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Abstract

The detection and location of additive outliers in integrated variables
has attracted much attention recently because such outliers tend to affect
unit root inference among other things. Most of these procedures have
been developed for non-seasonal processes. However, the presence of sea-
sonality in the form of seasonally varying means and variances affect the
properties of outlier detection procedures, and hence appropriate adjust-
ments of existing methods are needed for seasonal data. In this paper we
suggest modifications of tests proposed by Shin et al. (1996) and Perron
and Rodriguez (2003) to deal with data sampled at a seasonal frequency
and the size and power properties are discussed. We also show that the
presence of periodic heteroscedasticity will inflate the size of the tests and
hence will tend to identify an excessive number of outliers. A modified
Perron-Rodriguez test which allows periodically varying variances is sug-
gested and it is shown to have excellent properties in terms of both power
and size.
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1 Introduction

Franses and Haldrup (1994), and Shin et al. (1996), (for non-seasonal time
series), and Haldrup et al. (2005), (for seasonal data), show that the presence
of additive outliers (AO) affects the limiting distribution of Dickey-Fuller type
tests which tend to overreject the unit root null hypothesis in this case. The
intuition behind these results is that the AOs introduce an MA-type autocor-
relation component which distorts the size of the tests. As a consequence, it is
necessary to check for the presence of outliers prior to testing for unit roots and
subsequently to modify the unit root testing procedure. With respect to the
first step, i.e. the testing for the presence of outliers in I(1) variables, Shin et al.
(1996), Vogelsang (1999), and Perron and Rodriguez (2003) have proposed tests
based on iterative procedures. See however, Haldrup and Sanso (2008) regard-
ing some caveats of the Vogelsang tests. Concerning the second aspect, i.e. the
correction for the outliers when testing for unit roots, this has been considered
by Franses and Haldrup (1994), Haldrup et al. (2005), Shin et al. (1996) and
Vogelsang (1999). One of the suggestions of the last author is to use modified
Phillips-Perron (1988) tests, see Perron and Ng (1996). These tests were orig-
inally designed to deal with dependent errors but also turn out to successfully
deal with dynamics generated from outliers. Franses and Haldrup proposed to
extend the auxiliary regression by including dummy variables to control for the
AOs whilst Shin et al. (1996) suggested to consider the observation affected
by AOs as a missing observation and replace this by its expected value under
the hypothesis of a unit root. These procedures necessarily have to identify the
location of outliers.

In this paper we will be concerned with the first step, i.e. the outlier detec-
tion problem for both stationary and non-stationary integrated processes. Most
outlier detection procedures assume non seasonal data. However, the presence of
seasonality in the form of seasonally varying means and variances easily interfere
with outlying observations and hence affects the properties of outlier detection
procedures when there is strong seasonality in the data. It is also important
to consider how to deal with outlying observations in order not to affect the
seasonal periodicity and the autocorrelation structure of the data. Therefore
appropriate adjustments of existing methods are needed for seasonal data. In
this paper we suggest modifications of tests proposed by Shin et al. (1996) and
Perron and Rodriguez (2003) to deal with the seasonal case. It turns out that
especially the observations in the beginning and the end of a sample need to be
given a particular treatment. The modified version of the Perron-Rodriguez test
appears to perform the best in terms of both power and size. One particular
form of seasonality concerns the possibility of periodically varying variances,
see also Burridge and Wallis (1990), Burridge and Taylor (2001), and Franses
(1996). Periodic heteroscedasticity appears to generate inflated size distortion
with respect to the identification of additive outliers and hence too many out-
liers are likely to be identified. Fortunately a simple (further) modification of
the Perron-Rodriguez test statistic can be easily constructed to alleviate these
problems.

2



In section 2 we review the tests proposed by Perron and Rodriguez (2003)
and Shin et al. (1996), and we extend their tests in different ways to allow
data observed at a seasonal frequency. Also we suggest a modification of the
Perron Rodriguez test that allows for periodically varying variances. In section
3 the new tests are compared in a Monte Carlo experiment and we conclude
in general that the extensions of the Perron-Rodriguez test perform excellently.
However, when periodic heteroscedasticity is present the extensions of the test
to allow for this feature will be necessary to control size. The modified Shin et
al. tests are generally found to perform poorly. Section 4 presents an empirical
application before we conclude.

2 Testing for additive outliers in integrated time
series

Consider the univariate seasonal process generated by

yt = yt−s + ut, (1)

where ut is a general I(0) process and s indicates the number of observations
per year. For example, ut can be a linear process of the form ut = ϕ(L)et with

ϕ(L) =
∞∑

i=0

ϕiL
i

∞∑

i=0

i2ϕ2i <∞.

Additive outliers can be introduced in different ways. For instance, the
observed variable may read

zt = µt + yt + δπt (2)

where µt collects the deterministic terms (e.g. a constant, trend, and seasonal
dummy variables) and δπt is the additive outlier. πt is a Bernouilli-type variable
independent of ut, such that P (πt = 1) = P (πt = −1) = p/2, P (πt = 0) = 1−p,
0 ≤ p < 1 and δ is the (fixed) magnitude of outliers. The size of outliers may also
be considered to be stochastic. Alternatively, the location of additive outliers
may be assumed fixed, e.g. like δjπ

j
t where δj is the magnitude of outlier j with

fixed location πjt = 1 for t = Tj and π
j
t = 0 otherwise. Accordingly, zt is an

integrated process subject to AOs. We will consider simple procedures to detect
outliers in integrated processes and suggest their modification to accomodate
seasonal data. For the sake of simplicity of the exposition we initially assume
that µt = 0.

2.1 The Shin- Sarker-Lee (1996) test

The test due to Shin et al. (1996) (SSL hereafter) tests the null hypothesis
δ = 0 in equation (2), and is given by,

τSSL = sup
Tao

∣∣tSSL (Tao)
∣∣
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where,

tSSL (Tao) =
∆zTao+1 −∆zTao√

2σ̂

for Tao ∈ {2, ..., T − 1}, σ̂2 = (T − 3)−1
[(∑T

t=2∆z
2
t

)
−∆z2t′ −∆z2t′+1

]
, ∆zt =

zt−zt−1 and t′ is the time point at whichmax {|dt| : |dt| > max {|∆zt| , |∆zt+1|}}
and dt = 2

−1/2 (∆zt+1 −∆zt).
The test can be easily extended to seasonal data, in which case special atten-

tion must be taken regarding the outliers located at the beginning and at the end
of the sample. Assume that a single outlier is located at Tao ≤ s, in which situ-
ation all the information about δ is contained in ∆szTao+s = yTao+s−yTao−δ =
uTao+s − δ where ∆s = 1−Ls is the seasonal difference operator. If the outlier
is not located in the tails of the sample, all the information about δ is contained
in ∆szTao+s = uTao+s− δ and ∆szTao = uTao + δ, whereas if Tao > T − s all the
information is contained in ∆szTao = uTao + δ. Hence, under the assumption
that ut ∼ iid N

(
0, σ2u

)
and δ 
= 0,




∆szTao+s ∼ iid N

(
−δ, σ2u

)
for Tao ≤ s

∆szTao+s −∆szTao ∼ iid N
(
−2δ, 2σ2u

)
for s < Tao ≤ T − s

∆szTao ∼ iid N
(
δ, σ2u

)
for Tao > T − s

and thus, the test statistic for seasonal data is given by

τSSLs = sup
Tao

∣∣tSSLs (Tao)
∣∣ (3)

where

tSSLs (Tao) =





σ̂−1∆szTao+s for Tao ≤ s
2−1/2σ̂−1 (∆szTao+s −∆szTao) for s < Tao ≤ T − s
σ̂−1∆szTao for Tao > T − s

With respect to the deterministic terms, these can be dealt with by prior regres-
sion of ∆szt on the deterministic terms (including seasonal dummy variables)
and proceeding the analysis by using residuals. A robust estimate of the variance
can be computed as

σ̂2 =





(T − s− 1− k)−1
[(∑T

t=s+1∆sz
2
t

)
−∆sz2Tao+s

]
for Tao ≤ s

(T − s− 2− k)−1
[(∑T

t=s+1∆sz
2
t

)
−∆sz2Tao −∆sz2Tao+s

]
for s < Tao ≤ T − s

(T − s− 1− k)−1
[(∑T

t=s+1∆sz
2
t

)
−∆sz2Tao

]
for Tao > T − s

(4)
where k is the number of deterministic regressors. Other robust estimators of
the variance can be used, such as the median absolute deviation (MAD) and
the trimmed standard deviation.

Once an outlier is detected, Shin et al. (1996) suggest to treat this as a
missing observation and replace it with its forecast under the null hypoth-
esis of a random walk. That is, assume that an AO is identified at time
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Tao, then the contaminated observation zTao has to be replaced by: ẑTao =
E (zTao | zTao−1, zTao−2, ...) = zTao−s. Next, the new series with the corrected
observation must be checked for the presence of new outliers and the corre-
sponding observations replaced by its forecast. The iterative procedure stops
when no additional outlier is detected.

2.2 The Perron-Rodriguez (2003) test

The Perron and Rodriguez (2003) test (PR in the sequel) uses the differenced
data and is based on the (non-seasonal) auxiliary regression:

∆zt = δ
[
D (Tao)t −D (Tao)t−1

]
+ vt (5)

where D (Tao)t−j = 1 when t = Tao+ j and 0 otherwise, so that, under the null
hypothesis of δ = 0 the OLS estimator of (5) is given by

δ̂ (Tao) =

{
1
2 (∆zTao −∆zTao+1) Tao ≤ T − 1
∆zTao Tao = T

=

{
1
2 (uTao − uTao+1) Tao ≤ T − 1
uTao Tao = T

.

Perron and Rodriguez propose to estimate the variance of δ̂ as: var
[
δ̂ (Tao)

]
PR

=

1
2

(
R̂ (0)− R̂ (1)

)
where R̂ (j) = T−1

∑T
t=s+j+1 v̂tv̂t−j and v̂t are the OLS resid-

uals from (5). Defining tPR (Tao) =
√
2δ̂ (Tao)

(
R̂ (0)− R̂ (1)

)−1/2
, the test

statistic now reads
τPR = sup

Tao

∣∣tPR (Tao)
∣∣ . (6)

Note that for Tao = T the t-statistic to be computed should be tPR (Tao) =

δ̂ (Tao) R̂ (0)
−1/2 .

We now extend the PR test to the seasonal case by considering the auxiliary
regression

∆szt =

{
−δD (Tao)t−s + vt Tao ≤ s
δ
[
D (Tao)t −D (Tao)t−s

]
+ vt Tao > s

(7)

in which case,

δ̂ (Tao) =




−uTao+s Tao ≤ s
1
2 (uTao − uTao+s) s < Tao ≤ T − s
uTao Tao > T − s

,

and,

var
[
δ̂ (Tao)

]
=





R̂ (0) Tao ≤ s
1
2

(
R̂ (0)− R̂ (s)

)
s < Tao ≤ T − s

R̂ (0) Tao > T − s
.
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Similarly,

tPRs (Tao) =





δ̂ (Tao) R̂ (0)
−1/2 Tao ≤ s

√
2δ̂ (Tao)

(
R̂ (0)− R̂ (s)

)−1/2
s < Tao ≤ T − s

δ̂ (Tao) R̂ (0)
−1/2 Tao > T − s

and the test statistic is given by

τPRs = sup
Tao

∣∣tPRs (Tao)
∣∣ . (8)

If a single outlier is located amongst the initial observations, Tao ≤ s, then
∆szTao+s = uTao+s−δ. On the contrary, if the outlier lies in s < T ′ao ≤ 2s, then
∆szT ′

ao
= uT ′

ao
+ δ and ∆szT ′

ao
+s = uT ′

ao
+s − δ. Hence, one way to determine

whether an outlier lies in Tao ≤ s or in Tao + s is to compare
∣∣tPRs (Tao + s)

∣∣ =∣∣∣∣
√
2δ̂ (Tao + s)

(
R̂ (0)− R̂ (s)

)−1/2∣∣∣∣ with
∣∣tPRs (Tao)

∣∣ =
∣∣∣δ̂ (Tao) R̂ (0)−1/2

∣∣∣. If
∣∣tPRs (Tao)

∣∣ >
∣∣tPRs (Tao + s)

∣∣ the possible outlier lies in Tao ≤ s and in Tao + s
otherwise.

Concerning the treatment of deterministic terms, consider the auxiliary re-
gression

∆szt = F (t/T ) + δ
[
D (Tao)t −D (Tao)t−s

]
+ vt

where F (t/T ) contains deterministic terms such as a constant, a trend, and
seasonal dummy variables. OLS estimation of this equation is equivalent to

∆sz
∗

t = δ
[
D (Tao)t −D (Tao)t−s

]∗
+ vt

where ∆sz
∗

t and
[
D (Tao)t −D (Tao)t−s

]∗
are the residuals from the regression

of ∆szt and
[
D (Tao)t −D (Tao)t−s

]
on F (t/T ) , respectively. But note that for

F (t/T ) being a constant or F (t/T ) =
∑s
q=1Dqt being seasonal dummy vari-

ables, we have that if Tao > s, then
[
D (Tao)t −D (Tao)t−s

]∗
=
[
D (Tao)t −D (Tao)t−s

]
.

Hence we can use the auxiliary regression

∆sz
∗

t = δ
[
D (Tao)t −D (Tao)t−s

]
+ vt

that is, to use the demeaned variable. Given that under our assumption ∆szt
is stationary, demeaning will not affect the critical values. Hence, it is enough
to compute the critical values for the most simple regression.

Once an outlier has been detected, Perron and Rodriguez (2003) suggest to
drop the corresponding observation. With seasonal data, this procedure cannot
be followed given that it will distort the seasonal autocorrelation structure of the
data. For instance, eliminating one observation in one quarter will mean that
the corresponding year will have only three quarters. Hence, we suggest to follow
the procedure suggested by Shin et al. (1996) and substitute the observation of
the outlier by its forecast under the hypothesis of a seasonal random walk with
deterministic components.
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We have simulated the critical values associated with the test (8). Without
reporting these, it occurs that the fractiles are practically identical to those of
Perron and Rodriquez (2003) where it is the total number of observations that
matters for the relevant distribution. These findings apply regardless of the
deterministics that have been conditioned upon in the construction of the test.

2.3 Periodic heteroscedasticity

In several empirical studies it has been documented that periodic heteroscedas-
ticity often characterizes economic data, see e.g. Burridge and Taylor (2001)
for a review. As we shall see later in section 3, both the SSL and the PR tests
suffer from size distortion in this case. However, it is possible to adjust the PR
test to account for this distortion.

Suppose that the underlying process is a seasonal random walk with periodic
heteroscedasticity: yt = yt−s+ut, with ut ∼ iid(0, σ2t(mod s)). That is, each sea-
son follows a random walk with seasonally varying variances. This process has
been considered by Burridge and Wallis (1990), Burridge and Taylor (2001) and
Franses (1996) among others. The PR test statistics can be modified according
to the periodic nature of the variances. Define the statistic:

τPRPH = sup
Tao

∣∣tPRPH (Tao)
∣∣ (9)

where

tPRPH (Tao) =





δ̂ (Tao) R̂q (0)
−1/2 Tao ≤ s

√
2δ̂ (Tao)

(
R̂q (0)− R̂q (1)

)−1/2
s < Tao ≤ T − s

δ̂ (Tao) R̂q (0)
−1/2 Tao > T − s

.

q = t(mod s) is the season with the convention that q = 0 corresponds to q = s.

R̂q (j) = [T/s]
−1∑[T/s]

n=j+1 v̂(n−1)s+qv̂(n−1−j)s+q, and δ̂ (Tao) is the OLS estimate
of δ in (5). That is, the variance and autocovariances are estimated using only
the observations corresponding to the same season where the (possible) additive
outlier is located. The distribution of tPRPH will be different from the distribution
reported by Perron and Rodriguez because the periodic nature of the test implies
a reduction in the effective number of observations and the fact that the sup of
tests across seasons is defining the statistic. Table 1 reports the critical values
for this case.

Another strategy to follow is to pretest for periodic variances, e.g. by an LM
test, and if periodicity is detected, then compute τPRPH , otherwise, compute τ

PR
s .

Let us denote τPRP−PH the supremum statistic computed with this procedure.

Insert Table 1 about here
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3 Monte Carlo Experiments

In this section we study the finite sample performance of the outlier detection
tests presented above, i.e. the τSSLz and τPRs tests and the tests accounting for
periodic variances, τPRPH and τPRP−PH .

The Monte Carlo experiment conducted here is similar to that of Perron
and Rodriguez (2003) for the non-seasonal case. The data generating process
(DGP) is given by:

zt =
m∑

j=1

δjπ
j
t + yt (10)

(
1− L4

)d
yt = vt

vt = ρvt−4 + εt + θεt−4

εt ∼ iid N (0, 1)

Hence the series zt is following a seasonal ARIMA4 possibly contaminated
with m = 4 additive outliers and with fixed locations Tj (i.e. π

j
t = 1 for t = Tj

and πjt = 0 otherwise) where j = 1, 2, 3, 4. The j
′th outlier has magnitude δj .

Note that when δj = 0 for all j then no additive outliers are present, i.e. the case
of interest in analyzing the size of the tests. To analyze powers we have chosen
an experimental design where δj = {5, 3, 2, 2} and Tj = {30, 55, 77, 100}. Hence,
the first outlier is expected to be more easily detected than the subsequent three
outliers. Note also that the last two outliers may be difficult to detect given
that these have a magnitude of only two standard errors. The sample size in
the experiments is T = 120 corresponding to 30 years of quarterly data. We
have also considered T = 200 and a design with different values of δj and the
location of outliers. In particular, we have considered experiments where the
location of outliers is either in the beginning or in the end of the sample size.
To economize the space, these results are not reported here, but are available
from the authors upon request. However, we do comment on the conclusions
following these extended experiments. In this set up, the size and power can be
analyzed under different assumptions about the dynamics describing vt which
follows a seasonal ARMA4(1,1) model. We separate AR and MA dynamics and
simulate the cases θ = {−.8,−.4, 0, .4, .8} and ρ = {−.8,−.4, .4, .8}. Note that
by choice of d in (10) we have a non-stationary seasonal process for d = 1 or a
stationary process for d = 0.

Sizes and powers are reported in Table 2 and 3. In both tables Panel A and
B correspond to non-stationary seasonal processes with MA and AR dynamics,
respectively, and Panel C corresponds to a stationary seasonal process with AR
dynamics.

First, we focus on sizes, Table 2. It is remarkable, that in all cases where
vt exhibits autocorrelation the τ

SLL
s test is seriously size distorted which makes

the test useless in practice. For positive autocorrelation the test is very conser-
vative whereas for negative autocorrelation it is heavily over sized. Also for the
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stationary case the τSLLs test will be heavily over sized implied by differencing
when constructing the test and the implied negative autocorrelation induced.

Insert Table 2 about here

The Perron and Rodriguez based tests appear to have almost the correct size
for both stationary and non-stationary processes. One exception is the τPRPH test
in the non-stationary case when strong positive autocorrelation is present in vt.
In this case the test is slightly conservative.

Next, turn to the powers reported in Table 3. Given the poor size of the
τSLLs test, we do not comment on powers or size-adjusted powers for this case.
In detecting the first outlier, all the three Perron and Rodriguez tests perform
very similarly and show good power in the case of non-stationary seasonality,
see Panels A and B.. The tests loose some power, however, in the case with
negative autocorrelation. But overall power seems fine. Turning to the second
outlier, results are equally similar but obviously detection of the second out-
lier is less powerful mainly because the magnitude of this outlier is somewhat
smaller, i.e. 3 standard deviations instead of 5. Also in this case negative au-
tocorrelation decreases power. Essentially the outlier is hidden by the negative
autocorrelation pattern and clearly this is most apparent as the magnitude of
the outlier becomes smaller. This general pattern extends to outlier detection
of outlier 3 and 4 with the modification, however, that the τPRs test has better
power than the equivalent tests correcting for periodic heteroscedasticity.

In the stationary case, Panel C, the rejection probabilites for the three PR
tests are again similar. The performance in detecting the first outlier is generally
fine but deteriorating w.r.t. the subsequent outliers following the same line of
arguments as given above. However, when ρ becomes small the overdifferencing
implied by the construction of the tests again induces negative autocorrelation
which will hidden the outliers in a similar fashion as discussed in relation to
panels A and B.

In the previous simulations the data generating mechanism assumed out-
liers to be located centrally amongst the observations. Simulation results not
reported here but available upon request seem to indicate that in general out-
liers at the very end of the sample yield test powers similar to those reported
here. However, for outliers in the beginning of the sample some loss of power is
detected.

Table 4 presents results for a data generating process with periodic het-
eroscedasticity, which has also been considered by Burridge and Taylor (2001).
The data generating mechanism corresponds to (10) with d = 1 and θ = ρ =

δj = 0, j = 1, 2, 3, 4, but with εt ∼ iid N
(
0, σ2t(mod s)

)
with the convention

that σ0 = σ4. Hence zt follows a seasonal random walk with variances de-
pending upon the season. As it is clear from Table 4 the τPRs test is seriously
distorted in this case (as is the τSSLs test). However, it can be seen that both
the tests correcting for heteroscedasticity perform nicely in terms size and hence
is generally recommendable when periodic heteroscedasticity is suspected.

9



Insert Table 3 about here
Insert Table 4 about here

4 Empirical applications

In order to illustrate the performance of the procedures for outlier detection,
we have applied the tests to the analysis of US money demand. To that end,
we have selected the most liquid definition of money demand, considering both
the currency component of the US money stock, measured by M1, as well as the
currency in circulation in the US economy. We will refer to these as CCM1 and
CC, respectively. The variables have been made real by using the US consumer
price index as deflator. The monthly data covers the period 1947:1-2004:2 and
the data are from the Board of Governors of the Federal Reserve System (see
http://www.forecasts.org/data ).

Figures 1-3 display the variables and their first regular and first seasonal
differences, respectively. These figures show that the variables exhibit similar
behavior. Also, the series do not seem stationary, they exhibit a clear seasonal
component and finally, they take values abnormally high in some periods. More
precisely, we can relate these abnormal behaviour to the end of 1999 and the
first half of 2001 episodes. Thus, it will be interestsing to see whether we can
identify these as being outliers using the various tests.

Table 5 reports the values of the τPRPH , and τ
PR
s tests. Formal F-tests for

non-periodic heteroscedasticity could not be rejected and hence the results for
τPRPH and τPRs are expected to be similar. For the currency component of the
US money stock, CCM1, it can be seen that the τPRPH and τPRs tests imply the
presence of 4 additive outliers (identically dated). Two of the outliers are clearly
associated with the Y2K-effect: December 1999, and January 2000.

Insert Table 5 about here

The results of the currency in circulation, CC, are rather similar, although
slight modifications exist. First, we observe that the τPRPH statistic detects the
existence of 6 outliers whilst the τPRs tests identifies 5 outliers. The tests gen-
erally agree about the four outliers from November 1999 through January 2000.
In fact, the τPRPH test suggests the outlier episode to start in October 1999. The
February 2002 outlier is common to all tests (as for CCM1) as are the June
2001 observation associated with the τPRPH and τPRs tests.

Insert Figure 1 about here
Insert Figure 2 about here
Insert Figure 3 about here

5 Conclusions

The presence of outlying observations in seasonal time can seriously affect in-
ference and hence robust detection of outliers and their location is of utmost
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importance. Seasonal time series appear to be especially problematic when de-
tecting outliers because both the means and variances are likely to be seasonally
varying. In this paper we show how existing procedures for outlier detection for
non-seasonal data can be modified when analyzing seasonally unadjusted data.
In particular, we shown how tests originally suggested by Perron and Rodriguez
(2003) can be modified to the seasonal case and we demonstrate that size and
power generally will be excellent in most cases. Periodic heteroscedasticity is
generally a problem concerning the size of the tests, but we show how appro-
priately calculated estimates of the periodic variances and a correction of the
test statistic will alleviate these problems. In practice, pretesting for periodic
heteroscedasticity is recommended as an integral part of the outlier detection
procedure.
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6 Appendix

Table 1: Critical values for the τPRPH test

s = 4 s = 12
Years 10% 5% 2.5% 1% 10% 5% 2.5% 1%
10 6.695 7.864 9.142 11.074 7.781 8.869 9.976 11.590
20 5.348 6.019 6.656 7.425 8.570 10.082 11.518 13.406
30 5.532 6.206 6.807 7.572 8.251 9.500 10.647 12.095
40 5.851 6.554 7.177 7.885 7.923 8.949 9.922 11.155
50 6.163 6.919 7.562 8.279 7.884 8.864 9.808 11.014
60 6.494 7.323 7.982 8.734 8.094 9.084 9.993 11.140
70 6.811 7.654 8.402 9.172 8.274 9.324 10.245 11.353
80 7.123 8.021 8.752 9.511 8.440 9.539 10.494 11.600
90 7.412 8.370 9.149 9.953 8.652 9.701 10.676 11.735
100 7.675 8.633 9.478 10.308 8.901 9.998 10.952 12.039
150 8.872 10.030 10.990 11.969 9.900 11.126 12.203 13.394

Notes: DGP: (1− Ls)zt = εt−s, εt ∼ iidN(0, 1). 50 000 replications.
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Table 2: Sizes of the different outlier detection tests: Probability to find one or
more outliers.

PANEL A, Non-stationary seasonality: ARIMA4(0,1,1); δj = 0 ∀ j
n1 n>1 n1 n>1 n1 n>1 n1 n>1

θ τSSLs τPRs τPRPH τPRP−PH
−0.8 0.299 0.075 0.047 0.002 0.078 0.002 0.050 0.002
−0.4 0.201 0.030 0.050 0.004 0.064 0.002 0.046 0.002
0 0.053 0.001 0.054 0.003 0.046 0.001 0.052 0.002
0.4 0.009 0.000 0.035 0.004 0.022 0.001 0.041 0.002
0.8 0.005 0.000 0.020 0.007 0.004 0.000 0.019 0.002

PANEL B, Non-stationary seasonality: ARIMA4(1,1,0); δj = 0 ∀ j
ρ τSSLs τPRs τPRPH τPRP−PH

−0.8 0.383 0.202 0.031 0.004 0.030 0.000 0.025 0.000
−0.4 0.230 0.048 0.058 0.002 0.076 0.003 0.055 0.003
0.4 0.003 0.000 0.030 0.007 0.023 0.001 0.037 0.001
0.8 0.000 0.000 0.031 0.036 0.003 0.000 0.025 0.001

PANEL C, Stationary seasonality: ARIMA4(1,0,0); δj = 0 ∀ j
ρ τSSLs τPRs τPRPH τPRP−PH
0.9 0.056 0.003 0.053 0.003 0.050 0.001 0.051 0.001
0.7 0.092 0.006 0.051 0.002 0.047 0.001 0.046 0.003
0.5 0.144 0.017 0.056 0.002 0.056 0.003 0.047 0.003
0.3 0.206 0.039 0.055 0.001 0.061 0.003 0.056 0.004
0 0.308 0.097 0.053 0.002 0.078 0.002 0.055 0.002

Note: DGP: zt =
∑m

j=1 δjπ
j
t + yt, where π

j
t = 1 for t = Tj and 0

otherwise. (1 − L4)dyt = vt, vt = ρvt−4 + εt + θεt−4, εt ∼ iidN(0, 1).

3.000 replications. T = 120. 5% critical values. ni stands for the

frequency of detecting the i− th outlier.
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Table 3: Sizes of the different outlier detection tests: Probability to find one or
more outliers.

PANEL A: ARIMA(0,1,1); δj = {5, 3, 2, 2} for Tj = {30, 55, 77, 100}
n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4

θ τSSLs τPRs
−0.8 0.945 0.556 0.204 0.059 0.011 0.766 0.191 0.026 0.002 0.000
−0.4 0.993 0.700 0.268 0.078 0.015 0.945 0.410 0.077 0.006 0.000
0 0.998 0.755 0.278 0.045 0.004 0.998 0.679 0.219 0.043 0.003
0.4 1.000 0.621 0.133 0.016 0.001 1.000 0.827 0.370 0.100 0.016
0.8 0.987 0.323 0.027 0.002 0.000 0.999 0.769 0.309 0.088 0.041

τPRPH τPRP−PH
−0.8 0.716 0.156 0.017 0.002 0.000 0.732 0.188 0.024 0.002 0.000
−0.4 0.936 0.379 0.059 0.006 0.000 0.947 0.426 0.084 0.013 0.000
0 0.997 0.662 0.161 0.014 0.001 0.999 0.697 0.240 0.040 0.004
0.4 1.000 0.823 0.275 0.039 0.003 1.000 0.839 0.368 0.095 0.009
0.8 0.999 0.740 0.218 0.026 0.002 0.998 0.775 0.282 0.068 0.010

PANEL B: ARIMA(1,1,0); δj = {5, 3, 2, 2} for Tj = {30, 55, 77, 100}
ρ τSSLs τPRs

−0.8 0.811 0.429 0.173 0.063 0.021 0.370 0.051 0.002 0.000 0.000
−0.4 0.991 0.695 0.288 0.085 0.015 0.932 0.380 0.075 0.007 0.000
0.4 1.000 0.641 0.125 0.013 0.001 1.000 0.867 0.445 0.134 0.029
0.8 0.945 0.119 0.004 0.000 0.000 1.000 0.927 0.618 0.412 0.340

τPRPH τPRP−PH
−0.8 0.428 0.049 0.003 0.000 0.000 0.363 0.048 0.004 0.000 0.000
−0.4 0.920 0.340 0.048 0.004 0.000 0.930 0.367 0.075 0.007 0.000
0.4 1.000 0.864 0.335 0.050 0.001 1.000 0.875 0.429 0.119 0.007
0.8 1.000 0.883 0.374 0.063 0.002 1.000 0.878 0.408 0.097 0.005

PANEL C: ARIMA(1,0,0); δj = {5, 3, 2, 2} for Tj = {30, 55, 77, 100}
ρ τSSLs τPRs
0.9 0.998 0.718 0.259 0.049 0.004 0.996 0.637 0.179 0.030 0.002
0.7 0.995 0.651 0.208 0.040 0.005 0.975 0.502 0.117 0.014 0.001
0.5 0.979 0.601 0.184 0.035 0.005 0.941 0.373 0.064 0.007 0.000
0.3 0.957 0.520 0.168 0.037 0.007 0.844 0.248 0.038 0.004 0.000
0 0.881 0.444 0.164 0.048 0.011 0.619 0.117 0.009 0.001 0.000

τPRPH τPRP−PH
0.9 0.994 0.614 0.126 0.009 0.000 0.993 0.656 0.204 0.035 0.002
0.7 0.973 0.451 0.076 0.007 0.000 0.973 0.488 0.109 0.017 0.001
0.5 0.922 0.307 0.039 0.002 0.000 0.930 0.354 0.056 0.005 0.001
0.3 0.807 0.209 0.023 0.001 0.000 0.827 0.256 0.038 0.004 0.000
0 0.595 0.108 0.009 0.001 0.000 0.613 0.123 0.015 0.001 0.000

Note: See table 2.
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Table 4: Size of tests with periodic heteroskedastic random walks

n1 n>2 n1 n>2 n1 n>2 n1 n>2
σ2q τSSLs τPRs τPRPH τPRP−PH

{3, 1, 3, 1} 0.204 0.039 0.213 0.041 0.053 0.001 0.058 0.002
{3, 1, 1, 1} 0.309 0.073 0.309 0.080 0.047 0.001 0.054 0.001
{3, 3, 1, 1} 0.222 0.038 0.226 0.043 0.048 0.001 0.066 0.003

Notes: DGP: yt = yt−4 + ut, ut ∼ iidN(0, σ
2

q) with q = t(mod s) and

the convention σ20 = σ
2

4. 3000 replications. T = 120. 5% critical values

are used. ni stands for the frequency of detecting the i− th outlier.

Table 5: Detected outliers for US M1, CCM1, and the US currency in circula-
tion, CC.

τPRPH τPRs τSSLs

CCM1

7.17 1999 : 12
7.08 2000 : 1
5.89 2001 : 2
5.11 2001 : 6

5.43 1999 : 12
6.19 2000 : 1
4.91 2001 : 2
4.57 2001 : 6

4.55 1999 : 12
5.31 2000 : 1
4.02 2001 : 2

CC

6.12 1999 : 10
9.77 1999 : 11
16.03 1999 : 12
10.59 2000 : 1
5.85 2001 : 2
5.08 2001 : 6

6.93 1999 : 11
10.26 1999 : 12
8.77 2000 : 1
4.97 2001 : 2
4.61 2001 : 6

5.83 1999 : 11
9.33 1999 : 12
7.61 2000 : 1
4.09 2001 : 2

16



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1947 1953 1959 1965 1971 1977 1983 1989 1995 2001

Figure 1: M1 and Currency in Circulation in the USA. Monthly data.: 1947-
2003.
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Figure 2: M1 and Currency in Circulation in the USA. Monthly data.: 1947-
2003. First differences.
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Figure 3: M1 and Currency in Circulation in the USA. Monthly data.: 1947-
2003. Seasonal differences.
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