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1 Introduction

The theory of financial economics is often cast in multi&risettings, where the covariance structure of assets plays
key role to the solution of fundamental economic problemushsas optimal asset allocation and risk management. In
recent years, a broader access to financial high-frequesteyhds improved our ability to accurately estimate and draw
inference about financial covariation. The underlying idet use quadratic covariation, which we can estimate using
realised covariance, as an ex-post measure, whose indosnbe studied to learn about the properties of the tre ass
return covariation (e.g. Andersen, Bollerslev, Diebola] &abys, 2003; Barndorff-Nielsen and Shephard, 2004).

In practice, implementing realised covariance is hampéretivo empirical phenomena, namely the presence of
market microstructure noise (e.g., price discretenes#deastk spread bounce) and non-synchronous trading. Thacimp
of microstructure noise has received much attention in tireatiate setting, where its effect on the realised varamas
been well-documented. This builds on previous work in thiseless case, including Andersen, Bollerslev, Diebold, an
Labys (2001), Barndorff-Nielsen and Shephard (2002), oklstyd and Zhang (2006, 2008). A key to understanding
the nature of the noise and a possible tool of how to deal withthat microstructure noise induces autocorrelation in
high-frequency returns and this leads to a bias problem ésge Zhou, 1996; Ait-Sahalia, Mykland, and Zhang, 2005;
Hansen and Lunde, 2006). Currently, there are three mauauiaie approaches, where the damage caused by the noise
is explicitly fixed: the two-scale estimator proposed by ZdpaMykland, and Ait-Sahalia (2005) or its multi-scalesien
of Zhang (2006), the realised kernel introduced in Barrfeldiglsen, Hansen, Lunde, and Shephard (2008a), whiabsreli
on autocovariance-based corrections, and finally the yeeaging estimator of Podolskij and Vetter (2009) and Jacod
Li, Mykland, Podolskij, and Vetter (2009).

The multivariate version of this problem is, however, moomplicated in that not only does the estimator need
to be robust against various types of noise, it also has te @dfh non-synchronous trading (see, e.g., Fisher, 1966).
Asynchronicity causes high-frequency covariance esémit be biased towards zero as the sampling frequency s&sea
This feature of the data was highlighted by Epps (1979) amsdbezome known as the Epps effect. Intuitively, as the
sampling frequency is increased, there are more and maooeretenrns in the presence of non-synchronous trading, and
this effect will dominate realised covariance and relatatistics (e.g. realised correlation). Hayashi and YoslRDO5)
introduced an estimator, which is capable of dealing with-agnchronous data, but not with market microstructure
noise. More recently, Zhang (2008) extended the two-sc&l¢oRntegrated covariance estimation in the simultaneous
presence of noise and non-synchronicity, while in coneiramd independent work Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2008b) proposed a multivariate realisecdketadditional work in this growing line of research inclugle
Malliavin and Mancino (2002), Martens (2003), Rend (20@3)ndi and Russell (2005), Griffin and Oomen (2006), Large
(2007), Voev and Lunde (2007), and Boudt, Croux, and Laui@8), among others.

In this paper, we propose to use a modulated realised caear(®@RC) to estimate the ex-post integrated covariance.



The econometric technique employed here for dealing wittrastructure noise relies on rather simple pre-averaging o
the high-frequency data, which makes the estimator botlitive and trivial to implement. This relates to previousriwo

in the univariate case, where pre-averaging has been gadgesPodolskij and Vetter (2009) and Jacod, Li, Mykland,
Podolskij, and Vetter (2009). The current article drawsigigom these papers, but the multivariate extension isesigal
ing, as it faces the additional complexity of non-synchrumtrading and requires that the resulting estimator beipesi
semi-definite.

The pre-averaging approach depends on a bandwidth paramet@ndow length, that grows with the sample and
dictates the amount of averaging to be carried out. In tim&choice of this tuning parameter controls the influence of
microstructure noise on the MRC and, hence, also its asyogimoperties. In the optimal case, called balanced pre-
averaging, this leads to an efficient'/* rate of convergence, which is known to be the fastest atigr(aee, e.g., Gloter
and Jacod, 2001a,b). This baseline MRC estimator, howeees a bias-correction to be consistent for the integrated
covariance. As a result, it is not guaranteed to be posigvei-glefinite in finite samples, though our empirical work
indicates this shortcoming is not too much of a concern foramecent data. Nonetheless, as we show in the paper, it is
straightforward to design a positive semi-definite estonhy increasing the pre-averaging window length slightligich
can also serve to make the MRC robust against more genesa pmcesses.

The MRC is, in all its essence, a realised covariance cordputehe back of pre-averaged high-frequency returns.
As such, it depends on receiving synchronous observat®impat, which clashes with the irregular spacing of reahhig
frequency data. We propose two distinct ways in which peragying can be applied in the context of non-synchronous
trading. First, we use traditional imputation schemes t@ amynchronous data onto a common time grid, for example
using previous-tick or refresh time, where the latter apphohas been used in Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008b). An MRC computed from such returns will argototically robust to non-synchronous trading.
Second, we extend the Hayashi and Yoshida (2005) estinatbetcase of microstructure noise by using pre-averaging
and show that it is consistent. This second estimator hasrthperty that it can be implemented directly on the irregula
non-synchronous and noisy observations without any forimpfitation. It therefore omits throwing away information
in the sample and further avoids potential biases arisimg fartificially imputed returns.

An appealing feature of pre-averaging is that it is a genstiatistical tool that can be applied to many estimation
problems. This proves useful in our setting, because ad tisganixed Gaussian central limit theorems feature an
unknown conditional covariance matrix. In practice, thigstibe robustly estimated from data in the presence of noise
and non-synchronous trading to make the distributionallie$easible, such that confidence bands for elements of the
integrated covariance matrix can be constructed. We eutiow this can be done based on pre-averaged high-frequency
data.

The paper progresses as follows. In section 2, we formukeeheoretical setup and define the MRC estimator.

In section 3, we first show consistency of the MRC based onnbath pre-averaging and then derive its asymptotic



distribution. As discussed above, this estimator needasdnrrection, so we carry on to study a modified MRC estimato
in which the degree of pre-averaging is increased. We asmuds the application of the MRC to non-synchronous data,
derive a pre-averaged version of the Hayashi-Yoshida astitnand relate the MRC to the multivariate realised kernel
In section 4, we propose a positive semi-definite estimédttreoconditional covariance matrix that appears in theregnt
limit theorem of MRC, which can be used to transform infelslinit results into feasible ones. In section 5, the focus
is shifted towards realised regression and correlatiotysisa An empirical illustration is conducted in sectionviile
section 7 draws conclusions and presents some ideas foefutork. The appendix contains the derivations of our

theoretical results.

2 Theoretical setup

We consider a log-pricé&X defined on the probability spac¢&’, 7V, P®) and equipped with an information filtration
(F)i>0- X has dimension - the number of assets under consideration.

A standard no-arbitrage condition suggests security pmcest follow semimartingales (see, e.g., Back, 1991; Del-
baen and Schachermayer, 1994). These processes obeydhenemtal theorem of asset pricing and, as a result, are used
extensively to model the evolution of asset prices throumgke.tIn accordance with this, we modglas a semimartingale
that follows the equation . .

X =X —i—/o a,du +/0 o, dW,, t>0, @

wherea = (at);> is ad-dimensional predictable locally bounded drift vecter= (o¢),, an adapted cadlag x d
covolatility matrix andW = (W), is d-dimensional Brownian motion.

This model is a Brownian semimartingale, or stochastictitijamodel with drift, which permeates financial eco-
nomics (cf., Ghysels, Harvey, and Renault, 1996, for a véviéVe think of this construct as governing an underlying
efficient price process - the price that would prevail in thsemnce of market frictions, which we then subject to mi-
crostructure noise.

Of importance to our analysis is the quadratic covariatimtess ofX, which is defined as

X, = p-lim > (X, = X)) (X, = X)) (2)
=1

n—00 T

for any sequence of deterministic partitiohs= ¢y < t; < ... < t, = t with sup, {¢; — t;—1} — 0 for n — oo. In our

setting, the quadratic covariation &f is given by

t
X), = /0 S, du, 3)

whereX = o¢’. The quadratic covariation is pivotal in financial econasn(see, e.g., the reviews by Barndorff-Nielsen

and Shephard, 2007; Andersen, Bollerslev, and DieboldR@Mhd we thus take Eq. (3) as defining the target that we are
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interested in estimating. We note that for obvious reasbasratrix in Eq. (3) is also called the integrated covariance
and both terms are used interchangeably.
Throughout the remainder of the paper, and without loss negdity, we restrict the clock to evolve in the unit

interval [0, 1], which we think of as representing the passing of an econexgnt, for example a trading day.

2.1 Microstructure noise

In practice, market microstructure noise leads to a demaftom the pure semimartingale model. Microstructure &ois
has many forms, including price discreteness and bid-asladounce, which creates spurious variation in assetric
As a result, we do not observg from Eg. (1) in the market but a proce¥s which is the efficient price distorted by

noise. More precisely, we consider the procEs®bserved at time pointgn, i = 0,1,...,n, which is given as
Y, = Xy + ¢, 4)

where(e;) is an i.i.d. process wittkX' 1L e (the symbollL is used to denote stochastic independence).

The noise process can be constructed as follows. We defiradsprobability spacé!, 71, (Fl)io0, P), where
Q! denotesR[*! and F! the product Boreb-field onQ'. Next, letQ be a probability measure dh (Q is the marginal
distribution ofe). For anyt € [0,1], P! = Q and P! denotes the producb,c(, ;. The filtered probability space

(Q, F, (Fi)e=0, P), on which we define the process is given as

0=00xQl, F=F"xF, Fr = Nygoy FO X FL,

%)
P=P'g PL

The multivariate noise processs assumed to satisfy:
E (&) =0, E (e€) = 0, (6)
whereV is a positive definitel x d-matrix.

Remark 1 The empirical results found by Hansen and Lunde (2006) shaivkioth the i.i.d. assumption di;) and
the independenc& L e can be called into question when sampling the data at vely fngguencies, e.g., below the
1-minute mark (see also Diebold and Strasser, 2008). Ja¢olilykland, Podolskij, and Vetter (2009) consider more
general types of (1-dimensional) noise processes. Rowpleigking, they assume that the errgisare, conditionally on
X, centered and independent. The asymptotic theory dewtliopdis paper still holds true for the multivariate version

of such noise processes, but we restrict attention to madéhe form in Eq. (4) to ease the exposition.



2.2 Pre-averaging of the data

It is intuitive that under mean zero i.i.d. microstructumse some form of smoothing of the observed log-pticehould
tend to diminish the impact of the noise. Effectively, we going to approximateX,;, X being a continuous function of
t, by an average of observations¥fin a neighborhood of, the noise being averaged away.
Here, we describe in more detail how to conduct the pre-gugga In particular, we consider a sequence of integers,
k., and a numbef € (0, co) such that .
n

% = 9—1—0(71_1/4). (7)

An example of this would bé,, = |0/n].
We also choose a functiopon [0, 1], which is continuous, piecewise continuously differeigawith a piecewise

Lipschitz derivativeg’ with g(0) = ¢g(1) = 0 and which satisfiesfo1 g% (s)ds > 0. Furthermore, we introduce the

following functions and numbers that are associated with

1 1
¢1<s>=/g/<u>g'<u—s>du, ¢2<s>=/g<u>g<u—s>du, G =61(0), v =02(0),

1 1 1
bi= [ G0 e[ a@nee - [ ded

The functionsp; and¢, are assumed to bieoutside the interval, 1].

Next, with any proces¥” = (V;).>o we associate the following random variables

kn—1 .
A?V:V%—Vi%, fori=1,....n V= Zg<ki>A?+jV, fori=0,...,n—k,+ 1.
j=1 "

Applying this notation toy’, it can be seen thah”Y represents the noisy high-frequency returns, whijfeis the pre-

averaged return data, using the weight funcgorit follows that the stochastic order &f* = X + € is controlled by

- knp, n 1
Xz‘n:O:n< ;>> Ei:O:n< k_> (8)

Thus, takingk,, = O(y/n) implies that the orders of the two terms in Eq. (8) are equethatY;* = O, (n=1/%). This is

called balanced pre-averaging and delivers the best ratenvergence. As shown below, it is also useful to look atsase

the constank,,, since

in which a higher order of,, is chosen. This results in a suboptimal rate of convergdndsi has desirable side-effects
on the finite sample properties of our estimator.
The pre-averaging window length,,, depends on the tuning paramefewhich needs to be chosen by the user. We

will later discuss how to sensibly make this choice.



2.3 Modulated realised covariance

The core statistic of this paper is the multivariate extemsif the estimator, which was introduced in Jacod, Li, Mykla
Podolskij, and Vetter (2009). We call it the modulated i covariance (MRC) and define it as

n—kp+1
n 1 on (vn\/
MRC[Y]n_n_knJrzwzkn ; v (v 9)

The factorn/(n — k,, + 2) is a finite sample correction for the true number of summandeg RC' [Y],, relative to the

sample sizer. It is sometimes left out in the presentation below, but &hgays included in implementations on data.

Remark 2 The sum of outer products in Eq. (9) is realised covariangedban pre-averaged data. To build some

intuition for our approach, we explain the usage’gfin more detail. Supposk, is an even number and write

5 kn/2—1
Y= E ; Yiej,

n

which is a simple average of over k,, /2 terms. Because of this pre-averagirfg} will be closer to the efficient price

X :. Next, we compute the realised covariation estimator basdtiese filtered increments by setting

ken—1 ken /2—1

Vs n on 1
Yl =2V =Y = | 20 Y= D Vi
J=kn/2 j=0

(However, as we shall see this induces a bias, which is aitumof ¥). This method was originally proposed by Podolskij

and Vetter (2009) and using the above definitio¥fcorresponds to choosing the weight function
g (z) =min (z,1 —x), (20)

which is the most intuitive example. This functigrwill be used for all our empirical work, in which case the agpyatic

constants are given as

1 1 1 151

P =1, Py = —, Dy =5 ‘13122%, (I)QZZM'

Remark 3 As noted in Jacod, Li, Mykland, Podolskij, and Vetter (2Q0®) avoid biases in small samples we should

replace the asymptotic constants and functionsys, ¢1, ¢2, 11, 12, and®s, by their Riemann approximations:

ko i i—1\\?2 1 kol i
kn — . _ — n o — ___ 2 -

0= S () @) () () #0-E(0) ()

i=j+1




kn _1 kn _1
1

o=k | 3 (o) —5 (@) | el = [ X0 b ek () - ek 0 ob ).

j=0 j=0
kn—1
1 " 2 1 2
k‘n kn > kn
Py; = 53 Z <¢2 (J)) D) (¢2 (0))
These are the actual terms that appear in the computatiche &MRC. Note that for all appropriate indicesiodnd 7,
z/zf” — 1, qﬁf“ — ¢, @f; — ®;; asn — oo at smaller order than—1/4, so the finite sample versions can be replaced

in the central limit theorems given below.

3 Asymptotic properties of MRC

3.1 Consistency

Our first result inspects the probability limit 8 RC' [Y],..

Theorem 1 Assume thak (|e/|*) < oo forall j = 1, ...,d and (ky, 6) satisfy Eq(7). Asn — o, it holds that
MRC|Y —>/ Yds+ —— 9% (11)

Proof See appendix. |

A couple of points are worth highlighting. First, as TheorgrshowsM RC [Y], is consistent forfo1 Y sds up to a bias
correction. The bias term depends on the unkn@wmwhich must be estimated from the data.

We set
. 1 <&
v, = ATY (ATY 12
3 2 MY (A1)’ (12)

which is linked to the univariate estimator proposed by®dhalia, Mykland, and Zhang (2005) and Bandi and Russell
(2006, 2008). Then, we obtain the convergerige> ¥, such that

MRC[Y], —

Hence, for the remainder of the paper, we shall incorpotadias correction term into the definition f RC [Y]n.l In

doing so, we are no longer ensured thaRRC [Y],, is positive semi-definite in finite samples. To deal with twisblem,

'Since} | ATY (ATY) = 2n\I/ + fo Ysds + op(n~ 1), where the error of this apprOX|mat|on has expectation,zé® bias-corrected
) fo 3.ds and thus needs to be rescaledlby(

our empirical work but omit it throughout the remainder of tiext to simplify notation.

92 lbkn 2n

MRC [Y], actually estnmate{l szn o

) We include this bias correction in



we propose an alternative formulation of the MRC below, Wwhises a larger pre-averaging windbwto avoid this step.
Second, sincd,, is ay/n-estimator of¥, it will not affect the CLT of A/ RC' [Y'],,, as the latter converges at a slower rate.
Third, our initial MRC estimator is based on synchronousadassuming all log-prices are observed at the same instant

in time. We will later extend the MRC to the non-synchronoetisg.

3.2 The central limit theorem

We proceed with the central limit theorem fof RC' [Y'],,. As in Jacod, Li, Mykland, Podolskij, and Vetter (2009), we
only require a moment condition @rto prove this result.

The concept of stable convergence is used, which we dedeeitee A sequence of random variablés is said to
converge stably in law towards, whereV is defined on an appropriate extensi@f, 7', P') of the probability space
(Q, F, P), if and only if for any F-measurable, bounded random variatifeand any bounded, continuous functign
the convergence

lim E[Wf(V")] = E [Wf(V))

n—00
holds.

We write this asi™™ % ¥ and note that stable convergence is a slightly stronger mbdenvergence than weak
convergence, or convergence in law, which is the specia ochtained by taking” = 1 (see, e.g., Rényi, 1963; Aldous
and Eagleson, 1978, for further details on stable convesenlacod and Shiryaev (2003) discuss the extension of this
notion to stable convergence of processes. The key reasocenwiee the convergence in law stably is that the conditiona
covariance matrix in the CLT a¥/ RC[Y],,, avakurc, , is @ function ofr and therefore random, and the usual convergence
in law is insufficient to ensure joint convergence of the bai@ vector(M RC|[Y],,, avaiurc, ), which we need to apply

the delta method to the joint asymptotic distribution anddostruct confidence intervals.

Theorem 2 Assume thalE (|¢/|*) < oo forall j = 1,...,d and (k,,, 6) satisfy Eq.(7). Asn — oo, it holds that
1 d d 1 RN 1.
nl/4 <MRC’ Y], — / Esds> - Z / AIRITR dBIK (13)
0 3 k/_l 0
j 5 =

whereB is a standardi?-dimensional Brownian motion defined on an extensioffF, (F;)i>o, P) with B 1 F,

d : 2 o o
Z ,yéemm,yf’l’,ym - = <(I)229A1§l,k’l’ + ﬁ@lzz,k'z’ + %rﬂcl,k’l’) ’

(5 o 0

7,m=1



and where\, © andY ared x d x d x d arrays with elements

! ! ! !
Al — {Ekk Sl g skl vk }
s s s 578 S pkir=1,..4d

o, = {Elsck’\pll’ posEgRL R LR E‘lgl/\llkkl}kk’ o (14)

T — {\I,kk’\pll’ n \Ijkl’\plk’}
kK LU=1,....d

Proof See appendix. |
BecauseB L F, we can write the convergence statement in Theorem 2 asvillo
1
nt/4 (MRC‘ Y], — / sts> 9 MN (0,avaire) ,
0

where
2
avalyrc = ﬁ <<I>229/ A ds + —/ O.ds + — T> (15)
2

is the conditional covariance matrix. This means that tiyengsotic distribution of\/ RC [Y'],, is mixed normal. To make
use of this result to construct confidence intervals for eleis of fol 3. du in practice, we need to estimate ayag, which

is addressed in section?4.

3.3 Choosing in practice

The avagrc matrix in Theorem 2 depends on the paraméteor in other words the window size,. If the purpose
is to estimate some one-dimensional parameters (such lesedeaovariance, regression or correlation) by real-e@lu
functions of the MRC, it is in principle possible to minimiaeairc by choosing the "best? for a fixed functiong.® To

illustrate this point, we focus on the estimation problenthi@ univariate case] = 1. In this situation, the expressions

aV&IMRc—w—%<<I>229/O Usds—|— 0 —U /0 08d8—|— 93\If

whereIV = [!o2ds andIQ = [ ods are called the integrated variance and integrated qusytieispectively. Min-
0 s 0"“s

reduce to

imizing this term with respect té results in solving a quadratic equation. Thus, for the ogtiamoice off, say6*, we

2The assumption that data be equidistant is not requirechéoconsistency to hold true. It would also apply under idmtbbservation times
(i-e., synchronous but non-equidistant data). H&feRC [Y], is consistent withA}'V redefined as\'V = V;, — V;,_, for any proces$” and
kn = 0/n + o(n1/4). This is not surprising: the realised covariance also remeonsistent for irregular observations (by definitionhe TLT
also holds, but here the variable of integratienngteds to be replaced bydd, where H is the so-called "quadratic variation of time”, see, e.g.,

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b).
3The optimal choice of will depend on the original real-valued functions of the MR(Cthis sense, there is no universal optiral



geto* = f(IV,1Q, V). Then, we can proceed using an iterative procedure to finghprogimation of¢*: (i) Choose a
"reasonable” value fof and computdV, IQ and ¥, (i) then computed* by settingd* = f(1V,1Q, ¥) and (iii) repeat
this process until the values 6f converge.

In practice, it might be preferable with a simpler guidan€&aw to choose) for small values of.. However, ag
comes from asymptotic statistics, it does not give any peeistruction about this. Jacod, Li, Mykland, Podolskijda
Vetter (2009) report in their simulations studies that thevariate estimator is fairly robust to the choicekgf, and they
suggest to tak@ = 1/3. Furthermore, Christensen, Oomen, and Podolskij (2009¥imsulation-based evidence to show
that conservative (higher) choices lof are preferred from an MSE perspective. In the empiricastiation below, we

follow the rule-of-thumb by choosin@ = 1/3 and see that the results look good.

3.4 Positive semi-definite estimators

In the previous section, we used an optimal pre-averagingav length to construct the MRC, which balances the impact
of the noise with the estimation of the integrated covagamatrix. This choice leads to an optimal rate of convergence
- n~1/* - but requires that we subtract an estimateldab eliminate the bias induced by noise, and the final estiniato
then not positive semi-definite in general. Here, we dennateshow positive semi-definite estimatesféfEsds can be
formed by increasing the bandwidth paramédtens to kill the influence of the noise, rather than balancingliis comes

at the cost of slowing down the speed at which MRC converg#settrue integrated covariation.

Now, we take:

% 040 (n—1/4+5/2) (16)
for some0 < § < 1/2, and set
S . Lokt
MRC[Y], = — T >y (17)

The following result shows that/ RC' [Y]fL is consistent without a bias correction.
Theorem 3 Assume thak (|e/|*) < oo forall j = 1, ...,d and (ky, 6) satisfy Eq(16). Asn — oo, it holds that
1
MRCY] & / 3, ds. (18)
0
Proof See appendix. |

In Theorem 3, the properties of the noise process do not shawthe stochastic limit of Eqg. (18), because the influence
of the noise is negligible by the choice of order fgrmade in Eq. (16) (refer back to Eq. (8)). This has some apmgali

advantages. Firsty/ RC [Y]fL is positive semi-definite by construction. Second, alttowg state and prove this result

10



in the i.i.d. noise case, Theorem 3 does in fact allow for ngemeeral noise dynamics than in Theorem 1. In particular, so

ie'/2, the theorem will hold (so we do not

long asE (¢; | X) = 0 ande} admits asymptotic normality at the usual r&
require any assumptions on the dependence betweande). Of course, the rategm is achieved in the i.i.d. case, but
there are more general cases where it also holds (e.g;dependent and mixing processes).

To show the CLT, we require a restriction nThis is because the bias caused by the noise, which is it#glig

Theorem 3, becomes more substantial when multiplying wigrate of convergence.

Theorem 4 Assume thakE (|/|®) < oo for all j = 1,...,d and (k,, 6) satisfy Eq.(16). Asn — oo, it holds that

(i) If 6> 0.1

1 1
n1/4—5/2 <MRC [Y]i _/ 25d3> Cl4 MN <O’ 232229/ A8d$> 5 (19)
0 2 J0

where(A;) is defined in(14).

(i) If 6 =0.1

1 1
nl/5 <MRC’ ]S — / Esds> 9N (92&@% / Asds>. (20)
0 (5! 7/’2 0

Proof See appendix. |

Theorem 4 amounts to a classical bias-variance tradetahaws the expected result that using a longer pre-avayagin
window k, = O(n!/>*9) averages enough to maké RC [Y]fL consistent without a bias correction, but it also slows
down its rate of convergence. The larged jshe harder is this effect. Note that the asymptotic vaeatepends solely on
the volatility process, while the two noise-dependent terms (a cross-term andearpise term) appearing in Eq. (15)
are wiped out.

The optimal choic& = 0.1 results in an~'/® rate of convergence, and a large sample bias of the mmlééy%m.
If desired, the bias can be estimated using but it should be small for more recent data and could be gfor

This result bears some resemblance to that of the multtearémlised kernel of Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2008b). A flat-top kernel estimator can bededito converge at raie '/#, but the resulting estimator
may go negative. To guarantee positive semi-definitenbgssadithors propose kernel corrections that are not entirely

flat-top and they show this resultsm!/? rate of convergence and a non-zero asymptotic mean as @diece as well.

3.5 Mapping MRC into a realised kernel estimator

We can indeed make a stronger link between the multi-scaléhi@\kernel approach and our pre-averaging method, when

estimating quadratic variation. Here, we provide some rdetails about this relationship. To fix ideas, we take 1

“If we do bias-correcfi/ RC [Y]i, the resulting estimator is then again not ensured to beiymsiemi-definite.
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(i.e., the univariate setting) and compare only to the Kespproach. Barndorff-Nielsen, Hansen, Lunde, and Shephar
(2008a) then show how the multi-scale RV fits into the redlisernel setting.

When we explicitly include the bias correction and ignorétdirsample issues, the MRC estimator is given by the

formula
1 n—kp+1 ¢1 ~
MRCY], = Y2 — —,,. 21
Consider a flat-top kernel-based estimator with kernel fatsig
P2(s)
k(s) = —=,
(s) (>

wheregs(s) andi), are defined as in Section 2.2. We call the functioa flat-top kernel, if (i)k(0) = 1, (i) k(1) =
and (iii) £/(0) = k(1) = 0. We note thak(s) = ¢2(s) /1 satisfies all three conditions: (i) and (ii) are trivial, \ehthe

third condition follows from the identity:

1
K(s) = —i / o()g (z — )dz,

and integration by parts (recall thaf0) = g(1) = 0).

In the next step, we map the MRC statistic into a kernel-like as follows

kn—2n—nh
MRC Y Zaol ATYP4+2 )0 ) o ATYAT,Y (22)
i=1 h=1 =1
with
1 ] ] . ;
g 25=19° () — o 1<i<kn—2
doi=9 el () -t R 1<i<n—k,+2 (23)
1 .
¢2kn Zn i+ 2( o ) —92112};2”; n—k‘n—l—?)SZS’I’L
and
o S 95 1<i<hy,—h-—2
Oni =\ g oy g )g(5E) - kn—h—1<i<n—ky+2 (24)
—i+1l kn—j\, (kn—j+hy . ;
T et 9D g (PR | n—kpt3<is<n

forl<h<k,—2.

An example and some remarks are now in order.

Example 1 Takeg(z) = min(z,1 — z) for x € [0, 1], which is our canonical weight function. Then, the correspog

kernelk(s) = ¢2(s) /- is the Parzen kernel.
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Remark 4 Apart from border terms, i.e. terms close to 0 and 1, the peeaging estimator coincides with the kernel-
based estimator using the flat-top kernel functidr) = ¢2(s)/1. Both estimators possess the optimal rate of conver-
gencen /4, but the border terms affect their asymptotic distributibnfact, to arrive at their central limit theorem for the
realised kernel, Barndorff-Nielsen, Hansen, Lunde, angp8ard (2008b) need to apply some averaging (or "jitteding”

to edge terms, while the pre-averaging estimator is asyinptly mixed normal "by construction”.

Remark 5 Using the definitiork(s) = ¢2(s) /12, we learn that for every weight functionthere exists a flat-top kernel

k. However, the converse statement is not true in generals, The class of flat-top kernels is larger than our class of pre
averaging functions, but this does not appear to be a nblieegsadvantage for practical applications (Barndoritisen,
Hansen, Lunde, and Shephard, 2008b, for example, advosaug tlne Parzen kernel in practice, which corresponds to

our g function by Example 1).

It is worthwhile to underscore that pre-averaging is a galregsproach, which can be used to estimate various proper-
ties of semimartingales, when they are cloaked with noseod, Li, Mykland, Podolskij, and Vetter (2009), for exampl
pre-average realised variance, but it has also been usechpiijobust inference in conjunction with the bipower vaoia
statistic (e.g., Podolskij and Vetter, 2009) or the quartidsed realised variance (e.g., Christensen, Oomen caiwisRij,
2009). This is also the reason, why we can estimate the asyimponditional variance in the CLT using the same type
of estimator to deliver a feasible result. Other estimatimethods are typically designed to estimate quadratic tiamia

and cannot, in general, be used to solve other estimatidrigms.

3.6 Applying the MRC to non-synchronous data

Non-synchronous trading has long been a recognized featuneltivariate high-frequency data (see, e.g., Fishe8619

Lo and MacKinlay, 1990). This causes spurious cross-auteledion amongst asset price returns sampled at regular
intervals in calendar time, as new information gets builb iprices at varying intensities. It is well-known that high
frequency realised covariance estimates, using for exathpl previous-tick method to align returns, are biased rdsva
zero in this setting (e.g., Epps, 1979).

Motivated by these shortcomings of realised covariancenaber of alternative procedures have been proposed in the
literature. Scholes and Williams (1977) and Dimson (191@)gested to include leads and lags of sample autocovasiance
of high-frequency returns into the realised covarianceotoect for stale prices. This results in a bias reductionatsm
increases the variance of the estimator (e.qg., Griffin anch€@yn 2006). Importantly, the lead-lag realised covaridgace
generally inconsistent in the presence of noise. More tgethang (2008) extends the two-scale RV to the multivaria
setting and shows that it is consistent under non-synclumpoices and noise. An analytic derivation of the impact of

Epps effect on realised covariance under previous-tiakepris also given. In independent and concurrent work to, ours
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Barndorff-Nielsen, Hansen, Lunde, and Shephard (200&ipgse a multivariate realised kernel. They rely on the goince
of refresh time sampling to match returns in calendar tine strow that stale pricing errors under refresh time do not
change the asymptotic distribution of the multivariatdisea kernel.

A related approach can be taken to make the MRC robust to yrfigonous observation times. In particular, under
suitable regularity conditions on the sampling times, sgnehronous trading does not alter the asymptotic digtabu
of the MRC, when constructing synchronous time series ofmst A multivariate time series of high-frequency returns
obtained in this fashion can therefore be plugged into tiimpsotic theory developed above without concern. The proof
of these results are highly technical, but their validitpgld be clear in the light of the comparison with the multiste

realised kernel given above. Therefore, we omit the detgufeofs of these results.

3.6.1 A pre-averaged Hayashi-Yoshida estimator

Hayashi and Yoshida (2005, 2008) develop an alternativegoiure for covariance measurement in the noise-free case,
which is based on the original non-synchronous data (sge, de Jong and Nijman, 1997; Martens, 2003; Palandri,
2006; Corsi and Audrino, 2007, for related work). This estion has the profound advantage that it does not throw away
information that is typically lost using a synchronizatiprocedure. Here, we show how this estimator can also be made
robust to noise by using pre-averaging.

Given the vector of log-price¥ = (Y'!,...,Y?), which is defined by the noisy diffusion model in Eq. (4), wewno
assume that the component proceg3és) are observed at non-random time poitf@, fori =1,...,ng, with (tl(k))
being a partition of the intervdl, 1] andk = 1, ...,d. In addition, we need some regularity conditions on the diagp
such that all time schemes are comparable in the following weax \tl(.k) - tl@ly — 0asny — oo, fork=1,...,dand

max # {tg.’“) |45 [tf.”,tg”}} <K, (25)
for 1 < k,l < dand somek > 0, whereK is independent of, for k = 1,...,d. The latter condition says that data

from one process do not cluster in any single interval of thers. Finally, the following condition is needed

= ) .
B | ¢, (26)

min |t§

wherec > 0 is a constant independent of, for all 1 < k& < d. This condition implies that; max |t§k) - tz('j)1| < ¢,
which could be assumed instead.
A consistent estimator of the integrated covariafi¢e:*ds between assets* andY' can then be constructed as

follows. We setn = >"%_, n;, and define the statistic

nk—kn“l‘l 77/[—k2n+1

1 TN n
HY[Y|B) = — — YE'YUT , 27
R = G % 2 T e @)
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wherey gy = fo r)dzr andl,y is the indicator function discarding pre-averaged rettinas do not overlap in time.
Hence, HY'[Y ]ﬁf Dis a pre-averaged version of the Hayashi and Yoshida (2CiBh&tor. Note that under the previous

conditions,n, n, andn; are of the same order and thatontrols the pre-averaging windak,.

Theorem 5 Assume thaE (|¢/|*) < oo forall j = 1,...,d, (k,,0) satisfy Eq.(7) and g(z) > 0 for 2 € (0,1). As
n — oo, it holds that
1
YY)D B / S ds, (28)
0

forl <k, 1 <d.
Proof See appendix. |

Interestingly, Theorem 5 shows the somewhat surprisingltréisat there is no asymptotic noise-induced bias in
HY[Y]( D not even when the spacmg@( ) and (¢ (l)) are identical. This can be seen as follows. First, under.tfk i
structure on the noise only products of the fcn’m)e g with t(k) = t(l) t contribute to potential bias. We consider that
set of points and assume thgt < i < n; — kj, andk < j < ng — k, (this is innocent, for the summands which do not
fulfill this are negligible). Then, an inspection HY[Y]% ) shows that all productd’e. appear with the factor

2

kn—1 .

n ]+1 j
> o) —9G)
J=0

in front. Buthnolg(J,j;l) g(kl) =0, becausg/(0) = g(1) = 0, so these terms drop out of the summation.

While HY[Y]( " has the advantage that it is free of prior alignment of lagg® and hence does not throw away
information in the sample, it does suffer from being a paewvestimator, which means that once we assemble all the
single variance/covariance estimates into a full covaeamatrix, it is not guaranteed to be positive semi-defirfitl,
there are some problems in financial economics, in whichahlg the accuracy of the estimator that matters and positive
semi-definiteness is less important, for example in askmtadlon and risk management under gross exposure cortstrai
(e.g. Fan, Zhang, and Yu, 2009). Moreover, our empiricalltessuggest tha@HY[Y]%k’l))lngSd rarely fails to be

positive semi-definite for recent data.

Proposition 1 Assume thaE (|e/|*) < coforall j = 1,...,d. If (ky,6) satisfy Eq.(7) and g(z) > 0 for z € (0,1),

then
var(HY [Y]{F")) = O(n™'/?),
that is, H Y[Y]ﬁf’” has the optimal rate of convergence.
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Proposition 1 shows that the rate of convergence associatad Y[Y]( g n-1/4, However, we dispense with the
actual proof of the proposition and CLT, as the resultingnfolas are quite involved (it would go along the lines of the
proofs given in the appendix). In the empirical section, \wagg the properties of this estimator on actual data and find

that the pre-averaged version performs very well.

4 A positive semi-definite estimator of the asymptotic covaance matrix

In order to make Theorem 2 and 4 feasible, we need to estimmatasymptotic covariance matrix ayige, as it is given
by Eq. (15), and we give an explicit estimator for ayag next. More precisely, we present a positive semi-definite
estimator of the asymptotic covariance matrix of the vepsat statistic in Eq. (13).
We set
V= ved( V(¥ ). (29)

where vec denotes the well-known vectorisation operatargtacks the columns of a matrix below one another. Define

the statistic
n—kn+1 n—2kn+1

V)= D 00 5 > (X)X, (00)

=0 =0
(Notice that the above estimator depends on the parameted the functiory). Clearly,V,,(g) is positive semi-definite.

Moreover, we have forany < k, k', 1,1’ < d
V(k 1)d+k,(1— 1)d+l’(g) 59,0 / Akk w du + anr(g, 0 / @kk w du+aN(g79)Tkk ll

whereap(g,0) = 0%03, an(g,0) = VY12 andan(g,0) = Ig—; (this convergence is obtained by similar arguments as

presented in the proof of Theorem 1; see Kinnebrock and Bkifil¢2008) for more details). We need to estimate the

guantity
avarMRC:% <<I>229/ A du—|—@/ 0,du +q)11 >,
2

where all the constants refer to some given funcgen Suppose thayy = min(x,1 — z). Now let us consider three

different functionsg;, g» andgs such that the matrix

ap(g1,0) anm(g1,0) an(g1,0)
Alg1,92,93) = | ap(92,0) an(g2,0) an(ge,0)
ap(93.0) an(gs,0) an(gs,0)
is invertible and all components of the vector

2@229 2@12 2(1)11
W3 T 30 363

0(91792793) = ( >A_1(g1792ag3)
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are positive. Finally, consider the estimatdfd gx) associated with the functiong (k = 1,2, 3). Then the statistic

avaiure,, = CV (g1, 92, 93) V(1) + C@ (g1, 92, 93) Vin(92) + C®) (g1, g2, 93) Vi (g3) (30)

is positive semi-definite, becausdé (g;) are positive semi-definite and zil](’“)(gl,gg,gg) (k = 1,2,3) are positive.
Moreover, it holds that
aﬁ/arﬁ/llclgé):-i-k’,(l—l)d—l—l’ 2, avarf,lk,éél',
foranyl < k, k', 1,1’ < d.
It is important to choosg:, g» and g3 such thatC'™ (g1, g2, g3), C? (g1, g2, g3) andC®) (g1, g2, g3) are positive.
There are various examples of functions that fulfill thisuiegment. By searching in the class of functions for which

g (z) = 2% (1 — z)” with a, b > 0, we found one such set of functions:

g@=21-2° @@=20-2° g@=2'0-2)°

5 Asymptotic theory for covariance, regression and correlaon

The results in section 3 can be applied in order to computédmrce intervals for some functionals [gf 3. du that are

important in practice, such as covariance, regression ardlation. For theth andjth asset, these quantities are given

by
1 1 ig 1 s~ij
[ s, gor < B Iy W BRI (31
0 Jo Ziidu Vo Sitdu [} 5 du

Theorem 1, 3 or 5 can be invoked to provide consistent estismaftf, ¥/ du, 5% andpU?, e.g. for M RC [Y],,

MRC[Y],!

MRC Y)W 5 / Sidu, LYY = v By g0
0 MRC[Y]%
LS LI — (32

\/MRC Y] MRC Y]}
forany1l < 4,5 < d. The estimators in (32) are called modulated realised @mves, regression and correlation,
respectively. In the next theorem we present the assodiedsible central limit theorems, which follow from Theor@m

and the delta method for stable convergence.
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Theorem 6 Assume thak (|e/|*) < oo for all j = 1, ...,d and (ky, 6) satisfy Eq(7). Asn — oo, it holds that

/4 (MRC Y] ~ J) Sildu)

d
, — . — N(0,1),
ﬁr&;g?L(l_l)dJr]
1/4¢ 501 _ a(ji)
S o
\/ (MRCIYL) gt
i — oY)

4 N(0,1),

whereavarvrc,, is given in(30) and

g . Y g 1 .. 1T oarin\ 1 A/
gy = (1’_ﬁgjl)>Fn<1’_ﬁr(Lﬂ)> L RYD = <_ ’ 7(3071,_557(;;))%(_ 557(32),1’
with
— (i—1)d+5,(i—-1)d+j  oxfi—1)d+s,(i—1)d+i
_— avalyrc.n avalyrcn
n — . .. . )

° mr&;gz+l7(l_l)d+l
mr&;gsﬂ,(i—l)dﬂ mr'(\jlgclgg—i-j,(i—l)d—i-i ﬁr(hjl;é)zﬂ,(j—l)dﬂ
T, — . aVar D VT gyl Dt G-
. . a’\/ﬁrf\jgé),f”’(j_l)d”

. o\ —1 ..
\/ (MRC [Y]5 MRC [Y]ﬁ;”) D

g9 and hY") are defined by

All the required terms are easy to compute, so it is ratheplgio implement the estimators.

6 Empirical lllustration

(33)

(34)

(35)

1 5;;&))’

2

To illustrate some empirical features of modulated redlisevariance, regression and correlation, we retrievetl-hig

frequency data for a five-dimensional vector of assets frohaién Research Data Services (WRDSYe picked four

equities at random from the S&P 500 constituents list as lgf u2009. We then added a 5th element, namely the S&P

500 Depository Receipt (ticker symbol SPY), which is an exge-traded fund that tracks the large-cap segment of the

U.S. stock market. As such, it can be viewed as generatinggatiaide index returns. The four remaining stocks are

the following (with ticker symbol and industry classifiaati in parenthesis): Bristol-Myers Squibb (BMY, health gare

Lockheed Martin (LMT, industrials), Oracle (ORCL, infortian technology) and Sara Lee (SLE, consumer staples),

5An extensive simulation study can be found in Kinnebrock Bodolskij (2008).
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Table 1: Descriptive statistics and number of data befodeadier filtering

Stock BMY LMT ORCL SLE SPY
Exchange N N Q N P
Panel A: Transaction data
Raw trades 1085420 811607 8153413 533517 7685215
Corrected/Abnormal/Zeros 111 61 13806 85 2584
Time aggregation 231826 139181 6599286 78039 6000898
#Trades 853483 672365 1540321 455393 1681733
Intensity 3400 2679 6137 1814 6700
Noise ratio,y 0.363 0.336 0.484 0.656 0.202
Panel B: Quotation data
Raw quotes 5402607 3245315 23411495 3208830 17536447
Negative/Wide/Zeros 643 3917 2623 604 256
Time aggregation 2547054 1075914 20050224 979299 12851464
#Quotes 2854910 2165484 3358648 2228927 4684727
Intensity 11374 8627 13381 8880 18664
Avg. spread (in cents) 1.273 2.389 1.017 1.215 1.575
Noise ratio,y 0.205 0.219 0.203 0.310 0.109

Note This table reports some descriptive statistics and liguideasures for the selection of stocks included in our eicgdiapplication.
We show the exchange from which data are extracted. The egehzode is: N = NYSE, Q = NASDAQ and P = Pacific. Raw tradesA&giot
is the total number of data available from these exchangeaglthe trading session, while # trades/quotes is the sataiple remaining

after filtering the data. Intensity is the average numberabé gbr. day, while the noise ratio is defined in Oomen (2006).

thus representing a broad category of industries. We usettamtes and quotes data for the sample period that covers the
whole of 2006, which results in 251 trading days.

Table 1 reports some descriptive statistics for our un&vefsstocks and sample period. As can be seen, these equities

display varying degrees of liquidity with ORCL and SPY bethg most liquid, while LMT and SLE are the least liquid.

Also reported in the table is the univariate noise ratidstiat v, which is a noise-to-signal measure that describes thé leve

of microstructure noise to integrated variance (see, ®gmen, 2006, for further details on the noise ratio). Gdlyera

speaking, there is a tendency for more frequently tradedpeoies to contain less microstructure noise, the notable

exception being the transaction data for ORCL.
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6.1 Filtering procedures

As a preliminary step, we subdued the sample to data cleaRiretcleaning high-frequency data is necessary, because
the raw data has many invalid observations (e.g., data wisplated decimal points, or trades that are reported out-of
sequence). Our filter is roughly identical to that used bynBarff-Nielsen, Hansen, Lunde, and Shephard (2008b) with

some minor differences. Here, we briefly describe the filterules we employ.

Trades and quotes The following rules are applied to both trades and quotea.da) We keep data from a single

exchange: (Pacific for SPY and primary exchange for the 4iréntpequities, see Table 1), b) we delete data with time
stamps outside the regular exchange opening hours frona®:30 4:00pm, c) we delete rows with a transaction price,
bid or ask quote of zero, and d) we aggregate data with iddriine stamp using volume-weighted average prices (using

total transaction volume or quoted bid and ask volume, imdy).
Trades only: We delete entries with a correction indicatérO or with abnormal sales condition.

Quotes only We delete quotes with negative spreads and rows where thtedjgpread exceeds 10 times the median

spread for that day.

Table 1 also reports how many observations that are lost gsip@these filters through the data. It should be noted that

the "Trades Only” and "Quotes Only” filters generally tendéduce the sample by only a very small fraction.

6.2 Implementation of MRC estimators

We implement both thé/RC [Y],, andM RC [Y]fL estimators of section 2 and 3.4, respectively. Recall Af&C' [Y],,
converges at rate~ /4, it needs to be corrected for bias, and as a result is not geE@ to be positive semi-definite. We
baseM RC [Y]fL ond = 0.1, among many plausible choices, which results inra/> rate of convergence, a small finite
sample bias that we omit correcting and, hence, positive-defmiteness by construction. Two sampling schemes are
used, calendar time and refresh time sampling, which yielidéal of four combinations. We use pre-averaging windows
found ask, = [9n? |, where§ = 1/3 andé’ = (0.5,0.6) for our two choices. The selection éffollows the guide
from Jacod, Li, Mykland, Podolskij, and Vetter (2009). Wese= 390 for the calendar time-based estimators, which is

1-minute sampling, while is determined automatically by the data for the refresh samapling scheme.

6.3 High-frequency covariance analysis

Here, we inspect the outcome of applying the estimatoreduoited above, after which we look at transforms of the
covariance matrix to study regression and correlationmedgés. As a comparison, we also compute the standard rkalise

covariance from 15-min, 5-min, and 15-sec previous-ticlada
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In Table 2, we report the sample covariance matrix estinatesaged across the 251 days. This table is constructed in
the usual way, displaying the results based on transactioasin the upper diagonal (including the main diagonabilev
the strict lower diagonal elements are the correspondisgltseebased on quotation data. Consistent with prior liteea
we see from the table that the standard realised covarianseffering from Epps effect, when sampling runs quickly.
All estimated covariance terms lie in the positive regiaut, flor Cov'® they are heavily compressed towards zero. This
is less of a concern fafov®9(5™m15m) "which should tend to capture the average level of the canee structure well,
while not being seriously influenced by microstructuretioics and Epps effect. Turning next to the estimators pregos
in this paper, we note that the time series average of both Mé&t€ions and the noise-robust HY estimator are in line
with that produced by ov29(5m:15m) 'showing that they appear free of any systematic bias. Tlyasté and Yoshida
(2005) estimator produces a strong downwards bias in thariemce estimates, when it is applied directly to noisy and
irregular high-frequency data. This reaffirms previous eitgl work (see, e.g., Barndorff-Nielsen, Hansen, Lurale]
Shephard, 2008b; Griffin and Oomen, 2006; Voev and Lunde7@d these results are not surprising or novel. The
pre-averaged versioll Y[Y]Sf’l), however, does a much better job and tends to agree with #rags level of other
noise-robust estimators.

Finally, we turn to the issue of positive semi-definitenegs noted aboveM RC' Y], and H Y[Y],(f’l) are not
guaranteed to possess this property. Nonetheless, thegtdailito be positive semi-definite on a single instance s&ro
our sample period. This is true for both trade and quote datpoth combinations of the bias-corrected MRC estimator.
Thus, while theoretically a concern, this problem does ppear to occur frequently in practice, although the conaius

might change for other data sets.

6.4 Analysing realised beta

We now focus on estimating¥®) by 5" = MRC [Y]"/ /MRC [Y], where we takeé = SPY and form regressions
by using; = BMY, LMT, ORCL, SLE. This type of regression, where indivaduequity covariances with the market
are regressed onto a market-wide realised variance measumeportant in financial economics, for example within
conditional CAPM, since only systematic risk should be neled with expected excess returns.

In Figure 1, we plot the MRC-based betas from transactiateprand refresh time sampling. The corresponding plots
from the other estimators proposed in this paper are qtredita similar. As in Barndorff-Nielsen, Hansen, Lundedan
Shephard (2008b), we smooth the daily beta estimates byngasem through an ARMA(1,1) filter. The figure shows
that beta is time-varying and predictable, and that it taodductuate around its mean level. Evidently, the estimated
processes exhibit substantial memory with autoregresemts at 0.90 or higher (see also Andersen, Bollerslev, @ikb

and Wu, 2006, who study the persistence of quarterly rehbs¢a estimated from daily asset returns).
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Table 2: Average of high-frequency covariance matrix estés

MRC[Y]n:CT(390) MRC[Y];SL::OCIT(?,Q())

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY 1465 0.203 0259 0.154  0.233 1.396 0195 0259 0.152 31.2
LMT 0201 0975 0232 0149  0.247 0.194 0.905  0.222 0.158 3%.2
ORCL 0255 0.228  1.804 0.143 0.316 0.256 0.218  1.718  0.151 3160.
SLE 0.144 0149  0.136 0.955 0.162 0.144 0156  0.143  0.911 670.1
SPY 0.228 0249  0.307 0.154 0.317 0.228 0.237 0309 0.162 100.3

MRC[Y|n=rr MRCY], =%

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY 1394 0.197 0226 0.134  0.220 1.397 0198 0249 0.141 2D.2
LMT 0.193 0955  0.224 0.134  0.242 0.201  0.924 0222 0.147 410.2
ORCL 0.196 0198 1756 0.128  0.297 0.228 0220 1726  0.139 3100.
SLE 0.117 0114  0.105 0.878  0.147 0.131  0.134  0.122  0.898 570.1
SPY 0.200 0237 0243 0120 0.310 0.216 0.249  0.285 0.138 110.3

HY HY YD

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY 1160 0.093  0.097 0.103 0.111 1.417 0192 0255 0.144 2D.2
LMT 0.049 0761  0.075 0.072  0.097 0.202 0.902 0223 0.147 3®.2
ORCL 0.032 0036 1922 0077 0.112 0.240  0.227  1.903  0.135 3090.
SLE 0.029 0026 0013 1.053 0.095 0.134  0.137  0.127  0.900 590.1
SPY 0.041 0.051  0.040 0.023  0.253 0.219 0250  0.292  0.143 090.3

Covlss Clopav9(5m.15m)

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY  1.823 0.088 0118 0.091  0.120 1499  0.192 0288 0.149 210.2
LMT 0.095 0854  0.084 0.059 0.094 0.191 0.953  0.209 0.152 210.2
ORCL  0.095 0.086  4.043 0.069 0.162 0.261 0.206  1.936  0.153 3060.
SLE 0.056 0.049  0.043 1.947  0.072 0.146  0.148  0.142  1.008 610.1
SPY 0.111 0118  0.117 0.057  0.293 0.219 0233  0.290 0.152 030.3

Note This table reports average covariance matrix estimatesall Isubpanels, the numbers in the upper diagonal (inctudiagonal
elements) are based on transaction prices, while the loigodal is based on mid-quote dat@ov®*?®"15™) is a simple time series

average of the realised covariance computed from 5- andifGtereturns.

7 Concluding remarks

In this paper, we outline how simple pre-averaging of finahtick data can be used in the estimation of the ex-post

integrated covariance matrix, possibly in the simultaisgaesence of market microstructure noise and non-synghson
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Figure 1: MRC-based beta.
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Note g1 s the time series of daily/ RC [Y],,-based beta estimates, using transaction prices andhéiimes sampling for various

asset combinations (in subpanebﬁf‘.ﬁ?z]{ll)

and moving average parameter MA(1). The sample mean MROsetported ag.

are fitted values from an ARMA(1,1) filter, with estimated@egressive parameter AR(1)

trading. We introduce and rigorously study the propertfesmodulated realised covariance (MRC) and carry on to show
its consistency and asymptotic mixed normality under mddditions on the dynamics of the price process. This new
estimator bears close resemblance to the standard reaisadance, being a sum of outer products of high-frequency
returns, but it relies instead on pre-averaging to redueéntipact of microstructure noise. The MRC can be configured to
possess an optimal rate of convergence or to guarante@/pagtni-definite covariance matrix estimates. In the prese

of non-synchronous trading, we show how to modify the MRC &ing an imputation scheme (for example previous-tick

rule or refresh time sampling) to align high-frequency nesu An MRC constructed on the back of such returns will again

be consistent for the integrated covariance. Another mpuekhis paper is a pre-averaging extension of the Hayasthi a
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Yoshida (2005) estimator that can be implemented directlyhe raw non-synchronowsnd noisy observations, without
any prior alignment of returns. We demonstrate with an eiggdiillustration that all these new estimators can be &glpli

to real high-frequency data and that they perform well.

Proofs

In the following, we assume that the procesgseendo are bounded. This is without loss of generality and can bifip by a
standard localization procedure (see, e.g., Barndodigein, Graversen, Jacod, Podolskij, and Shephard (200&))eover, we
denote constants by, or C, if they depend on an additional parameieil he main parts of the proofs are based upon Podolskij and

Vetter (2009) and Jacod, Li, Mykland, Podolskij, and Ve(&509).

Proof of Theorem 1Due to the triangular equality/, W] = 1([V + W,V + W] — [V — W,V — W]), it suffices to prove the
univariate casd = 1 (i.e. all processes are 1-dimensional). We use the decatigpos
kn—1 w
g
MRCIY], = —n Z MRC[Y], = 53-= d} (36)
with

. 1 [n/kn]_l
MRC[Y] = ——— Yy R
Y1, Gl ; Y'Yk |

Notice that, forany = 0,..., k, — 1, the summands in the definition 8f RC' [Y]ﬁl are asymptotically uncorrelated. This type of
estimators have been discussed in Podolskij and Vette®j20@ we can deduce by the methods presented therein (se®tiof
Theorem 1) that

2
MRCY —>/ ds—i—we2

where the convergence holds uniformly/idue to the boundedness of the processasds). On the other hand we have that

T 1 . ny 2 P
Wn=%;IAiYI 2w

This implies the convergence
MRCY], & / o2ds,

which completes the proof. O

Proof of Theorem 2:Here we apply the "big blocks & small blocks™-technique usedacod, Li, Mykland, Podolskij, and Vet-
ter (2009). The role of the small blocks (which will be asyotjally negligible) is to ensure the asymptotic indepermieof the big

blocks. More precisely, we choose an integeset

ai(p) = i(p+ 1)kn and  bi(p) =i(p+ 1)k, + pky ,
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and letA;(p) denote the set of integefsatisfyinga;(p) < I < b;(p) and B;(p) the integers satisfying;(p) <! < a;+1(p). We
further definej,, (p) to be the largest integgrsuch thab,; (p) < n holds, which gives the identity
. n
Jn(p) = {mJ - L (37)
Moreover, we use the notatiop(p) = (j.(p) + 1)(p + 1)k,
Next, we introduce the random variable

kn

Vi = 3 o) om AL, W+ Al o) (38)

j=1

which can be interpreted as an approximation of s&@ﬁe Moreover, we set

T = Vi (Vi)' = B |V (V) 1P| (39)
and define
e J€Aip)
Y =000 € Bilp)
as well as
p) 1 llj+1 p) 1
Z AU S
l=a;(p) I=b;(p)

Notice that((p, 1)} containgk,, summands ("big block”) whereagp, 2)"' containsk,, summands ("small block”). Finally, we set

M(p)" =n"3 TP e, 1)y, NE)"=n"t Y0027, O =0, ) Y
and note that
B¢ D} P | =0 =B ¢t 2517 | (40)
by construction.
Now, by the same approximations as presented in Jacod, Lklavig, Podolskij, and Vetter (2009) (see the identity (3,14
Lemma 5.5 and Lemma 5.6 therein) we obtain that
. 1
wt (MRCIY], - [ 5.05) = M)+ NG+ O + R, (@)
0 2
where the last three summands satisfy the convergence
Jim tim sup P(|[n¥ N (p)"|| + [ C(p)" || + | R@)"]| > 9) =0 (42)
0 p—oo
for anyd > 0. Notice that the ternR(p),, stands for the approximation error in Eq. (38).
In the next lemma we show the stable convergeﬁ%d\/[(p)" s U(p) (for any fixedp). On the other hand, we will see that,
asp — oo, U(p) & U, whereU is the limiting variable defined in Theorem 2. By combiningstiith Eqs. (41-42) we obtain the

assertion of Theorem 2.
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Lemma 1 If the assumptions of Theorem 2 are satisfied we obtain (fffiaadp)

1

n4 ’
M 7k,7 k B7 k
e Sue = 3 [

Jj k=1

and

. ’ 2 9 ’ 1 u
kl,ym kl,]m Aklkl ( p Aklkl/ 1— "2\ du
Z 7! (p) = o o) ( p)@()

j,m=1

e L /01 e L S LT

where the processes;, O, and Y are given in Theorem 2.

Notice thaty>? |, A*bim () Vsim (p) B 571 ykbimakVim (1 < kK, 1,1' < d), wherey, is defined in Theorem 2. From
this we deduce the convergeridép) = U.

Proof of Lemma 1:Due to Theorem IX 7.28 in Jacod and Shiryaev (2003) the fotiguconditions need to be shown (for all
1<k K1 <d)

n_1/2 Jn(p)

1
> E {<<p,1>;-’””c<p71>;’”” |fa]-_<m] 5 / AR du, (43)
L : 0

Jn (D)

HIEZIEDqulﬁHﬂ]@ﬁQ]zgo, )

J=0

no1/4 Z E

(o, 1>;-’=’”Aw<p>;-’=’“'|fw} 20, (45)
j=0 "

Jn(p) |:

—1/4 Z E

whereAV (p)? = Vi, (p) — Vasa, (p) fOr any proces$” and Eq. (46) holding for any 1-dimensional bounded martmgabeing

1) AN (p)? |faj_(m} B0, (46)

orthogonal td//. For proving Egs. (44) and (46), it is no restriction to assuhmatd = 1. Then these conditions are already shown
in Jacod, Li, Mykland, Podolskij, and Vetter (2009) (Lemm#)50n the other hand, the functioridp, 1)’ is even iniV. SinceW

ande are independent, we readily deduce that
E [g( LPHAW (p)F | Fu, (m] =

which implies the condition in Eq. (45). Hence, we are lefptoving Eq. (43).

.kz_: <> iV _k;;l(g(j;ll)‘g(ﬁ))%i-

First, notice the identity




The second equality is useful for the computation of the musefe]’. By the smoothness assumption on the functiand the

above identity we obtain the approximations< k,! < d)

kl s sl
BV, 3 = 2 (L) 0y, e = S (P22 ol @7)

J J’ kn

for |7 — j'| < k,, whereas the above expectations vanish when j'| > k,, (heredy, denotes the Kronecker symbol). Next, we

introduce the decomposition
Cp, V)T =v(p, 1)} +v(p,2)] +v(p,3)j ,

where the terms(p, 1)7, v(p, 2)} anduv(p, 3)” are given by

bj(p)—1 ’

v(p, 1)} = Z Tayin W) (Ua ® Wl) —-E {awwf(aajmw}’) |]-"aj(p)] ,
l aj (p) TL n n n
bj(p)—1 , ,

w2y = > @) -ela@)].
l=a;(p)
bj(p)—1

v(p,3)] = Z 0 W, (el) —l—E?(Uaj_(p)Wl) .

l=a;(p)

By a straightforward calculation (and Eq. (47)) we obtaindgth 1 < k,1,k'l’ < d

n, n kU 2pkn ' u
Elo(p, 17 oo, ] Fem] = S5 / (1) b +0,(1)
n,kl n,k'l' e [ Uy 2
Elo(p, 200 207 1 o] = 2T [ (1= D)ot )du+ 0p(1),
n 0
" w1 2k ey [1_u
Efu(p,3); Mo(p.3)7 " [ Fum] = =205 /0 (1) r@oa()du +0,(1)
where the approximation holds uniformly jn Now recall thatj,, (p) = LWJ — 1. Consequently, by Riemann integrability we
deduce that
_% 771 p) kl Wl
g 2 N D ) %/ ARK g,
which completes the proof of Lemma 1. O

Proof of Theorem 3 and 4Recall that% =0+ o(n~it%). Astraightforward calculation shows that

()

024y 20

o)

v+ o(nf%r?).

E [MRC[e]ﬂ -

By similar methods as presented in the proof of Theorem 1 weckthat

1
5 U1 p
MRC Y] (/0 5. ds + 92%”25‘1’) 20,
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Hence, we obtain the convergence in probability
MRCY —> / Ysds,

which implies the assertion of Theorem 3. Following the saofeeme as demonstrated in the proof of Theorem 2 we get

nl/4—5/2 (MRC [Y]5 _ (/1 Esd8+ LW)) d% MN (O, 2(1)2229 /1 Asd8> )
n 0 921/)27126 1/)2 0

since -+~ U is an appropriate centering for the noise term in this cassv N

9271’
¢1n1/4—6/2 »
G ¥ =0
for 6 > 1/10, whereas
w1n1/475/2 v 1/}1 v
92¢2n25 92¢2
for § = 1/10. Hence, Theorem 4 follows. O

Proof of Theorem 5First, we start with the decomposition
1

kD _
HY[Y]% ) = W(ZXk X ]I{(t(k) t(k)]ﬂ(t(L) t§”]7é®}

A P S v A
+ DX FIX 00 0100, ) 0)
]

+ Z 6791. Elj H{(tgli)l,tgk)]ﬁ(t§lll7t§-L)]7é@}) =: HY[Y],IZ + HY[Y]?I + HY[Y]?E

2%

As X ande are independent, it follows th&@t (HY[Y]2) = 0, and a simple computation shows that
var(HY [Y]?) = 0.

Thus,HY[Y]? % 0. Next, we consider the terd Y [Y]2. This expression can be further decomposed as

1
HY[Y];O; = 72( Z Et Ct + Z b’ﬂ I{J l Et Et Z t(.k)ei(vl)l{t(‘k)#t(-”})’
J i J

(1/}Hyk") ti€Jk ti€Jp, li—j|<kn
for certain numbers} (k, 1), b} (k, 1) andcy’; (k, 1). HereJkldenotesthesetofcommonpomts(tﬂC Ven <i<np—kn and( )anignl_kn,

and.J; denotes the set of all common points( oﬁ‘k )i<i<ng and( i )199” excludedJ; ;. Sinceek; = —Zj:l (g(é) -

g(Jk ! ))ek(k) andg is piecewise differentiable it holds that

w+J

b7 (k, D)| + |ci (k, 1) < C.

A straightforward computation shows that

kn

o(2)-9(5) | =) - 902 0.

j=1



becausg/(0) = g(1) = 0. Thus, the first summand in the decompositiodf [Y]? disappears, which is absolutely crucial for the
proof. On the other hanq:lJ;;,l < Ck,, which means that

n P
i > bk Defer, 5 0.
wHY tieJg,

Finally, note that the summand% have expectatioft and are mutually uncorrelated. This implies that

k)f (z) {t(k);ét(l)}

1 . o .
T 2 kil I 5 0.
(wHYkn)z ot z]( )Etﬁ’“)eé” {tgk)#t§z)}

Hence,
HY[Y]? & o0.
Now we consider the terf/ Y [Y].. We decompose
1
1 _ —n n kAT l
= e ( )ZI i (kDA XEAT X T (10, o0, o010y
n 4,5)EIk 1

+ ) Bk DAPEXFAN X (48)

" {7 M0 10120
i,J GI,‘;’Z

+ ) Ak DATFXPAMX

k k 1 l
- G Ia [ >J:@}) ’
i—j|<kn

for some constants;;(k,l),bz(k l),‘;;(k: D, Iy = {0,9) 1 kn <i<mnp—Fkn, kn <j<n —ky} andI,‘;l ={(i,j): 1<
i <ng, 1 <j<mn}— Iy Notice that all "border terms” are collected in the seconthsiand whereas all terms with empty
intersection of the intervals are in the third summand (ot,fare will see that both are negligible).

Notice that

|ag (k, D + 163 (k, D + [e3; (K, )] < Cn.

Furthermore, we have

n n k k l 1
E[larx*amx!] < 0/ (" — ) -4 )

ands(Ig, N {(i,5) : (¢, tgm] (t$ .t % 0}) < Ck,, by Eq. (25). This implies by Eq. (26) that

Jj=1

Z b (k, DAY FAT Y]

= O:D(n_l/2) )
(’l/JHyk ) (ZJ)GIC)

{210 0103
and thus the second summand in Eq. (48) is negligible.
Now, recall thatA* X* can be replaced wittor; A" W)* for any s with tz(.k) — s = 0(k,/n) (1 < k < d) without changing
the first-order asymptotics (see, e.g., Podolskij and ¥e2t#09). Notice also that the terrﬁé‘kW’“A?lWl]I{(t(k) A0 1 O1—py
i—1b j—1b 1=
are mutually uncorrelated. Hence,

1 -n n kEAn l
(rry bin)’ > Ak DA XEAFX T w0 000 o)-gy = 0p(1)-
n Ii_j‘<kn
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Finally, consider the first summand in Eq. (48). As above, praximateA’* X*A” X' by
XE5( ) = (0,00, 0, AT W) (0,00, 0 AW

whenevel(tf.'f)l, tl(.k)] N (tglll, tgl)] # (), and set

__ 1
HY X} = ——— g (R, DX (R DL 0 00140,00 (01 2gn -
Yy kn)? (i,j)Xe:Ik,L ’ ! Hemnt TNt 457120

Note that the quantitieHY[Y]ﬁf’l) andW[X]g“l) have the same first order asymptotics. Then, it can be shaatn th
kn—1 L 2 1 2
Zz?j(k:,l): <Z g<k—>> :ki </ g(a:)da:) —|—0(/€721).
h=1 " 0
Next, note that
n n k l k l
E [Ai kaAi lWl]I{(tﬁ’i)l,tEk)]ﬂ(t(.l) 7t(-1)]7&®}|Ft57i)1/\t§131:| = (tE ) A tg» )) — (tz('—)l \Y t;zl) . (49)

J—17"]

Eq. (49) and Riemann integrability then delivers the cogeace

1 -n n P ! kl
(brvka) 7)26:1 T DE [ X235 DL, o, o i e, _)/0 .

By usual martingale arguments we have that

N 1
k.l -n n P,
AV sy 2 (DB X0 5D, o, a0 Pty ] 50
HY ®n (.)€ 1K1

On the other handZ Y [Y]" — TY XY & 0. Thus, collecting terms produces
1
HY[y]*D 2 / ykds,
0

which completes the proof.
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