (higher-order) bias and variance in a way that is �appropriate� for the

classical large sample theory.

3. MSE Expansion and �Optimal�Bandwidth Selectors

Higher-order expansions provide a simple and intuitive way of constructing plug-in bandwidth

selectors for semiparametric estimators. For the case of the density-weighted average derivative

there exist three bandwidth selectors of the plug-in variety. Härdle and Tsybakov (1993) and

Powell and Stoker (1996) construct a bandwidth selector based on the minimization of the mean

squared error of �̂n, while Nishiyama and Robinson (2000, 2005) construct two plug-in bandwidth

selectors based on an Edgeworth expansion for the one-sided and two-sided corresponding test

statistics. See Ichimura and Todd (2007, Section 6.3) for a general discussion on these results and

their implementation.

This paper also considers the mean squared error expansion of �̂n as the starting point for the

construction of the plug-in �optimal�bandwidth selector. In order to compute such an expansion it

is necessary to strengthen the assumptions concerning the data generating process. The following

assumption contains a set of additional mild conditions su¢ cient to provide a valid higher-order

mean squared error expansion of �̂n, up to the order needed for this paper.

Assumption 3. (a) g is (Q+ 1) times di¤erentiable, and e and its �rst (Q+ 1) derivatives are
bounded.

(b) v is three times di¤erentiable, and vf and its �rst three derivatives are bounded.

(c) limkxk!1 [� (x) f (x) + k@� (x) =@xk f (x)] = 0.
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(d) E[ k@g (x) =@xk2 f (x)] <1.

Assumptions 3(a) and 3(b) are natural and in agreement with those imposed in Powell and

Stoker (1996) and Nishiyama and Robinson (2000, 2005), while Assumption 3(c) is slightly stronger

than the analogue restriction imposed in those papers. Assumption 3(d) is used to ensure that the

higher-order mean squared expansion is valid up to the order needed.

Theorem 1. If Assumptions 1, 2 and 3 hold, then for s = min (P;Q) and _f (x) = @f (x)/ @x,

E
h
(�̂n � �)(�̂n � �)0

i
=

1

n
�+

�
n

2

��1
h�(d+2)n �+

�
n

2

��1
h�dn V + h2sn BB0

+O
�
n�1hsn

�
+ o

�
n�2h�d + h2sn

�
,

where

B = �2 (�1)
s

s!

X
0�l1;��� ;ld�s
l1+���+ld=s

�Z
Rd
ul11 � � �u

ld
d K (u) du

�
E

" 
@(l1+���+ld)

@xl11 � � � @x
ld
d

_f (x)

!
g (x)

#
,

and

V =
Z
Rd

_K (u) _K (u)0
�
u0E

�
�2 (x)

@2

@x@x0
f (x) +

�
@

@x
g (x)

��
@

@x
g (x)

�0
f (x)

�
u

�
du.

The result in Theorem 1 is similar to the one obtained by Härdle and Tsybakov (1993) and

Powell and Stoker (1996), the key di¤erence being that the additional term of order O
�
n�2h�dn

�
is

explicitly retained here. (Recall that Result 2 requires n2hdn !1.)
To motivate the new �optimal�bandwidth selector, recall that the �robust�variance matrix in

Result 2 is given by the �rst two terms of the mean squared error expansion presented in Theorem

1, which suggests considering the next two terms of the expansion to construct an �optimal�

bandwidth selector. (Note that, as it is common in the literature, this approach implicitly assumes

that both B and V are not equal to zero.) Intuitively, balancing these terms corresponds to the
case of nhd+2n ! � < 1, and therefore pushes the selected bandwidth to the �small bandwidth�
region. This approach may be considered �optimal�in a mean square error sense because it makes

the leading terms ignored in the general large sample approximation presented in Result 2 as small

as possible.

To describe the new bandwidth selector, let � 2 Rd and consider (for simplicity) a bandwidth
that minimizes the next two terms of E[(�0(�̂n � �))2]. This �optimal�bandwidth selector is given
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by

h�CCJ =

8><>:
�
d(�0V�)
s(�0B)2

� 1
2s+d

n�
2

2s+d if �0V� > 0�
2j�0V�j
(�0B)2

� 1
2s+d

n�
2

2s+d if �0V� < 0
.

This new theoretical bandwidth selector is consistent with the �small bandwidth�asymptotics

described in Result 2, since n2 (h�CCJ)
d ! 1. In addition, observe that n�1hsn = o

�
n�2h�dn

�
whenever nhs+dn ! 0, which is satis�ed when hn = h�CCJ .

This new bandwidth selector may be compared to the two competing plug-in bandwidth selec-

tors available in the literature, proposed by Powell and Stoker (1996) and Nishiyama and Robinson

(2005), and given by

h�PS =

 
(d+ 2)

�
�0��

�
s
�
�0B
�2

! 1
2s+d+2

n�
2

2s+d+2 , and h�NR =

 
2
�
�0��

��
�0B
�2
! 1

2s+d+2

n�
2

2s+d+2 ,

respectively. Inspection of these bandwidth selectors shows that h�CCJ � h�PS � h�NR, leading to a
bandwidth selection of smaller order.1

4. Data-Driven Bandwidth Selectors

The previous section described a new (infeasible) plug-in bandwidth selector that is compatible

with the small bandwidth asymptotic theory proposed by Cattaneo, Crump, and Jansson (2009).

In order to implement this selector in practice, as well as its competitors h�PS and h
�
NR, it is necessary

to construct consistent estimates for each of the leading constants. These estimates would lead to

a data-driven (i.e., automatic) bandwidth selector, denoted ĥCCJ .

A straightforward, somewhat unsatisfactory way of constructing estimates for the leading con-

stants is to provide a �rule-of-thumb�estimator, which is typically motivated by assuming a para-

metric distribution of the underlying model. However, it is well-known that this kind of rule-of-

thumb bandwidth selectors tend to underperform whenever the underlying distributional assump-

tions are invalid. As an alternative, it is possible to construct a plug-in bandwidth selector, which

nonparametrically estimates each quantity B, � and V using a preliminary bandwidth choice.
To describe the data-driven plug-in bandwidth selectors, let bn be a preliminary positive band-

width sequence, which may be di¤erent for each estimator. A simple analogue estimator of �

was introduced in Section 2. In particular, let �̂n (bn) be the estimator �̂n constructed using a

bandwidth sequence bn (e.g., �̂n = �̂n (hn) by de�nition). Note that this estimator is a n-varying

U -statistic as well. Theorem 1 and the calculations provided in Cattaneo, Crump, and Jansson

1Nishiyama and Robinson (2000) derives a third alternative bandwidth selector which is not explicitly discussed
here because this procedure is targeted for one-sided hypothesis testing. Nonetheless, inspection of this alternative
bandwidth selection procedure, denoted h�NR00, shows that h

�
CCJ � h�NR00 whenever d + 8 > 2s. Therefore, h�CCJ

is of smaller order unless strong smoothness assumption are imposed in the model and a corresponding higher-order
kernel is employed.
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(2009) show that, if Assumptions 1, 2 and 3 hold, then

�̂n (bn) = � + b
2
nV +Op(b3n + n�1=2 + n�1b�d=2n ),

which gives the consistency of this estimator if bn ! 0 and n2bdn !1.
Next, consider the construction of consistent estimators of B and V, the two parameters entering

the new bandwidth selector h�CCJ . To this end, let k be a kernel function, which may be di¤erent for

each estimator, and may be di¤erent from K. The following assumption collects a set of su¢ cient

conditions to establish consistency of the plug-in estimators proposed in this paper for B and V.

Assumption 4. (a) f , v and e are (s+ 1 + S) times di¤erentiable, and f , vf , e and their �rst
(s+ 1 + S) derivatives are bounded, for some S � 1.
(b) k is even.

(c) k isM times di¤erentiable, and k and its �rstM derivatives are bounded, for someM � 0.
(d) For some R � 2,

R
Rd jk (u)j (1 + kuk

R)du <1, and

Z
Rd
ul11 � � �u

ld
d k (u) du =

(
1; if l1 + � � �+ ld = 0;
0; if 0 < l1 + � � �+ ld < R

.

For the bias, a plug-in estimator is given by

B̂n = �
2 (�1)s

s!

X
0�l1;��� ;ld�s
l1+���+ld=s

�Z
Rd
ul11 � � �u

ld
d K (u) du

�
#̂l1;��� ;ld;n,

where

#̂l1;��� ;ld;n =
1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

b�(d+1)n

 
@(l1+���+ld)

@xl11 � � � @x
ld
d

_k

�
xi � xj
bn

�!
yi.

The estimator #̂l1;��� ;ld;n is the sample analogue estimator of

#l1;��� ;ld = E

" 
@(l1+���+ld)

@xl11 � � � @x
ld
d

_f (x)

!
y

#
,

and is also a n-varying U -statistic estimator employing a leave-one-out kernel-based density esti-

mator.

For V, an obvious plug-in estimator would be (letting a �hat�denote a sample analogue esti-
mate)Z

_K (u) _K (u)0
�
u0�̂nu

�
du, �̂n = bE ��̂2 (x) @2

@x@x0
f̂ (x) +

�
@

@x
ĝ (x)

��
@

@x
ĝ (x)

�0
f̂ (x)

�
.
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However, this estimator has the unappealing property of requiring the estimation of several non-

parametric objects, some of which would require handling stochastic denominators. Thus, this

direct plug-in approach is likely to be less stable when implemented. Fortunately, it is possible to

construct an alternative, indirect estimator much easier to implement in practice. This estimator is

intuitively justi�ed as follows: the results presented above show that, under appropriate regularity

conditions,

b�2n (�̂n (bn)��) = V +Op
�
bn + n

�1=2b�2n + n�1b�d=2�2n

�
,

and therefore an estimator satisfying ~�n = �+ op(b2n) +Op(n
�1=2 + n�1b

�d=2
n ) would lead to

V̂n = b�2n (�̂n (bn)� ~�n) = V + op (1) ,

if bn ! 0, nb4n ! 1 and n2bd+4n ! 1. Under appropriate conditions, an estimator having these
properties is given by

~�n = �̂n

Z
Rd

_K (u) _K (u)0 du, �̂n =

�
n

2

��1 n�1X
i=1

nX
j=i+1

b�dn k

�
xj � xi
bn

�
(yi � yj)2 .

In this case, �̂n is a sample analogue estimator of � = 2E
�
�2 (x) f (x)

�
, which is also a n-varying

U -statistic estimator employing a leave-one-out (higher-order) kernel-based density estimator.

Theorem 2. If Assumptions 1, 3 and 4 hold, then:

(i) For M � s+ 1,

#̂l1;��� ;ld;n = E

" 
@(l1+���+ld)

@xl11 � � � @x
ld
d

_f (x)

!
y

#
+Op

�
bmin(R;S)n + n�1=2 + n�1b�(d+2+2s)=2n

�
.

(ii) For R � 3,

�̂n = 2E
�
�2 (x) f (x)

�
+Op

�
bmin(R;s+1+S)n + n�1=2 + n�1b�d=2n

�
.

This theorem gives simple su¢ cient conditions to construct a robust data-driven bandwidth

selector consistent with the small bandwidth asymptotics derived in Cattaneo, Crump, and Jansson

(2009). In particular, de�ne

ĥCCJ =

8>>><>>>:
�
d(�0V̂n�)
s(�0B̂n)

2

� 1
2s+d

n�
2

2s+d if �0V̂n� > 0�
2j�0V̂n�j
(�0B̂n)

2

� 1
2s+d

n�
2

2s+d if �0V̂n� < 0
.
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The following corollary establishes the consistency of the new bandwidth selector ĥCCJ .

Corollary 1. If Assumptions 1, 2, 3 and 4 hold with M � s + 1 and R � 3, and if bn ! 0 and

n2b
max(8;d+2+2s)
n !1, then for � 2 Rd such that �0B 6= 0 and �0V� 6= 0,

ĥCCJ
h�CCJ

!p 1.

(The analogous result also holds for ĥPS and ĥNR.)

The results presented so far are silent about the selection of the initial bandwidth choice bn
in applications, beyond the rate restrictions imposed by Corollary 1. A simple choice for the

preliminary bandwidth bn may be based on some data-driven bandwidth selector developed for a

nonparametric object present in the corresponding target estimands B, � and V. Typical examples
of procedures which may be used include simple rule-of-thumbs, plug-in bandwidth selectors and

(smoothed) cross-validation. See, for example, Ichimura and Todd (2007).

As shown in the simulations presented in the next section, it appears that a simple data-driven

bandwidth selector from the literature of nonparametric estimation works well for the choice of

bn. Nonetheless, it may be desirable to improve upon this preliminary bandwidth selector in order

to obtain better �nite sample behavior. Although beyond the scope of this paper, a conceptually

feasible (but computationally demanding) idea would be to compute second-order mean squared

error expansions for #̂l1;��� ;ld;n, �̂n and �̂n. Since these three estimators are n-varying U -statistics,

the results from Powell and Stoker (1996) may be applied to obtain a corresponding set of �optimal�

bandwidth choices. These procedures will, in turn, also depend on a preliminary bandwidth when

implemented empirically, which again would need to be chosen in some way. This idea mimics, in the

context of semiparametric estimation, the well-known second-generation direct plug-in bandwidth

selector (of level 2) from the literature of nonparametric density estimation. (See, e.g., Wand and

Jones (1995) for a detailed discussion.) Although the validity of such bandwidth selectors would

require stronger assumptions, by analogy from the nonparametric density estimation literature,

they would be expected to improve the �nite sample properties of the bandwidth selector for hn
and, in turn, the performance of the semiparametric inference procedure.

5. Monte Carlo Simulations

This section reports the main �ndings from an extensive Monte Carlo experiment conducted to

analyze the �nite sample properties of the robust data-driven procedure proposed in this paper as

well as its relative merits when compared to the other procedures available.

Following the results reported in Cattaneo, Crump, and Jansson (2009), we consider six di¤erent

models of the (�single index�) form, given by

yi = � (y
�
i ) , y�i = x

0
i� + "i;
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where � (�) is a nondecreasing (link) function and "i s N (0; 1) is independent of the vector of

regressors xi 2 Rd. Three di¤erent link functions are considered: � (y�) = y�, � (y�) = 1 (y� > 0),
and � (y�) = y�1 (y� > 0), which correspond to a linear regression, probit, and Tobit model, re-

spectively. (1 (�) represents the indicator function.) The vector of regressors is generated using
independent random variables and standardized to have E [xi] = 0 and E [xix0i] = Id, with the �rst
component x1i having either a Gaussian distribution or a chi-squared distribution with 4 degrees

of freedom (denoted �4), while the remaining components have a Gaussian distribution throughout

the experiment. All the components of � are set equal to unity, and for simplicity only results for

the �rst component of � (i.e., �1) are reported.

Table I: Monte Carlo Models

yi = y
�
i yi = 1 (y

�
i > 0) yi = y

�
i 1 (y

�
i > 0)

x1i s N (0; 1) Model 1: �1 = 1
4� Model 3: �1 = 1

8�3=2
Model 5: �1 = 1

8�

x1i s �4�4p
8

Model 2: �1 = 1
4
p
2�

Model 4: �1 = 0:02795 Model 6: �1 = 0:03906

Table I summarizes the Monte Carlo models, reports the value of the population parameter of

interest, and provides the corresponding label of each model considered. (Whenever unavailable

in closed form, the population parameters are computed by a numerical approximation.) The

simulation study considers three sample sizes (n = 100, n = 400 and n = 700), two dimensions of

the regressors vector (d = 2 and d = 4), and two kernel orders (P = 2 and P = 4). The kernel

function K (�) is chosen to be a standard Gaussian product kernel when P = 2, or a Gaussian

density-based multiplicative product kernel when P = 4. The preliminary kernel function k (�) is
chosen to be a fourth order Gaussian density-based multiplicative product kernel, since R � 3 is

required by Corollary 1. For all possible combinations of the parameters 10; 000 replications are

carried out.

The simulation experiment considers the three (infeasible) population bandwidth choices de-

scribed in Section 3, denoted h�PS , h
�
NR and h

�
CCJ , and their corresponding data-driven estimates,

denoted ĥPS , ĥNR and ĥCCJ . The three estimated bandwidth are obtained using the results de-

scribed in Section 4 with a common initial bandwidth plug-in estimate used to construct B̂n, �̂n
and V̂n. To provide a parsimonious data-driven procedure, the initial bandwidth bn is constructed
as a sample average of a second-generation direct plug-in level-two estimate for the (marginal)

density of each dimension of the regressors vector, as described in, for example, Wand and Jones

(1995). Con�dence intervals for �1 are constructed using each of the six bandwidth choices for the

classical test statistic of Powell, Stock, and Stoker (1989), denoted PSS, and the two alternative
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robust test statistics proposed by Cattaneo, Crump, and Jansson (2009) based on the robust stan-

dard errors given by equation (2) and equation (3), and denoted by CCJ1 and CCJ2, respectively.

Notice that the classical inference procedure PSS is only theoretically valid when P = 4, while the

robust procedures CCJ1 and CCJ2 are always valid across all simulation designs.

Figures 1 through 8 plot the empirical coverage for the three competing 95% con�dence intervals

as a function of the choice of bandwidth for each of the six models. To facilitate the comparison

only a restricted range of bandwidths is plotted and two additional horizontal lines at 0:90 and

at the nominal coverage rate 0:95 are included for reference. In addition, the three population

bandwidth selectors h�PS , h
�
NR and h

�
CCJ are plotted as vertical lines. (Note that h

�
PS = h

�
NR for

the case d = 2 and P = 2.) Each �gure depicts the results for a combination of P , d and n,

although results for n = 700 are not included to conserve space. For example, Figure 2 plots the

simulation results using a standard Gaussian product kernel (P = 2), d = 2 and n = 400. In all

cases, these �gures highlight the potential robustness properties that the test statistics CCJ1 and

CCJ2 may have when using the new data-driven plug-in bandwidth selector. In particular, the

theoretical bandwidth selector h�CCJ lays within the robust region for which both CCJ1 and CCJ2

have correct empirical coverage for a range of bandwidths. This, in turn, suggests that (at least)

some of the variability introduced by the estimation of this bandwidth selector will not a¤ect the

performance of these (robust) test statistics. In contrast, these �gures show that this property is

unlikely to be enjoyed by the classical procedure, denoted PSS.

To further describe the properties of the new bandwidth selector, Figures 9 through 13 plot

corresponding kernel density estimates for the test statistic PSS coupled with either h�PS and h
�
NR,

and for the test statistics CCJ1 and CCJ2 coupled with h�CCJ . To facilitate the comparison the

density of the standard normal is also depicted, and to conserve space only the case n = 400 is

included. These �gures show that the Gaussian approximation of the robust test statistics using

the new bandwidth selector is considerably better than the corresponding approximation for PSS

when constructed using either of the classical bandwidth selectors.

To analyze the performance of the new data-driven bandwidth selector, and the resulting ro-

bust data-driven con�dence intervals, Tables 1 through 4 present the empirical coverage of each

possible con�dence interval (PSS, CCJ1 and CCJ2) when using each possible bandwidth selector

(the infeasible h�PS , h
�
NR and h

�
CCJ , and the feasible ĥPS , ĥNR and ĥCCJ). In general, these tables

provide concrete evidence of the superior performance of the robust test statistics when coupled

with the new estimated bandwidth ĥCCJ , leading to two robust data-driven con�dence intervals.

For example, Table 2 reports the case of P = 2 and d = 2 for all three sample sizes. This table

shows that the theoretical bandwidth h�CCJ and the empirical bandwidth ĥCCJ deliver approxi-

mately correct coverage for all models and sample sizes when using either CCJ1 or CCJ2, while

this is not the case for the test statistic PSS. However, this case is not theoretically justi�ed for the

classical procedure, which may partially explain its poor performance. Nonetheless, for example,
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Table 3 shows that even when P = 4 and d = 2, the classical procedure PSS coupled with either

ĥPS or ĥNR is unable to achieve correct coverage. On the other hand, CCJ1 or CCJ2 using ĥCCJ do

provide close-to-correct coverage across models and sample sizes. This provides additional evidence

of the robustness properties of the new procedures.

In addition, it is interesting to note that the good performance of CCJ1 or CCJ2 using ĥCCJ is

maintained even when the dimension grows, which provides empirical evidence of the relatively low

sensitivity of the new robust data-driven procedures to the so-called �curse of dimensionality.�This

�nding may be (heuristically) justi�ed by the fact that under the small bandwidth asymptotics,

the limiting distribution is not invariant to the �parameter�d, which in turn may lead to further

robustness properties of CCJ1 and CCJ2 in this additional direction.

Finally, as suggested by the good Gaussian approximation reported in Figures 9 through 13 for

the new procedures, the main �ndings summarized in this section continue to hold if other nominal

con�dence levels are considered. In particular, although not reported to conserve space, the same

results are found when 90% or 99% con�dence intervals are considered.

6. Final Remarks

This paper introduced a new data-driven plug-in bandwidth selector compatible with the small

bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density-weighted

average derivatives. This new bandwidth selector is of the plug-in variety, and is obtained based on

a mean squared error expansion of the estimator of interest. An extensive Monte Carlo experiment

showed a remarkable improvement in performance of the resulting new robust data-driven inference

procedure. In particular, the new data-driven con�dence intervals provide approximately correct

coverage in cases where there does not exist valid alternative inference procedures (i.e., using a

second-order kernel with at least two regressors), and also compares favorably to the alternative,

classical con�dence intervals when they are theoretically justi�ed.
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7. Appendix

Proof of Theorem 1. To save notation, for any function a : Rd ! R let _a (x) = @a (x) =@x and
�a (x) = @a (x) =@x@x0. A Hoe¤ding decomposition of �̂n gives

E
h
(�̂n � �)(�̂n � �)0

i
= V[�̂n] +

�
E[�̂n]� �

��
E[�̂n]� �

�0
= V[ �Ln] + V[ �Wn] + h

2s
n BB0 + o

�
h2sn
�
,

where the bias expansion follows immediately by a Taylor series expansion.

For V[ �Ln], using integration by parts,

E [Un (zi; zj)j zi] =
Z
Rd
_e (xi + uhn)K (u) du� yi

Z
Rd
_f (xi + uhn)K (u) du,

and therefore

V[ �Ln] =
4

n
V[E [Un (zi; zj) jzi]� �n] =

1

n
�+O

�
n�1hsn

�
.

For V[ �Wn], by standard calculations,

V[ �Wn] =

�
n

2

��1
E
�
Un (zi; zj)Un (zi; zj)

0�+O �n�2�
=

�
n

2

��1
h�(d+2)n

Z
Rd

_K (u) _K (u)0 T (x; uhn) dxdu+O
�
n�2

�
,

with T (x; u) = (v (x) + v (x+ u)� 2g (x) g (x+ u)) f (x) f (x+ u). Then, using a Taylor series
expansion, T (x; uhn) = T1 (x) + T2 (x)

0 uhn + u0T3 (x)uh2n + o
�
h2n
�
, where

T1 (x) = 2�
2 (x) f (x)2 , T2 (x) = 2�

2 (x) f (x) _f (x) + f (x)2 _�2 (x) ,

T3 (x) = �
2 (x) f (x) �f (x) + f (x) _�2 (x) _f (x) +

�
1

2
�v (x)� g (x) �g (x)

�
f (x)2 .

Clearly,Z
Rd

Z
Rd

_K (u) _K (u)0 T1 (x) dxdu =
Z
Rd

Z
Rd

_K (u) _K (u)0 2�2 (x) f (x)2 dxdu = �,

and, using integration by parts,

hn

Z
Rd

Z
Rd

_K (u) _K (u)0
�
T2 (x)

0 u
�
dxdu

= hn

Z
Rd

_K (u) _K (u)0
��Z

Rd

h
�2 (x) 2f (x) _f (x) + f (x)2 _�2 (x)

i
dx
�0
u

�
du = 0.
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Finally, using integration by parts and the fact that ��2 (x) = �v (x)� 2 _g (x) _g (x)0 � 2g (x) �g (x),

h2n

Z
Rd

_K (u) _K (u)0
�
u0T3 (x)u

�
dxdu

= h2n

Z
Rd

_K (u) _K (u)0
�
u0
�Z

Rd
�2 (x) �f (x) f (x) dx+

Z
Rd
_g (x) _g (x)0 f (x)2 dx

�
u

�
du.

Therefore,

V[ �Wn] =

�
n

2

��1
h�(d+2)n �+

�
n

2

��1
h�dn V + o

�
n�2h�dn

�
,

which establishes the result. �

Proof of Theorem 2. For part (i), note that #̂l1;��� ;ld;n may be written as a n-varying U -statistic
(assuming without loss of generality that s is even), given by

#̂l1;��� ;ld;n =

�
n

2

��1 n�1X
i=1

nX
j=i+1

u1 (zi; zj ; bn) ,

with (recall that s = l1 + � � �+ ld)

u1 (zi; zj ; b) = b
�(d+1+s)

0@ @s

@xl11 � � � @x
ld
d

_k (x)

�����
x=(xi�xj)=b

1A (yi � yj) .
First, change of variables and integration by parts give

E[u1 (zi; zj ; bn) jzi] =
Z
Rd
k (u)

 
@s

@xl11 � � � @x
ld
d

_f (x)

�����
x=xi�ubn

yi �
@s

@xl11 � � � @x
ld
d

_e (x)

�����
x=xi�ubn

!
du.

Second, a Taylor series expansion gives E[u1 (zi; zj ; bn)] = #l1;��� ;ld +O(b
min(R;S)
n ). Next, letting

#̂n = #̂l1;��� ;ld;n to save notation, a Hoe¤ding decomposition gives V[#̂n] = V[#̂1;n] + V[#̂2;n], where

#̂1;n =
1

n

nX
i=1

2 [E[u1 (zi; zj ; bn) jzi]� E[u1 (zi; zj ; bn)]] ,

and

#̂2;n =

�
n

2

� n�1X
i=1

nX
j=i+1

[u1 (zi; zj ; bn)� E[u1 (zi; zj ; bn) jzi]� E[u1 (zi; zj ; bn) jzj ] + E[u1 (zi; zj ; bn)]] .

Finally, using standard calculations, V[#̂1;n] = O
�
n�1

�
and V[#̂2;n] = O(n�2b

�(d+2+2s)
n ), and

the conclusion follows by Markov�s Inequality.
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For part (ii), note that �̂n is also a n-varying U -statistic, given by

�̂n =

�
n

2

��1 n�1X
i=1

nX
j=i+1

u2 (zi; zj ; bn) , u2 (zi; zj ; b) = b
�dk

�
xj � xi
b

�
(yi � yj)2 .

First, change of variables gives

E[u2 (zi; zj ; bn) jzi] =
Z
Rd
k (u)

�
y2i f (xi � ubn) + v (xi � ubn) f (xi � ubn)� 2yie (xi � ubn)

�
du.

Second, a Taylor�s expansion gives E[�̂n] = 2E
�
�2 (x) f (x)

�
+O(b

min(R;s+1+S)
n ). Next, a Hoe¤d-

ing decomposition gives V[�̂n] = V[�̂1;n] + V[�̂2;n], where

�̂1;n =
1

n

nX
i=1

2 [E[u2 (zi; zj ; bn) jzi]� E[u2 (zi; zj ; bn)]] ,

and

�̂2;n =

�
n

2

� n�1X
i=1

nX
j=i+1

[u2 (zi; zj ; bn)� E[u2 (zi; zj ; bn) jzi]� E[u2 (zi; zj ; bn) jzj ] + E[u2 (zi; zj ; bn)]] .

Finally, using standard calculations, V[�̂1;n] = O
�
n�1

�
and V[�̂2;n] = O

�
n�2bdn

�
, and the con-

clusion follows by Markov�s Inequality. �
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Table 1: Empirical Coverage Rates of 95% Con�dence Intervals: P = 2 and d = 2.

Model 1 Model 3 Model 5
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:345 0:928 0:854 0:851 0:367 0:929 0:858 0:853 0:365 0:906 0:844 0:842
h�NR 0:345 0:928 0:854 0:851 0:367 0:929 0:858 0:853 0:365 0:906 0:844 0:842
h�CCJ 0:192 0:991 0:928 0:943 0:175 0:994 0:933 0:949 0:199 0:988 0:914 0:934

ĥPS 0:327 0:884 0:808 0:805 0:330 0:897 0:815 0:810 0:331 0:888 0:823 0:822

ĥNR 0:327 0:884 0:808 0:805 0:330 0:897 0:815 0:810 0:331 0:888 0:823 0:822

ĥCCJ 0:182 0:971 0:916 0:927 0:198 0:972 0:906 0:924 0:194 0:968 0:900 0:919

n = 400 h�PS 0:244 0:931 0:878 0:876 0:260 0:939 0:887 0:881 0:258 0:929 0:885 0:880
h�NR 0:244 0:931 0:878 0:876 0:260 0:939 0:887 0:881 0:258 0:929 0:885 0:880
h�CCJ 0:121 0:994 0:948 0:952 0:110 0:995 0:947 0:954 0:125 0:993 0:947 0:951

ĥPS 0:248 0:870 0:817 0:809 0:255 0:883 0:819 0:809 0:252 0:887 0:833 0:823

ĥNR 0:248 0:870 0:817 0:809 0:255 0:883 0:819 0:809 0:252 0:887 0:833 0:823

ĥCCJ 0:113 0:980 0:937 0:940 0:132 0:976 0:932 0:932 0:120 0:981 0:938 0:941

n = 700 h�PS 0:212 0:940 0:892 0:889 0:226 0:942 0:895 0:889 0:224 0:936 0:900 0:895
h�NR 0:212 0:940 0:892 0:889 0:226 0:942 0:895 0:889 0:224 0:936 0:900 0:895
h�CCJ 0:100 0:993 0:949 0:952 0:091 0:994 0:951 0:952 0:104 0:993 0:947 0:949

ĥPS 0:220 0:871 0:820 0:811 0:225 0:886 0:834 0:825 0:224 0:892 0:846 0:838

ĥNR 0:220 0:871 0:820 0:811 0:225 0:886 0:834 0:825 0:224 0:892 0:846 0:838

ĥCCJ 0:095 0:984 0:939 0:941 0:108 0:982 0:944 0:946 0:098 0:985 0:947 0:949

Model 2 Model 4 Model 6
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:227 0:972 0:910 0:911 0:243 0:977 0:916 0:918 0:279 0:957 0:895 0:900
h�NR 0:227 0:972 0:910 0:911 0:243 0:977 0:916 0:918 0:279 0:957 0:895 0:900
h�CCJ 0:128 0:992 0:935 0:946 0:148 0:993 0:932 0:946 0:119 0:995 0:930 0:949

ĥPS 0:278 0:864 0:789 0:775 0:282 0:908 0:835 0:820 0:284 0:919 0:838 0:840

ĥNR 0:278 0:864 0:789 0:775 0:282 0:908 0:835 0:820 0:284 0:919 0:838 0:840

ĥCCJ 0:167 0:961 0:898 0:905 0:182 0:968 0:907 0:915 0:170 0:976 0:919 0:934

n = 400 h�PS 0:161 0:970 0:921 0:916 0:172 0:978 0:935 0:931 0:197 0:968 0:920 0:919
h�NR 0:161 0:970 0:921 0:916 0:172 0:978 0:935 0:931 0:197 0:968 0:920 0:919
h�CCJ 0:081 0:994 0:944 0:946 0:093 0:993 0:947 0:949 0:074 0:995 0:946 0:950

ĥPS 0:201 0:858 0:796 0:780 0:208 0:903 0:851 0:838 0:212 0:920 0:860 0:854

ĥNR 0:201 0:858 0:796 0:780 0:208 0:903 0:851 0:838 0:212 0:920 0:860 0:854

ĥCCJ 0:104 0:972 0:916 0:919 0:119 0:973 0:929 0:930 0:105 0:986 0:943 0:946

n = 700 h�PS 0:140 0:970 0:919 0:914 0:150 0:977 0:934 0:932 0:172 0:969 0:927 0:926
h�NR 0:140 0:970 0:919 0:914 0:150 0:977 0:934 0:932 0:172 0:969 0:927 0:926
h�CCJ 0:067 0:993 0:946 0:947 0:077 0:994 0:951 0:954 0:062 0:994 0:951 0:952

ĥPS 0:178 0:849 0:796 0:783 0:182 0:902 0:849 0:836 0:185 0:922 0:869 0:862

ĥNR 0:178 0:849 0:796 0:783 0:182 0:902 0:849 0:836 0:185 0:922 0:869 0:862

ĥCCJ 0:088 0:973 0:926 0:925 0:100 0:978 0:938 0:936 0:085 0:989 0:951 0:952

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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Table 2: Empirical Coverage Rates of 95% Con�dence Intervals: P = 2 and d = 4.

Model 1 Model 3 Model 5
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:410 0:900 0:788 0:796 0:440 0:888 0:783 0:788 0:431 0:876 0:764 0:773
h�NR 0:393 0:921 0:815 0:828 0:422 0:912 0:811 0:817 0:414 0:898 0:790 0:804
h�CCJ 0:300 0:977 0:903 0:922 0:252 0:976 0:898 0:939 0:312 0:968 0:882 0:908

ĥPS 0:297 0:948 0:856 0:882 0:297 0:950 0:865 0:903 0:297 0:944 0:850 0:884

ĥNR 0:286 0:957 0:869 0:898 0:285 0:955 0:876 0:917 0:285 0:950 0:859 0:898

ĥCCJ 0:218 0:971 0:912 0:950 0:222 0:943 0:879 0:944 0:224 0:955 0:887 0:935

n = 400 h�PS 0:311 0:926 0:820 0:820 0:333 0:920 0:826 0:822 0:327 0:910 0:811 0:813
h�NR 0:298 0:945 0:847 0:853 0:319 0:940 0:851 0:852 0:314 0:932 0:838 0:846
h�CCJ 0:213 0:992 0:940 0:946 0:174 0:995 0:948 0:952 0:220 0:990 0:929 0:936

ĥPS 0:230 0:960 0:886 0:893 0:230 0:970 0:903 0:909 0:230 0:967 0:893 0:904

ĥNR 0:221 0:967 0:900 0:906 0:221 0:975 0:914 0:921 0:220 0:973 0:905 0:916

ĥCCJ 0:151 0:988 0:955 0:962 0:152 0:989 0:957 0:974 0:155 0:989 0:953 0:966

n = 700 h�PS 0:278 0:932 0:830 0:832 0:298 0:926 0:831 0:826 0:292 0:922 0:831 0:832
h�NR 0:267 0:950 0:860 0:862 0:286 0:945 0:859 0:859 0:281 0:943 0:858 0:861
h�CCJ 0:185 0:992 0:941 0:944 0:155 0:996 0:948 0:951 0:192 0:992 0:938 0:944

ĥPS 0:205 0:963 0:892 0:896 0:207 0:971 0:907 0:910 0:207 0:971 0:905 0:911

ĥNR 0:197 0:970 0:905 0:910 0:199 0:977 0:916 0:920 0:199 0:976 0:916 0:921

ĥCCJ 0:130 0:992 0:956 0:962 0:132 0:992 0:961 0:970 0:135 0:991 0:956 0:968

Model 2 Model 4 Model 6
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:325 0:946 0:844 0:859 0:314 0:960 0:871 0:892 0:339 0:946 0:848 0:868
h�NR 0:312 0:955 0:862 0:878 0:302 0:966 0:878 0:902 0:326 0:952 0:858 0:878
h�CCJ 0:207 0:986 0:919 0:946 0:223 0:966 0:892 0:939 0:197 0:972 0:903 0:948

ĥPS 0:256 0:953 0:866 0:891 0:256 0:953 0:876 0:918 0:257 0:958 0:875 0:914

ĥNR 0:246 0:959 0:877 0:904 0:246 0:955 0:881 0:927 0:247 0:960 0:883 0:923

ĥCCJ 0:192 0:968 0:908 0:951 0:197 0:932 0:868 0:939 0:201 0:957 0:889 0:945

n = 400 h�PS 0:246 0:962 0:874 0:877 0:238 0:980 0:913 0:915 0:257 0:970 0:894 0:898
h�NR 0:237 0:971 0:894 0:895 0:228 0:983 0:920 0:924 0:247 0:976 0:904 0:910
h�CCJ 0:146 0:995 0:946 0:952 0:157 0:996 0:946 0:953 0:136 0:996 0:949 0:960

ĥPS 0:190 0:969 0:904 0:911 0:189 0:980 0:917 0:926 0:191 0:980 0:916 0:927

ĥNR 0:182 0:974 0:913 0:922 0:181 0:984 0:926 0:937 0:183 0:984 0:925 0:938

ĥCCJ 0:128 0:990 0:957 0:969 0:130 0:988 0:959 0:981 0:135 0:989 0:957 0:976

n = 700 h�PS 0:220 0:963 0:874 0:875 0:213 0:984 0:925 0:925 0:230 0:975 0:902 0:904
h�NR 0:212 0:972 0:894 0:894 0:204 0:986 0:930 0:932 0:221 0:980 0:912 0:914
h�CCJ 0:127 0:995 0:954 0:957 0:137 0:995 0:949 0:954 0:121 0:997 0:949 0:954

ĥPS 0:169 0:970 0:908 0:910 0:168 0:982 0:925 0:930 0:168 0:982 0:925 0:930

ĥNR 0:162 0:975 0:917 0:922 0:161 0:986 0:932 0:936 0:161 0:985 0:931 0:938

ĥCCJ 0:110 0:992 0:964 0:967 0:111 0:992 0:968 0:979 0:114 0:993 0:963 0:973

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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Table 3: Empirical Coverage Rates of 95% Con�dence Intervals: P = 4 and d = 2.

Model 1 Model 3 Model 5
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:592 0:949 0:909 0:901 0:607 0:951 0:907 0:899 0:614 0:933 0:900 0:892
h�NR 0:627 0:936 0:898 0:885 0:643 0:939 0:898 0:884 0:650 0:924 0:892 0:880
h�CCJ 0:442 0:979 0:930 0:936 0:439 0:984 0:932 0:938 0:450 0:971 0:919 0:926

ĥPS 0:373 0:980 0:905 0:917 0:374 0:982 0:903 0:921 0:374 0:970 0:897 0:911

ĥNR 0:395 0:976 0:903 0:912 0:397 0:978 0:902 0:914 0:397 0:966 0:896 0:907

ĥCCJ 0:271 0:992 0:928 0:948 0:284 0:991 0:918 0:940 0:280 0:988 0:916 0:940

n = 400 h�PS 0:470 0:949 0:926 0:920 0:483 0:951 0:930 0:921 0:488 0:941 0:925 0:918
h�NR 0:498 0:940 0:920 0:912 0:512 0:943 0:925 0:912 0:517 0:935 0:918 0:910
h�CCJ 0:335 0:978 0:942 0:943 0:333 0:981 0:945 0:945 0:342 0:975 0:940 0:941

ĥPS 0:290 0:978 0:921 0:924 0:290 0:980 0:922 0:923 0:290 0:979 0:923 0:926

ĥNR 0:308 0:975 0:921 0:922 0:307 0:977 0:921 0:921 0:308 0:975 0:921 0:922

ĥCCJ 0:187 0:993 0:949 0:953 0:198 0:994 0:948 0:954 0:192 0:995 0:949 0:954

n = 700 h�PS 0:428 0:951 0:930 0:925 0:438 0:950 0:934 0:927 0:444 0:948 0:933 0:927
h�NR 0:453 0:942 0:924 0:916 0:464 0:944 0:930 0:920 0:471 0:941 0:928 0:921
h�CCJ 0:299 0:978 0:946 0:946 0:298 0:978 0:943 0:942 0:306 0:976 0:944 0:945

ĥPS 0:261 0:980 0:923 0:924 0:261 0:981 0:931 0:930 0:260 0:978 0:925 0:926

ĥNR 0:276 0:976 0:923 0:922 0:277 0:976 0:929 0:928 0:276 0:974 0:925 0:926

ĥCCJ 0:161 0:993 0:952 0:956 0:171 0:994 0:953 0:955 0:164 0:994 0:952 0:954

Model 2 Model 4 Model 6
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:409 0:966 0:912 0:905 0:426 0:971 0:926 0:918 0:461 0:960 0:918 0:918
h�NR 0:433 0:955 0:903 0:893 0:451 0:964 0:922 0:911 0:489 0:954 0:914 0:911
h�CCJ 0:336 0:982 0:929 0:933 0:361 0:983 0:932 0:933 0:290 0:988 0:925 0:944

ĥPS 0:322 0:970 0:898 0:903 0:322 0:980 0:910 0:920 0:323 0:980 0:900 0:914

ĥNR 0:341 0:962 0:892 0:894 0:341 0:977 0:907 0:913 0:342 0:976 0:898 0:910

ĥCCJ 0:246 0:987 0:922 0:934 0:253 0:990 0:922 0:939 0:246 0:991 0:921 0:943

n = 400 h�PS 0:325 0:951 0:917 0:907 0:338 0:964 0:938 0:927 0:366 0:962 0:936 0:931
h�NR 0:344 0:940 0:909 0:897 0:358 0:958 0:933 0:922 0:388 0:956 0:931 0:926
h�CCJ 0:254 0:977 0:940 0:939 0:273 0:982 0:945 0:943 0:220 0:990 0:945 0:949

ĥPS 0:239 0:975 0:912 0:911 0:241 0:981 0:925 0:925 0:241 0:986 0:922 0:925

ĥNR 0:254 0:967 0:908 0:906 0:255 0:976 0:925 0:921 0:256 0:981 0:919 0:921

ĥCCJ 0:166 0:991 0:942 0:945 0:175 0:993 0:943 0:948 0:164 0:995 0:951 0:958

n = 700 h�PS 0:296 0:947 0:916 0:909 0:307 0:964 0:937 0:931 0:333 0:962 0:936 0:934
h�NR 0:313 0:937 0:907 0:896 0:326 0:956 0:935 0:926 0:353 0:956 0:934 0:929
h�CCJ 0:227 0:976 0:937 0:936 0:245 0:980 0:947 0:944 0:195 0:990 0:950 0:952

ĥPS 0:213 0:970 0:918 0:916 0:212 0:983 0:928 0:928 0:212 0:984 0:927 0:928

ĥNR 0:225 0:963 0:915 0:913 0:225 0:980 0:928 0:924 0:225 0:982 0:926 0:927

ĥCCJ 0:143 0:991 0:948 0:949 0:151 0:991 0:947 0:950 0:138 0:995 0:950 0:954

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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Table 4: Empirical Coverage Rates of 95% Con�dence Intervals: P = 4 and d = 4.

Model 1 Model 3 Model 5
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:679 0:951 0:878 0:882 0:705 0:942 0:875 0:875 0:703 0:928 0:858 0:863
h�NR 0:693 0:946 0:873 0:875 0:719 0:935 0:867 0:864 0:717 0:919 0:850 0:853
h�CCJ 0:575 0:977 0:913 0:925 0:528 0:983 0:913 0:931 0:589 0:966 0:896 0:912

ĥPS 0:374 0:987 0:908 0:936 0:374 0:979 0:902 0:943 0:373 0:980 0:898 0:934

ĥNR 0:382 0:986 0:907 0:933 0:381 0:980 0:902 0:938 0:381 0:980 0:896 0:932

ĥCCJ 0:324 0:989 0:925 0:957 0:332 0:974 0:905 0:958 0:330 0:980 0:908 0:953

n = 400 h�PS 0:556 0:955 0:905 0:902 0:579 0:947 0:899 0:892 0:578 0:946 0:899 0:895
h�NR 0:567 0:949 0:897 0:894 0:591 0:941 0:894 0:884 0:590 0:940 0:892 0:888
h�CCJ 0:456 0:984 0:936 0:939 0:422 0:990 0:940 0:943 0:468 0:980 0:934 0:939

ĥPS 0:291 0:994 0:931 0:938 0:291 0:994 0:937 0:944 0:290 0:995 0:932 0:941

ĥNR 0:297 0:993 0:929 0:936 0:297 0:994 0:934 0:942 0:296 0:994 0:930 0:939

ĥCCJ 0:233 0:996 0:953 0:961 0:237 0:998 0:955 0:966 0:239 0:996 0:953 0:965

n = 700 h�PS 0:514 0:955 0:914 0:911 0:535 0:952 0:912 0:904 0:532 0:949 0:910 0:907
h�NR 0:524 0:950 0:908 0:904 0:546 0:948 0:906 0:896 0:543 0:943 0:906 0:901
h�CCJ 0:416 0:986 0:938 0:941 0:387 0:990 0:944 0:946 0:427 0:982 0:937 0:941

ĥPS 0:260 0:993 0:931 0:936 0:262 0:994 0:936 0:941 0:262 0:994 0:930 0:938

ĥNR 0:266 0:992 0:928 0:934 0:268 0:994 0:934 0:939 0:267 0:994 0:928 0:937

ĥCCJ 0:203 0:996 0:953 0:958 0:208 0:998 0:956 0:961 0:209 0:996 0:956 0:961

Model 2 Model 4 Model 6
BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

n = 100 h�PS 0:513 0:966 0:893 0:904 0:516 0:969 0:895 0:908 0:545 0:963 0:886 0:902
h�NR 0:523 0:963 0:889 0:897 0:527 0:966 0:892 0:903 0:557 0:961 0:881 0:899
h�CCJ 0:423 0:983 0:917 0:932 0:454 0:980 0:909 0:924 0:386 0:983 0:911 0:937

ĥPS 0:323 0:987 0:911 0:937 0:322 0:975 0:903 0:950 0:322 0:980 0:906 0:944

ĥNR 0:330 0:986 0:909 0:933 0:328 0:976 0:903 0:947 0:329 0:981 0:905 0:941

ĥCCJ 0:286 0:987 0:921 0:956 0:293 0:971 0:902 0:957 0:293 0:978 0:906 0:956

n = 400 h�PS 0:421 0:970 0:904 0:903 0:423 0:979 0:923 0:922 0:447 0:974 0:916 0:919
h�NR 0:429 0:965 0:898 0:897 0:432 0:977 0:922 0:919 0:456 0:971 0:914 0:914
h�CCJ 0:334 0:990 0:938 0:939 0:361 0:989 0:938 0:939 0:302 0:993 0:943 0:947

ĥPS 0:240 0:994 0:935 0:942 0:240 0:996 0:939 0:946 0:240 0:995 0:934 0:945

ĥNR 0:245 0:993 0:934 0:939 0:245 0:996 0:936 0:943 0:245 0:995 0:931 0:942

ĥCCJ 0:199 0:997 0:954 0:964 0:201 0:997 0:959 0:971 0:203 0:998 0:953 0:969

n = 700 h�PS 0:388 0:964 0:902 0:900 0:390 0:978 0:925 0:921 0:413 0:975 0:923 0:924
h�NR 0:396 0:959 0:896 0:894 0:399 0:975 0:922 0:917 0:422 0:972 0:921 0:920
h�CCJ 0:304 0:989 0:940 0:941 0:328 0:989 0:944 0:943 0:279 0:993 0:944 0:946

ĥPS 0:213 0:994 0:941 0:944 0:213 0:996 0:938 0:943 0:213 0:996 0:935 0:940

ĥNR 0:217 0:994 0:938 0:940 0:217 0:995 0:935 0:940 0:217 0:995 0:933 0:937

ĥCCJ 0:171 0:997 0:957 0:963 0:174 0:998 0:958 0:966 0:176 0:998 0:957 0:964

Note: Column BW reports population bandwidths and sample mean of estimated bandwidths, respectively.
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