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Abstract

Semiparametric models are characterized by a �nite- and in�nite-dimensional (func-

tional) component. As such they allow for added �exibility over fully parametric models,

and at the same time estimators of parametric components can be developed that exhibit

standard parametric convergence rates. These two features have made semiparametric

models and estimators increasingly popular in applied economics. We give a partial

overview over the literature on semiparametric modelling and estimation with particular

emphasis on semiparametric regression models. The main focus is on developing two-step

semiparametric estimators and deriving their asymptotic properties. We do however also

brie�y discuss sieve-based estimators and semiparametric e¢ ciency.
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1 Introduction

Semiparametric modelling and estimation of economic processes have received a lot of atten-

tion over the past three decades. The main reason for the popularity of this approach is that

it works as a compromise between two extremes, fully parametric and fully nonparametric

modelling. In the former case, a fully parameterized model is used to explain data and a nat-

ural estimator is the maximum-likelihood estimator (MLE). If correctly speci�ed, the MLE

enjoys the usual good properties such as maximum e¢ ciency. But if some parts of the model

are misspeci�ed, the MLE will su¤er from asymptotic biases and conclusions drawn from the

estimated model may be severely misleading. Situated at the other end of the spectrum, fully

nonparametric models allow for maximum �exibility and therefore carry no risk of misspeci-

�cation. On the other hand, nonparametric estimators require a lot of data, and tend to be

rather imprecise in small samples; this is in particular the case in large-dimensional models

where the precision of nonparametric estimators tend to deteriorate as more conditioning

variables are included; this is normally referred to as the "curse of dimensionality."

Semiparametric models are situated between the nonparametric and parametric extremes

in the sense that they contain both a nonparametric and parametric component. Thus,

semiparametric models maintain, to some extent, the �exibility of the fully nonparametric

model, and as such better safeguard against misspeci�cation compared to a fully parametric

model. At the same time, parametric components of the semiparametric model can in general

be estimated with a precision comparable to what we would obtain by using a (correctly

speci�ed) fully parametric model.

We will here try to give a brief introduction to and overview of semiparametric modelling

and estimation with special focus on regression models. We here introduce the main concepts

in semiparametric modelling and estimation within the framework of regression models for

two reasons: Firstly, these models are widely used in economics and as such should be

familiar to the average reader. Second, regression models are fairly simple to work with,

thereby allowing for a relatively straightforward introduction of the major semiparametric

conventions and techniques. Secondly, many of the techniques that we will introduce in the

regression framework can be carried over to many other settings, so the interested reader

should be able to apply these tools to other types of models. To illustrate the last point, we

will brie�y touch on semiparametric copulas and demonstrate how the same ideas introduced

in a regression framework can be utilized in this setting.

After having introduced estimators of some leading semiparametric regression models, we

set up a general framework within which we can analyze the asymptotic properties of these.

The general class of estimators that we consider are so-called two-step semiparametric esti-

mators, where in the �rst step a nonparametric component of the model is estimated, which

in turn is used to estimate the parametric part. We derive a set of high-level conditions under
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which the semiparametric estimator is consistent and asymptotically normally distributed,

and discuss in further details how these conditions can be veri�ed for speci�c models.

As an alternative estimation strategy, we give a brief introduction to a class of semipara-

metric estimators based on so-called sieve methods. We will however not cover the underlying

theory of such estimators in any detail. Finally, we devote some time to discuss the issue

of semiparametric e¢ ciency, and its uses in developing estimators. Again, this part of the

paper is non-technical and we only try to convey the intuition behind the various concepts

in this part of the literature.

This survey has no ambition of being exhaustive, and it should be noted that many other,

excellent reviews of the literature on semiparametric modelling and estimation are available.

These include, amongst others, Ichimura and Todd (2007), Härdle et al (2004), Horowitz

(2009), Li and Racine (2007), Pagan and Ullah (1999), Powell (1994), and Robinson (1988)

which complement and extend our survey in a number of directions.

The remains of the paper are organized as follows: In Sections 2-4, we start by giving

a number of examples of semiparametric models, and discuss the estimation of these. In

Section 5, we analyze the properties of a fairly general class of semiparametric two-step

estimators that include the speci�c estimators presented in the previous sections. We focus

on estimators based on kernel smoothing since these are relatively easy to analyze, and are

popular in applied work. In Section 6, we brie�y introduce simultaneous estimation of both

components using so-called sieve-methods to handle the nonparametric component, while

semiparametric e¢ ciency is discussed in Section 7. We conclude in Section 8 by pointing

to more detailed works on the di¤erent topics covered in the survey. All proofs have been

relegated to Appendix A.

While Sections 2-4 and 6-7 can be read without any strong knowledge of econometric

theory, Section 5 may be somewhat more challenging for the less technical-minded reader. In

order to keep the technicalities at a reasonable level, some mathematical arguments are only

sketched. Furthermore, some relevant papers containing more precise results and rigorous

proofs are listed in Section 8.

2 Semiparametric Regression

In its most general form, a regression model can be formulated as

Y = m (X) + "; E ["jX] = 0; (1)

where Y 2 R is the response (or dependent) variable, X 2 Rd is a set of d � 1 regressors (or
independent variables), and " 2 R is the error term. The regression function m : Rd 7! R
explains how the conditional mean of Y changes with X:

E [Y jX = x] = m (x) :
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Also, let f"jX (ejx) denote the conditional density of " given X = x.1 Suppose we have

observed a random sample, (Yi; Xi) for i = 1; :::; n, from the model. We are then interested

in drawing inference regarding the functions m (x) and f"jX (ejx).
In the fully parametric case, both the regression function, m, and the (conditional) error

distribution, f"jX , are assumed to be known up to some �nite-dimensional parameter. That

is, we have speci�ed parametric functions m (x;�) and f"jX (ejx;�) where � 2 B contains the
regression coe¢ cients characterizing the shape ofm, while � 2 � is a parameter capturing the
shape of the (conditional) error distribution. Assuming that the model is correctly speci�ed,

that is, m (x) = m (x;�0) and f"jX (ejx) = f"jX (ejx;�0) for some �0 = (�0; �0), a natural

estimator of the model would be the MLE,

�̂MLE = argmax
�2�

nX
i=1

log f"jX (Yi �m (Xi;�) jXi;�) :

A popular speci�cation is the Gaussian regression model: The error term is assumed to be

independent of X and normally distributed N
�
0; �2

�
. In this case, the MLE�s of � =

�
�; �2

�
are the least-squares estimators: �̂MLE = �̂LS and �̂2MLE = �̂

2
LS where

�̂LS = argmin
�2B

nX
i=1

(Yi �m (Xi;�))2 ; �̂2LS =
1

n

nX
i=1

�
Yi �m

�
Xi; �̂

��2
:

Regarding the speci�cation of the regression function, a linear regression function is widely

used, m (x;�) = �1x1 + ::: + �dxd, and the MLE collapses to the ordinary least-squares

estimator,

�̂OLS =

 
nX
i=1

XiX
0
i

!�1 nX
i=1

XiYi

!
: (2)

Under regularity conditions, the estimator �̂MLE is
p
n-consistent and asymptotically nor-

mally distributed. For example, with Gaussian errors, the MLE satis�es

p
n(�̂MLE � �0)!d N (0; V ) ; V = �2E

�
_m (x;�) _m (x;�)0

��1
;

where _m (x;�) = @m (x;�) = (@�) (see, for example, Amemiya, 1985). This in turn implies

that the regression function can be estimated by m̂MLE (x) = m(x; �̂MLE).

However, the parametric model may be misspeci�ed meaning that m (x;�) 6= m (x) for

all � 2 B and/or f"jX (ejx;�) 6= f"jX (ejx) for all values of � 2 �. In this case, the estimated
regression function m̂MLE (x) is in general inconsistent and will give a misleading picture

of how X impacts Y . To remove the risk of misspeci�cation, one can instead use fully

nonparametric estimators of m such as kernel estimators or series/sieve estimators. We will

1We here assume, as is standard in the non- and semiparametric literature, that all variables in question

have continuous distributions.
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here focus on kernel estimators and give a brief overview of these; we refer the reader to

Härdle (1992) and Silverman (1986) for further details. Sieve estimators are brie�y discussed

in Section 6. Kernel estimators form a particular class of nonparametric estimators which use

local information in data to draw inference about characteristics of the distribution. Suppose

that X has a continuous distribution described by a density f (x). This density can then be

estimated nonparametrically by a kernel density estimator: For any given value x 2 Rd, this
is computed as

f̂ (x) =
1

n

nX
i=1

Kh (Xi � x) ; (3)

where Kh (x) = K (x=h) =hd, K : Rd 7! R is a so-called kernel function and h > 0 is a so-

called bandwidth. BothK and h are chosen by the researcher. The kernel density estimator is

similar to the histogram estimator of a distribution where the bandwidth determines the width

of each cell in the histogram and the kernel how much weight individual observations within

a cell should be given. Most weight is given to observations close to x while observations far

from x play little, if no role. Similarly, the kernel regression estimator ofm (x) = E [Y jX = x]

at a given value of x 2 Rd takes the form of a weighted sample average,

m̂ (x) =

Pn
i=1YiKh (Xi � x)Pn
i=1Kh (Xi � x)

: (4)

Again, this is a local estimator that uses those observations, Xi, that are close to x to extract

information regarding the shape of m (�) at x.
Kernel regression estimators are very robust: The estimator m̂ (x) is consistent as h! 0

and nhd ! 1, no matter what the shape of the true regression function m is. But one

pays a price in terms of precision with the kernel estimator exhibiting more �nite-sample

variation compared to parametric estimators. On a theoretical level, this shows up in the

fact that the optimal rate of kernel estimators are
p
n4=(4+d), which is slower than the

p
n-

rate of parametric estimators.2 We note that the precision of the nonparametric estimator

is in�uenced by the dimension of X, d � 1: As d increases the convergence rate of the

nonparametric estimator deteriorates (this is the aformentioned "curse of dimensionality").

In addition to these issues, even if precise nonparametric estimates can be obtained, it can

be di¢ cult to present and interpret the kernel estimators f̂ (x) and m̂ (x) when d is large.

Thus, when choosing between di¤erent modelling and estimation techniques, we face a

trade-o¤ between risk of misspeci�cation and degree of precision of estimators. The MLE

of a fully parametric model has maximum precision but a very high risk of su¤ering from

misspeci�cation biases. In contrast, the fully nonparametric estimator has no risk of mis-

speci�cation but on the other hand can have very low precision. This motivates the use

of semiparametric models and estimators. These still allows for a relatively high degree of

2We have here assumed that the function of interest is twice continuously di¤erentiable.
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�exibility of the model while improving on the convergence rate for the certain components

of the model. We now present two semiparametric regression models as illustrations.

2.1 The Single Index Model

A popular semiparametric regression model is the so-called single-index model which takes

the following form:

Y = g
�
�0X

�
+ "; E ["jX] = 0; (5)

where the function g : R 7! R and the parameter � 2 Rd are unknown. We make no assump-
tions regarding the (conditional) distribution of ", and treat g and f"jX as nonparametric

objects. Thus, in this case, our in�nite-dimensional parameter is 
 =
�
g; f"jX

�
while the

parametric component is �.

The name single-index comes from the fact that g here is a function of the index �0X 2 R
instead of the full vector X 2 Rd. Thus, we assume that X only in�uences Y through the

index �0X which is a restriction relative to the fully general regression function m given

in eq. (1). Thus, in contrast to the fully nonparametric setting, we now face a risk of

misspeci�cation.

On the other hand, the model has a nice interpretation with the impact of X on Y

described by the �nite-dimensional parameter � and the univariate function g. In this regard,

observe that g here has R as its domain in contrast to the function m appearing in (1) which

has domain Rd. Thus, regardless of the dimension of X, the estimation of g remains a

univariate problem, and as such the curse of dimensionality has been removed.

The above framework accommodates for certain types of transformation models. Suppose

that the random variable Y � satis�es

Y � = �00X + �;

where � � F� is independent of X. We do not observe Y � however, but only

Y = t (Y �) ;

for some transformation t which may be known or unknown. We see that

E [Y jX = x] = E
�
t
�
�00X + �

�
jX = x

�
=

Z
t
�
�00x+ v

�
dF� (v) :

By de�ning g and " as

g (z) :=

Z
t (z + v) dF� (v) ; " := Y � E [Y jX = x] ;

the class of transformation models can be written on the form of eq. (5). The transformation

models include limited dependent variable models such as censored regression models and
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duration models. For example, with t (y) = 1 fy > 0g the transformation model is a binary
choice model such as the probit and logit models. If the transformation is t (y) = y �1 fy > 0g,
we obtain a Tobit model. The advantage of the semiparametric approach is that we can still

estimate �, without having to take a stand on the precise form of t and F�.

We now wish to develop an estimator of the single-index model. To this end, we �rst need

to discuss identi�cation of the parameters of interest. That is, can we uniquely identify the

parameters � and the functions g and f"jX given data? We �rst note that the parameter �

cannot be identi�ed if P (�0X = c) = 1 for some constants c 2 R and � 2 Rd. Furthermore,
we need to normalise � to be able to identify g. To see why this is the case, de�ne ~g (z) =

g (a+ bz) for any constants (a; b) 2 R2, which is equivalent to ~g (�a+ 1=bz) = g (z). It then
holds that the two speci�cations are observationally equivalent:

g
�
�0x
�
= ~g

�
�a+ (1=b)�0x

�
= ~g( ~�0x);

where ~� = (1=b)�. That is, given data, we will not be able to distinguish between ~g and g.

We therefore will require that X does not to contain any constants, and we also set one of

the coe¢ cients � equal to one; we choose �1 = 1 (one can always rearrange the order of the

components of X). Finally, we note that if g is linear then we cannot identify � (unless we

assume that g is known).

Under the identifying restrictions, we are able to develop estimators of � and g: Suppose

�rst that the function g is known; then a natural estimator of �̂ would be the least-squares

estimator,

�̂g = argmin
�2B

1

n

Pn
i=1

�
Yi � g

�
�0Xi

��2
: (6)

Conversely, suppose that � 2 Rd was known; then a natural nonparametric estimator of g
would be the standard kernel regression estimator,

ĝ (z;�) =

Pn
i=1YiKh (�

0Xi � z)Pn
i=1Kh (�

0Xi � z)
:

However, since both � and g are unknown, neither of these are feasible estimators. Instead,

we propose to combine them as follows: By substituting the nonparametric estimator ĝ (z;�)

into the least-squares criterion in eq. (6), a feasible estimator of � is obtained as:

�̂ = argmin
�

1

n

Pn
i=1

�
Yi � ĝ

�
�0Xi;�

��2
:

Once �̂ has been obtained, the obvious estimator of g (z) is ĝ(z; �̂).

An alternative strategy is the average-derivative estimation method as proposed in Powell

et al (1989). Assuming g is di¤erentiable, the following identity holds:

@E [Y jX = x]

@x
= �g0

�
�0x
�
;
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where g0 (x) = @g(z)
@z . Thus, for any bounded function w,

E

�
@E [Y jX]
@x

w (X)

�
= �E

�
w (X) g0

�
�0X

��
:

This shows that the parameter � de�ned as

� := E

�
@E [Y jX]
@x

w (X)

�
is observationally equivalent to � up to a scale normalization (E [w (X) g0 (�0X)]). We now

develop an estimator of � with the weight function w chosen as w (x) = f (x), where f denotes

the density of X: First, observe

E

�
@E [Y jX]
@x

f (X)

�
=

Z
Rd

@E [Y jX = x]

@x
f2 (x) dx

= �2
Z
Rd
E [Y jX = x] f (x)

@f (x)

@x
dx

= �2E
�
E [Y jX] @f (X)

@x

�
= �2E

�
Y
@f (X)

@x

�
:

The last expression on the right hand side will form the basis for our estimator of �: Re-

placing population expectations with sample expectations and the density, f , with its kernel

estimator, f̂ , as given in eq. (3), we obtain:

�̂ =
1

n

nX
i=1

Yi
@f̂ (Xi)

@x
:

An advantage of �̂ over �̂ is that the former is on closed-form and requires no numerical

optimization.

One can extend the single index model to the following more general class of models,

Y = g (v (X;�0)) + "; E ["jX] = 0;

for some function v : R�B 7! R which is known up to �0. The estimation strategy outlined
above carries through to this more general setting.

2.2 The Partially Linear Model

An alternative speci�cation is obtained by assuming that m in (1) is linear in some of its

arguments. Suppose X = (X1; X2) where Xi 2 Rdi , i = 1; 2, and d = d1 + d2, such that

Y = �00X1 + g (X2) + "; E ["jX] = 0; (7)
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for some g : Rd2 7! R and � 2 Rd1 . As before, we leave the distribution of "jX unspeci�ed.

Compared to the fully general regression model in eq. (1), the following restriction has

been imposed on the shape of the regression function, m (x) = �00x1 + g (x2). That is, Y

is additive in X1 and X2, and X1 impacts Y in a linear fashion. Our model consists of a

parametric component, �0, and two nonparametric components, g and f"jX , and as such it is

semiparametric.

Again, we need to impose restrictions on the model for g and � to be identi�ed. We

cannot allow any of the components of X to be constant since with ~g (x2) = g (x2)�a, a 2 R,
we cannot distinguish between �0x1 + g (x2) and fa+ �0x1g + ~g (x2). In fact, we have to
assume that


 = E
�
(X1 � E [X1jX2]) (X1 � E [X1jX2])0

�
is nonsingular. If this does not hold, we cannot distinguish between the linear and the

nonlinear term. To see this, observe that

E [Y jX2] = �00E [X1jX2] + g (X2) + E ["jX2] ;

implying

Y � E [Y jX2] = �00 (X1 � E [X1jX2]) + �; (8)

where � = " � E ["jX2] satis�es E [�jX] = 0. So in order to identify �0, we need 
 to be

nonsingular.

The equation (8) forms the basis of the following "residual-based" estimator: Construct

kernel estimators of mY (x2) = E [Y jX2 = x2] and mX1 (x2) = E [X1jX2 = x2],

m̂Y (x2) =

Pn
i=1YiKh (X2;i � x2)Pn
i=1Kh (X2;i � x2)

; m̂X1 (x2) =

Pn
i=1X1;iKh (X2;i � x2)Pn
i=1Kh (X2;i � x2)

;

and substitute these into (8). We can then estimate � by OLS,

�̂ =

 
nX
i=1

ẐiẐ
0
i

!�1 nX
i=1

Ẑi (Yi � m̂Y (X2;i))
0 : (9)

where Ẑi = X1;i � m̂NP;X1 (X2;i).

The estimation method can be extended to the following, more general model,

Y = v (X1;�) + g (X2) + "; E ["jX] = 0; (10)

where v : Rd1 � B 7! R is known up to � 2 �. The resulting estimator is however no longer
on closed form, and numerical optimization techniques now have to be employed.
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3 Speci�cation of Error Distribution

So far, we have only discussed how the functional form of m in the general regression model

can be modelled and estimated using semiparametric techniques. In this section, we focus

on the error term, ", and discuss how di¤erent assumptions regarding the error terms lead

to di¤erent (semiparametric) estimation strategies for the regression function. In some situ-

ations, one can derive an estimator of the parameter of interest without having to estimate

in�nite-dimensional objects. These estimators however tend to be ine¢ cient though, and

semiparametric estimation techniques can be used to improve on the e¢ ciency.

3.1 The Linear Regression Model

Consider the standard linear regression model:

Y = �0X + "; (11)

where E ["jX] = 0. This is normally seen as a fully parametric model, but in our terminology
this is a semiparametric model if the distribution of "jX, f"jX , is not fully speci�ed. If f"jX
has not been speci�ed, we have a parametric component, �, and a nonparametric one, f"jX .

If we assume that the error term follows a normal distribution, we saw in the previous

section that the MLE takes the form of the standard OLS estimator as given in eq. (2).

However, the OLS estimator can also be interpreted as a semiparametric estimator of �

since it remains
p
n-consistent regardless of the precise speci�cation of f"jX . Moreover, an

attractive feature of OLS is that we do not need to estimate f"jX in order to compute it. This

is in contrast to the semiparametric estimators considered in the previous section, where we

had to obtain a preliminary estimator of a nonparametric component in order to estimate

the parametric one.

However, one may wonder whether other, better estimators are available? Obviously,

if we impose a (correct) parametric structure on f"jX , we can compute the MLE which in

general is more e¢ cient than OLS. But even without imposing a parametric form on the

distribution, we shall in the following see that OLS is in general not e¢ cient within the class

of semiparametric estimators.

3.2 Heteroskedasticity of Unknown Form

We maintain the linear model in eq. (11), but now assume that the errors are heteroskedastic,

E
�
"2jX = x

�
= �2 (x) ; (12)

with the form of the conditional variance function, �2 (�), being unknown.
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The standard OLS estimator given in Eq. (2) is still consistent and asymptotically nor-

mally distributed but now the asymptotic distribution is:
p
n(�̂OLS � �)!d N

�
0; E

�
XX 0��1E ��2 (X)XX 0��1E �XX 0��1� :

In particular, it is no longer e¢ cient as we shall now see: Consider �rst the case where the

conditional variance function �2 (x) is known. Then we can do weighted least squares (WLS),

~�WLS =

 
nX
i=1

��2 (Xi)XiX
0
i

!�1 nX
i=1

��2 (Xi)XiYi

!
; (13)

which improves on the asymptotic variance relative to the OLS estimator:
p
n(~�WLS � �)!d N

�
0; E

�
��2 (X)XX 0��1� ;

where

E
�
��2 (X)XX 0��1 � E �XX 0��1E ��2 (X)XX 0��1E �XX 0��1

with "=" if and only if �2 (X) = �2 = E
�
"2
�
is constant almost surely.

If the conditional variance function �2 (x) is unknown, ~�WLS is not feasible. One could then

impose a parametric form on �2 (x) and estimate the unknown parameters using standard

methods. This procedure requires that the functional form of the conditional variance is

correctly speci�ed however. In order to avoid the risk of working with a misspeci�cied model,

a nonparametric estimator of �2 (x) should instead be used. To motivate our estimator, �rst

note that �2 (x) by de�nition is simply the conditional mean of "2, c.f. eq. (12). A natural

estimator of a conditional mean is the kernel regression estimator as introduced in eq. (4).

Thus, ideally we would like to compute �̂2 (x) =
Pn
i=1"

2
iKh (Xi � x) /(

Pn
i=1Kh (Xi � x)) .

However, since "i, i = 1; :::; n, are not observed, we replace these by the residuals. This leads

to the following three-step procedure:

1. Compute the OLS estimator, �̂OLS, as given in eq. (2).

2. Compute the associated residuals, "̂i = Yi � �̂0OLSXi, i = 1; :::; n, and use those to

estimate the conditional variance nonparametrically,

�̂2 (x) =

Pn
i=1"̂

2
iKh (Xi � x)Pn

i=1Kh (Xi � x)
:

3. Obtain the WLS estimator as given in (13), but with �2 (x) substituted for �̂2 (x),

�̂WLS =

 
nX
i=1

�̂�2 (Xi)XiX
0
i

!�1 nX
i=1

�̂�2 (Xi)XiYi

!
; (14)

Again, the above estimation method can be generalised to allow for more complicated

parametric forms,

Y = g (X; �) + "; E ["jX] = 0;

where g : Rd �� 7! R is known up to � 2 �.

11



3.3 Independence Assumption

The above idea can be adapted to obtain ML-type estimators when the distribution of errors

are of unknown form. We maintain the linear speci�cation in eq. (11), but now assume that

" and X are independent

such that f"jX ("jX) = f" (") where

E ["] =

Z
R
zf" (z) dz = 0; �2 =

Z
R
z2f" (z) dz <1:

Compared to the previous sections, we have here imposed an additional assumption of

independence between regressors and errors. However, we do not assume that the distribution

of " is known, and as such the model remains semiparametric.

The independence assumption makes it possible to estimate the parametric component

by semiparametric MLE: Suppose that the density f" was known; then we could do MLE,

~�MLE = argmax
�2�

1

n

X
i

log f"
�
Yi � �0Xi

�
; (15)

which under regularity conditions will satisfy:

p
n(~�MLE � �)!d N

�
0;H�1

0

�
;

where

H0 = E

�
@ log f" (Yi � �0Xi)

@�

@ log f" (Yi � �0Xi)
@�0

�
=

Z
f 0" (z)

2

f" (z)
dzE

�
XX 0� :

However, the density f" is unknown, and ~�MLE is therefore not feasible. On the other

hand, observe that OLS is still a feasible option and will yield a consistent estimator. The

OLS estimator will however not be as e¢ cient as the MLE since
R
f 0" (z)

2 =f" (z) dz � �2 with
"=" if and only if f" is the N

�
0; �2

�
density.

To improve on the e¢ ciency of the OLS estimator, we therefore propose to obtain a

semiparametric version of the MLE by the following 3-step procedure:

1. Compute the OLS estimator, �̂OLS, as given in eq. (2).

2. Compute the associated residuals, "̂i = Yi � �̂0OLSXi, i = 1; :::; n, and use these to

estimate the marginal density f" nonparametrically, e.g.

f̂" (x) =
1

n

nX
i=1

Kh ("̂i � x) : (16)

12



3. Obtain the MLE estimator as given in (15), but with f" substituted for f̂",

�̂MLE = argmax
�2�

1

n

nX
i=1

log f̂"
�
Yi � �0Xi

�
: (17)

Again, the above estimation method can be generalised to allow for more complicated

parametric forms. Suppose for example

Y = g (X; �) + � (X; �) ";

where g; � : Rd �� 7! R are known up to � 2 �, and " and X are independent with

E ["] =

Z
R
zf" (z) dz = 0; E

�
"2
�
=

Z
R
z2f" (z) dz = 1:

Suppose that we have obtained a preliminary estimator of �, e.g. the MLE based on normal

errors, �̂QMLE which will remain consistent even if the errors are not normally distributed.

We can then compute the corresponding residuals

"̂i =
Yi � g(Xi; �̂QMLE)
�(Xi; �̂QMLE)

; i = 1; :::; n;

and then estimate the density nonparametrically as in eq. (16). In the �nal step, we then

de�ne

�̂ = argmax
�2�

1

n

Pn
i=1

�
log f̂"

�
Y � g (X; �)
� (X; �)

�
+ log (� (X; �))

�
;

We would expect that while �̂QMLE will not enjoy full e¢ ciency, �̂ will.

4 Copulas

To show that semiparametric modelling have applications outside of a regression framework,

we give a last example involving copulas. Copulas have proved to be a useful tool in the

modelling of multivariate dependence structures; they have in particular found use in �nance,

see e.g. Genest et al (2009). We here present a semiparametric family of copulas and

associated estimators.

Let Z = (Z1; Z2) 2 R2 be a bivariate continuous random variable and denote the joint

probability density function (pdf) and cumulative distribution function (cdf) by f and F

respectively,

P (Z1 � z1; Z2 � z2) = F (z1; z2) =
Z z2

�1

Z z1

�1
f (v1; v2) dv1dv2:

Also let fk and Fk denote the marginal pdf and cdf respectively of Zk,

P (Zk � zk) = Fk (x) =
Z zk

�1
fk (u) du; k = 1; 2:

13



The so-called copulas are then used to model the dependence structure between Z1 and Z2
based on the following standard result: There exists a unique function C : [0; 1]2 7! [0; 1]

such that

F (z1; z2) = C (F1 (z1) ; F2 (z2)) ;

c.f. Joe (1997). The function C is referred to as the copula of Z. We easily see that C is the

cdf of the uniformly distributed random variable U := (F1 (Z1) ; F2 (Z2)):

C (u1; u2) = P (F1 (Z1) � u1; F2 (Z2) � u2) :

Furthermore, the joint density of Z can be expressed by

f (z1; z2) = c (F1 (z1) ; F2 (z2)) f1 (z1) f2 (z2) ;

where c : [0; 1]� [0; 1] 7! R+ is the pdf of U .
One can now model the joint distribution of Z by specifying the two marginal distributions

and the copula. In a fully parametric framework, this could for example be done by

f (z1; z2; �) = c (F1 (z1;�1) ; F2 (z2;�1) ; �) f1 (z1;�1) f2 (z2;�1) ;

where � = (�0; �01; �
0
2)
0 2 � � A1 � A1 is a �nite dimensional parameter. We could then

proceed to estimate � by MLE,

�̂ = argmax
�2�

1

n

nX
i=1

flog c (F1 (Z1;i;�1) ; F2 (Z2;i;�1) ; �) + log f1 (Z1;i;�1) + log f2 (Z2;i;�1)g :

This may potentially be a di¢ cult problem to solve numerically if the dimension of � is large.

Instead, one could instead estimate the parameters using a 2-step estimation procedure: First

estimate (�01; �
0
2)
0 by

�̂k = arg max
�k2Ak

1

n

nX
i=1

log fk (Zk;i;�k) ; k = 1; 2;

and then

�̂ = argmax
�2�

1

n

nX
i=1

log c (F1 (Z1;i; �̂1) ; F2 (Z2;i; �̂2) ; �) :

This two-step estimator may have reduced e¢ ciency compared to the full MLE above, but is

easier to implement.

An obvious semiparametric copula model is the following: We still specify a parametric

family of copulas, c (u1; u2; �), but now leave the two marginal distributions unspeci�ed. We

then wish to estimate the marginal distributions nonparametrically, and use these to draw

inference about �. Let

F̂k (zk) =
1

n

nX
i=1

1 fZk;i � zkg ; k = 1; 2;
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be the empirical cdf�s. A natural estimator of � would then be

�̂ = argmax
�2�

1

n

nX
i=1

log c
�
F̂1 (Z1;i) ; F̂2 (Z2;i) ; �

�
:

5 A Class of Two-Step Estimators

In the previous two sections, we presented a number of examples of semiparametric models,

and derived estimators of the parameters of interest. In this section, we wish to develop

a framework within which we can analyze the asymptotic properties of these estimators.

In particular, we will give conditions for the estimators to be
p
n-consistent and with an

asymptotically normal distribution.

We start out by introducing a general class of semiparametric two-step estimators: In

the �rst step, a preliminary nonparametric estimator is computed. In the second step, this

nonparametric estimator is plugged into a criterion function which is then minimized in

order to obtain an estimator of the parametric component. The class is su¢ ciently general to

contain all of the estimators de�ned in the previous two sections. We give general conditions

for consistency and asymptotic normality of the estimator of the parametric component under

suitable regularity conditions.

Our estimation problem has a lot in common with standard parametric two-step estima-

tion problems where a preliminary estimator of a nuisance parameter is used to obtain an

estimator of the parameter of interest. The only di¤erence is that in our case the preliminary

estimator is a function and not a �nite-dimensional parameter. However, the strategy of

proof for parametric two-step estimators can after suitable modi�cations still be used.

5.1 The Framework

We are interested in estimating a �nite dimensional parameter � 2 � � Rk by a random
objective function Qn (�; 
) where 
 2 � is some in�nite-dimensional parameter, in most

cases a function. The objective function will in most situations be a function of available

data, (Yi; Xi) for i = 1; :::; n, but we here suppress this dependence and only indicate it

through the subscript n. We assume that the parameter space � is a linear space equipped

with a norm k�k. This norm could for example be the supremum norm, k
k = supx j
 (x)j,
or the Lq-norm, k
k =

�R
j
 (x)jq w (x) dx

�1=q for some weighting function w (x) � 0.
If the true value of 
, which we denote 
0, was known, we could estimate � by

~� = argmin
�2�

Qn (�; 
0) : (18)

In this case, standard results for parametric estimators can be empoyed to derive the asymp-

totic properties of ~�, see e.g. Newey and McFadden (1994).
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Here, we will consider the case where 
0 is unknown, hence ~� is not feasible. However,

suppose a preliminary estimator, 
̂, of it is available. Then, but by substituting 
0 for 
̂, we

can instead use

�̂ = argmin
�2�

Qn (�; 
̂) : (19)

We will refer to �̂ as a semiparametric two-step estimator.

Initially, we will make minimal assumptions regarding the form of Qn (�; 
) and 
̂ and

only require that it is a consistent estimator of 
0, and converges with su¢ ciently fast rate.

A leading case is where the objective function takes the form

Qn (�; 
) =
1

n

nX
i=1

q (Zi; �; 
) ; (20)

but we will not limit ourselves to this situation.

Before proceeding with the analysis of the general two-step estimator, we �rst demonstrate

how the estimators presented in the previous sections can be written on the form of (19)-(20)

by suitable choice of q (z; �; 
):

Example 1: Single-Index Model. With 
 = g, the estimator for this model can be written
on the form of eqs. (19)-(20) with q given by

q (z; �; 
) =
�
y � 


�
�0x
��2
;

and the estimator 
̂� could be chosen as


̂� (z) =

Pn
i=1 YiKh (�

0Xi � z)Pn
i=1Kh (�

0Xi � z)
:

Example 2: Partially Linear Model. Here, the estimator can be written on the desired
form by de�ning

q (z; �; 
) =
�
y � 
1 (x2)� �0 (x1 � 
2 (x2))

�2
;

where 
1 (x2) = E [Y jX2 = x2], 
2 (x2) = E [X1jX2 = x2]. The preliminary estimators were
given as


̂1 (x2) =

Pn
i=1 YiKh (X2;i � x2)Pn
i=1Kh (X2;i � x2)

; 
̂2 (x2) =

Pn
i=1X1;iKh (X2;i � x2)Pn
i=1Kh (X2;i � x2)

:

Example 3: E¢ cient Estimation in the Presence of Heteroskedasticity. By de�ning
the function q by

q (z; �; 
) = 
�1 (x)
�
y � �0x

�2
; (21)
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where 
 (x) = �2 (x), the WLS estimator is seen to be a special case of the general two-step

estimator. Here, the preliminary estimators are given by


̂ (x2) =

Pn
i=1 "̂

2
iKh (Xi � x)Pn

i=1Kh (Xi � x)
: (22)

Example 4: Semiparametric Copulas. The function q de�ning the copula estimator �
is given by

q (z; �; 
) = log c (
1 (z1) ; 
2 (z2) ; �) ;

where 
k (z) = Fk (z) is the marginal cdf of Zk, k = 1; 2. These can be estimated by:


̂k (z) =
1

n

nX
i=1

1 fZk;i � zg ; k = 1; 2:

In two of the above examples, namely the partially linear model and the regression model

with unknown heteroskedasticity, closed form expressions of �̂ can be derived. Thus, a direct

analysis of these particular estimators could be carried out, and would probably be more

straightforward compared to the indirect analysis proposed here. But in general, explicit

expressions of the estimators are not available, and analysis has to be centered around the

properties of the objective function Qn (�; 
).

Within this general framework, we will �rst establish high-level conditions under which

�̂ is consistent and converges towards a normal distribution. Imposing more structure on

the objective function Qn (�; 
) and the estimator 
̂, we then sketch how these high-level

conditions can be veri�ed with particular emphasis on the case where 
̂ is a kernel estimator.

Finally, we establish the �rst-order asymptotic properties of the WLS estimator as de�ned

in Section 3.2 by verifying the high-level conditions for this particular estimator.

5.2 Consistency

The proof of consistency is more or less identical to the one for parametric two-step estimators;

the only di¤erence is conceptual since we here work with an in�nite-dimensional parameter.

We will impose the following conditions on the objective function:

C.1 There exists a function Q (�; 
) such that: sup�2� jQn (�; 
0)�Q (�; 
0)j !P 0.

C.2 For all " > 0: infk���0k>"Q (�; 
0) > Q (�0; 
0) :
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C.3 For some � > 0 and Bn = OP (1):

sup
�2�

jQn (�; 
)�Qn (�; 
0)j � Bn k
 � 
0k�

for 
 in a neighbourhood of 
0.

Condition (C.1) states that the infeasible �nite-sample objective function, Qn (�; 
0), has

a well-de�ned limit, Q (�; 
0). Condition (C.2) is an identi�cation condition saying that

the limiting function uniquely identi�es �0 as its minimum, �0 = argmin�2�Q (�; 
0). It

can easily be shown that Condition (C.2) is implied by the following three conditions: � is

compact, � 7! Q (�; 
0) is continuous, and Q (�; 
0) > Q (�0; 
0) for all � 6= �0, while primitive
conditions for C.1 can be found in Newey (1991). Conditions (C.1)-(C.2) imply that the

infeasible estimator ~� as de�ned in eq. (18) is consistent, ~� !P �0; see e.g. Newey and

McFadden (1994, Theorem 2.1).

The �nal condition, (C.3), states that the di¤erence between the two objective functions,

Qn (�; 
̂) and Qn (�; 
0), is asymptotically negligible: Qn (�; 
̂) !P Qn (�; 
0) as 
̂ !P 
0.

Note here that the norm k
 � 
0k is a functional norm as discussed in the beginning of this

section. Under this assumption, the feasible estimator converges towards the infeasible one,

�̂ = ~� + oP (1).

Conditions (C.1) and (C.3) could be exchanged for the following two conditions: (C.1�)

sup�2�;k
�
0k<� jQn (�; 
)�Q (�; 
)j !P 0, � > 0 and (C.3�) sup�2� jQ (�; 
)�Q (�; 
0)j ! 0

as 
 ! 
0. Empirical process theory could be used to verify conditions (C.1�) and (C.3�),

c.f. Andrews (1994a,b), Chen, Linton and van Keilegom (2003), van der Vaart and Wellner

(1996). This veri�cation normally would involve a Lipschitz condition of the type stated in

Condition C.3.

The formal consistency result is stated in the following theorem:

Theorem 1 Assume that Qn (�; 
) satis�es (C.1)-(C.3). If 
̂ 2 � from a certain step with


̂ !P 
0, then �̂ !P �0.

Remark 2 In the case where 
̂ depends on �, one needs to strengthen the consistency con-
dition to sup�2� k
̂� � 
�k !P 0.

We now verify conditions (C.1)-(C.3) for the WLS estimator:

Example 3 (cont.). Let �20 and �0 denote the true parameter values. We here assume

that X 2 X , where X � Rd is compact, and E
�
Y 2
�
< 1. For identi�cation we need that

E
�
XX 0��20 (X)

�
is nonsingular. The assumption of compact support X can be dispensed of,

but one then has to introduce trimming of the estimator, c.f. Robinson (1987).
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Also, assume that �20 (x) ; f (x) > 0 are twice continuously di¤erentiable. In particular,

�2 := infx2X �
2
0 (x) > 0. We restrict � to be compact so there exists constant c such that

j�0xj � c for any � 2 � and x 2 X . We de�ne the norm of �2 as


�2

1 = supx2X

���2 (x)��,
and assume that we have established

�̂2 � �20

1 !P 0; (23)

where �̂2 is the kernel estimator given in (22); this could for example be done using the

results of Kristensen (2009b).

First, we show (C.3): The criterion function takes the form in eq. (21). By a �rst order

Taylor expansion of the function a 7! 1=a,

q(z; �; �̂2)� q
�
z; �; �20

�
=
�
y � �0x

�2� 1

�̂2 (x)
� 1

�20 (x)

�
=
�
y � �0x

�2 �1�
�x�̂2 (x) + (1� �x)�20 (x)

�2 ��̂2 (x)� �20 (x)	 ;
for some �x 2 [0; 1]. Because of (23), infx2X �̂2 (x) � �2=2 almost surely from a certain step

as n!1. Thus,

1�
�x�̂2 (x) + (1� �x)�20 (x)

�2 � 1

[�x�2=2 + (1� �x)�2=2]2
=
4

�4
<1:

Also, since � 7! (Y � �0X)2 is continuous and (Y � �0X)2 � 3Y 2 + 3c2 where E
�
Y 2
�
< 1,

it follows from standard uniform convergence results (see e.g. Newey, 1991) that

sup
�2�

����� 1n
nX
i=1

�
Yi � �0Xi

�2 � E[�Yi � �0Xi�2]
�����!P 0;

and sup�2�E[(Y � �0X)
2] <1. Thus, sup�2� 1

n

Pn
i=1 (Yi � �0Xi)

2 = OP (1). Next, write:

sup
�2�

��Qn ��; �̂2��Qn ��; �20��� � sup
�2�

1

n

nX
i=1

��q(Zi; �; �̂2)� q �Zi; �; �20���
� sup
�2�

1

n

nX
i=1

�
Yi � �0Xi

�2 � sup
x

���� 1

�̂2 (x)
� 1

�20 (x)

���� ;
where

sup
x

���� 1

�̂2 (x)
� 1

�20 (x)

���� � 4


�̂2 � �20

1

�4
= oP (1) :

Thus, (C.3) is satis�ed with

Bn =
4

�2
� sup
�2�

1

n

nX
i=1

�
Yi � �0Xi

�2 ,
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and and � = 1.

Next, we verify (C.1): By yet another application of a uniform Law of Large Numbers

(LLN), one easily shows that

sup
�2�

��Qn ��; �20��Q ��; �20���!P 0;

where � 7! Q
�
�; �20

�
= E

h
[Y � �0X]2 ��20 (X)

i
is continuous.

Finally, to verify (C.2), observe that for any � 6= �0,

Q
�
�; �20

�
= E

h�
(�0 � �)0X + "

�2
��20 (X)

i
= (�0 � �)0E

�
XX 0��20 (X)

�
(�0 � �) + E

�
"2��20 (X)

�
> E

�
"2��20 (X)

�
= Q

�
�0; �

2
0

�
:

Given the remarks following conditions (C.1)-(C.3), this implies (C.2). We have now veri�ed

these conditions and Theorem 1 now gives us consistency of �̂.

5.3 Asymptotic Normality

To show asymptotic normality, we use the same strategy as for parametric two-step estima-

tors: There, one normally would make a Taylor expansion w.r.t. the �rst-step estimator,

thereby taking into account the additional sampling error due to the �rst-step estimator.

However, in our setting the �rst-step estimator is a function, i.e. an in�nite-dimensional

parameter. Thus, in order to follow the strategy used for parametric two-step estimators, we

�rst need to generalize the concept of derivatives from the standard �nite-dimensional case

to the in�nite-dimensional one.

Let T : � 7! Rd be a functional taking any given 
 2 � into a Euclidean vector. For
example , T (
) =

R

 (x) dx, Tx (
) = @
 (x) =@x, and Tx (
1; 
2) = 
1 (x) 
2 (x).

De�nition 3 We say that T is pathwise di¤erentiable at 
 2 � if there exists a linear and
continuous functional _T (
) [�] : � 7! Rd such that

_T (
) [h] = lim
t!0

T (
 + th)� T (
)
t

;

for all h 2 �.

One normally refers to _T as the pathwise derivative of T . In the �nite-dimensional case,

if T is di¤erentiable with derivative @T (
) =@
 then _T (
) [h] is the di¤erential of T ,

_T (
) [h] =
@T (
)

@

h:
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You can normally carry over results from the �nite-dimensional case when deriving the

pathwise derivative. In particular, the chain-rule is still valid.

Examples of Functionals. (i) � = f
 :
R
j
 (x)j dx < 1g and T (
) =

R

 (x) dx. Then

_T (
) [h] =
R
h (x) dx: It�s linear, continuous in the L1-norm, and

T (
 + th)� T (
) =
Z
(
 + th) (x) dx�

Z

 (x) dx = t

Z
h (x) dx = t _T (
) [h] :

(ii) � = f
j@
 (x) =@x existsg and T (
) = @
 (x) =@x. Then _T (
) [h] = @h (x) =@x:

T (
 + th)� T (
) = @ (
 + h)

@x
� @

@x

= t
@h

@x
= t _T (
) [h]

These two examples are simple cases since in both T is a linear functional.

(iii) Tx (
) = F (
 (x)) then _Tx (
) [h] = F
0 (
 (x))h (x).

(iv) T (
) =
R
F (
 (x)) dx. Then _T (
) [h] =

R
F 0 (
 (x))h (x) dx under suitable conditions

on F and �.

We now wish to use pathwise derivatives to evaluate the additional sampling variation of

our estimator �̂ due to the presence of 
̂. First, introduce the following functionals which are

the score and the Hessian of the objective functions,

Sn (�; 
) =
@Qn (�; 
)

@�
; Hn (�; 
) =

@2Qn (�; 
)

@�@�0
:

We then assume that the pathwise derivative of Sn (�; 
) w.r.t. 
 at (�; 
) = (�0; 
0) exists

in the direction h 2 � and denote this by _Sn (�0; 
0) [h]. We can then give conditions under

which asymptotic normality holds:

N.1 k
̂ � 
0k = oP (n�1=4) and �̂ !P �0.

N.2 �0 2 int�.

N.3 Qn (�; 
) is twice continuously di¤erentiable w.r.t. � in a neighbourhood N of �0.

N.4 The pathwise derivative _Sn (�0; 
0) [h] exists and satis�es


Sn (�0; 
)� Sn (�0; 
0)� _Sn (�0; 
0) [
 � 
0]



 � Bn k
 � 
0k2

where Bn = OP (1).

N.5
p
n
n
Sn (�0; 
0) + _Sn (�0; 
0) [
̂ � 
0]

o
!d N (0;
0) :

N.6 jjHn (�; 
)�Hn (�; 
0)j j � Bn k
 � 
0k� where Bn = OP (1).
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N.7 sup�2N kHn (�; 
0)�H (�; 
0)k !P 0, where H0 = H (�0; 
0) is non-singular.

As was the case with the consistency result, our conditions consist of two parts: The �rst

set of conditions, (N.2), (N.3), (N.5) (setting _Sn(�0; 
̂ � 
0) = 0) and (N.7), imply that the
infeasible estimator assuming 
0 known, ~�, is

p
n-asymptotically normally distributed; see

e.g. Newey and McFadden (1994, Theorem 3.1). The remaining conditions, (N.1), (N.4) and

(N.6), then enable us to show that the feasible estimator is also
p
n-asymptotically normally

distributed.

Theorem 4 Assume that �̂ !P �0, and that (N.1)-(N.7) hold. Then:

p
n(�̂ � �0)!d N

�
0;H�1

0 
0H
�1
0

�
;

where 
0 and H0 are given in (N.5) and (N.7).

As mentioned before the theorem, the infeasible estimator, ~�, is also
p
n-asymptotically

normally distributed under (N.1)-(N.7). However, ~� will in general have a smaller asymptotic

variance and as such be more e¢ cient than �̂. The two estimators asymptotic variances are

only equal if the adjustment term vanishes asymptotically. That is,
p
n _Sn (�0; 
0) [
̂ � 
0]) =

oP (1) in which case, ~� and �̂ are �rst order equivalent. In most cases however, one pays a

price for not knowing 
0 in which case Var(�̂) >Var(~�).

An alternative set of conditions which in some cases might be easier to verify can be used

instead of (N.3)-(N.7):

N.3�Qn (�; 
) is continuously di¤erentiable w.r.t. � in a neighbourhood N of �0.

N.4�There exists a functional S (�; 
) such that �n (�; 
) := Sn (�; 
)� S (�; 
) satis�es:

sup
k���0k<�;k
�
0k<�

k�n (�; 
)� �n (�0; 
0)k = oP
�
1=
p
n
�
;

and S (�0; 
0) = 0.

N.5�The pathwise derivative _S (�; 
) [h] of S (�; 
0) exists and satis�es


S (�0; 
)� S (�0; 
0)� _S (�0; 
0) [
 � 
0]



 � B k
 � 
0k2

for a constant B <1.

N.6�
p
nfSn (�0; 
0) + (�0; 
0) [
̂ � 
0]g !d N (0;
0).

N.7�The function S (�; 
) is continuously di¤erentiable w.r.t. � in a neighbourhood N of

�0 with continuous derivative H (�; 
) which satis�es sup�2N kH (�; 
)�H (�; 
0)k �
B k
 � 
0k�, where H0 = H (�0; 
0) is non-singular.
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We note that (N.3) has been weakened to only require Qn (�; 
) having one derivative. The

condition (N.4�) is rather high-level, but can be veri�ed by empirical process techniques; see,

for example, Chen, Linton and van Keilegom (2003) for a set of su¢ cient conditions. In most

cases, S (�; 
) can be chosen as S (�; 
) = @Q (�; 
) = (@�), in which case the identi�cation

condition given in (C.2) will normally ensure that S (�0; 
0) = 0.

Also note that the conditions in (N.5�) and (N.6�) involve the limiting score function

S (�; 
) instead of, as in (N.5) and (N.6), the sample version, Sn (�; 
).

Theorem 5 Assume that �̂ !P �0, and (N.1)-(N.2) and (N.3�)-(N.7�) hold. Then the con-

clusion of Theorem 4 remains true.

While in Theorem 4 we require a CLT to hold for
p
nfSn (�0; 
0)+ _Sn (�0; 
0) [
̂ � 
0]g, in

Theorem 5 we now require
p
nfSn (�0; 
0)+ _S (�0; 
0) [
̂ � 
0]g to satisfy one. To apply either

of these theorems, the major challenge lies in establishing a CLT for either of the two terms.

At a �rst glance, this might seem impossible due to the presence of _Sn (�0; 
0) [
̂ � 
0] and
_S (�0; 
0) [
̂ � 
0] since both terms involve a nonparametric estimator, 
̂, which in general
converges with a rate slower than

p
n. However, additional smoothing of the nonparametric

estimator is implicitly taking place when plugging 
̂ into the the pathwise derivative. As we

shall see, this smoothing will in general increase the convergence rate and make it possible

to verify (N.5) or (N.6�).

To demonstrate how
p
n-convergence can be veri�ed, we restrict ourselves to the case

where the score can be written as

Sn (�; 
) =
1

n

nX
i=1

s (Zi; �; 
) + oP

�
n�1=2

�
;

where Zi 2 Rd, i = 1; :::; n, are i.i.d. data. This restriction holds, for example, when Qn (�; 
)
is given by eq. (20) in which case s (z; �; 
) = @q (z; �; 
) = (@�). Under this restriction, the

pathwise derivatives of Sn (�; 
) and S (�; 
) are given by

_Sn (�; 
) [h] =
1

n

nX
i=1

_s (Zi; �; 
) [h] ; _S (�; 
) [h] = E [ _s (Z; �; 
) [h]] ;

where _s (z; �; 
) [h] is the pathwise derivative of s (z; �; 
) [h] w.r.t. 
 in the direction h.

We �rst give su¢ cient conditions for Assumption (N.4)-(N.5) to hold:

N.4.i ks (z; �0; 
)� s (z; �0; 
0)� _s (z; �0; 
0) [
 � 
0]k � b (z) k
 � 
0k2 with E [b (Z)] <1.

N.5.i n�1
Pn
i=1 _s (Zi; �0; 
0) [
̂ � 
0] = _S (�0; 
0) [
̂ � 
0] + oP (1=

p
n) :
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N.5.ii There exists a function � : Rd 7! Rk with E [� (Z)] = 0 and E[k� (Z)k2] < 1 such

that

_S (�0; 
0) [
̂ � 
0] =
1

n

nX
i=1

� (Zi) + oP
�
1=
p
n
�
:

N.5.iii E [s (Z; �0; 
0)] = 0 and E[ks (Z; �0; 
0)k2] <1.

Lemma 6 Assume that _s (z; �; 
) [h] exists and satis�es (N.4.i)-(N.5.iii). Then Assumptions
(N.4) and (N.5) hold with


 = E
�
[s (Z; �0; 
0) + � (Z)] [s (Z; �0; 
0) + � (Z)]

0� :
While (N.4.i)-(N.5.iii) are more primitive conditions, it is in many cases still not so obvious

how to actually verify them. In particular, assumptions (N.5.i)-(N.5.ii) are not straightfor-

wardly shown to hold. To make any further progress, we assume that 
̂ can be written on

the form


̂ (x) =
1

n

nX
i=1

wn (x;Zi) + oP

�
n�1=4

�
;

for some function wn which is allowed to depend on sample size n. This restriction is for

example satis�ed for kernel estimators by de�ning wn (x;Zi) = YiKh (Xi � x). One can

easily check that series estimators also fall within this framework, see e.g. Newey (1997). In

the following, we suppress the dependence on (�0; 
0), and for example write _S[
̂ � 
0] for
_S (�0; 
0) [
̂ � 
0].

Veri�cation of (N.5.i). First, observe that since _s is a linear functional, we can write

1

n

nX
i=1

_s (Zi) [
̂ � 
0]� _S[
̂ � 
0]

=

(
1

n

nX
i=1

_s (Zi) [
̂ � �
]� _S[
̂ � �
]
)

+

(
1

n

nX
i=1

_s (Zi) [�
 � 
0]� _S[�
 � 
0]
)

=: In;1 + In;2;

where �
 (x) = E [
̂ (x)]. De�ning

Vn
�
x; x0

�
= _s (z) [wn

�
�; x0
�
]; Vn = E [Vn (Z1; Z2)] ;

Vn;1 (x) = E [Vn (x;Z)] ; Vn;2 (x) = E [Vn (Z; x)] ;
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and again using that _s is a linear functional, we can write

In;1 =
1

n2

nX
i=1

nX
j=1

_s (Zi) [wn (�; Zj)]�
1

n

nX
i=1

_s (Zi) [E[wn (�; Z)]]

� 1

n

nX
i=1

_S[wn (�; Zj)] + _S[E[wn (�; Z2)]]

=
1

n

nX
i;j=1

Vn (Zi; Zj)�
1

n

nX
i=1

Vn;1 (Zi)�
1

n

nX
j=1

Vn;2 (Zj)� Vn:

One can then use results for so-called U-statistics (see, for example, Lee, 1990 for an intro-

duction) to show that the RHS is oP
�
n�1=2

�
in great generality. This takes care of the �rst

term. To deal with the second term, one can normally show that

k _s (z; �0; 
0) [h]k � b (z) khk ;

in which case,

E [kIn;2k] � E [b (Z)] k[E[
̂]� 
0]k

and one then needs to show that the bias vanishes su¢ ciently fast, kE[
̂]� 
0k = oP
�
n�1=2

�
.

In the case where 
̂ is a kernel estimator, this can be veri�ed in great generality by combining

so-called higher order kernels with undersmoothing.

Veri�cation of (N.5.ii). This is normally established by �rst showing that there exists a
function d such that

_S[h] =

Z
d (x)h (x) dx:

Often one can establish this directly if one has an explicit expression for _S, see Newey (1994b).

Alternatively, one can use Riesz�Representation Theorem to establish this as utilized in Aït-

Sahalia (1993).

Given this representation, one can normally �nd the function �. Suppose, for exam-

ple, that 
0 (x) = fX (x)E [Y jX = x], 
̂ (x) = 1=n
Pn
i=1 YiK ((Xi � x) =h) =hd, and _S[h] =R

d (x)h (x) dx. Then, we �rst write

_S[
̂ � 
0] = _S[
̂]� _S[
0]:

The �rst term satis�es

_S[
̂] =

Z
d (x) 
̂ (x) dx =

1

n

nX
i=1

Yi
1

hd

Z
d (x)K

�
Xi � x
h

�
dx =

1

n

nX
i=1

Yid (Xi) + oP
�
1=
p
n
�
;

where the last equality follows under suitable regularity conditions since

h�d
Z
d (x)K

�
Xi � x
h

�
dx! d (Xi) ;
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as h! 0. The second term can be written as

_S[
0] =

Z
d (x) 
0 (x) dx =

Z
d (x) fX (x)E [Y jX = x] dx = E [Y d (X)] :

So by de�ning � (z) by

� (z) := yd (x)� E [Y d (X)] ;

we obtain as desired that

_S[
̂ � 
0] =
1

n

nX
i=1

� (Zi) + oP
�
1=
p
n
�
:

Further techniques for veri�cation of (N.5.ii) for kernel estimators can be found in Newey

(1994b).

Example 3 (cont.). We assume that we have already veri�ed that

�̂2 � �20

1 = oP

�
n�1=4

�
;

for some bandwidth sequence (see e.g. Kristensen, 2009b).

To derive the asymptotic distribution of �, we �rst �nd the score function and the Hessian,

Sn
�
�; �2

�
=
@Qn

�
�; �2

�
@�

= � 2
n

nX
i=1

��2 (Xi)
�
Yi � �0Xi

�
Xi;

Hn
�
�; �2

�
=
@2Qn

�
�; �2

�
@�@�0

=
2

n

nX
i=1

��2 (Xi)XiX
0
i:

We make the following guess for the pathwise derivative of the score,

_Sn [h] =
1

n

nX
i=1

_s (Zi) [h] ;

where

_s (z) [h] =
�
y � �00x

�
x0��40 (x)h (x) = d (y; x)h (x) ;

d (y; x) =
�
y � �00x

�
x0��40 (x) ;

and h is the direction w.r.t. �2. We have here suppressed the dependence of _Sn [h] on �0 and
0�20 (x). Observe that

d (Y;X) =
�
Y � �00X

�
X��40 (X)h (X) = "X��40 (X)h (X) :

We verify that this satis�es the necessary conditions: First, h 7! _Sn [h] is linear; second, a

second order Taylor expansion of the function a 7! 1=a yields:

1

a
� 1

a0
= � 1

a20
(a� a0) +

2

(�a+ (1� �) a0)3
(a� a0)2 ;
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for some � 2 [0; 1]. Use this equality with a = �̂2 (x), a0 = �20 (x) to obtain

�̂�2 (x)� ��20 (x) = ���40 (x)
�
�̂2 (x)� �20 (x)

�
+

2�
�x�̂2 (x) + (1� �x)�20 (x)

�3 ��̂2 (x)� �20 (x)�2 ;
where ����� 2�

�x�̂2 (x) + (1� �x)�20 (x)
�3
����� � 16

�6
;

by the same arguments as in the proof of consistency. Thus,


Sn ��0; �̂2�� Sn ��0; �20�� _Sn
�
�̂2 � �20

�



� 2

n

nX
i=1



"iX 0
i



 ���̂�2 (Xi)� ��20 (Xi) + �
�4
0 (Xi)

�
�̂2 (Xi)� �20 (Xi)

���
�
(
2

n

nX
i=1



"iX 0
i



) sup
x2X

���̂�2 (x)� ��20 (x) + ��40 (x)
�
�̂2 (x)� �20 (x)

��� ;
where n�1

Pn
i=1 k"X 0k = E [k"X 0k] + oP (1) by the LLN, while

sup
x2X

���̂�2 (x)� ��20 (x) + ��40 (x)
�
�̂2 (x)� �20 (x)

���
� 16

�6
sup
x2X

���̂2 (x)� �20 (x)��2
=
16

�6


�̂2 � �20

21

= oP

�
n�1=2

�
:

We conclude

p
nSn

�
�0; �

2
�
=
p
nSn

�
�0; �

2
0

�
+
p
n _Sn

�
�̂2 � �20

�
+ oP (1) :

Next, for any h,

_S [h] = E [ _s (Z) [h]] = E [d (Y;X)h (X)]

= E
�
"��40 (X)h (X)X 0� = E �E ["jX]��40 (X)h (X)X 0�

= 0;

since E ["jX] = 0. This implies that the adjustment term is � (Z) � 0. So if we can verify

that
p
n
�
_Sn
�
�̂2 � �20

�
� _S

�
�̂2 � �20

��
!P 0;

we are able to conclude that
p
n _Sn

�
�̂2 � �20

�
= oP (1) :
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The Hessian satis�es

Hn ��̂2��Hn ��20�

 � 2

n

nX
i=1

kXik2
���̂�2 (Xi)� ��20 (Xi)

��
�
(
2

n

nX
i=1

kXik2
)
sup
x2X

���̂�2 (x)� ��20 (x)
��

= OP (1)� oP (1) ;

and Hn
�
�20
�
!P H0 = E

�
��20 (X)XX 0� by the LLN.

Collecting the above results,

p
n(�̂ � �0) = H�1

n

�
��; �̂2

�p
nSn

�
�0; �̂

2
�

= H�1
n

�
��; �̂2

�np
nSn

�
�0; �

2
0

�
+
p
n _Sn

�
�̂2 � �20

�
+ oP (1)

o
= H�1

n

�
��; �̂2

� �p
nSn

�
�0; �

2
0

�
+ oP (1)

	
!d N

�
0;H�1

0 
0H
�1
0

�
;

where


0 = E
�
��4 (X) "2XX 0� = E ���2 (X)XX 0� ;

such that

H�1
0 
0H

�1
0 = E

�
��2 (X)XX 0��1 :

Observe that the infeasible WLS,

~� = argmin
�2�

Qn
�
�; �20

�
;

has the same asymptotic distribution as �̂. Thus, the feasible WLS estimator based on the

nonparametric estimator �̂2 (x) is asymptotically equivalent to the unfeasible WLS. So one

looses no e¢ ciency in substituting �20 for �̂
2 in the estimation of �. However, note that this

does not mean that �̂ is necessarily the most e¢ cient estimator available, since it does not

reach the Cramer-Rao bound (except in the case where the rescaled error term, ��1 (X) ", is

i.i.d. standard Normally distributed).

5.4 Estimation of Variance

The estimation of H0 can be done by Ĥ = Hn(�̂; 
̂) and is consistent under the conditions

given in Theorem 4. If an estimator �̂ of � is available then under regularity conditions


̂ =
1

n

nX
i=1

h
s(Zi; �̂; 
̂) + �̂(Zi)

i h
s(Zi; �̂; 
̂) + �̂(Zi)

i0
will be a consistent estimator of 
0. Normally, one is able to derive an explicit expression

of � as � (z) = � (z; �0; 
0) in which case a natural choice is �̂(z) = �(z; �̂; 
̂). Using standard
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techniques, one can show that the variance estimator will be consistent if s and � satisfy

Lipschitz conditions in (�; 
), see e.g. Newey and McFadden (1994, Theorem 8.13).

In complicated models however a closed form expression of � is not available (see, for

example, Kristensen, 2009a). One can then either do bootstrapping (Chen et al, 2003) or use

numerical methods (Newey, 1994a).

6 Sieve Estimation

While in many cases, semiparametric models can be estimated by a two-step procedure,

an alternative approach is to estimate both the parametric and nonparametric component

simultaneously. We discuss how this can be done in the context of sieve-estimators.

As in the previous section, we wish to estimate a parameter � 2 � � Rk using a criterion
function Qn (�; 
) where 
 2 � is an in�nite-dimensional parameter. Instead of relying on a
preliminary estimator (if one such is available at all), and developing a two-step procedure,

one can try to estimate � and 
 simultaneously using so-called sieves. The method of sieves

is a general nonparametric method where in�nite-dimensional function spaces are replaced

by approximating, �nite-dimensional spaces (a so-called sieve) in �nite-samples. The approx-

imation error due to use of a �nite-dimensional space vanishes asymptotically by letting the

dimension of the sieve increase with sample size.

In order to de�ne the semiparametric sieve estimator, we �rst need to introduce some

additional notation. Suppose we have chosen a sequence of approximating, �nite-dimensional

spaces f�Jg such that �J � �, J � 1, and
S1
J=1 �J = �. We then de�ne

(�̂; 
̂) = arg min
�2�;
2�Jn

Qn (�; 
) ; (24)

for some sequence Jn ! 1 as n ! 1. Here, we estimate � and 
 simultaneously using the
same objective function, Qn. In contrast, the two-step estimators considered in the previous

section used two di¤erent objective functions to obtain estimates of � and 
 respectively.

General results establishing consistency and convergence rates for the case where Qn (�; 
)

takes the form of a sample-average as in eq. (20) can be found in Shen and Wong (1994)

and Shen (1997). Moreover, conditions for �̂ to be
p
n-asymptotically normally distributed

are derived in these two papers. GMM-type sieve estimators for models de�ned through

conditional moment conditions are developed and analyzed in Ai and Chen (2003); see also

Blundell et al (2007). The conditions to obtain these results are fairly technical however (and

so are the proofs) so we will not go into further details here.

One of the disadvantage of the above sieve-approach is the practical implementation. In

the two-step estimation, 
̂ is given as a preliminary estimator, and one therefore only have

solve the ("low"-dimensional) optimization problem, �̂ = argmin�2�Qn (�; 
̂). In contrast,

sieve estimators require simultaneous optimization over both � and 
. In particular, the
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dimension of 
 can be quite large in standard problems and grows exponentially with the

number of variables that it is a function of. Thus, the numerical problem of solving for (�̂; 
̂)

in eq. (24) is "high"-dimensional and can be computationally infeasible. However, in many

cases, a closed-form solution is available, thereby reducing the numerical problems.

We here give two examples demonstrating how a semiparametric sieve estimator can be

implemented.

Example 1 (cont.). With 
 = g, the criterion function for the single-index model is on the
form of eq. (20) with q given by

q (z; �; 
) =
�
y � 


�
�0x
��2
:

Suppose that � is some function space for which there exists a sieve on the form

�J =

8<:
J (z) =
JX
j=1

�j'j (z) : �j 2 R, j = 1; :::; J

9=; (25)

where '1 (z) ; '2 (z) ; :::: are known basis functions. The sieve estimator de�ned in eq. (24)

then takes the form

(�̂; 
̂) = arg min
�;AJn

nX
i=1

�
Yi �A0Jn�Jn

�
�0Xi

��2
;

where AJn = (�1; :::; �Jn)
0 and �Jn (z) = ('1 (z) ; :::; 'Jn (z))

0. For any given value of �, the

�rst order condition w.r.t. AJn is

nX
i=1

�
Yi �A0Jn'Jn

�
�0Xi

��
�Jn

�
�0Xi

�
= 0;

which yields the solution

ÂJn (�) =

 
nX
i=1

�Jn
�
�0Xi

�
�Jn

�
�0Xi

�0!�1 nX
i=1

�Jn
�
�0Xi

�
Yi:

Substituting this in, we then get a pro�led estimator:

�̂ = argmin
�

nX
i=1

h
Yi � ÂJn (�)

0�Jn
�
�0Xi

�i2
:

So here the computational burden is restricted to numerical optimization over �. Observe

that the simultaneous estimator in this case is identical to the two-step estimator where a

series estimator is used as a preliminary estimator of 
.

Example 4 (cont.). In the case of the semiparametric copula model, 
 = (f1; f2) and the
objective function can again be written as in eq. (20) with q given by

q (z; �; 
) = flog c (F1 (z1) ; F2 (z2) ; �) + log f1 (z1) + log f2 (z2)g :
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This estimator was proposed by Chen et al (2006) who also explain how a sieve space for the

two densities can be constructed. The sieve estimator can in general not be written on closed

form and has to be found by numerical optimization which makes it maybe less attractive.

The resulting sieve estimator based on this criterion will in general be more e¢ cient than the

two-step estimator proposed in Section 4.

While in the �rst of the above two examples, the sieve and two-step kernel estimator are

very similar, the sieve estimator in general will lead to di¤erent estimators. In particular,

sieve estimators will in general be more e¢ cient than two-step kernel estimators due to its

construction where the parametric and nonparametric component are estimated simultane-

ously. This leads us to the issue of e¢ ciency of semiparametric estimators:

7 Semiparametric E¢ ciency

Recall that any semiparametric model is completely characterized by a parametric compo-

nent, �0, and a nonparametric one, 
0 (�). The parameter of interest is �0, and one may ask
how e¢ ciently this parameter can be estimated without any prior knowledge of the nonpara-

metric component, 
0 (�). This is in general a hard question to answer, but a constructive
approach has been to compute bounds on the level of e¢ ciency for �0.

The intuition behind the bounds that we are going to introduce is the following: Consider

the estimation of two statistical models where the second model is contained (nested) within

the �rst one. Clearly, we expect the estimation of the second model to be an easier problem

than the estimation of the �rst one. In particular, if the two models share a common para-

meter, say �, we expect this parameter to be estimated more precisely in the second model.

Thus, if we can evaluate the e¢ ciency of the estimation of � in the second model, this will

give us a bound for the e¢ ciency of � in the �rst model.

Stein (1956) used the above idea to construct e¢ ciency bounds for semiparametric esti-

mation problems. As the �rst, more complicated, model, he chose the semiparametric model

of interest. This is characterized by (�0; 
0 (�)). As the second, simpler model, he then in-
troduced a fully parametric submodel: Choose some parametric family of functions, 
 (�;�)
where � 2 A � Rl is the parameter, and suppose that the parametric submodel contains the
true function 
0 (�), 
0 (�) = 
 (�;�0) for some �0 2 A. Thus, the second model is characterized
by (�0; �0).

The estimation of the semiparametric model should clearly be at least as hard as the

estimation of the fully parametric submodel. Thus, we cannot expect to be able to estimate

�0 with higher precision in the semiparametric model. Since parametric submodel is fully

speci�ed in terms of (�; �), we can write up the density of the model as a function of (�; �),

(�; �) 7! p (z; �; 
 (�;�)). A natural estimator is then the MLE, and the precision of the MLE
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is determined by the associated Fisher information,

I = E
�
@2 log p (Z; �; 
 (�;�))
@ (�; �) @ (�; �)0

�
=

"
I�� I��
I�� I��

#
:

For any given parametric speci�cation, 
 (�;�), the e¢ ciency level for � is therefore given by
the Cramer-Rao bound,

Ip = I�� � I��I�1��I��:

That is, the asymptotic variance of the MLE is I�1p . This variance expression quanti�es the

price we have to pay for not knowing 
 (�) (corresponding to � in the parametric model): If
� is known, � can be estimated with asymptotic variance I�1�� . If � is unknown and has to
be estimated, the variance becomes I�1p � I�1�� with equality if and only if I�� = 0.

Consider now an estimator not relying on any parametric information regarding 
 (�),
and let I�1sp be its asymptotic variance. Then it must hold that I�1p � I�1sp . This will hold
regardless of how the parametric submodel has been chosen such that sup
(�;�) I�1p � I�1sp .
This leads to the following de�nition of the semiparametric variance (or e¢ ciency) bound as

the asymptotic variance of the "least favourable" parametric submodel:

semiparametric variance bound (SVB) = sup

(�;�)

I�1p :

A particular attractive class of semiparametric estimators are those that perform as well

as if we actually knew the nonparametric component: We call a (semiparametric) estimator

�̂ adaptive if
p
n(�̂ � �0)!d N

�
0; I�1��

�
:

A necessary condition for this to hold is that I�� = 0 for all parametric submodels, which

in general is not satis�ed. For example, none of the semiparametric estimators considered in

Section 2 are adaptive. On the other hand, the MLE-type estimators introduced in Section

3.3. are indeed adaptive under certain regularity assumptions on the error distribution.

To see how the e¢ ciency bound is linked to the asymptotic results of the previous section,

recall that we found that the variance of the semiparametric estimator to be on the form

H�1
0 
0H

�1
0 where H0 = I�� and


0 = E
�
fs (Z; �0; 
0) + � (Z)g fs (Z; �0; 
0) + � (Z)g0

�
:

Here, s (Z; �0; 
0) = @ log p (Z; �; 
0) = (@�), while � (Z) is the adjustment term due to the

fact that we are using an estimator of 
0 instead of the true value itself. The semiparametric

e¢ ciency bound is then roughly speaking a question of how you design the estimator to

obtain the "smallest" possible � in terms of variance. In particular, if � = 0, the estimator is

adaptive, c.f. de�nition above, since it performs just as well as if we actually knew 
0.
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It should be noted here that there is no guarantee that there actually exists a semipara-

metric estimator that reaches the e¢ ciency bound. As such the bound is not necessarily

sharp. Examples of this situation can be found in Ritov and Bickel (1987) where the semi-

parametric e¢ ciency bound is well-de�ned, but no
p
n-consistent semiparametric estimator

exists.

While the e¢ ciency bound makes intuitive sense, it is in general di¢ cult to derive an

explicit expression of it for general semiparametric problems. We will therefore not attempt

to derive any e¢ ciency bounds here. Instead, we will here try to give some more intuition

for the e¢ ciency bound by showing how this changes according to what assumptions the

research is willing to impose on the model. As a simple example, consider the following

semiparametric regression model,

Y = m (X; �) + ";

where the conditional mean is fully parametrized, but the only restrictions on the errors

are that E ["jX] = 0 and E
�
"2
�
< 1. In this case 
 = F"jX (ejx) is the nonparametric

component. Depending on what additional assumptions the researcher is willing to make

regarding F"jX , di¤erent e¢ ciency bounds appears. If for example, we are only willing to

impose the conditional mean restriction that E ["jX] = 0, the SVB is given by

SVB = E
�
��2 (X) _m (X; �0; 
0) _m (X; �0; 
0)

0��1 ; (26)

where _m (X; �; 
) = @m (X; �; 
) = (@�), and �2 (X) = E
�
"2jX

�
is the conditional variance.

This can for example be reached using the general sieve-estimator of Ai and Chen (2003).

If on the other hand, one is willing to make the stronger assumption of independence

between " and X and that " has a symmetric distribution, the e¢ ciency bound becomes

SVB = E

"�
f 0" (")

f" (")

�2
_m (X; �0; 
0) _m (X; �0; 
0)

0
#�1

; (27)

where f" (") is the density of ". It is easily checked that this variance bound is smaller than

the the one obtained in eq. (26). The intution behind this is that stronger restrictions on the

model gives more information about the parameter of interest. In particular, the e¢ ciency

bound in eq. (27) is equal to the Cramer-Rao bound. An adaptive estimator can be developed

along the same lines as done in Section 3.3.

8 Notes

The estimator of the single-index model was proposed in Ichimura (1993) who also derived

its theoretical properties. The asymptotic theory for the average-derivative estimator were

developed in Powel et al (1989); see also Hristache et al (2001). In the binary choice case, one
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can alternatively use maximum likelihood methods to estimate �0 in the single-index model,

c.f. Klein and Spady (1993).

Robinson (1988b) and Speckman (1988) proposed the residual-based estimator of the

partially linear model given in eq. (9) and derived its asymptotic distribution. Andrews

(1994a) give results for the extended version in eq. (10).

Robinson (1987) derived the asymptotics of the WLS-estimator in the presence of het-

eroskedasticity of unknown form, and showed that his estimator reached the semiparametric

e¢ ciency bound. Ai and Chen (2003) propose semiparametrically e¢ cient sieve estimators

for a class of semiparametric models described by conditional moment restrictions.

For an introduction to and general results on copulas, see Joe (1997). The properties of

the semiparametric copula estimator in Section 4 were derived in Genest et al. (1995), while

the properties of the sieve estimator in Section 6 were analyzed in Chen et al (2008).

For further reading on functional derivatives, see e.g. Luenberger (1969) and Kantorovich

and Akilov (1982).

Our asymptotic results for semiparametric two-step estimators are similar to those found

in, amongst others, Andrews (1994a), Chen, Linton and van Keilegom (2003), Newey and

McFadden (1994), Newey (1994b), Pakes and Olley (1995). These studies all give general

conditions for consistency and asymptotic normality of two-step semiparametric estimators.

For higher-order properties of semiparametric estimators, we refer to Linton (1995,1996).

For results on nonparametric sieve estimators, we refer to Andrews (1991), Fenton and

Gallant (1996), Gallant and Nychka (1987), Newey (1997) and Shen and Wong (1994). For

their use in semiparametric estimation, see Ai and Chen (2003), and Shen (1997). Chen

(2007) give an overview of both non- and semiparametric estimation using sieve methods.

Newey (1990) gives a good introduction to semiparametric e¢ ciency bounds, and how to

derive these; general approaches to computing e¢ ciency bounds can be found in Bickel et al

(1993) and Severini and Tripathi (2001). Chamberlain (1987, 1992) derive e¢ ciency bounds

for conditional moment restrictions and semiparametric regressions. Manski (1984) develop

e¢ ciency bounds and adaptive estimators for nonlinear regression models under independence

assumption; see Drost and Klaassen (1997) for similar results in the case of heteroskedastic

time series models.

We have not discussed the practical implementation of semiparametric estimators. We

refer to Ichimura and Todd (2007) for an overview. Cattaneo et al (2009) discuss in detail

bandwidth selection for average derivative estimators, while Härdle et al (1993) propose a

speci�c method for the single-index models.

We have throughout assumed that data was i.i.d. Most of the asymptotic results for the

proposed estimators go through for stationary and mixing sequences; see e.g. Ang and Kris-

tensen (2009), Chen et al. (2009), Hidalgo (1992), Kristensen (2009a) and Li and Wooldridge

(2002). The issue of semiparametric e¢ ciency bounds for time series models is however not
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very well-developed once you leave the Markov setting and allow for general dependence; see

Bickel and Kwon (2001) and Schick and Wefelmeyer (2005) for discussions and some results.
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A Proofs

Proof of Theorem 1. We wish to show that for any " > 0, P (jj�̂ � �0jj > ") ! 0 as

n ! 1. Let " > 0 be given; then by (C.3), there exists a � > 0 such that k� � �0k > "

implies Q (�; 
0) � Q (�0; 
0) + �, which in turn implies jQ(�; 
0)�Q (�0; 
0) j � �. Thus,

P (jj�̂ � �0jj > ") � P (Q(�̂; 
0) � Q (�0; 
0) + �) � P (jQ(�̂; 
0)�Q (�0; 
0) j � �):

We then have to show that the RHS converges to zero which is equivalent to Q(�̂; 
0) !P

Q (�0; 
0). Since �0 is the unique minimiser of Q (�; 
0), we know that Q (�0; 
0) � Q(�̂; 
0).
Thus,

jQ(�̂; 
0)�Q (�0; 
0) j = Q(�̂; 
0)�Q (�0; 
0)

=
n
Q(�̂; 
0)�Qn(�̂; 
̂)

o
+
n
Qn(�̂; 
̂)�Q (�0; 
0)

o
=: B1 +B2::

The �rst term on the right hand side of the last equation can be written as:

B1 =
n
Qn(�̂; 
0)�Qn(�̂; 
̂)

o
+
n
Q(�̂; 
0)�Qn(�̂; 
0)

o
;

while, using that Qn(�̂; 
̂) � Qn(�0; 
̂), the second term can is bounded by

B2 � Qn(�0; 
̂)�Q (�0; 
0) = fQn(�0; 
̂)�Qn(�0; 
0)g+ fQn(�0; 
0)�Q (�0; 
0)g :

Thus,

jBij � sup
�2�

jQn(�; 
̂)�Qn(�; 
0)j+ sup
�2�

jQn(�; 
0)�Q (�; 
0)j ;

for i = 1; 2. It now follows from C.1 and C.2 that jBij = oP (1), i = 1; 2. In conclusion,

jQ(�̂; 
0)�Q (�0; 
0) j = oP (1) as desired.

Proof of Theorem 4. A Taylor expansion of the score function Sn(�̂; 
̂) w.r.t. � around �0
yields:

0 = Sn(�̂; 
̂) = Sn(�0; 
̂) +Hn(��; 
̂)(�̂ � �0);

where �� 2 [�̂; �0] is some intermediate point. Next, make a (functional) Taylor expansion of
Sn(�0; 
̂) w.r.t. 
 around 
0,

Sn(�0; 
̂) = Sn(�0; 
0) + _Sn (�0; 
0) [
̂ � 
0] +Rn;

where, by Assumptions (N.1). and (N.4), the remainder term

Rn = OP (Bnjj
̂ � 
0jj2) = OP (1)�OP (jj
̂ � 
0jj2) = oP (1=
p
n):
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Combining this with Assumption (N.6)-(N.7), we obtain
p
n(~� � �0) = H�1

0

p
n
n
Sn(�0; 
0) + _Sn(�0; 
0; 
̂ � 
0)

o
+ oP (1) ;

and the desired result follows from Assumption (N.5).

Proof of Theorem 5. First, by Condition N.4�,

0 = Sn(�̂; 
̂) = Sn (�0; 
0) + S(�̂; 
̂) + oP
�
1=
p
n
�
;

where, by a Taylor expansion w.r.t. �,

S(�̂; 
̂) = S(�0; 
̂) +H(��; 
̂)(�̂ � �0);

for some intermediate point �� 2 [~�; �0]. Next, we expand S(�0; 
̂) w.r.t. 
 around 
0,

S(�0; 
̂) = S(�0; 
0) + _S (�0; 
0) [
̂ � 
0] +Rn;

where the remainder term Rn = O(jj
̂ � 
0jj2) = oP (1=
p
n) by (N.5�) and (N.1). Combining

these results with (N.7�),
p
n(�̂ � �0) = H�1

0

p
n
n
Sn(�0; 
0) + _S (�0; 
0) [
̂ � 
0]

o
+ oP (1) ;

and the desired result follows from Condition (N.6�).

Proof of Lemma 6. De�ne

_Sn (�0; 
0) [
 � 
0] =
1

n

nX
i=1

_s (Zi; �0; 
0) [
 � 
0] ;

where _s (z; �0; 
0) [
 � 
0] is given in (N.4.i). Then,


Sn (�0; 
)� Sn (�0; 
0)� _Sn (�0; 
0) [
 � 
0]





� 1

n

nX
i=1

ks (Zi; �0; 
)� s (Zi; �0; 
0)� _s (Zi; �0; 
0) [
 � 
0]k

� Bn k
 � 
0k2 ;

where Bn :=
Pn
i=1 b (zi) =n = E [b (z)] + oP (1) by the Law of Large Numbers. This shows

N.4.

Next, by (N.5.i)-(N.5.ii),
p
n
n
Sn (�0; 
0) + _Sn (�0; 
0) [
̂ � 
0]

o
=
p
n
n
Sn (�0; 
0) + _S (�0; 
0) [
̂ � 
0]

o
+ oP (1)

=
1p
n

nX
i=1

fs (Zi; �0; 
0) + � (Zi)g+ oP (1) ;

where, by the Central Limit Theorem,

1p
n

nX
i=1

fs (Zi; �0; 
0) + � (Zi)g !d N (0;
) ;

where 
 is given in the lemma.
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