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Abstract

A novel estimation method for two classes of semiparametric scalar di¤usion models is pro-

posed: In the �rst class, the di¤usion term is parameterised and the drift is left unspeci�ed,

while in the second class only the drift term is speci�ed. Under the assumption of stationarity,

the unspeci�ed term can be identi�ed as a functional of the parametric component and the

stationary density. Given a discrete sample with a �xed time distance, the parametric compo-

nent is then estimated by maximizing the associated likelihood with a preliminary estimator of

the unspeci�ed term plugged in. It is shown that this Pseudo-MLE (PMLE) is
p
n-consistent

and asymptotically normally distributed under regularity conditions, and demonstrate how the

models and estimators can be used in a two-step speci�cation testing strategy of fully parametric

models. Since the likelihood function is not available on closed form, the practical implementa-

tion of our estimator and tests will rely on simulated or approximate PMLE�s. Under regularity

conditions, it is veri�ed that approximate/simulated versions of the PMLE inherits the prop-

erties of the actual but infeasible estimator. A simulation study investigates the �nite-sample

performance of the PMLE, and �nds that it performs well and is comparable to parametric

MLE both in terms of bias and variance.
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1 Introduction

Continuous-time stochastic processes are widely used in �nance to describe the dynamics of variables

such as asset prices, interest rates and exchange rates; see Björk (2004) for an overview. The theory

however puts very few restrictions on speci�cation of the processes, and the applied researcher will

therefore normally face the problem of choosing a suitable model for a given data set. In the

empirical literature, there is a lack of consensus about the appropriate parametric model to use

with many models having been proposed. This motivates this study where we take a semiparametric

approach to the modelling, estimation and testing of di¤usion processes. This allows us to obtain

robust estimates with a smaller risk of misspeci�cation, and to develop tests for fully parametric

speci�cations.

A di¤usion process is fully characterised by its so-called drift and di¤usion function and if the

researcher has some prior beliefs about the shape of either of these, he may be willing to impose a

parametric form on one term while remaining agnostic about the other. This leads to two classes

of semiparametric di¤usion models: In the �rst class, only the di¤usion is speci�ed parametrically,

while in the second class only the drift is speci�ed.

A fully nonparametric speci�cation is evidently more robust than the two semiparametric classes

considered here, but one pays a price in terms of precision of the associated estimators: We here

propose an estimator of the parametric component and show it converges with
p
n-rate, while in

a nonparametric framework both terms will converge at a slower rate. Moreover, our theoretical

results only rely on low-frequency observations, i.e. the asymptotics are derived with time dis-

tance between observations remaining �xed, and in this setting the fully nonparametric estimators

proposed in the literature so far su¤er from the disadvantage that their asymptotic distributions

are unknown. Thus, they have limited use in drawing inference about the correct speci�cation

of the drift and di¤usion term. In contrast, we here develop formal statistical tests that enable

the researcher to compare fully parametric, semiparametric and nonparametric models: First, we

propose a test of the null that a given semiparametric model is correct against the nonparametric

alternative that the observed process is Markov. Second, we develop two tests of a fully para-

metric speci�cation against either of its two semiparametric alternatives. The second set of tests

complements the ones proposed in the companion paper Kristensen (2008a) where estimators of

the unspeci�ed component in the two semiparametric classes are derived and used in misspeci�ca-

tion tests. Thus, the modelling, estimation and testing framework proposed here provides a set of

tools that are useful in the search for a parsimonious parametric model when only low frequency

observations are available.

The proposed estimation method relies on the assumption of stationarity of the observed dif-

fusion process. Under this assumption, we demonstrate that the drift (di¤usion) term can be

expressed as a functional of the stationary marginal density and the di¤usion (drift) term. This

allows us to uniquely identify the drift (di¤usion) term given a parameterisation of the di¤usion

(drift) together with a nonparametric estimator of the invariant density. Our estimator is then ob-

tained through the following two steps: First, the stationary density is estimated nonparametrically

2



and plugged into the log-likelihood of the discretely observed process together with the parametric

speci�cation of either the drift or the di¤usion. We then de�ne our semiparametric estimator as

the maximizer of this pseudo-log-likelihood. Under regularity conditions, we show consistency and
p
n-asymptotic normality of this pseudo-maximum-likelihood estimator (PMLE).

The two sets of test statistics developed here are also based on the likelihood approach: To

test the semiparametric model against the nonparametric alternative, we propose to estimate the

transition density nonparametrically and then compare this with the constrained version associated

with the semiparametric model; this can be done either using an L2-distance or the Kullback-Leibler

one. As such, these tests are similar in spirit to the ones developed in Aït-Sahalia, Fan and Peng

(2009). To test a fully parametric speci�cation nested within the semiparametric model, we use

the score function of the semiparametric model to develop a Lagrange multiplier (LM) type test

statistic as advocated in Whang and Andrews (1993). For both null hypotheses, we derive the

asymptotic distribution of the relevant test statistics.

Since it is not possible to directly evaluate the likelihood function, we propose either to use

approximate (e.g. Aït-Sahalia, 2002; Pedersen, 1995) or simulation-based (e.g. Kristensen and

Shin, 2008) methods in order to implement the PMLE and the test statistics. We show that the

estimator and tests obtained from such methods will enjoy the same properties as the actual, but

infeasible, ones under weak conditions. The �nite sample properties of the estimator using simulated

likelihood are investigated in a small simulation study. Here, it is shown that, for even moderate

sample sizes, the PMLE performs well compared to the fully parametric MLE, and that the general

method of Kristensen and Shin (2008) yields a good approximation of the actual likelihood funtion

for this particular application.

Our estimator �ts nicely into the general class of semiparametric two-step estimators considered

in e.g. Chen, Linton and van Keilegom (2003) and Newey and McFadden (1994, Section 8), where

general conditions for consistency and asymptotic normality for such estimators are derived. We

follow a similar proof strategy as these studies, but unfortunately the problem in consideration is

not contained in their framework for two reasons: Firstly, they only consider i.i.d. data, while our

observations are dependent. In order to handle this additional complication, we have to assume

that our process is not only stationary but geometrically �-mixing. Secondly, we have to introduce

trimming of our nonparametric estimators which is not considered in the aforementioned studies;

see also Ai (1997) and Robinson (1988) for similar applications of trimming.

Nonparametric estimators of the drift and di¤usion term have been widely studied, see e.g.

Bandi and Phillips (2003), Chen, Hansen and Scheinkman (2000, 2009), Darolles and Gouriéroux

(2001), Gobet et al. (2004). However, only few studies have considered semiparametric models:

Aït-Sahalia (1996a) considers a semiparametric model which belongs to the �rst class of models

considered here, while Conley et al. (1997) specify a �exible parametric model which can be

interpreted as a semiparametric model of Class 2. Bandi and Phillips (2007) propose general

semiparametric estimators using kernel methods based on in-�ll asymptotics where time distance

between observations shrinks to zero. In contrast, the estimators and asymptotics developed in

Aït-Sahalia (1996a) and Conley et al. (1997) and this study are based on a �xed time distance.
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Numerous misspeci�cation tests of di¤usion models given low-frequency data have been pro-

posed in the literature. However, most of these test a fully parametric speci�cation against a

nonparametric Markov alternative (see e.g., Aït-Sahalia, 1996b; Aït-Sahalia et al, 2009; Corradi

and Swanson, 2005; Hong and Li, 2004). Thus, they simultaneously test both the speci�cation

of the drift and di¤usion term, and, as a consequence, these tests are not informative about the

possible cause of a given rejection and do not give much guidance in the search for a correct speci-

�cation. In contrast, we develop a two-step procedure where we test for the correct speci�cation of

one term at a time. In case of overall rejection, our test strategy is therefore able to detect whether

the drift or the di¤usion term is misspeci�ed (or both), and so should be a more helpful in guiding

the researcher towards a correctly speci�ed model.

The rest of the paper is organised as follows: In Section 2, we introduce the semiparametric

models, and develop the PMLE�s of the parametric components. The asymptotics of the PMLE

and misspeci�cation tests are derived in Section 3 and 4 respectively. Section 5 deals with the

implementation of the estimator and test statistics, and the results of the simulation study are

presented in Section 6. We conclude in Section 7. Proofs and lemmas have been collected into the

appendices. We will use the following notation: For a function f (z), we write f (i) (z) = @if (z) =@zi.

For a function f (z; �), we write @i�f (z; �) = @if (z; �) =@�i.

2 Models and Estimators

Let fXtg = fXt : t � 0g be a univariate time-homogenous di¤usion process solving the following
stochastic di¤erential equation (SDE),

dXt = � (Xt) dt+ � (Xt) dWt; (1)

where fWtg is a standard Brownian motion. The domain of fXtg is denoted I = (l; r) where

�1 � l < r � 1. The functions � : I 7! R and �2 : I 7! R+ are the so-called drift and di¤usion
term respectively. Suppose that we have observed n+1 observations from (1), X0; X�; X2�:::; Xn�,

where � > 0 is the �xed time distance between observation. We then wish to draw inference

regarding the drift and di¤usion term.

The process fXtg is Markov, and we base our estimation method on its transition density
pt (yjx), P (Xs+t 2 AjXs = x) =

R
A pt (yjx) dy for s; t � 0 and any Borel set A � I. Under regularity

conditions, the transition density solves the so-called backward Kolmogorov equation,

@pt (yjx)
@t

= A
�
�; �2

�
pt (yjx) ; t > 0; (x; y) 2 I; (2)

where A is the in�nitesimal generator,

A
�
�; �2

�
pt (yjx) = � (x)

@pt (yjx)
@x

+
1

2
�2 (x)

@2pt (yjx)
@x2

:
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Since pt (yjx) is completely characterised by the generator A
�
�; �2

�
, it is a functional of � and �

and we will write pt (yjx) = pt (yjx;�; �). For an overview of partial di¤erential equations (PDE�s)
and their connection to stochastic di¤erential equations, we refer to Friedman (1976).

Suppose that fXtg is strictly stationary and ergodic, in which case it has a stationary marginal
density which we denote �, P (Xt 2 A) =

R
A � (x) dx, for t � 0 and any Borel set A � I. Observe

that � is invariant, � (y) =
R
I pt (yjx)� (x) dx, t � 0. An alternative characterization of the

transition density is through the forward Kolmogorov equation,

@pt (yjx)
@t

= �@ [� (y) pt (yjx)]
@y

+
1

2

@2
�
�2 (y) pt (yjx)

�
@y2

; t > 0; (x; y) 2 I:

Multiplying this PDE with � (x) on both sides and integrating w.r.t. x, the following two equivalent

expressions linking together �, �2 and � are obtained:

� (x) =
1

2� (x)

@

@x

�
�2 (x)� (x)

�
; (3)

�2 (x) =
2

� (x)

Z x

l
� (y)� (y) dy: (4)

From these two expressions, we see that instead of specifying the drift and di¤usion term, an

alternative speci�cation scheme would be to specify the marginal density together with either the

drift or the di¤usion term, an idea originating from Wong (1964); see also Hansen and Scheinkman

(1995) and Hansen et al. (1998). Since the stationary density is nonparametrically identi�able,

we only have to specify either the drift or the di¤usion term; we can then identify the remainder

term from the two others. This observation leads us to focus on the two following classes of

semiparametric di¤usion models:

Class 1: � (�) is unknown and �2 (�; �1) known up to some parameter �1 2 �1.

Class 2: � (�; �2) is known up to some parameter �2 2 �2 and �2 (�) unknown.

For any model in either class, we have an unknown �nite-dimensional parameter, �k, and an

in�nite-dimensional one, � (in Class 1) or �2 (in Class 2). Observe that any parametric model can

be nested as a submodel both in Class 1 and 2. So by estimating the corresponding semiparametric

model, we obtain more robust estimates of either the drift and the di¤usion. Also, we will be able

to test any fully parametric speci�cation against each of its two semiparametric alternatives.

To discuss the estimation of the two classes of models, let us �rst consider a model from Class

1. In this case, we are given a parameterisation of the di¤usion term, �2 (�; �1), which we plug into
the right-hand side of (3) yielding � (x; �1) = @

@x

�
�2 (x; �1)� (x)

�
= [2� (x)]. Since � is unknown, we

substitute a nonparametric estimator for it and here choose to use a nonparametric kernel density

estimator:

�̂ (x) =
1

n

nX
i=1

Kh (x�Xi�) ; (5)
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where Kh (z) = K (z=h) =h for a kernel K : R 7!R and a bandwidth h = hn > 0; see Silver-

man (1986) for an introduction to this estimator. By plugging in �̂, we arrive at the estimator

�̂ (x; �1) =
@
@x

�
�2 (x; �1) �̂ (x)

�
= [2�̂ (x)]. Given �̂ (�; �1) and �2 (�; �1), we then propose to estimate

�1 by pseudo-maximum-likelihood (PMLE), �̂1 = argmax�12�1 Ln
�
�̂ (�; �1) ; �2 (�; �1)

�
, where

Ln
�
�; �2

�
=
1

n

nX
i=1

log p�
�
Xi�jX(i�1)�;�; �2

�
: (6)

We refer to �̂1 as a PMLE since the log-likelihood is not optimized over both unknown parameters,

�1 and �; rather we use a �xed preliminary estimator of �, see the end of Section 4 for further

discussion. Once �̂1 has been found, the obvious pointwise estimators of � (x) and �2 (x) are �̂(x; �̂1)

and �2(x; �̂1) respectively; the asymptotic properties of these are derived in Kristensen (2008a).

The above estimation strategy is also applicable to models from Class 2. For a given parameter-

isation of � (�) = � (�; �2), substitute this into (4) together with �̂, thereby obtaining an estimator
of the unknown di¤usion term, �̂2 (x; �2) = 2

�̂(x)

R x
l � (y; �2) �̂ (y) dy.

1 This can now be plugged

into Ln
�
�; �2

�
together with � (�; �2), and we again have a pseudo-likelihood function which can

be maximized w.r.t. �2.

There is a variety of other estimating procedures in the literature for di¤usion models based on

other objective functions than the log-likelihood; see Aït-Sahalia and Hansen (2006) for an overview.

But given that the transition density gives a complete description of the model, the PMLE is the

most natural candidate.2 In particular, we demonstrate that the only requirement that we need in

order to identify �k for a semiparametric model in Class k, k = 1; 2, is that the parametric submodel

with �0 known is identi�able through its log-likelihood. Since no other objective function carry

more information about the parameter, it will not be able to identify �k unless the log-likelihood

can, and so the PMLE is able to identify �k under the weakest possible conditions.

Aït-Sahalia (1996a) demonstrates that in the case of linear drift and unspeci�ed di¤usion, it

is possible to estimate �2 without using information about the stationary density. For a general

model in Class 2, he observes that

gt (x; �2; �) � E�2;� [XtjX0 = x] = X0 +

Z t

0
E�2;� [� (Xs; �2) jX0 = x] ds; (7)

where E�2;� [�jX0 = x] is the conditional mean under the model speci�ced by � (x; �2) and �. In

the linear case � (x; �2) = �2;1 + �2;2x, he obtains an analytical expression of g from (7) that does

not depend on �. This enables him to estimate �2 by least squares of the corresponding nonlinear

regression model, Xi� = X(i�1)�+g�
�
X(i�1)�; �2

�
+"i�, where E�2;�

�
"i�jX(i�1)�

�
= 0. One could

hope for that this estimation strategy would carry over to more general model, thereby avoiding

having to rely on two-step estimators, but unfortunately this is not the case: The function g will in

1An alternative estimator would be �̂2 (x; �) = 2
�̂(x)

Pn
i=1 I fXi � xg� (Xi; �2) =n. This includes an unbiased

estimator of the integral component.
2Alternatively, the L2 objective function of Altissimo and Mele (2009) could be used since the resulting estimator

is shown to be as e¢ cient as the MLE.
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general depend on both �2 and �, and the least-squares approach will also require an estimator of

�. Similarly, for models in Class 1 in general, it does not seem possible to derive moment conditions

that do not depend on �. In conclusion, the semiparametric estimation of the parameter in either

class will in general require as input an estimator of �.

3 Asymptotic Properties of Estimators

In order to avoid repetitions, we present results for estimators in both classes joinly. Hopefully,

this should create no confusion. Let �0;k and �0 denote the true, data generating parameters for a

model in Class k, k = 1; 2. Here and in the following we will often suppress a function�s dependence

on � when evaluated at � = �0. For example, for the drift and di¤usion term of the parametric

submodel where �0 is known, we will write

Class 1 : � (x; �1) = � (�; �1; �0) =
1

2�0 (x)

@

@x

�
�2(x; �1)�0 (x)

�
; (8)

Class 2 : �2 (x; �2) = �2 (�; �2; �0) =
2

�0 (x)

Z x

l
� (y; �2)�0 (y) dy: (9)

Let pt;k (yjx; �k) = pt
�
yjx;� (�; �k) ; �2 (�; �k)

�
denote the associated transition densities of the para-

metric submodel in Class k. For a given model in Class k, we impose the following conditions:

A1 The process fXtg is stationary and geometrically �-mixing, and has domain I = R.

A2 The true density, �0, is m � 2 times continuously di¤erentiable on I with bounded derivatives,
and satis�es

R
I �0 (x)

1��1 dx <1 for some �1 > 0.

A3 � (x; �k) and �2 (x; �k) are twice di¤erentiable in �k and satisfy for some function B,

@i�� (x; �k)

 � B (x) ,


@i��2 (x; �k)

 � B (x) ; (x; �k) 2 I ��k;

for i = 0; 1; 2, where E[B2+�2 (X0)] <1 for some �2 > 0.

A4 (i) The transition density pt;k (yjx; �k) exists as a solution to (2) and satis�es
��@ixpt;k (yjx; �k)�� �


t (yjx), (t; x; y; �k) 2 (0;�]� I2 ��k, i = 0; 1; 2, where


t (yjx) = c1
jyj�1 + jxj�1

t�1
exp

"
�c2

jyj�2 + jxj�2
t�2

#
(10)

for constants cj;�j ; �j > 0, j = 1; 2.

(ii) For some function q and constant �3 > 0: jlog (p�;k (yjx; �k))j � qk (yjx) for all (x; y; �k) 2
I2��k, and E[q1+�3k (X�jX0)] <1. The moment function �k 7! Lk (�k) � E [log p�;k (X�jX0; �k)]
has a unique maximum at �k;0 2 �k.

A5 The parameter space �k � Rdk is compact.
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For technical reasons, we strengthen the stationarity assumption to �-mixing in (A1), since

this enables us to employ standard results for uniform convergence of kernel density estimators,

and U-statistics, c.f. Hansen (2008) and Arcones (1995). Su¢ cient conditions for (A1) in terms of

the drift and the di¤usion term can be found in e.g. Meyn and Tweedie (1993) and Hansen and

Scheinkman (1995); see also Karatzas and Shreve (1991, Section 5.5). Most parametric models

found in the literature can be shown to satisfy (A1) under suitably restrictions on the parameters.

The assumption that the domain is the whole real line is imposed to avoid any boundary issues.

Since processes with domains di¤erent from R can be transformed to have domain I = R, we
do not �nd this very restrictive. If, for example, Yt is a Markov di¤usion process with domain

IY = (0;+1), then Xt = log (Yt) is also a Markov di¤usion by Itô�s Lemma with domain I = R.
The smoothness criteria on �0 in (A2) together with the use of higher-order kernels de�ned

below decrease the bias from the kernel estimation; the di¤erentiability condition is met if the drift

and the di¤usion are m � 1 and m times di¤erentiable respectively. The integrability assumption

rules out fat-tailed densities and is used to control for the e¤ect of the trimming introduced below.

Assumption (A3) is used to ensure that relevant moments exist. These are fairly weak conditions

and are satis�ed by standard models used in the literature. Su¢ cient conditions can be found in

Meyn and Tweedie (1993). The di¤erentiability requirement can be disposed of when showing

consistency, but is here maintained throughout for simplicity.

For general di¤usion models, weak conditions for the existence of a transition density are un-

fortunately not available. A simple set of su¢ cient conditions for the existence of the transition

density pt
�
yjx;�; �2

�
as the solution to the PDE in Eq. (2) can be found in e.g. Ilyin et al. (2002).

These require however that the drift and di¤usion functions are bounded which is very restrictive

and violated by most standard models used in the literature; furthermore, the assumption of mix-

ing in (A1) rules out bounded coe¢ cients, c.f. Chen et al. (1999). We therefore impose the high

level conditions in (A4) which for example is satis�ed by the Vasicek and (the log-transformed)

CIR model. Assumption (A4.i) could be replaced by alternative conditions such as the ones in

Aït-Sahalia (2002) where a representation of pt is established that does not rely on PDE�s. This

representation is more complicated however and proves to be very di¢ cult to work with within our

framework.3 We therefore here use the representation of pt as a solution to a PDE. This allows us

to import and use the technology developed in Kristensen (2008) in the analysis of the estimated

transition density with �0 replaced by a kernel estimator.

Condition (A4.ii) together with (A5) imply that the MLE of the parametric submodel with �0
known is consistent. In particular, the uniform bound q ensures that the log-likelihood converges

uniformly towards Lk (�k) which in turn uniquely identi�es �k;0. Note that since �k enters both

the drift and di¤usion of the parametric submodels as de�ned in Eq. (8) and (9) respectively,

the identi�cation of �k;0 is done jointly through the drift and the di¤usion. This is in contrast

to standard speci�cations of parametric di¤usion models where the parameters entering the drift

are separate from the ones entering the di¤usion. Again, (A4.ii) is a high-level condition which

is imposed since there does not seem to exist any general conditions in the literature in terms of
3See also a previous version of this paper, Kristensen (2004a).
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� (x; �k) and �2 (x; �k) for consistency to hold. We note however that (A4.ii) holds for standard

parametric models such as the Vasicek (1977) and the CIR (1985) model.

Next, we impose the regularity conditions found in Hansen (2008) on the kernelK, and introduce

a trimming function �a (�):

K(m) The kernel K : R 7! R is di¤erentiable with���K(i) (z)
��� � C jzj�� ;

���K(i) (z)�K(i)
�
z0
���� � C

��z � z0�� ; i = 0; 1;

for some � > 0, and is of order m � 2:
R
RK (z) dz = 1,

R
R z

iK (z) dz = 0, i = 1; :::;m � 1,
and

R
R jzj

mK (z) dz <1.

T1 The trimming function �a : R 7! [0; 1], a > 0, satis�es �a (z) = 1 for z � a and �a (z) = 0 for

z � a=2. It is twice continuously di¤erentiable with j� (i)a (z) j = O
�
ai
�
, i = 1; 2.

The kernel is here chosen to be of order m, where m matches up with the number of derivatives

of �0, c.f. assumption (A2). The trimming function will be used to control the tail behaviour of

the estimators of the unspeci�ed drift or di¤usion term, but also the transition density itself. We

here follow the idea of Andrews (1995) and Ai (1997) and use a smooth trimming function, �a (z).

The di¤erentiability of � is assumed in order for the trimmed likelihood to be twice di¤erentiable

in the parameters. The speed with which the trimming parameter a goes to zero will be restricted,

such that the trimming has no e¤ect on the asymptotics. A simple way of constructing �a (z) is to

choose a cdf F with support [0; 1], and de�ne �a (z) = F ((2z � a) =a) which then in great generality
will satisfy (T1); see also Andrews (1995, p. 572).

We then use �a to de�ne trimmed versions of the preliminary estimators. For a density � (x),

de�ne

Class 1 : �̂ (x; �1; �) =
�̂a (x)

2� (x)

@

@x

�
�2(x; �1)� (x)

�
; �̂2 (x; �1) = �̂a (x)�

2 (x; �1) + �
2 (1� �̂a (x)) ;

(11)

Class 2 : �̂ (x; �2) = �̂a (x)� (x; �2) , �̂2 (x; �2; �) =
2�̂a (x)

�̂ (x)

Z x

l
� (y; �2) �̂ (y) dy + �

2 (1� �̂a (x)) ;

(12)

where �̂a (x) = �a (�̂ (x)), a = an > 0 is a trimming sequence and �2 > 0 a constant. The inclusion

of the additional term �2 (1� �̂a (x)) in the di¤usion estimator guarantees that it is strictly positive
for all x 2 I for n su¢ ciently large.4 The motivation for the trimming is two-fold: First, the

trimming of the nonparametric component is used to show that �̂ (x; �1; �̂)!P �a (�0 (x))� (x; �1)

and �̂2 (x; �2; �̂)!P �a (�0 (x))�
2 (x; �2) uniformly over (x; �k), k = 1; 2, c.f. Lemmas 9-10. Second,

the trimming of the parametric component is introduced to ensure that the associated transition

density exists: Due to trimming, �̂ and �̂2 are bounded and �̂2 > 0, and we can therefore apply Ilyin

et al. (2002) to ensure that the associated di¤usion process has a well-de�ned transition density.
4For models in Class 2 with small samples, one may want to use for example ~�2 (x; �) = max

�
�̂2 (x; �) ; a

	
instead

of �̂2 (x; �) to ensure that the estimator is postive, since we can only guarantee that �̂2 (x; �) > 0 almost surely as
n!1.
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We also introduce a trimmed version of the log-likelihood Ln
�
�; �2

�
given by

L̂n
�
�; �2

�
=
1

n

nX
i=1

� b;i
�
�; �2

�
log p�

�
Xi�jX(i�1)�;�; �2

�
; (13)

where � b;i
�
�; �2

�
:= � b

�
p�
�
Xi�jX(i�1)�;�; �2

��
and b = bn ! 0 is another trimming parameter.

The trimming of p�
�
yjx;�; �2

�
is needed for technical reasons in the proofs, and we conjecture

that only trimming of the preliminary drift and di¤usion estimators is required for our theoretical

results. Plugging the trimmed drift and di¤usion terms into the trimmed log-likelihood, we obtain

a pseudo-log-likelihood function that depends on �k and �. Let

L̂n;1 (�1; �) = L̂n
�
�̂ (�; �1; �) ; �̂2 (�; �)

�
and L̂n;2 (�2; �) = L̂n

�
�̂ (�; �2) ; �̂2 (�; �2; �)

�
denote the trimmed log-likelihood for a given model in Class 1 and 2 respectively. We then de�ne

the PMLE of �k in class k 2 f1; 2g as:

�̂k = arg max
�k2�k

L̂n;k (�k; �̂) : (14)

We impose the following restrictions on the bandwidths and trimming parameters to obtain

consistency and asymptotic normality of the PMLE:

B1.1 nha6b2= log (n)!1, nh3a4b2= log (n)!1; hma�3b�1 ! 0, a�1b�2 ! 0.

B2.1
p
nha6b2= log (n)!1,

p
nh3a4b2= log (n)!1; n1=4hma�3b�1 ! 0, a�1b�2 ! 0.

B1.2 nha4b2= log (n)!1, hma�2b�1 ! 0, a�1b�2 ! 0.

B2.2
p
nha4b2= log (n)!1, n1=4hma�2b�1 ! 0, a�1b�2 ! 0.

For a model in Class k, k = 1; 2, (B1.k) is imposed to show consistency, while asymptotic

normality requires that (B2.k) holds; note that condition (B2.k) implies (B1.k). The rate with

which h, a and b can go to zero depends on: The number of derivatives, m � 2, of �0, and the

measure of its "tail-thickness", �1 > 0, as given in (A2). For values of �1 close to zero, the trimming

parameters a and b have to go to zero at a fast rate and vice versa, while we in general have to use

higher order kernels (m > 2) to ensure that the bias and variance component of the estimator of the

unspeci�ed term disappears asymptotically. As an example, consider a model in Class 2: (B2.2)

will then for example hold with b = O (n�") and a = O
�
n�(3")=�1

�
for some " < �" = 1= (3 + 12�1),

while h = O
�
n�("=�"�1)=m

�
. In practice, the use of higher-order kernels does not have much of an

e¤ect on the resulting semiparametric estimator; this is con�rmed in the simulation study where

the Gaussian kernel was employed and yielded precise estimates of �k.

Theorem 1 For a model in Class k 2 f1; 2g: Assume that (A1)-(A5) and (B1.k) hold. Then, the
PMLE de�ned in Eq. (14) is consistent: �̂k !P �k;0.

10



Next, we analyze the asymptotic distribution of �̂k. To this end, we �rst introduce some

additional notation: Let

p̂�;1 (yjx; �1; �) = p�
�
yjx; �̂ (�; �1; �) ; �̂2 (�; �1)

�
; p̂�;2 (yjx; �2; �) = p�

�
yjx; �̂ (�; �2) ; �̂2 (�; �2; �)

�
(15)

denote the transition densities associated with the estimators in Class 1 and 2 respectively, and

de�ne the corresponding individual Score and Hessian as:

ŝ�;k (yjx; �k; �) =
@

@�k
log p̂�;k (yjx; �k; �) ; ĥ�;k (yjx; �k; �) =

@2

@�k@�
0
k

log p̂�;k (yjx; �k; �)

Also, we introduce the individual Score and Hessian of the two corresponding parametric submodels:

s�;k (yjx; �k) =
@

@�k
log p�;k (yjx; �k) ; h�;k (yjx; �k) =

@2

@�k@�
0
k

log p�;k (yjx; �k) ;

for k = 1; 2. For a given model in Class k, we can write the associated trimmed Score and Hessian

as

Ŝn;k (�k; �) =
1

n

nX
i=1

� b;i (�k; �) ŝ�;k
�
Xi�jX(i�1)�; �k; �

�
+ oP

�
n�1=2

�
;

Ĥn;k (�k; �) =
1

n

nX
i=1

� b;i (�k; �) ĥ�;k
�
Xi�jX(i�1)�; �k; �

�
+ oP

�
n�1=2

�
;

where we have left out higher-order terms involving derivatives of � b;i (�k; �).

To derive the asymptotic distribution, we follow the proof strategy outlined in Newey and

McFadden (1994, Section 8). First, use a standard Taylor expansion argument of the �rst-order

condition to write the PMLE in terms of the trimmed Score and Hessian,

0 = Ŝn;k(�̂k; �̂) = Ŝn;k (�k;0; �̂) + Ĥn;k
�
��k; �̂

�
(�̂k � �k;0); (16)

for some ��k 2 [�k;0; �̂k]. If �0 was known and no trimming was employed, the �rst term on the right
hand side would be equal to the score of the parametric submodel, Sn;k (�k;0; �0), and a standard

Central Limit Theorem (CLT) could be employed to derive the asymptotic distribution. However,

in general, Ŝn;k (�k;0; �̂) is not equivalent to Sn;k (�k;0; �0) and we have to take into account the

use of �̂ and trimming. To account for �̂, we make a functional Taylor expansion of Ŝn;k (�k;0; �̂)

around �0. We de�ne the pathwise derivative of Ŝn;k (�k;0; �) w.r.t. � in the directions d� = �̂��0
as

rŜn;k [d�] =
1

n

nX
i=1

� b;i (�k; �)5 ŝ�;k
�
Xi�jX(i�1)�

�
[d�] ; (17)

where 5ŝ�;k (yjx) [d�] is the pathwise derivative of ŝ�;k (yjx; �0;k; �) (see Appendix B for its ex-
pression). We then show that the following �rst order expansion is valid:

Ŝn;k (�k;0; �̂) = Ŝn;k (�k;0; �0) +rŜn;k [�̂ � �0] + oP
�
n�1=2

�
: (18)
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Finally, with the trimming parameters vanishing su¢ ciently fast, the trimmed and untrimmed

versions of the score and its pathwise derivative are asymptotically equivalent,

Ŝn;k (�k;0; �0) +rŜn;k [�̂ � �0] = Sn;k (�k;0; �0) +rSn;k [�̂ � �0] + oP
�
n�1=2

�
; (19)

where rSn;k [d�] denotes the untrimmed version of rŜn;k [�̂ � �0].
From the above expressions, we see that the pathwise derivative will account for additional

statistical errors due to the use of �̂ instead of �0. The �nal part of the proof analyzes the behaviour

of rSn;k [�̂ � �0]. We show that Sn;k [�̂ � �0] can be written as a second order U -statistic:

rSn;k [�̂ � �0] =
1

n2

nX
i=1

nX
j=1

s�;k
�
Xi�jX(i�1)�; �k;0

� dk �Xj�; Xi�; X(i�1)��
p�;k

�
Xi�jX(i�1)�; �k;0

� + oP (n�1=2); (20)

where the functions dk, k = 1; 2, take the following forms:

d1 (z; y; x) = �
1

2�0 (z)

Z �

0

@

@z

�
�2 (z; �1;0)

@pt;1 (yjz; �1;0)
@z

pt;1 (zjx; �1;0)
�
dt; (21)

d2 (z; y; x) = 2� (z; �2;0)

Z �

0

Z z

l

1

�0 (w)

@2pt;2 (yjw; �2;0)
@w2

pt;2 (wjx; �2;0) dwdt (22)

�2�
2 (z; �2;0)

�20 (z)

Z �

0

@2pt;2 (yjz; �2;0)
@z2

pt;2 (zjx; �2;0) dt:

In both cases, one can check that dk satis�es E [dk (X0; x; y)] = 0 for all (x; y). Thus, using standard

U -statistics arguments,

rSn;k [�̂ � �0] =
1

n

nX
i=1

Dk (Xi�) + oP (n
�1=2); (23)

where

Dk (x) = E

"
s�;k (X1jX0; �k:0)

dk
�
x;Xi�; X(i�1)�

�
p�;k

�
Xi�; X(i�1)�; �k;0

�# (24)

satis�es E [Dk (X0)] = 0 and E[kDk (X0)k2] < 1, k = 1; 2. Combining Eqs. (16), (18) and (23)

with Ĥn;k
�
��k; �̂

�
!P �Ik, where Ik is the information of the parametric submodel (see Assumption

A6 below),

p
n(�̂k � �k;0) = I�1k

1p
n

nX
i=1

�
s�;k

�
Xi�jX(i�1)�; �k;0

�
+Dk (Xi�)

	
+ oP

�
n�1=2

�
; (25)

and the limiting distribution now follows by a CLT for mixing sequences.

We impose three additional assumptions to formally establish the above claims. Again, note

that the following conditions cover both models in Class 1 and 2:

12



A6 �k;0 2 int (�k). The Hessian of the parametric submodel satis�es kh�;k (yjx; �k)k � �h�;k (yjx)
for �k in a neighbourhood of �k;0, where E

�
�h�;k (X�jX0)

�
<1. The associated information

is positive de�nite,

Ik � E
�
s�;k (X�jX0; �k;0) s�;k (X�jX0; �k;0)0

�
> 0: (26)

A7 Eq. (19) holds under (B2.k).

A8 The following moment exists:

Z
I
E

"
d2k (x;X�jX0)

p2�;k (X�jX0; �k;0)

#
�0 (x) dx <1:

Assumption (A6) ensures that the MLE of the parametric submodel is asymptotically normally

distributed; a su¢ cient set of conditions for (A6) in terms of � (x; �k) and �2 (x; �k) can be found

in Aït-Sahalia (2002). The positive de�niteness of Ik will normally follow under the identi�cation
condition given in (A4).

Assumption (A7) is a high-level condition implying that the trimmed score and pathwise deriv-

ative are asymptotically equivalent to their untrimmed versions. It would of course be more sat-

isfactory if we could state primitive conditions for (A7) to hold, but due to the complexity of the

model and estimator, we have not been able to do so. By the same arguments as in the proofs

of Lemmas 6 and 8, we can establish a bound for the left hand side of Eq. (19) which in turn is

of order OP
�
b�1a�1=2

�
+ OP (jlog bj��3). Thus, Eq. (19) would hold if (*)

p
nb�1a�1=2 ! 0 and

p
n jlog bj��3 ! 0. However, these two requirements collide with the other restrictions imposed on

a and b in (B.2.k): No feasible trimming sequences exist that simultaneously satisfy (B.2.k) and

(*). We believe that this is due to our bound not being sharp enough. There are two main problems

in deriving a sharp enough bound: First, the trimmed score is not a martingale since the "outer"

trimming term, � b;i, is a function of Xi�. This is in contrast to most other semiparametric estima-

tion problems where trimming can be designed such that the martingale property is maintained; see

e.g. Robinson (1989) and Ai (1997). Second, the trimmed versions, �̂ and �̂,2 enter p�
�
yjx;�; �2

�
in a complex manner, c.f. Eq. (2), thereby making it di¢ cult to analyze the impact of the "inner"

trimming of L̂n;k (�k; �). An alternative to (A7) would be to impose parametric restrictions on the

tail behaviour of the stationary density. By imposing this knowledge in the estimation, we could

avoid the "inner" trimming. We give a further discussion of the case where (A7) fails to hold below.

Assumption (A8) implies that E[kDk (X0)k2] < 1, k = 1; 2. To give some further insight

into what is required for E
h
kDk (X0)k2

i
<1, consider a fully parametric submodel where either

the di¤usion (Class 1) or the drift (Class 2) is speci�ed up to a parameter �k together with the

following speci�cation of the marginal density: For given h > 0 and x0 2 I, de�ne �h;x0 (x;�) =

(1� �)�0 (x) +�Kh (x� x0), where � 2 [0; 1] is the unknown parameter. One can then show that
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Dk (x0) = limh!0 Ik;h (x0) with Ik;h (x0) being the information of this parametric submodel:

Ik;h (x0) = �E
�
@2 log p�;k (X�jX0; �k; �h;x0 (�;�))

@�k@�

�
�k=�k;0;�=0

: (27)

So E[kDk (X0)k2] <1 translates into limh!0
R
I kIk;h (x0)k

2 �0 (x0) dx0 <1.

Theorem 2 For a model in Class k 2 f1; 2g: Assume that (A1)-(A8) and (B2.k) hold. Then,

p
n(�̂k � �k;0)

d! N
�
0; I�1k �k;1I�1k

�
;

where I0 is given in Eq. (26) and �k;1 = �k;0 +
1P
i=1

�
�k;i +�

0
k;i

�
with

�k;i = E
h
fs�;k (X�jX0; �k;0) +Dk (X0)g

�
s�;k

�
X(i+1)�jXi�; �k;0

�
+Dk (Xi�)

	0i
; i � 0;

and Dk (x) as speci�ed in Eq. (24).

The asymptotic variance of �̂k consists of two components, Ik and �k;1. The covariance matrix
�k;1 is the sum of the score of the parametric submodel and the adjustment term Dk. In particular,

if Dk = 0, then �k;1 = Ik. This would for example happen if �0 was known, in which case we could
estimate the parametric submodel by MLE, which, under assumptions (A1)-(A6), has asymptotic

variance I�1k . However, in general Dk 6= 0 due to the use of �̂ instead of �0 in the estimation. So
we here pay a price in terms of variance, I�1k �k;1I�1k > I�1k , for the lack of information about

�0. In particular, the PMLE is not adaptive since it does not reach the Cramer-Rao bound of the

parametric submodel (see Newey, 1989).

Not all semiparametric estimators share this property. Rather, in many cases, their asymptotic

variances are equal to the ones of the infeasible estimators of the parametric submodels; see for

example, Ai (1997), Robinson (1988) and Ichimura (1993). This is due to the fact that for those

estimators, the parametric and nonparametric estimators are asymptotically orthogonal implying

that the functional derivative of the �rst-order condition is oP (1=
p
n). In contrast, in our case the

functional derivative, 5Sn;k, adds the additional term Dk to the asymptotic variance. For a further

discussion of orthogonality conditions in semiparametric problems, we refer to Andrews (1994) and

Newey (1989), and note that Andrews (1994) explicitly imposes such a condition in his Assumption

N(c). Thus, our estimation problem is situated outside of his framework.

However, our estimator is not the only one that su¤ers from this drawback. A simple example

is the index-model estimator of Powell, Stock and Stoker (1989) which has an additional variance

component due to the presence of a �rst-step nonparametric estimator. Another example, which is

more closely related to our problem, is semiparametric copula estimation. In this class of models,

a parametric structure is imposed on the so-called copula while the marginal densities are left

unspeci�ed. If one estimates the marginal densities using kernel methods, one can show along the

same lines as in Genes Ghoudi and Rivest (1995) that the asymptotic variance of the parametric

estimator has the same structure as in our case.
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Eventhough the PMLE is not adaptive, one could still hope for it be semiparametrically e¢ cient.

However, we conjecture that this is not the case since our nonparametric estimator of �0 does not

adapt to the speci�c parameterisation of the drift or di¤usion term. A formal proof of this conjecture

would require deriving the semiparametric e¢ ciency bound. Unfortunately, we have not been able

to do so due to the complexity of the model. However, if this conjecture is true, an obvious next

step would be to develop an e¢ cient estimator. We expect that one such estimator can be obtained

by the method of sieves: Assume that �0 belongs to some normed function space F , and that
there exists a sieve space Fn such that, loosely speaking, Fn ! F ; see Chen (2007) for a more
precise introduction to these concepts. We could then estimate (�k; �) in Class k by nonparametric

maximum-likelihood,

(�̂MLE;k; �̂MLE;k) = arg max
(�k;�)2�k�Fn

Ln;k (�k; �) : (28)

The di¤erence between the sieve MLE in Eq. (28) and the PMLE given in Eq. (14) is that the

sieve MLE estimates �k and � jointly. Thus, we expect that �̂MLE;k will adapt to the speci�cation

of the parametric component and therefore �̂MLE;k will reach the semiparametric e¢ ciency bound.

Returning to the related example of semiparametric copula models discussed earlier, Chen, Fan

and Tsyrennikov (2006) demonstrate that the sieve MLE indeed is semiparametrically e¢ cient for

this particular model, while the PMLE in general is not.5

While the sieve MLE therefore most likely enjoys better asymptotic properties compared to the

PMLE, it is more di¢ cult to implement, since it requires numerical optimization over both �k and

Fn, where the dimension of Fn will be "large". Thus, the PMLE is a computationally attractive
alternative despite its conjectured lack of e¢ ciency.

An important assumption for Theorem 2 to hold is (A7). If the e¤ect from trimming does not

vanish, �̂k will still be
p
n-asymptotically normally distributed, but will su¤er from asymptotic

biases. The bias can be evaluated in terms of a trimmed version of the parametric submodel

associated with a model in Class k,

��a (x; �k) = �a (�0 (x))� (x; �k) , ��2a (x; �k) = �a (�0 (x))�
2 (x; �k) + �

2 (1� �a (�0 (x))) ; (29)

where � (x; �k) and �2 (x; �k) are given in Eqs. (8)-(9). Let p
(a)
�;k (yjx; �k) = p�;k

�
yjx; ��a (�; �k) ; ��2a (x; �k)

�
be the corresponding transition density, and

�
(a;b)
k = arg max

�k2�k
E[� b(p

(a)
�;k (X�jX0; �k)) log p

(a)
�;k (X�jX0; �k)]

the parameter that maximizes the population version of the trimmed log-likelihood. The proofs

of Theorems 1 and 2 still go through with �(a;b)k replacing �k;0 and we are able to conclude thatp
n(�̂k��(a;b)k )!d N(0; (I(a;b)k )�1�

(a;b)
k;1 (I

(a;b)
k )�1) where the asymptotic variance terms are trimmed

versions of the ones appearing in Theorem 2. So if (A7) fails to hold, the PMLE will have contain

5 In the case of Gaussian marginals, Klassen and Wellner (1997) show that the PMLE does reach the semiparametric
e¢ ciency bound.
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an asymptotic bias component, �(a;b)k � �k;0. In our simulation study, we �nd that the bias of the

PMLE is small and comparable to the one of the parametric MLE, so we believe that Theorem 2

provides a valid asymptotic approximation.

The asymptotic variance of �̂k can be estimated in the following manner: The component

Ik is straightforwardly estimated by �Hn;k(�̂k; �̂), c.f. Proof of Theorem 2, while the estima-

tion of �k;1 is somewhat more complicated. The functions Dk (x), k = 1; 2, can be esti-

mated consistently by replacing population moments with sample averages and unknown terms

with estimators in Eqs. (24)-(22). However, this involves numerical evaluation of integrals of the

type
R �
0 @ipt (yjz) =

�
@zi
�
pt (zjx) dt, i = 1; 2, which can be rather di¢ cult since limt!0 pt (zjx) =

� (z � x), where � is the Dirac delta function. A more attractive estimator is obtained by following
the idea of Newey (1994), and utilize the characterization of Dk (x) given in Eq. (27). Newey

(1994) state regularity conditions under which

D̂k (x0) =
1

n

nX
i=1

@2 log p�;k(Xi�jX(i�1)�; �k; �̂h;x0 (�;�)))
@�k@�

�����
�k=�̂k;�=0

;

where �̂h;x0 (x;�) = (1� �) �̂ (x) + �Kh (x� x0), is a consistent estimators of Dk (x). One ad-
vantage of this estimator is its relative simple implementation; one can calculate it by numerical

di¤erentiation of the log-transition density w.r.t. �k and �.

Once an estimator of D̂k (z) has been obtained, we can de�ne for i � 0,

�̂k;i =
1

n� i

n�iX
j=1

n
ŝk;j + D̂k;j

on
ŝk;j + D̂k;j

o0
;

where ŝk;j = s(X(j+1)�jXj�; �̂k; �̂) and D̂k;j = D̂k (Xj�). These can in turn be used to construct

an estimator of the HAC variance �k;1, see e.g. Robinson and Velasco (1997) for an overview.

One speci�c HAC estimator is the Newey and West (1987) one given by

�̂k;1 = �̂k;0 +
MX
i=1

wM;i(�̂k;i + �̂k;i); wM;i = 1� [i= (M + 1)] :

As M !1 and M=m1=8 ! 0, this will yield a consistent estimator of �k;1.

4 Speci�cation Testing

The semiparametric models proposed here relax some of the restrictions implied by a fully para-

metric di¤usion model. They still impose some restrictions on the data generating process however,

and it therefore desirable to be able to test the semiparametric speci�cation against a nonpara-

metric alternative. Once a semiparametric model is accepted by data, a natural question is what

fully parametric speci�cations are consistent with the semiparametric model. Again, a formal test

for the fully parametric speci�cation against the semiparametric alternative is needed. We here
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construct two sets of test statistics which allow us to perform these tasks. The two sets of tests

together supply us with a two-step strategy for testing a fully parametric model: First, one can test

the correct speci�cation of either the drift or di¤usion term. If this is accepted, one can then test

for the correct speci�cation of the remaining term in the second step. This is in contrast to existing

speci�cation tests for di¤usion models that only allow joint testing of the correct speci�cation of

both the drift and di¤usion term.

We �rst consider the testing of a given semiparametric model against a nonparametric alterna-

tive: The relevant hypotheses for models in Class 1 and 2 respectively are:

HSP;1 : dXt = � (Xt) dt+ � (Xt; �1;0) dWt for some �1;0 2 �1;

HSP;2 : dXt = � (Xt; �2;0) dt+ � (Xt) dWt for some �2;0 2 �2:

We wish to test either of these null hypotheses against a nonparametric alternative which we here

specify as:

HNP : fXtg is a Markov process with transition density pt(yjx):

Implicitly, we are therefore jointly testing the assumption that (i) fXtg is a di¤usion process and (ii)
the parametric speci�cation of either the drift or di¤usion (depending on whether we are considering

HSP;1 or HSP;2). The hypothesis (i) could be pretested using the tests developed in Kanaya (2008)

and Florens et al (1998) before proceeding to the test proposed here. Under HSP;k, we can estimate

the transition density semiparametrically by p̂sp;k(yjx) = p̂�;k(yjx; �̂k; �) as given in Eq. (15), while
under the maintained assumption HNP, it can be estimated nonparametrically by

p̂np(yjx) =
Pn
i=1Khnp (Xi� � y)Khnp

�
X(i�1)� � x

�Pn
i=1Khnp

�
X(i�1)� � x

� ;

for a (di¤erent) bandwidth hnp > 0. We then propose to test HSP;k against HNP by comparing the

two transition density estimates: Let Tk = d (p̂np; p̂sp;k), k = 1; 2, for some distance function d (�; �)
where three speci�c choices of d are:

Kullback-Leibler (KL): dKL (p; p0) =

Z
I2
log

�
p0 (yjx)
p (yjx)

�
p0 (yjx)�0 (x) dydx;

Pearson Chi-square (PC): dPC (p; p0) =
Z
I2

�
p0 (yjx)� p (yjx)

p0 (yjx)

�2
p0 (yjx)�0 (x) dydx;

L2: d2 (p; p0) =

Z
I2
[p0 (yjx)� p (yjx)]2w (x; y) dydx:

Here, p and p0 are two transition densities, and w is a weighting function. Tests of nonparametric

hypotheses using the KL-distance are discussed in detail in Robinson (1991) where a modi�ed

version of the KL distance is used to test for independence. There are however a number of

di¢ culties involved using the KL-distance as pointed out in Robinson (1991) so we�ll here focus on

the two other distances. Tests of fully parametric speci�cation testing of (jump-)di¤usion models
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using the modi�ed KL and the L2-distance have been proposed in Aït-Sahalia et al. (2009) where it

is shown that TPC = dP (p̂np; p̂fp) and T2 = d2 (p̂np; p̂fp), where p̂fp is the estimated transition density

of the fully parametric model, follows a standard normal distribution when suitably normalized.

The proofs of these results proceed in two steps: (i) Show TPC is asymptotically equivalent to

T 0PC = dPC (p̂np; p) where p is the true transition density and (ii) Derive the asymptotic distribution

of T 0PC; the same strategy is employed for T2. Thus, the asymptotic results of Aït-Sahalia et al.

(2009) carry over to our setting if we can show that

TPC;k = dPC (p̂np; p̂sp;k) ; T2;k = d2 (p̂np; p̂sp;k) ;

are equivalent to T 0PC and T
0
2 = d2 (p̂np; p) respectively. Since, as demonstrated in the Appendix,

p̂sp;k have faster convergence rate than p̂np, this result follows along the exact same lines as in Aït-

Sahalia et al. (2009) and we obtain under (A1)-(A7), (B1.k)-(B2.k) and the regularity conditions

in Aït-Sahalia et al. (2009):

TPC;k � �PC
�PC

!d N (0; 1) ;
T2;k � �2

�2
!d N (0; 1) ;

for k = 1; 2, where expressions of �PC, �PC, �2 and �2 can be found in Aït-Sahalia et al. (2009).

Next, we wish to test a fully parametric speci�cation,

HP : dXt = � (Xt; �2;0) dt+ � (Xt; �1;0) dWt for some (�1;0; �2;0) 2 �1 ��2;

against either of the semiparametric alternatives. Tests for HP against HSP;k based on a nonpara-

metric estimator of the unspeci�ed term under HSP;k have been developed in Kristensen (2008a).

We here propose tests which only rely on estimators of the parametric component which has the

advantage over the tests in Kristensen (2008a) that they do not rely on additional bandwidth se-

quences. On the other hand, this also implies that the test proposed here may have lower power

and fail to reject certain alternatives as discussed below.

To compare the fully parametric model with its semiparametric alternative, we �rst need to

estimate the model under HP. A natural estimator of the parameters �0 =
�
�01;0; �

0
2;0

�0 under the
null is the MLE, but other estimation methods are available, and we will assume that:

A9 The estimators (~�1; ~�2) of the fully parametric model satisfy for some (��1; ��2) 2 �1 ��2: 
~�1
~�2

!
=

 
��1
��1

!
+

 
1
n

Pn
i=1  1;i

1
n

Pn
i=1  2;i

!
+ oP

�
1=
p
n
�
;

where  i =
�
 1;i;  2;i

�
=  

�
Xi�; X(i)�1�

�
satis�es E [ i] = 0 and E[k ik2+�] <1.

Assumption (A9) is satis�ed for many di¤erent estimators in great generality. Note that we

here allow for misspeci�cation such that (A9) remains valid even if HP is false. If HP is true,

then (��1; ��2) = (�1;0; �2;0) while if HP is false we expect (��1; ��2) 6= (�1;0; �2;0). A natural way to
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test HP against either HSP;1 or HSP;2 would be to adopt the same approach as in the test of the

semiparametric models, and compare the transition densities under the two hypotheses, for example

through a (pseudo-)likelihood-ratio statistic. Deriving the asymptotic distribution of the resulting

test statistic is complicated though since (i) the parametric and semiparametric estimator of the

transition density both converge with
p
n-rate and (ii) the joint distribution of the semiparametric

estimator, and the fully parametric ones is di¢ cult to derive. Instead, we follow Whang and

Andrews (1993) and propose to test HP against HSP;k using a Lagrange Multiplier (LM)-type test

statistic:

TLM;k = nŜn;k(~�k; �̂)
0V̂ �1n;k Ŝn;k(

~�k; �̂); (30)

where Ŝn;k (�k; �) was introduced in Section 3 as the (trimmed) semiparametric score in Class

k, while V̂n;k is an estimator of its variance, k = 1; 2. The asymptotic variance takes the form

Vk = Vk;0 +
1P
i=1

�
Vk;i + V

0
k;i

�
, where

Vk;i = [Id; Id]E

"
(sk;0 +Dk;0) (sk;i +Dk;i)

0  k;0 (sk;i +Dk;i)
0

 k;0 (sk;i +Dk;i)
0  k;i 

0
k;0

#
[Id; Id]

0 ;

with sk;i = s�;1
�
Xi�jX(i�1)�; �k;0

�
, Dk;i = Dk

�
X(i�1)�

�
, and Id is the (d� d) identity matrix.

The motivation for TLM;k is that E [@ log p�;k (X�jX0; �k; �0) =@�k] = 0 if and only if �k = �k;0.

Thus, under HP, ~�k !P ��k = �k;0 and it follows that
p
nŜn;k(~�k; �̂) !d N (0; Vk). If however the

null is false, we expect ��1 6= �k;0 and jj
p
nŜn;k(~�k; �̂)jj !P +1. Further insight can be obtained

through the following representation of TLM;k as a Hausmann-type test:

TLM;k = n(~�k � �̂k)0Ŵ�1
n;k(

~�k � �̂k) (31)

where Ŵn;k = Ĥn:k(�̂k; �̂)V̂n;kĤn:k(�̂k; �̂). Thus, we will reject if the fully parametric and semipara-

metric estimator of the parametric component are (statistically) signi�cantly di¤erent from each

other. This however also entails that the test may fail to reject a misspeci�ed model in some cases:

Consider for example testing HP against HSP;k in which case we compare the semiparametric and

fully parametric estimator of the di¤usion parameter, �, using TLM;1. If the drift and di¤usion

estimators obtained under the null are orthogonal to each other, such that ~�1 is una¤ected by the

misspeci�cation of � (x; �2), we expect that ��1 = �1;0 such that
p
n(~�1 � �̂1) = OP (1) under the

alternative. If this is the case, TLM;1 may fail to detect the misspeci�cation. As such, TLM;1 and

TLM;2 may have less power than the ones developed in Kristensen (2008a).

Theorem 3 Under (A.1)-(A.9), (B2.k) and HP, TLM;k !d �2dk , k 2 f1; 2g :

If (A7) does not hold, we will need to ensure that the fully parametric estimators are centered

at the same parameter value as the semiparametric one. This can be done by choosing (~�1; ~�2) =

argmax�2� L̂n (��a (�; �2) ; ��a (�; �1)), where ��a and ��a are de�ned in Eq. (29).
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5 Implementation

Two important issues are not dealt with in the theoretical sections: (i) How to evaluate the tran-

sition density p�
�
yjx;�; �2

�
, and (ii) how to choose the bandwidth h in �nite sample. We discuss

each in turn in the following.

The transition density p does not in general have a closed form expression, and so one cannot

directly evaluate it. Instead, a number of di¤erent suggestions for how to either approximate or

simulate it have been proposed in the literature. Lo (1988) suggests to use �nite-di¤erence methods

to solve the PDE in Eq. (2) numerically, while a closed-form approximation of p can be found in

Aït-Sahalia (2002). Simulation-based method for the evaluation of the likelihood are considered

in Elerian et al. (2001), Kristensen and Shin (2008), and Pedersen (1995); see also Altissimo and

Mele (2008).

Each of the above-mentioned studies leads to density approximations pN;�
�
yjx;�; �2

�
, N � 1,

such that pN;�
�
�j�;�; �2

�
!P p�

�
�j�;�; �2

�
as N ! 1 for a suitable class of

�
�; �2

�
.6 For both

classes of semiparametric models, the transition density can be written as p�
�
�j�; �̂; �̂2

�
where

(�̂; �̂2) are given in Eq. (11) and (12) respectively. The semiparametric estimator in either of the

two classes can then be approximated by

�̂
(N)

k = arg max
�k2�k

nX
i=1

� b(p̂
(N)
�;k

�
Xi�jX(i�1)�; �k

�
) log p̂

(N)
�;k

�
Xi�jX(i�1)�; �k

�
; (32)

where p̂(N)� (yjx; �k) = p�
�
yjx; �̂ (�; �k) ; �̂2 (�; �k)

�
is the approximation of the semiparametric den-

sity. The following theorem states that under weak conditions the approximate estimator is as-

ymptotically equivalent to the actual estimator.

Theorem 4 Assume that for a model in Class k 2 f1; 2g:

(i) (A1)-(A8) and (B2.k) hold.

(ii) For any bounded and Lipschitz continuous pair,
�
� (�; �k) ; �2 (�; �k)

�
, with �2 (x; �k) � �, and

any (x; y) 2 I � I: �k 7! pN;�
�
yjx;� (�; �k) ; �2 (�; �k)

�
is continuous, and

sup
�k2�k

���p(N)�

�
yjx;� (�; �k) ; �2 (�; �k)

�
� p�

�
yjx;� (�; �k) ; �2 (�; �k)

���� = oP (1)

as N !1:

Then there exists a sequence N = N (n)!1 such that

p
n(�̂

(N)

k � �k;0)
d! N

�
0; I�1k �k;1I�1k

�
.

6Note here that eventhough many of the approximation methods cited here are described within a parametric
framework, they do not rely on a parametric model for the drift and di¤usion.
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The conditions in (i) are made to ensure that the actual estimator is consistent and asymptot-

ically normally distributed. Condition (ii) together with the compactness of �k implies that �̂
(N)

k

is well-de�ned and unique, and that the approximate likelihood will converge uniformly towards

the actual likelihood. Note that (ii) allows for p(N)�

�
yjx; �; �2

�
to be random as is the case when

simulation-based methods are employed, and is satis�ed for all the aforementioned approximation

methods. While the theorem states that there exists a sequenceN such that the approximate PMLE

is asymptotically �rst-order equivalent to the actual PMLE, it is silent about how this sequence

should be chosen. This is similar to the results of Aït-Sahalia (2002) and Pedersen (1995).

The dependence of the PMLE�s on the smoothing parameter h > 0 chosen by the user is an

undesirable feature, which they share with many other non- and semiparametric estimators. An

obvious way of choosing the bandwidths would be cross-validation methods (Hart and Vieu, 1990)

or rule-of-thumb and plug-in methods (Hall et al., 1995); see also Robinson (1983). Most existing

methods however are designed to minimise the mean square error, while the conditions imposed

on the set of bandwidths here require them to be of a di¤erent order. So the above methods do

not appear to be directly applicable to semiparametric estimation problems as demonstrated in

e.g. Powell and Stoker (1996). Ichimura and Todd (2007) contains further discussion of bandwidth

selection in semiparametric estimation

Various studies suggest that the dependence structure of the available data will a¤ect the perfor-

mance of the kernel estimators in �nite samples. In particular, strong dependence will deteriorate

the �nite sample performance as shown in Pritsker (1998). However, the estimation of �k in-

volves smoothing of the kernel density estimator and so this problem won�t be as pronounced in

our semiparametric setting. This is supported by the results of our simulation study where the

semiparametric estimator performs very well and is comparable to the fully parametric MLE.

6 A Simulation Study

In this section we present results from a small simulation study. The simulation study demonstrates

that the estimator performs well even for moderate sample sizes for the models we consider. The

two data-generating models are chosen as

dXt = f�1 + �2Xtg dt+
q
�1X

�2
t dWt; (CKLS)

dXt =
�
�1 + �2Xt + �3X

2
t + �4X

�1
t

	
dt+

q
�1X

�2
t dWt: (AS)

The �rst is the CKLS model while the second is a restricted version of the short-term interest rate

model proposed by Aït-Sahalia (1996b), and contains the CKLS models as special case. For both

models, the data-generating parameters were chosen to match the estimates obtained when �tting

the models by MLE to the data set of daily observations of the Eurodollar interest rate data used

in Aït-Sahalia (1996a,b). We measure time in years and set the time distance � = 1=252. The

parameter estimates satisfy the �-mixing conditions in Aït-Sahalia (1996b) such that (A1) holds.
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We then estimate the two following semiparametric models when CKLS and AS is the data

generating process respectively,

CKLS 1: dXt = � (Xt) dt+
q
�1X

�2
t dWt;

CKLS 2: dXt = f�1 + �2Xtg dt+ � (Xt) dWt;

AS 1: dXt = � (Xt) dt+
q
�1X

�2
t dWt;

AS 2: dXt =
�
�1 + �2Xt + �3X

2
t + �4X

�1
t

	
dt+ � (Xt) dWt;

For a given simulated sample, we obtain semiparametric estimates of �1 = (�i) and �2 = (�i). We

also estimate the fully parametric models in Eqs. (CKLS)-(AS) by MLE which allows us to compare

the semiparametric and parametric estimates in �nite sample. Note that our theoretical results do

not o¤er any (asymptotic) comparison of the parametric MLE�s of Eq. (CKLS) and (AS) relative to

their semiparametric counterparts, only for the parametric MLE with the stationary density being

known. So the semiparametric MLE might actually asymptotically be more e¢ cient than the fully

parametric MLE considered here. In order to evaluate the likelihood in both the parametric and

semiparametric case, we employ the simulated likelihood method of Kristensen and Shin (2008)

combined with the Euler scheme. For example, for the semiparametric model CKLS 1, this is

implemented as follows: First obtain the nonparametric estimator �̂ and the associated trimmed

drift estimator, �̂ (x; �1) = �a (x) =2�̂ (x) � @ [�1x
�2 �̂ (x)] =@x, where �1 = (�1; �2)

0. We can now

simulate from the model

dX�
t = �̂ (X�

t ;�) dt+
q
�1 (X�

t )
�2dWt; X�

0 = x:

Let Xs (x; �1; �̂), s = 1; :::; N , be i.i.d. simulated values of X�
� from this model for any given �1

and x using the Euler scheme; these will have distribution p�;1 (�jx; �1; �̂).7 For any (y; x), we may
then calculate p(N)�;k (yjx; �1; �̂) by

p
(N)
�;1 (yjx; �1; �̂) =

1

N

NX
k=1

Khsim (Xk (x; �1; �̂)� y) ;

for a bandwidth hsim > 0. By evaluating this kernel estimator at (y; x) =
�
Xi�; X(i�1)�

�
, i =

1; :::; n, we obtain L̂
(N)
n;1 (�1; �̂) =

P
i log p

(N)
�;1

�
Xi�jX(i�1)�; �1; �̂

�
. This can now be maximized

w.r.t. �1.

We have a number of nuisance parameters which have to be chosen in the implementation of

the semiparametric estimation procedure: The results reported here are based on a Gaussian kernel

K, and a bandwidth choice of h = n�
h�, where h� was obtained by Silverman�s Rule-of-thumb

(c.f. Silverman, 1986, p. 47) and 
 chosen to match the theoretical conditions in (B1.k)-(B2.k).

7We here ignore the discretization bias of the Euler scheme; see Kristensen and Shin (2008) for details on this.
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The trimming parameters (a; b) were chosen to exclude the upper and lower 1% of the data, and

we used N = 500 number of simulations in the evaluation of the likelihood. We experimented with

other choices of kernel, bandwidth, trimming parameters and number of simulations, and within

a reasonable range we obtained very similar results. In conclusion, the semiparametric estimator

seems to be quite robust towards the choice of the various nuisance parameters.

In the simulation of the observations, we use the standard Euler scheme with a discretization

step chosen as �=100. We simulated 400 data sets, and for each we calculated the semiparametric

estimators �̂1 and �̂2 and the fully parametric MLE. We did this for sample sizes n = 1000; 2500

and 5000, roughly corresponding to 4, 10 and 20 years of data.

The results in terms of bias, standard deviation (std) and root-mean square error (root-MSE)

for the CKLS model are reported in Table 1. From these we see, that the semiparametric estimator

of �2 performs better than the fully parametric MLE, and the other way around in the estimation

of �1, �2 and �1. The drift term is in general harder to estimate than the di¤usion with higher

biases and std�s for all sample sizes. For moderate and small sample sizes, both the semiparametric

and parametric estimates of �2 tend to be rather imprecise. The resulting semiparametric (for

Class 2) and parametric estimates of the drift are plotted in Figure 1. As can be seen, the drift

estimates get more imprecise out in the tails of the support.

Qualitatively similar results are found for the AS model: As can be seen from Table 2, the

semiparametric estimator outperforms the fully parametric one in the drift estimation and vice

versa for the di¤usion. As with the CKLS model, the drift estimates are more imprecise than

the di¤usion ones. For both estimators, the parameters �1 and �2 are particularly imprecisely

estimated. We believe that this is caused by poor identi�cation of these in �nite sample: The

process does not visit the upper region of its domain very often since the drift used here is practically

equal to zero in a large part of the domain, and it is observations in the upper range that allows

one to distinguish between �1 and �2. So for small and moderate sample sizes, it proves di¢ cult to

distinguish between the linear and quadratic e¤ect. We believe this is why there is a signi�cant gain

in using the semiparametric estimator for the drift parameters since in this case the parameters are

jointly identi�ed through both the drift and di¤usion term. The mean and the con�dence bands of

the drift and di¤usion estimates estimators are plotted in Figure 2 and 3 respectively. From Figure

2, we see that the high bias and variance reported for the estimates of �1 and �2 respectively

to a certain degree o¤set each other when used to calculate the resulting drift estimator. Still,

the con�dence bands are very wide for small sample sizes. The di¤usion estimator exhibits similar

behaviour with widening con�dence bands as we move away from zero; however they are throughout

signi�cantly narrower than the drift ones, and the bias is negligible.

7 Concluding Remarks

We have proposed a new framework for the modelling, estimation and testing of scalar di¤usion

models. Estimators of the models together with associated test statistics were developed, and their

asymptotic and �nite sample properties investigated. The use of the proposed semiparametric
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models in bond and option pricing is investigated in Kristensen (2008b) where asymptotics of

implied bond and option prices based on estimators from the semiparametric models are derived.

Kristensen (2004b) uses the modelling and estimation procedure developed here to evaluate a

semiparametric model for the US short-term interest rate.

A number of extensions would be of interest: Instead of relying on asymptotic approximations

when drawing inference, an alternative would be bootstrapping or subsampling. Kristensen (2008a)

proposes a Markov bootstrap method to be used in conjunction with the nonparametric estimators

of the drift and di¤usion term resulting from the semiparametric estimators developed here. We

conjecture that this method can also be applied to obtain consistent con�dence intervals for the

parametric component of the model. The veri�cation of this claim is outside of the scope of this

paper however.

Our estimation procedure cannot readily be extended to general multivariate di¤usion models

since the identifying link between the invariant density, the drift and the di¤usion term utilised

here does not necessarily hold in higher dimensions. However, if one is willing to restrict one�s

attention to the class of multivariate models satisfying this relation, the proposed estimation and

testing procedure carries can also be employed in a multivariate setting.8

8This restriction is for example imposed by Chen et al (2009) in their nonparametric study of multivariate di¤usion
models.
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A Proofs

Proof of Theorem 1. Consider a given model in Class 1: By Ilyin et al (2002), (�̂ (�; �1; �) ; �̂2 (�; �1))
and (�� (�; �1; �) ; ��2 (�; �1)) as de�ned in Eq. (11) and (29) respectively are both situated in H as

de�ned at the beginning of Appendix B. We,may then appeal to Lemma 6(i) yielding

sup
�12�1

���L̂n ��̂ (�; �1; �̂) ; �̂2 (�; �1)�� Ln �� (�; �1) ; �2 (�; �1)����
= OP

�
b�1"n

�
+OP

�
jlog (b)j��

�
+OP

�
b�1a�1=2

�
where, by Lemma 9(i) together with (B1.1),

"n = sup
�12�1

max
�
k�̂ (�; �1; �̂)� �� (�; �1)k1 ;



�̂2 (�; �1)� ��2 (�; �1)

1	 = oP (1) :

Finally, (A.4.ii) together with Kristensen and Rahbek (2005, Proposition 1) imply

sup
�12�1

��Ln �� (�; �1) ; �2 (�; �1)�� L1 (�1)��!P 0;

where �1;0 = argmax�2� L (�1). Consistency now follows from Newey and McFadden (1994, Theo-

rem 2.1).

The proof for models in Class 2 follows along the same lines: Here, the submodel and estimators

are given in Eqs. (9) and (12). Appealing to Lemma 6(i) together with Lemma 10, we obtain

sup�22�2

���L̂n ��̂ (�; �2) ; �̂2 (�; �2; �̂)�� Ln �� (�; �2) ; �2 (�; �2)���� = oP (1) under (B2.1). The rest of

the proof is identical to the one for Class 1.

Proof of Theorem 2. We follow the arguments outlined on p. 11-12 to prove the claimed result.

First, by a standard Taylor expansion, we easily obtain that eq. (16) holds. Next, the functional

Taylor expansion in Eq. (18) holds under (B.2.1) due to Lemma 7 and either Lemma 9 (Class 1)

or 10 (Class2), while Eq. (19) follows from (A.7). By Lemma 8 in conjunction with either Lemma

9 or 10 imply



Ĥn;k(��k; �̂)�Hn;k(��k; �0)


!P 0. Next, Kristensen and Rahbek (2005, Proposition

1), which is applicable due to (A.6), yields Hn;k(��k; �0) !P �Ik. The long variance �k;1 < 1
since, by Cauchy-Schwarz�s inequality and (A8),

E
h
kDk (X0)k2

i
� E

h
ks�;k (X�jX0; �k;0)k2

i
�
Z
I
E

"
kdk (x;X�jX0)k2

p20;� (X�jX0; �k;0)

#
�0 (x) dx <1;

Thus, by Eq. (25),
p
n(�̂k � �k;0)

d! N
�
0; I�1k �k;1I�1k

�
if indeed Eq. (23) holds.

We now verify Eq. (23) for both classes of models. In the following, we keep �k = �k;0 �xed, and

suppress dependence on this parameter. Also, for a model in either class, let �0, �
2
0 and p0;t (yjx)

denote the true drift, di¤usion and transition density respectively. Consider �rst a model situated

in Class 1: Since r� [d�] as given in Lemma 9 is the pathwise derivatives w.r.t. �, it follows by
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the chain rule that the pathwise derivative w.r.t. � is given by

rSn;1 [d�] = rS(1)n;1 [d�] +rS
(2)
n;1 [d�] � rS(1)n [r� [d�] ; 0] +rS(2)n [r� [d�] ; 0] ;

where rS(i)n
�
d�; d�2

�
, i = 1; 2, are given in Eq. (48) while _p, rp, and r _p are de�ned in Eqs.

(34)-(37). We �rst take a closer look at rp� [r� [�̂ � �0] ; 0]. By de�nition,

rp� [r� [�̂ � �0] ; 0] (yjx)

=

Z �

0

Z
I
r� [�̂ � �0] (w)

@p0;t (yjw)
@w

p0;t (wjx) dwdt;

= �1
2

Z �

0

Z
I
�20 (w)

�
(1)
0 (w)

�20 (w)
f�̂ (w)� �0 (w)g

@p0;t (yjw)
@w

p0;t (wjx) dwdt

+
1

2

Z �

0

Z
I
�20 (w)

1

�0 (w)

n
�̂(1) (w)� �(1)0 (w)

o @p0;t (yjw)
@w

p0;t (wjx) dwdt

=
1

n

nX
j=1

f 1 [Kh (Xj� � �)] (y; x)�  1 [�0] (y; x)g ;

where

 1 [f ] (y; x) : =

Z
I
f (w) d11 (w; y; x) dw �

Z
I
f (1) (w) d12 (w; y; x) dw;

d11 (w; y; x) : = �1
2
�20 (w)

�
(1)
0 (w)

�20 (w)

Z �

0

@p0;t (yjw)
@w

p0;t (wjx) dt;

d12 (w; y; x) : = �1
2

�20 (w)

�0 (w)

Z �

0

@p0;t (yjw)
@w

p0;t (wjx) dt:

Observe that  1 [�0] (y; x) = 0 and, using standard results for kernel smoothers,

 1 [Kh (� � z)] (y; x) =

Z
I
Kh (w � z) d11 (w; y; x) dw �

Z
I
K
(1)
h (w � z) d12 (w; y; x) dw

=

�
d11 (z; y; x) +

@d12 (z; y; x)

@z

�
+O (hm)

= d1 (z; y; x) +O (h
m) ;

uniformly in (z; y; x) where d1 (z; y; x) is de�ned in Eq. (21). We obtain r _p� [�̂� �0; 0] (yjx) =
n�1

Pn
j=1

_d1 (Xj�; y; x) +OP (h
m) by the same arguments. We have now shown that

rS(1)n;1 [�̂ � �0] : = � 1

n2

nX
i=1

nX
j=1

_p�;i (�0)

p2�;i (�0)
d1
�
Xj�; Xi�; X(i�1)�

�
+OP (h

m) ;

rS(2)n;2 [�̂ � �0] : =
1

n2

nX
i=1

nX
j=1

1

p�;i (�0)
_d1
�
Xj�; Xi�; X(i�1)�

�
+OP (h

m) ;

where under (B1.2) hm = o (
p
n). It�s straightforward to check that E [d1 (X0; y; x)] = E[ _d1 (X0; y; x)] =
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0 and, by some simple manipulations,

E

"
_d1 (z;X�; X0)

p0;� (X�jX0)

#
=

@

@�k

Z
I

Z
I
d1 (z; y; x)�0 (x) dydx = 0:

Apply standard U-statistics results for �-mixing processes, e.g. Arcones (1995), to obtain

rS(1)n;1 [�̂ � �0] =
1

n

nX
j=1

D1 (Xj�) + oP
�
1=
p
n
�
; rS(2)n;1 [�̂ � �0] = oP

�
1=
p
n
�
;

where D1 (z) is given in Eq. (24).

Next, consider a model situated in Class 2. The adjustment term can be written as

rSn;2 [d�] = rS(1)n;2 [d�] +rS
(2)
n;2 [d�] � rS(1)n

�
0;r�20 [d�]

�
+rS(2)n

�
0;r�20 [d�]

�
;

where r�20 [d�] is given in Lemma 10. As in Class 1, rS
(2)
n

�
0;r�20 [�̂ � �0]

�
= oP (1=

p
n) while

rp�
�
0;r�20 [�̂ � �0]

�
(yjx)

=

Z �

0

Z
I
r�20 [�̂ � �0] (z)

@2p0;t (yjz)
@z2

p0;t (zjx) dzdt

= 2

Z �

0

Z
I

R z
l �̂ (y)�0 (y) dy

�0 (z)

@2p0;t (yjz)
@z2

p0;t (zjx) dzdt

�2
Z �

0

Z
I

R z
l �0 (y)�0 (y) dy

�20 (z)
�̂ (z)

@2p0;t (yjz)
@z2

p0;t (zjx) dzdt+OP (hm)

=
1

n

nX
j=1

d2 (Xj�; y; x) +OP (h
m) ;

where d2 (z; y; x) is given in Eq. (22). By the same arguments used for Class 1, this shows that

rS(1)n;2 [�̂ � �0] can be written on the form given in Eq. (23).

Proof of Theorem 3. For the test against a model in Class k, we write, by a Taylor expansion,

p
nŜn;k(~�k; �̂) =

p
nŜn;k(�k;0; �̂) + Ĥn;k(��k; �̂)

p
n(~�k � �k;0);

for some ��k 2
h
�k;0; ~�k

i
, where from the proof of Theorem 2,

Ŝn;k(�k;0; �̂) =
1

n

nX
i=1

�
s
�
Xi�jX(i�1)�; �k;0

�
+Dk

�
X(i�1)�

�	
+ oP

�
n�1=2

�
: (33)

Substituting in the right hand side of (33) together with ~�k � �k;0 =
Pn
i=1  k;i=n+ oP (1=

p
n) and

appealing to the CLT for mixing processes yield the result. To show that Eqs. (30) and (31) are

equivalent, we use the same expansion as above except that it�s made around �̂k instead of �k;0
such that:

p
nŜn;k(~�k; �̂) = Ĥn;k(��k; �̂)

p
n(~�k � �̂k) for some ��k 2

h
~�k; �k;0

i
.
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Proof of Theorem 4. We only give a proof for models in Class 1. The proof for Class 2 follows

along the exact same lines. Consider some given parametric pair
�
� (�; �1) ; �2 (�; �1)

�
satisfying (ii)

of the theorem, and de�ne "N (yjx) as the associated uniform approximation error:

"N (yjx) = sup
�12�1

j� b (p� (yjx; �1)) log (p� (yjx; �1))� � b (p�;N (yjx; �1)) log (p�;N (yjx; �1))j ;

where p� (yjx; �1) = p�
�
yjx;� (�; �1) ; �2 (�; �1)

�
and p(N)� (yjx; �1) = p�;N

�
yjx;� (�; �1) ; �2 (�; �1)

�
.

Due to continuity of z 7! log (z) � b (z), "N (yjx)!P 0 as N !1 according to condition (ii) of the

theorem.

Choose any �xed n � 1, and condition on the sample (X0; X�; :::; Xn�) so we can treat the

semiparametric estimators (�̂ (�; �1; �̂) ; �̂2 (�; �1)) as non-random. We then have that the approx-
imation error associated with this pair, which we denote "̂N (yjx), goes to zero in probability as
N !1 for any given (x; y). Thus,

�"N;n := sup
�12�1

jL̂n;1 (�1)� L̂(N)n (�1) j �
1

n

nX
i=1

"̂N
�
Xi�jX(i�1)�

�
!P 0; N !1;

since "̂N
�
Xi�jX(i�1)�

�
!P 0 as N !1 for all i = 1; :::; n. Now, consider any given � > 0: Due to

the above results, we can for any given n � 1 choose N = N (n) such that P (
p
n�"N;n > �) � e�n.

This translates into P (
p
njj�̂(N)1 � �̂1jj > �) � e�n for all n � 1. Thus,

p
n(�̂

(N)

1 � �1;0) =
p
n(�̂1 � �1;0) +

p
n(�̂

(N)

1 � �̂1) =
p
n(�̂1 � �1;0) + oP (1), and the result follows by condition (i).

B Lemmas

Let H denote the set of function pairs
�
�; �2

�
such that an associated solution, pt

�
yjx;�; �2

�
, to

(2) exists and satis�es �����@kpt
�
yjx;�; �2

�
@xk

����� � C
t (yjx) ; k = 0; 1; 2;

for (x; y) 2 I�I and t 2 (0;�). We also de�ne �
 (yjx) :=
R �
0 
t (yjx) dt as the integral of the upper

bound. We introduce a generic di¤usion model characterized by drift �� (x) and di¤usion �
2
� (x);

these are parameterized by some parameter � 2 � (we will later choose � = �1 for models in Class

1 and � = �2 for models in Class 2). Let @k��� (x) and @
k
��

2
� (x) denote the kth derivatives w.r.t. �,

and pt
�
yjx;��; �2�

�
the associated transition density.

We now derive expressions of the pathwise derivative of pt w.r.t.
�
�; �2

�
, which we denote rpt,

and its �rst and second order derivative w.r.t. �, which we denote _pt and �pt. Finally, let r _pt denote
the derivative w.r.t. � of rpt. These are given as solutions to the following PDE�s:

@ _pt
@t

= A
�
��; �

2
�

�
_pt +A

�
@���; @��

2
�

�
pt; (34)
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@�pt
@t

= A
�
��; �

2
�

�
�pt +

�
2A
�
@���; @��

2
�

�
_pt +A

�
@2���; @

2
��

2
�

�
pt
	
; (35)

@rpt
@t

= A
�
�0; �

2
0

�
rpt +A

�
d�; d�2

�
p0;t; (36)

@r _pt
@t

= A
�
�0; �

2
0

�
r _pt +A

�
d�; d�2

�
_p0;t (37)

+A
�
d@���; d@��

2
�

�
p0;t +A

�
@��0; @��

2
0

�
rpt;

where all have zero intial condition. Here, d� and d�2 denotes the directions of the partical

di¤erentials. The following lemma states some useful properties of pt and its derivatives:

Lemma 5 Assume that (�j;�; �2j;�) 2 H for all � 2 �, j = 1; 2. Then the following inequalities

hold uniformly over x; y 2 I and for k = 0; 1; 2:

���@k� p� �yjx;�1;�; �21;��� @k� p� �yjx;�2;�; �22;����� � C
kX
i=0

B
1=2
i;� (x) ;

���@k� p� �yjx;�1;�; �21;��� @k� p� �yjx;�2;�; �22;��� @k�rp� �yjx;�2;�; �22;�� �d��; d�2����� � C
kX
i=0

Bi;� (x) ;

where d�� = �1;� � �2;�, d�2� = �21;� � �22;�, and

Bi;� (x) :=

Z
I

���@i��1;� (w)� @i��2;� (w)��2 + ��@i��21;� (w)� @i��22;� (w)��2� �
 (wjx) dw:
Proof. Let pk;t (yjx) = pt

�
yjx;�k; �2k

�
where we suppress the dependence on �. First note that for

k = 0; 1; 2; Z �

0

Z
I

����@kp1;t (yjw)@wk

���� p2;t (wjx) dwdt � Z �

0

Z
I

t (yjw) 
t (wjx) dwdt; (38)

where the right hand side is uniformly bounded over x; y 2 I and � 2 �. Then observe that the
function qt := p1;t � p2;t solves the PDE,

@qt
@t

= A
�
�1; �

2
1

�
p1;t �A

�
�2; �

2
2

�
p2;t = A

�
�2; �

2
2

�
qt +A

�
�1 � �2; �21 � �22

�
p1;t:

Thus,

p1;� (yjx)� p2;� (yjx) =

Z
I

Z �

0
A
�
�1 � �2; �21 � �22

�
p1;t (yjw) p2;t (wjx) dwdt

=

Z
I

Z �

0
f�1 (w)� �2 (w)g

@p1;t (yjw)
@w

p2;t (wjx) dtdw

+
1

2

Z
I

Z �

0

�
�21 (w)� �22 (w)

	 @2p1;t (yjw)
@w2

p2;t (wjx) dtdw:
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Using Cauchy-Schwarz�s inequality and Eq. (38), we then obtain jp1;� (yjx)� p2;� (yjx)j � CB
1=2
0 (x).

For later use, we also note that

@k fp1;t � p2;tg (zjy)
@yk

=

Z t

0

Z
R
f�1 (w)� �2 (w)g

@p1;s (zjw)
@w

@kp2;s (wjy)
@yk

dwds (39)

+
1

2

Z t

0

Z
R

�
�21 (w)� �22 (w)

	 @2p1;s (zjw)
@w2

@kp2;s (wjy)
@yk

dwds;

and

@k f _p1;t � _p2;tg (zjy)
@yk

=

Z t

0

Z
R
f@��1 (w)� @��2 (w)g

@p1;s (zjw)
@w

@kp2;s (wjy)
@yk

dwds (40)

+

Z t

0

Z
R
f�1 (w)� �2 (w)g

@ _p1;s (zjw)
@w

@kp2;s (wjy)
@yk

dwds

+
1

2

Z t

0

Z
R

�
@��

2
1 (w)� @��22 (w)

	 @2p1;s (zjw)
@w2

@kp2;s (wjy)
@yk

dwds;

+
1

2

Z t

0

Z
R

�
�21 (w)� �22 (w)

	 @2 _p1;s (zjw)
@w2

@kp2;s (wjy)
@yk

dwds:

A similar, but more lengthy, expression can be derived for �p1;t � �p2;t. Using the same bounds as
before, ����@k fp1;t � p2;tg (zjy)@yk

���� � CB
1=2
0;� (x) ;

����@k f _p1;t � _p2;tg (zjy)
@yk

���� � C

1X
i=0

B
1=2
i (x) ;

����@k f�p1;t � �p2;tg (zjy)@yk

���� � C
2X
i=0

B
1=2
i (x) :

Next, rede�ne qt := p1;t � p2;t �rp2;t
�
�1 � �2; �21 � �22

�
, and we obtain

@qt
@t

= A
�
�1; �

2
1

�
p1;t �A

�
�2; �

2
2

�
p2;t �A

�
�� �0; �2 � �20

�
p2;t �A

�
�0; �

2
0

�
rp2;t

= A
�
�0; �

2
0

�
qt +A

�
�� �0; �2 � �20

�
(p1;t � p2;t) :

Applying the above bounds on the derivatives on p1;t � p2;t and Cauchy-Schwarz�s inequality,��p1;� (yjx)� p2;� (yjx)�rp2;� (yjx) ��1 � �2; �21 � �22���
�

Z �

0

Z
I

��A ��1 � �2; �2 � �22� (w) (p1;t (yjw)� p2;t (yjw))�� p2;t (wjx) dwdt
�

Z �

0

Z
I
j�1 (w)� �2 (w)j

����@ fp1;t � p2;tg (yjw)@y

���� p2;t (wjx) dwdt
+

Z �

0

Z
I

���21 (w)� �22 (w)�� ����@2 fp1;t � p2;tg (yjw)@y2

���� p2;t (wjx) dwdt
� CB0 (x) :
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Similarly for derivatives w.r.t. �.

Next, we can apply the above lemma to show that the log-likelihood, the score and the hessian

are well-behaved functionals of
�
�; �2

�
. With p�;i

�
��; �

2
�

�
= p�

�
Xi�jX(i�1)�;��; �2�

�
and similarly

for its derivatives, and � b;i = � b
�
p
�
Xi�jX(i�1)�;��; �2�

��
, the untrimmed score takes the form

Sn
�
��; �

2
�

�
=
1

n

nX
i=1

_p�;i
�
��; �

2
�

�
=p�;i

�
��; �

2
�

�
; (41)

while the trimmed version is given by

Ŝn
�
��; �

2
�

�
= Ŝ(1)n

�
��; �

2
�

�
+ Ŝ(2)n

�
��; �

2
�

�
; (42)

Ŝ(1)n
�
��; �

2
�

�
=
1

n

nX
i=1

� b;i
_p�;i

�
��; �

2
�

�
p�;i

�
��; �

2
�

� ; Ŝ(2)n
�
��; �

2
�

�
=
1

n

nX
i=1

�
(1)
b;i log p�;i

�
��; �

2
�

�
_p�;i

�
��; �

2
�

�
:

(43)

The untrimmed and trimmed Hessian are given as:

Hn
�
�; �2

�
=
1

n

nX
i=1

(
�p�;i

�
�; �2

�
p�;i (�; �2)

+
_p�;i

�
�; �2

�
p�;i (�; �2)

_p�;i
�
�; �2

�0
p�;i (�; �2)

)
; (44)

Ĥn
�
��; �

2
�

�
= Ĥ(1)

n

�
��; �

2
�

�
+ Ĥ(2)

n

�
��; �

2
�

�
+ Ĥ(3)

n

�
��; �

2
�

�
; (45)

where

Ĥ(1)
n

�
��; �

2
�

�
=

1

n

nX
i=1

� b;i
�
��; �

2
�

�( �p�;i ���; �2��
p�;i

�
��; �

2
�

� + _p�;i
�
��; �

2
�

�
p�;i

�
��; �

2
�

� _p�;i ���; �2��0
p�;i

�
��; �

2
�

� ) ; (46)

Ĥ(2)
n

�
��; �

2
�

�
=

1

n

nX
i=1

�
(1)
b;i

�
�; �2

�( _p�;i ���; �2�� _p�;i ���; �2��0
p�;i

�
��; �

2
�

� + log p�;i
�
��; �

2
�

�
�pi
�
��; �

2
�

�)

Ĥ(3)
n

�
��; �

2
�

�
=

1

n

nX
i=1

�
(2)
ab;i

�
��; �

2
�

�
log p�;i

�
��; �

2
�

�
_p�;i

�
��; �

2
�

�
_p�;i

�
��; �

2
�

�0
:

Finally, the pathwise derivatives of the trimmed and untrimmed score w.r.t. � and �2 at
�
�0; �

2
0

�
are given by:

rŜn
�
d�; d�2

�
=

1

n

nX
i=1

� b;i

(
r _p�;i

�
d�; d�2

�
p0;�;i

� _p0;�;i
p0;�;i

rp�;i
�
d�; d�2

�
p0;�;i

)
(47)

+
1

n

nX
i=1

�
(1)
b;i

(
rp�;i

�
d�; d�2

�
p0;�;i

_p0;�;i + log p0;�;i (�0)r _p�;i
�
d�; d�2

�)
= : rŜ(1)n

�
d�; d�2

�
+rŜ(2)n

�
d�; d�2

�
;
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rSn
�
d�; d�2

�
= � 1

n

nX
i=1

_p0;�;i
p0;�;i

rp�;i
�
d�; d�2

�
p0;�;i

+
1

n

nX
i=1

r _p�;i
�
d�; d�2

�
p0;�;i

(48)

= : rS(1)n
�
d�; d�2

�
+rS(2)n

�
d�; d�2

�
: (49)

where p0;t (yjx) = pt
�
yjx;�0; �20

�
. Let in the following k�k1 denote the sup-norm.

Lemma 6 Assume that the model characterized by
�
��; �

2
�

�
satis�es the conditions in (A1)-(A5),

and that
�
�̂�; �̂

2
�

�
2 H for all � 2 � with sup�2� jj�̂� � ���jj1 = OP ("n) and sup�2� jj�̂2� � ��2�jj1 =

OP ("n) where "n ! 0 and �� and ��2 are given in (29). Then with Ln
�
�; �2

�
and L̂n

�
�̂�; �̂

2
�

�
given

in (6) and (13), the following hold:

sup
�2�

���L̂n ��̂�; �̂2��� Ln ���; �2����� = OP
�
b�1"n

�
+OP

�
b�1a�1=2

�
+OP

�
jlog bj��3

�
:

Proof. Let p�;0 (yjx) = p�(yjx;�0; �20) where �0 = ��0 and �
2
0 = �2�0 . In the following we suppress

the dependence on �. We introduce two auxiliary trimming sets, A(�) =
�
p
�
yjx;�; �2

�
� �b1

	
and

A0(�) = fp�;0 (yjx) � �b1g, for any � > 0. De�ning �A (�) = A (�) \A0 (�), it follows by Lemma 5,
using the same arguments as in Andrews (1995, p.588), that A0 (1=2) � A (1) � A0 (2) � �A (4) for

"n ! 0 su¢ ciently small. Since jlog (p=p0)j � jp� p0j =p0 + jp� p0j =p, it holds that,

jL̂n
�
�̂; �̂2

�
� L̂n

�
��; ��2

�
j

� sup
x;y2I

jI �A(4) (y; x)
��log p�(yjx; �̂; �̂2)� log p�(yjx; ��; ��2)��

� sup
x;y2I

�
I �A(4)

����p�(yjx; �̂; �̂2)� p�(yjx; ��; ��2)p�(yjx; �̂; �̂2)

�����+ sup
x;y2I

�
I �A(4)

����p�(yjx; �̂; �̂2)� p�(yjx; ��; ��2)p�(yjx; ��; ��2)

�����
� (4b)�1 sup

x;y2I

��p�(yjx; �̂; �̂2)� p�(yjx;�; �2)�� ;
Thus,

E

�
sup
�2�

���L̂n ���; ��2�� L̂n ��; �2�����
� b�1

Z
I�I

sup
�2�

��p� �yjx; ��; ��2�� p� �yjx;�; �2��� p� �yjx;�; �2��0 (x) dydx;
where, by Lemma 5, uniformly in � 2 �,

��p�(yjx; �̂; �̂2)� p�(yjx; ��; ��2)�� � C

�Z
I

�
j�̂ (w)� �� (w)j2 +

���̂2 (w)� ��2 (w)��2� �
 (wjx) dw�1=2
� C sup

w2I

�
j�̂ (w)� �� (w)j+

���̂2 (w)� ��2 (w)��	 :
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Using Eq. (39) and Cauchy-Schwarz�s inequality,��p� �yjx; ��; ��2�� p� �yjx;�; �2��� (50)

�
Z �

0

Z
I
j�a (�0 (w))� 1j� (w)

�����@pt
�
yjw; ��; ��2

�
@w

����� pt �wjx;�; �2� dydt
+

Z �

0

Z
I
j�a (�0 (w))� 1j�2 (w)

�����@pt
�
yjw; ��; ��2

�
@w2

����� pt �wjx;�; �2� dydt
+�2

Z �

0

Z
I
j�a (�0 (w))� 1j

�����@pt
�
yjw; ��; ��2

�
@w2

����� pt �wjx;�; �2� dydt
� C1=2a (yjx)

�Z �

0

Z
I
j�a (�0 (w))� 1j2 pt

�
wjx;�; �2

�
dwdt

�1=2
;

where

Ca (yjx) =

Z �

0

Z
I
�2 (w)

�����@pt
�
yjw; ��; ��2

�
@y

�����
2

pt
�
wjx;�; �2

�
dwdt

+

Z �

0

Z
I
�4 (w)

�����@pt
�
yjw; ��; ��2

�
@y2

�����
2

pt
�
yjx;�; �2

�
dwdt

+�4
Z �

0

Z
I

�����@pt
�
yjw; ��; ��2

�
@y2

�����
2

pt
�
yjx;�; �2

�
dwdt

As a! 0, Ca (x)! C0 (x) where

E

�
sup
�2�

C0 (X�jX0)
�
� C

�Z �

0

Z
I�I

�
sup
�2�

�2 (y)

�
pt
�
yjx;�0; �20

�
�0 (x) dydxdt

�1=2
+C

�Z �

0

Z
I

�
sup
�2�

�4 (y)

�
pt
�
yjx;�; �2

�
�0 (x) dydxdt

�1=2
+ C�4

� C

�Z
I
sup
�2�

�
�2 (y) + �4 (y)

	
�0 (x) dx

�1=2
+ C�4

� C
p
1 + E[B2 (X0)] <1;

where B is given in (A3), whileZ �

0

Z
I
j�a (�0 (w))� 1j2 pt

�
wjx;�; �2

�
dwdt �

Z �

0

Z
I
I f�0 (w) � a2g pt

�
wjx;�; �2

�
dwdt

� a�
Z �

0

Z
I
�0 (y)

�� pt
�
yjx;�; �2

�
dydt:
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In total,

E

�
sup
�2�

���L̂n ���; ��2�� L̂n ��; �2�����
� b�1

Z
sup
�2�

C1=2a (x)

�
a�1
Z �

0

Z
I
�0 (y)

��1 pt
�
yjx;�; �2

�
dydt

�1=2
p0 (yjx)�0 (x) dydx

� b�1a�1=2
�Z

I

Z
I

�
sup
�2�

Ca (x)

�
p0 (yjx)�0 (x) dydx

�1=2
�
�Z

I

Z
I
�0 (y)

��1
�
sup
�2�

p�
�
yjx;�; �2

��
p0;� (yjx)�0 (x) dydx

�1=2
� Cb�1a�1=2

�Z
I
�0 (x)

1��1 dx

�1=2
:

Finally, use that as b! 0,

E

�
sup
�2�

���L̂n ��; �2�� Ln ��; �2�����
�

Z
I�I

sup
�2�

I

(��log p�(yjx;�; �2)���3
jlog (b)j�3

> 1

)��log p� �yjx;�; �2��� p�;0 (yjx)�0 (x) dydx
� jlog (b)j��3

Z
I�I

sup
�2�

��log p� �yjx;�; �2���1+�3 p�;0 (yjx)�0 (x) dydx
where E

�
q��3

�
Xi�jX(i�1)�

��
<1 by (A4.ii).

Lemma 7 Assume that the conditions of Lemma 6 hold. Then with Ŝn
�
��; �

2
�

�
and rŜn given in

(42)-(43) and (47), the following hold:


Ŝn ��̂�0 ; �2�0�� Ŝn ����0 ; ��2�0��rŜn ��̂�0 � ���0 ; �̂2�0 � ��2�0�


 = OP
�
b�2"2

�
;

Proof. In the following, let p�;i
�
�; �2

�
= p�

�
Xi�jX(i�1)�;�; �2

�
, (�̂0; �̂

2
0) = (�̂�0 ; �̂

2
�0), (��0; ��

2
0) =

(���0 ; ��
2
�0
), (�0; �

2
0) = (��0 ; �

2
�0
), � b (x; y) = � b (p0;� (x; y)) and � b;i = � b

�
X(i�1)�; X(i�1)�

�
. Given

the de�nitions in Eqs. (42)-(43) and (47), we obtain that


Ŝn ��̂0; �̂20�� Ŝn ���0; ��20��rŜn ��̂0 � ��0; �̂20 � ��20�


 � kA1k+ kA2k+ kA3k ;
where

A1 =
1

n

nX
i=1

�� b;i

�
_p�;i(�̂0; �̂

2
0)

p�;i(�̂0; �̂
2
0)
� _p�;i(��0; ��

2
0)

p0;�;i(��0; ��
2
0)
� _p�;i(�̂0; �̂

2
0)� _p�;i(��0; ��

2
0)

p�;i(��0; ��
2
0)

+
_p�;i(��0; ��

2
0)

p�;i(��0; ��
2
0)

p�;i(�̂0; �̂
2
0)� p�;i(��0; ��20)

p�;i(��0; ��
2
0)

�
;
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A2 =
1

n

nX
i=1

�� b;i
1

p�;i(��0; ��
2
0)

�
_p�;i(�̂0; �̂

2
0)� _p�;i(��0; ��

2
0)�r _p�;i

�
�̂0 � ��0; �̂20 � ��20

��
;

A3 =
1

n

nX
i=1

�� b;i
_p�;i(��0; ��

2
0)

p2�;i(��0; ��
2
0)

�
p�;i(�̂0; �̂

2
0)� p�;i(��0; ��20)�rp�;i

�
�̂0 � ��0; �̂20 � ��20

��
:

Next, it is easily seen that

kA1k � Cb�1


 _p�(�̂0; �̂20)� _p�(��0; ��

2
0)


2
1 + b

�2 

p�(�̂0; �̂20)� p�(��0; ��20)

21
� Cb�2

�
k�̂� ��k21 +



�̂2 � ��2

21� ;
where the second inequality follows from Lemma 5. Similarly,

kA2k � Cb�1
�
k�̂� ��k21 +



�̂2 � ��2

21� ; kA3k � Cb�2
�
k�̂� ��k21 +



�̂2 � ��2

21� ;
where we again appeal to Lemma 5.

Lemma 8 Assume that the conditions of Lemma 6 hold. Then with Hn
�
��; �

2
�

�
and Ĥn

�
�̂�; �̂

2
�

�
given in (44) and (45), the following hold:

sup
�2�




Ĥn ��̂�; �̂2���Hn ���; �2��


 = OP
�
b�2"n

�
+OP

�
b�2a�1=2

�
+OP

�
jlog bj��3

�
:

Proof. We use the same notation and strategy as in the proof of Lemma 7. Recall the de�nition
of Ĥn

�
�; �2

�
in Eqs. (45)-(46). The �rst term satis�es


Ĥ(1)

n

�
�̂; �̂2

�
� Ĥ(1)

n

�
��; ��2

�



� 1

n

nX
i=1






�a;i ��̂; �̂2� �p�;i
�
�̂; �̂2

�
p�;i

�
�̂; �̂2

� � �a;i ��; �2� �p�;i ���; ��2�
p�;i (��; ��2)







+
1

n

nX
i=1






�a;i ��̂; �̂2� _p�;i
�
�̂; �̂2

�
p�;i

�
�̂; �̂2

� _p0�;i ��̂; �̂2�
p�;i

�
�̂; �̂2

� � �a;i ��; �2� _p�;i ���; ��2�
p�;i (��; ��2)

_p0�;i
�
��; ��2

�
p�;i (��; ��2)







� b�2

�

�p� ��̂; �̂2�� �p� ���; ��2�

1 + 

 _p� ��̂; �̂2�� _p�
�
��; ��2

�


1 +



p� ��̂; �̂2�� p� ���; ��2�

1	
= OP

�
b�2"n

�
;

uniformly over �. The proofs of sup�



Ĥ(k)

n

�
�̂; �̂2

�
� Ĥ(k)

n

�
��; ��2

�


 = OP
�
b�21 "n

�
, k = 2; 3, follow
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along the same lines. Next, by similar arguments

E

�
sup
�




Ĥn ���; ��2�� Ĥn ��; �2�


�
� b�1

Z
I�I

sup
�

��p� �yjx; ��0; ��20�� p0;� �yjx;�0; �20��� p0;� �yjx;�0; �20��0 (x) dydx
+b�1

Z
I�I

sup
�

�� _p� �yjx; ��0; ��20�� _p�
�
yjx;�0; �20

��� p0;� �yjx;�0; �20��0 (x) dydx
+b�1

Z
I�I

sup
�

���p� �yjx; ��0; ��20�� �p� �yjx;�0; �20��� p0;� �yjx;�0; �20��0 (x) dydx:
Applying the inequality in Eq. (50) and the bounds established after that, we obtain that the third

term is O
�
b�1a�1=2

�
. For the second term, we �rst note that by Eq. (40),�� _p� �yjx; ��0; ��20�� _p�

�
yjx;�0; �20

���
�

Z �

0

Z
I
j�a (�0 (y))� 1j j@��0 (w)j

@ps
�
yjw; ��0; ��20

�
@w

ps
�
wjx;�0; �20

�
dwds

+

Z �

0

Z
I
j�a (�0 (y))� 1j j�0 (w)j

@ _ps
�
yjw; ��0; ��20

�
@w

ps
�
wjx;�0; �20

�
dwds

+
1

2

Z �

0

Z
I
j�a (�0 (y))� 1j

��@��20 (w)�� @2ps �yjw; ��0; ��20�@w2
ps
�
wjx;�0; �20

�
dwds;

+
1

2

Z �

0

Z
I
j�a (�0 (y))� 1j

���20 (w)�� @2 _ps �yjw; ��0; ��20�@w2
ps
�
wjx;�0; �20

�
dwds:

We can now use the same arguments as those following Eq. (50) to show that the second term

is of order O
�
b�1a�1=2

�
. The same arguments are employed to show that the �rst term is also

O
�
b�1a�1=2

�
. Finally

E

�
sup
�




Ĥn ��; �2��Hn ��; �2�


�
�

Z
I2
sup
�
j� b (x; y)� 1j

(
k�p� (yjx)k
p� (yjx)

+
k _p� (yjx)k2

p2� (yjx)

)
p0;� (yjx)�0 (x) dxdy

+

Z
I2
sup
�

���� (1)b (x; y)
���(

 _p�;i ��; �2�

2

p�;i (�; �2)
+ log p�;i

�
�; �2

� 

�pi ��; �2�

) p0;� (yjx)�0 (x) dxdy
+

Z
I2
sup
�
�
(2)
b (x; y)

��log p�;i ��; �2��� 

 _p�;i ��; �2�

2 p0;� (yjx)�0 (x) dxdy
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whereZ
I
j� b (x; y)� 1j

k _p0;� (yjx)k
p0;� (yjx)

p0;� (yjx)�0 (x) dxdy

�
 Z

I�I
I

(
jlog p0;� (yjx)j
jlog bj�3

> 1

)
p0;� (yjx)�0 (x) dxdy

!1=2 Z
I�I

k _p0;� (yjx)k2

p20;� (yjx)
p0;� (yjx)�0 (x) dxdy

!1=2
� jlog bj��3

p
E [q (X�jX0)]�

r
E
h
ks0 (X�jX0)k2

i
;

and Z
I
sup
�

���� (1)b (x; y)
���(

 _p� ��; �2�

2

p� (�; �2)
+ log p�

�
�; �2

� 

�p ��; �2�

) p0;� (yjx)�0 (x) dxdy
� Cb

n
E [jlog p� (X�jX0)j] + E

h
ks (X�jX0)k2

io
:

Similarly, the third term can be shown to be OP
�
b2
�
.

Lemma 9 (Class 1) Under (A1)-(A3), uniformly in �1 2 �1 and for k = 0; 1; 2,


@k�1 �̂ (�; �1; �̂)� @k�q �� (�; �1)


1 = OP

�
a�3
p
log (n) (nh)�1=2 + a�2

p
log (n)

�
nh3

��1=2
+ a�2hm

�
;




@k�1 �̂ (�; �1;0)� @k�1�� (�; �1;0)� @k�1r�� [�̂ � �0]


1 = OP

�
a�3 log (n) (nh)�1 + a�2 log (n)

�
nh3

��1
+ a�2h2m

�
;

where �� (x; �1) is de�ned in Eq. (29) and

r�� [d�] (x) = �a (�0 (x))

2
�2 (x; �1;0)

"
d�(1) (x)

�0 (x)
� �

(1)
0 (x)

�20 (x)
d� (x)

#
;

Proof. Using standard techniques, we obtain under (A1)-(A3) and K 2 K (m), that for some
�h 2 [0; h],

E[�̂(s) (x)]� �(s)0 (x) =
hm

m!

Z
I
�
(s)
0

�
x+ z�h

�
zmK (z) dz = O (hm) , s = 0; 1;

uniformly in x 2 I. Next, we de�ne

Ĝs (x) =
1

nh

nX
i=1

Gs

�
x�Xi
h

�
; Gs (z) = K(s) (z) :

It is easily checked that with K 2 K (m), Gs satis�es Assumption 1 in Hansen (2008) and that
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(A1) implies his Assumption 2. We then obtain from Hansen (2008, Proof of Theorem 3) that

E

�
sup
x2I

j�̂(s) (x)� �(s)0 (x) j2
�
� sup

x2I
jE[�̂(s) (x)]� �(s)0 (x) j2 + h�2sE

�
sup
x2I

jĜ (x)� E[Ĝ (x)]j2
�

= O
�
h2m

�
+OP

�
log (n)n�1h�(1+2s)

�
:

Since jj�̂ � �0jj !P 0, we can as in the Proof of Lemma 9 appeal to Andrews (1995, p.588),

and show uniform convergence over the set �A = fx : �̂ (x) � a=4; �0 (x) � a=4g. We then use the
convergence rate obtained above together with �0 (x)�2 (x; �1) � C uniformly in (x; �1) by (A3) to

obtain uniformly in �1 2 �1,

k�̂ (�; �1)� �� (�; �1)k1 � 1

2
sup
x2I

Ifx 2 �Ag��10 (x)
�
�0 (x)�

2 (x; �1)
	 ����� �̂(1) (x)�̂ (x)

� �
(1)
0 (x)

�0 (x)

�����
� C

�
a�2jj�̂(1) � �(1)jj1 + a�3 k�̂ � �k1

�
= O

�
a�2
p
log (n)n�1=2h�3=2 + a�3

p
log (n)n�1=2h�1=2 + a�2hm

�
:

and similarly when we take derivatives w.r.t �1. Next, by the same arguments as before,

j�̂ (�; �1;0)� �� (�; �1;0)�r�� [�̂ � �0]j � Ca�1If �Ag
����� �̂(1)�̂ � �

(1)
0

�0
� �̂(1) � �(1)0

�0
+
�
(1)
0

�20
[�̂ � �0]

�����
� C

�
a�2jj�̂(1) � �(1)jj1 + a�3 k�̂ � �k1

�
;

and the second result is obtained.

Lemma 10 (Class 2) Under (A1)-(A3), uniformly in �2 2 �2 and for k = 0; 1; 2,


@k�2 �̂2 (�; �2)� @k�2��2 (�; �2)


1 = OP

�
a�2
p
log (n) (nh)�1=2 + a�2hm + aq

�
;




@k�2�2 (�; �2;0)� @k�2��2 (�; �2;0)� @k�2r��2 [�̂ � �0]


1 = OP

�
a�2 log (n) (nh)�1 + a�2h2m

�
;

where ��2 (x; �2) is de�ned in Eq. (29) and

r�2 [d�] (x) = 2�a (�0 (x))
�R x

l d� (y)� (y; �2;0) dy

�0 (x)
� 2

R x
l �0 (y)� (y; �2;0) dy

�20 (x)
d� (x)

�
:

Proof. We claim that:

sup
(x;�2)2I��2

����� 1n
nX
i=1

I fXi � xg @k�2� (Xi; �2)�
Z x

l
�0 (y) @

k
�2� (y; �2) dy

����� = OP (n
�1=2):

Observe that
��I fz � xg @k�2� (z; �2)

�� � B (z) where B (z) is given in (A3) with E
�
B2+� (X0)

�
<1.

The result will now follow by applying Doukhan et al (1994) if: The "-entropy with bracketing of G
for the Lq (�0)-metric,HB;q (";G; �0), where G =

�
gjg (z) = 1(l;x) (z) @k�2� (z; �2) ; (x; �2) 2 I ��2

	
,
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satis�es HB;q (";G; �) � C"�� for some � < 1=2 and q > 2. . To prove this claim, de�ne F =

ff jf (z) = I fz � xg , x 2 Ig, such that G =
�
gjg (z; �2; h) = f (z) @k�2� (z; �2) ; (�; h) 2 �2 �F

	
.

It holds that for any (�2; f) ;
�
�02; f

0� 2 �2 �F ,��g (z; �2; f)� g �z; �02; f 0��� � j� (z; �2)j


f � f 0



q
+


f 0



q
j@k+1�2

�
�
z; ��2

�
j


�2 � �02



� B (z)
�

f � f 0



q
+


�2 � �02

� :

By the same arguments as in the proof of Chen et al (2003, Theorem 3), it now follows that

HB;q (";G; �) � H(C"1=s;�2; k�k) +Hq(C"1=s;F ; �0);

for any s 2 (0; 1], where H (";�2; k�k) and Hq (";F ; �0) are the "-entropies of �2 (for the Euclid-
ean norm) and F (for the Lq (�0)-metric) respectively. By Van de Geer (2000, Lemma 2.5),

H (";�2; k�k) � d log
�
4C"�1 + 1

�
while, by Van de Geer (2000, Theorem 3.11 and Example 3.7.4a),

Hq (";F ; �0) � log (C"�q). Next, by standard bias arguments,

sup
(x;�2)2I��2

�����
Z x

l
�̂ (y) @k�2� (y; �2) dy �

1

n

nX
i=1

I fXi � xg @k�2� (Xi; �2)
����� = OP (h

m) :

We now use this together with the uniform result for the kernel estimator and the de�nition of

the set �A in the proof of Lemma 9 to obtain

j�̂2 (x; �2)� ��2 (x; �2) j � 2I
�
x 2 �A

	 �����
R x
l �̂ (y) @

k
�2
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�̂ (x)
�
R x
l �0 (y) @

k
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� (y; �2) dy

�0 (x)

�����
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�̂(x);�0(x)>a

����� �̂(1) (x)�̂ (x)
� �

(1)
0 (x)

�0 (x)

�����+OP �a�1n�1=2�+OP �a�1hm�
� Ca�2 k�̂ � �k1 +OP

�
a�1n�1=2

�
+OP

�
a�1hm

�
= O

�
a�2
p
log (n)n�1=2h�3=2 + a�2hm

�
;

and similar when we take derivatives w.r.t �2. Finally, the second result follows by:���̂2 (x; �2;0)� ��2 (x; �2;0)�r��2 [�̂ � �0] (x)��
� 2I

�
x 2 �A

	 ����Z x

l
�0 (y) @

k
�2� (y; �2;0) dy

���� ���� 1

�̂ (x)
� 1

�0 (x)
� �̂ (x)� �0 (x)

�20 (x)

����
= O

�
a�2 k�̂ � �̂k21

�
;

43



C Tables

The true parameter values are: (CKLS) �0 = (1:8207; 2:6217) and �0 = (0:0344;�0:2921); (AS)
�0 = (1:8086; 2:6195) and �0 = (�0:3582; 6:6653;�35:4326; 0:0065).

�1 �2 �1 �2

n = 5000

-0.0109 -0.0044 0.0154 -0.2071

Parametric 0.2004 0.0421 0.0256 0.4004

0.2007 0.0423 0.0298 0.4508

-0.1506 0.0416 0.0160 -0.01180

Semiparametric 0.2890 0.0838 0.0630 0.3693

0.3259 0.0935 0.0650 0.3877

n = 2500

-0.0263 -0.0103 0.0331 -0.4358

Parametric 0.3197 0.0677 0.0437 0.6290

0.3208 0.0685 0.0548 0.7652

-0.1379 -0.0393 0.0396 -0.3268

Semiparametric 0.3402 0.0867 0.1604 0.5847

0.3671 0.0952 0.1652 0.6698

n = 1000

0.0690 -0.0097 0.0988 -1.1780

Parametric 0.6846 0.1391 0.1509 1.3476

0.6881 0.1395 0.1803 1.7899

-0.0277 -0.0327 0.1199 -0.9742

Semiparametric 0.6579 0.1423 0.5427 1.2096

0.6584 0.1460 0.5558 1.5531

Table 1: Parametric and Semiparametric bias, std. and root-MSE in the CKLS model.

Note: The three elements in each cell are, from top to bottom, bias, std and root-MSE.
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�1 �2 �1 �2 �3 �4

n = 5000

-0.0484 -0.0124 -0.2286 3.2306 -14.7289 0.0053

Parametric 0.2258 0.0489 0.3668 5.1285 23.6135 0.0090

0.2310 0.0504 0.4322 6.0612 27.8305 0.0104

-0.0494 -0.0133 -0.0870 1.2501 -5.906 0.0022

Semiparametric 0.2386 0.0516 0.3005 4.2194 20.5818 0.0076

0.2436 0.0533 0.3128 4.4007 21.4248 0.0079

n = 2500

-0.0570 -0.0177 -0.5462 7.4802 -34.4485 0.0135

Parametric 0.3455 0.0752 0.8737 11.2375 52.5934 0.0243

0.3502 0.07773 1.0304 13.4994 62.8711 0.0278

-0.0581 -0.0197 -0.3066 4.1607 -20.1144 0.0081

Semiparametric 0.3653 0.0810 0.6214 8.0931 41.3468 0.0174

0.3699 0.0834 0.6930 9.1000 45.9799 0.0192

n = 1000

0.0685 -0.0153 -2.6473 34.2092 -161.2317 0.0737

Parametric 0.7735 0.1558 3.9338 44.0910 228.4953 0.1371

0.7766 0.1565 4.7417 55.8058 279.6530 0.1557

0.0903 -0.0169 -1.2287 17.0347 -88.6357 0.0332

Semiparametric 0.8477 0.1636 2.0262 26.1552 148.5297 0.0635

0.8525 0.1645 2.3697 31.2134 172.9664 0.0716

Table 2: Parametric and Semiparametric bias, std. and root-MSE in the AS model.

Note: The three elements in each cell are, from top to bottom, bias, std and root-MSE.
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Figure 1: Parametric and semiparametric estimates of the drift in the CKLS model. Note: Full

line = true drift, dashed line = mean of estimate, �+�= 95% conf. bands
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Figure 2: Parametric and semiparametric estimates of the drift in the AS model. Note: Full line
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= true drift, dashed line = mean of estimate, �+�= 95% conf. bands
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Figure 3: Parametric and semiparametric estimates of the di¤usion in the AS model. Note: Full

line = true di¤usion, dashed line = mean of estimate, �+�= 95% conf. bands
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