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Abstract

This paper derives a semiparametric estimator of multivariate fractionally integrated processes

covering both stationary and non-stationary values of d. We utilize the notion of the extended

discrete Fourier transform and periodogram to extend the multivariate local Whittle estimator

of Shimotsu (2007) to cover non-stationary values of d. We show consistency and asymptotic

normality for d 2 (�1=2;1). A simulation study illustrates the performance of the proposed

estimator for relevant sample sizes. Empirical justi�cation of the proposed estimator is shown

through an empirical analysis of log spot exchange rates. We �nd that the log spot exchange rates

of Germany, United Kingdom, Japan, Canada, France, Italy, and Switzerland against the US Dollar

for the period January 1974 until December 2001 are well decribed as I (1) processes.

Keywords: fractional integration, local Whittle, long memory, multivariate semiparametric es-

timation, exchange rates.

JEL Classi�cation: C14, C32

�I greatly acknowledge �nancial support from the Danish Social Sciences Research Council (grant no. FSE275-08-

0249) and Center for Research in Econometric Analysis of Time Series (CREATES), funded by the Danish National

Research Foundation.
yCREATES, School of Economics and Management, Aarhus University, Building 1322, DK-8000 Aarhus C, Denmark.

email: fnielsen@creates.au.dk.

1



1 Introduction

This paper considers semiparametric estimation of the multivariate extension of the scalar frac-

tionally integrated process as analyzed in Shimotsu (2007). Shimotsu (2007) recently introduced

a Gaussian semiparametric estimator of multivariate stationary fractionally integrated processes, i.e.

I (d) processes, by extending the work by Robinson (1995a) on the univariate local Whittle (LW)

estimator initially proposed by Künsch (1987), to cover multivariate fractional processes.

The contribution of the paper is to establish consistency and asymptotic normality when con-

sidering potentially non-stationary multivariate fractionally integrated processes. It is an important

topic as evident from the number of papers in economics that have derived (mostly in the univariate

setting) estimators that are robust to non-stationary values of d. In the scalar case a common semi-

parametric estimator is the LW estimator. Robinson (1995a) shows its consistency and asymptotic

normality for d 2 (�1=2; 1=2). Velasco (1999a) extended Robinson�s (1995a) results to show that the
estimator is consistent for d 2 (�1=2; 1) and asymptotically normally distributed for d 2 (�1=2; 3=4) ;
given that the fractional process is of Type I, see Marinucci & Robinson (1999) for a de�nition of

Type I and Type II fractional processes. Phillips & Shimotsu (2004) show that the LW estimator is

consistent for d 2 (1=2; 1] and has a nonnormal limit distribution for d 2 (3=4; 1), and a mixed normal
limit distribution for d = 1. When d > 1 the LW estimator converges to unity in probability and

therefore is inconsistent, given that the fractional process is of Type II, Phillips & Shimotsu (2004).

This convergence in probability to unity when d > 1 also holds for log periodogram estimators as

shown in simulations studies by Hurvich & Ray (1995) and Velasco (1999b), and theoretically by Kim

& Phillips (2006). That is, in general the LW (or log periodogram) estimator is not a good general

purpose estimator when d takes on values in the non-stationary region beyond 3=4: The asymptotic

theory is discontinuous at d 2 f3=4; 1g and the estimator is not consistent for d > 1. Several methods
are available to avoid the problems when entering the non-stationary region. A simple one is to �rst

di¤erence the series before using the semiparametric estimator and then add one to the estimate (or

fractional di¤erencing). Tapering the data is another method often implemented and suggested, see

Velasco (1999a) and Hurvich & Chen (2000). Shimotsu & Phillips (2005) introduce what they call

an exact local Whittle estimator which is consistent and has the same N(0; 1=4) limit distribution

for all values of d if the I (d) series is generated by a linear sequence and the range of the estimator

is not wider than 9=2:1 Instead of using fractional di¤erencing of the data, Abadir, Distaso & Gi-

raitis (2007) use a di¤erent approach �rst noted by Phillips (1999). They extend the discrete Fourier

transform to the non-stationary case and use this in whitening of the periodogram. Abadir et al.

(2007) show that when the I (d) series is generated by a linear sequence the extended discrete Fourier

transform and periodogram have the same asymptotic behavior for d 2 (�3=2;1). In the context of
multivariate estimation of long memory processes Lobato (1999) derived a semiparametric two-step

estimator in a multivariate long memory model. Shimotsu (2007) instead used a more general form

of the spectral density and from this derive a semiparametric estimator of multivariate fractionally

integrated processes. The class of spectral densitites included in Shimotsu�s (2007) speci�cation in-

1The assumption concerning the width of the admissible parameter space is needed to ensure that the di¤erence in

the criteria function is uniformly bounded away from zero, see Shimotsu & Phillips (2005).
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cludes those of multivariate fractionally integrated processes, whereas the speci�cation used in Lobato

(1999) is an alternate local form of the spectral density that neglects the information in phase shifts

and which will lead to less e¢ cient estimates of the integration orders. Shimotsu (2007) notes that

there is no apparent realizable time domain model which has the spectral density representation that

Lobato (1999) uses (except the cases where G, see later for de�nition, is diagonal implying no long-run

covariance between the variables of interest). Shimotsu (2007) shows that the estimator of Lobato

(1999) is consistent given the more precise sprectral density representation, but the limiting distri-

bution is more evolved. Therefore, it follows that the estimator of Shimotsu (2007) has a smaller

limiting distribution than the two-step estimator of Lobato (1999). Lobato & Velasco (2000) extended

the results of Lobato (1999) by using tapering, and thereby allowing for non-stationary values of d

and potential trends in the data generating process. In this paper, we focus on the general local form

of the spectral density employed by Shimotsu (2007) and extend his results to cover non-stationary

values of d by using the notion of the extended discrete Fourier transform and periodogram as in

Abadir et al. (2007). We call the new estimator the extended multivariate local Whittle (ExtMLW)

estimator. Given that the generating process is linear, the same central limit theorem argument as

in the stationary case jdj < 1
2 derived by Robinson (1995a) (for the univariate case) and Shimotsu

(2007) (for the multivariate case) holds; although, not for d =
�
1
2 ;
3
2 ; :::

	
. We establish consistency

and asymptotic normality for d 2 (�1=2;1) : In addition, we could also have shown consistency and
asymptotic normality for non-stationary values of d by extending the results of Shimotsu (2007) either

by fractional di¤erencing (Shimotsu & Phillips (2005)) or tapering (Velasco (1999a)). The reason for

not using fractional di¤erencing in setting up the likelihood was that we want to stay in the setup

of Shimotsu (2007). Furthermore, it is shown by Abadir et al. (2007) in their simulations that when

there is no trends in the data generating process there is an e¢ ciency gain over tapering in using the

extended discrete Fourier transform.

In an empirical application of the proposed multivariate semiparametric estimator we analyze the

long range dependence of log spot exchange rates. In the case of the log spot exchange rates of

Germany, United Kingdom, Japan, Canada, France, Italy, and Switzerland against the US Dollar for

the period January 1974 until December 2001, measured on a monthly basis, we �nd that they are

well decribed as I (1) processes and that there is a high degree of coherence.

The remainder of the paper is structured as follows: Section 2 gives a short introduction to the

multivariate semiparametric estimation of multivariate fractionally integrated processes. Section 3

expands the usual stationary framework to the non-stationary framework and thereby de�ning our

proposed estimator. Section 4 and 5 derives consistency and the Gaussian limiting distributional

results. Section 6 presents the results from a small simulation study. Section 7 contains an empirical

investigations of potential long memory properties in exchange rates. Section 8 concludes. Proofs to

Theorem 1, 2, and Lemma 1 are situated in Appendix A.
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2 Multivariate local Whittle estimation

Consider the spectral density representation of the following covariance stationary q�vector process0BB@
(1� L)d1 0

. . .

0 (1� L)dq

1CCA
0BB@
X1t � E [X1t]

...

Xqt � E [Xqt]

1CCA =

0BB@
u1t
...

uqt

1CCA ; t = 1; :::; n; (1)

where (1� L)da is the fractional di¤erence operator de�ned by its binomial expansion in the lag
operator (see e.g. Hosking (1981)), da 2 (�1=2; 1=2) ; a = 1; :::; q, and ut is covariance stationary with
spectral density matrix that is �nite and bounded away from zero at the origin, i.e. I (0). This induces

the following spectral density representation, see Shimotsu (2007)

f (�) � � (�)G�� (�) ; as �! 0+; (2)

where the � denotes the conjugate transpose, � (�) = diag (�aj (d)), �aj (d) = ei(���)da=2��daand G is

a real, symmetric, �nite, and positive de�nite matrix.2 We note that (2) di¤ers from the representation

used in e.g. Lobato (1999) where

~fab (�) � Gab��da�db ; as �! 0+; (3)

where Gab is the (a; b)th element of G (the long-run covariance matrix). f (�) has a non-zero complex

part even at the origin unless the integration orders are equal, i.e. da = db. More speci�cally, we have

from (2) that

fab (�) � Gab��da�dbei(���)(da�db)=2; as �! 0+: (4)

That is, the integration orders appear in both the power decay and the phase shift. Therefore, the phase

spectrum of Xat and Xbt is nonzero and depends on da and db even at the zero frequency. Neglecting

the information in phase shifts will lead to less e¢ cient estimation of the integration orders. The two

representations are identical when G is itself diagonal in which case there is no long-run covariance

between the elements in Xt or when da = db, a; b = 1; :::; q. See Shimotsu (2007) and Robinson (2008)

for detailed comparison between fab (�) and ~fab (�).

We can write the Gaussian log-likelihood localized to the origin where we have concentrated G out

as

Ln (d) = log det Ĝ (d)� 2
qX
a=1

da
1

m

mX
j=1

log �j ; Ĝ (d) =
1

m

mX
j=1

Re
n
��1j I (�j)

�
��j
��1o

; (5)

where we denote the true parameter values by d0 and G0. Furthermore, the space of admissible

estimates of d0 isD = [�1;�2]
q, with�1=2 < �1 < �2 < 1=2,m = o (n) is a bandwidth number which

tends to in�nity as n!1, but at a slower rate than n, �j = 2�j=n are the Fourier frequencies, and
I (�) = w (�)w� (�) ; w (�) = 1p

2�n

Pn
t=1Xte

it� is the periodogram matrix. Note that the estimator

is invariant to a possible non-zero mean since j = 0 is left out of the minimization and it enjoys

robustness to short-memory dynamics since it uses only information from the periodogram ordinates

2Note that the condition of positive de�niteness of G rules out the possibility of cointegration.
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in the vicinity of the origin. Additionally, we note that the di¤erence between the Lobato (1999) and

Shimotsu (2007) multivariate estimator is in the de�nition of � (�).

Lobato (1999) estimates the long memory estimates in two steps (based on (2) where � (�) =

diag
�
��da

�
), i.e.

~d(2) = ~d(1) �
�
@2L (d)

@d@d0

����
~d(1)

��1�
@L (d)

@d

����
~d(1)

�
;

where ~d(1) is the vector of univariate local Whittle estimates of Robinson (1995a) and the estimate

of the long-run covariance matrix is ~G
�
~d(2)
�
. Given the spectral density representation in Lobato

(1999), the distribution of ~d(2) is extremely simple

p
m
�
~d(2) � d0

�
d! N

�
0; E�1

�
; (6)

where E = 2
�
G0 �

�
G0
��1

+ I2

�
, � denotes the Hadamard product and e.g. in the bivariate case the

asymptotic variance is

E�1 =
1

8

 
2� c2 c2

c2 2� c2

!
;

where c2 = G212
G11G22

is the squared coherence as � ! 0+. Since, we in the univariate case have

E�1 = 1=4, the e¢ ciency increase is c2=8. Shimotsu (2007) establishes consistency and asymptotic

normality of the two-step estimator of Lobato (1999). Shimotsu (2007) �nds that ~d is consistent

even though the estimator is based on a misspeci�ed model, i.e. where � = diag
�
��da

�
in (2). The

asymptotic variance of ~d is more complicated because

~G (d)
p! ~G0; as n!1;

where

~G (d) =
1

m

mX
j=1

Re
h
diag

�
�daj

�
I (�j) diag

�
�daj

�i
;

~G0 = Re
h
diag

�
ei�d

0
a=2
�
G0diag

�
ei�d

0
a=2
��i

;

and hence is an inconsistent estimate of G0. This is because we omit the phase shift in the spectral

density representation and therefore ~G0 underestimates the true o¤-diagonal elements of G0. If d01 =

::: = d0q , (3) and (4) are identical, and the asymptotic variance for the two di¤erent multivariate

estimators coincide.

Shimotsu (2007) establishes consistency and asympotic normality under the spectral density rep-

resentation (2), i.e

p
m
�
d̂� d0

�
d! N

�
0;
�1

�
; 
 = 2

�
G0 �

�
G0
��1

+ I2 +
�2

4

�
G0 �

�
G0
��1 � I2�� :

Since G0 �
�
G0
��1� I2 is a positive semi-de�nite matrix, d̂ has a smaller limiting variance matrix than

~d, except of course when G0 is diagonal.

In the next section, we will extend the results of Shimotsu (2007) to cover potential non-stationarity.
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3 The extended multivariate local Whittle estimator

In this paper we use the framework of Abadir et al. (2007) to expand the setup of Shimotsu (2007)

to cover non-stationary values of d, and therefore we de�ne a fractional process as a Type I process,

see Marinucci & Robinson (1999) for a thorough description of this type of I (d) process compared

to other types. Because we are not only interested in the stationary region, it is not enough just

to expand the �lter (1 � L)d and express it as an in�nite order moving average of the innovations
which results in a stationary process when d < 1=2: When we move into the non-stationary region,

i.e. d � 1=2; this procedure breaks down because the in�nite order moving average of the innovations
does not converge. This is circumvented by modeling the process as the partial sum of the component

I(d � p) process for some p 2 Z and expanding (1 � L)p�d in terms of the innovations. This results
in a stationary integer di¤erenced series. The disadvantage is that it introduces discontinuities at

d = 1=2; 3=2; ::p � 1=2, where p 2 Z. Therefore, we expand De�niton 1 in Abadir et al. (2007) and
Nielsen (2008) to the multivariate setup.

De�nition 1 For d = p + du; where p 2 Zq and du 2 (�1=2; 1=2)q ; we say that fXtg is a matrix of
I(d) processes, i.e. Xt � I(d), if

diag ((1� L)pa)Xt = ut; t = 1� p; 2� p; :::; (7)

for a = 1; :::; q and ut is second order stationary with spectral density for the (a; b)th element a; b =

1; :::; q

fuab(�) = e
i(���)(dua�dub )=2G0ab�

�dua�dub + o
�
��d

u
a�dub

�
; as �! 0+; (8)

where G0 is a real, symmetric, �nite, and positive de�nite matrix.

De�ne the extended DFT and the extended periodogram matrix of fXtg evaluated at the Fourier
frequencies �j =

2�j
n ; where j = 1; :::; n; by

wj (d) = w(�j ; d) = w
x(�j) + c(�j ; d); (9)

Ij (d) = I(�j ; d) = w(�j ; d)w
�(�j ; d); (10)

where wx(�j) is the usual DFT de�ned as

wx(�j) =
1p
(2�n)

nX
t=1

Xte
it�j ; (11)

and the correction term for the ath element ca(�j ; d) takes on constant values on the intervals da 2
Dpa := [pa � 1=2; pa + 1=2); pa 2 N0; a = 1; :::; q and is de�ned by

ca(�j ; d) =

(
0 if da 2 D0 = [�1=2; 1=2);
ei�j

Ppa
`=1(1� ei�j )�`Za` if da 2 Dpa for pa = 1; 2; :::;

(12)

and a = 1; :::; q where

Za0 = wax(0) =
1p
(2�n)

nX
t=1

Xat; (13)

Za` =
1p
(2�n)

n
(1� L)`�1Xan � (1� L)`�1Xa0

o
; ` = 1; 2; :::; pa: (14)
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In the computation of the step function ca(�j ; d), we have to enumerate the data depending on what

subspace of D = [d1; d2]
q we are interested in. This is apparent from looking at (14), for example

when pa = 2: That is, Xa;�i+1; Xa;�i+2; :::; Xan where i = (0 _ bd2 � 1=2c) and a = 1; :::; q. The usual
DFT, (11) is always computed using the enumeration fXtgnt=1 :

This notion of the extended DFT allows us to estimate the usual MLW estimator in the context

of non-stationary values for d by minimizing the criteria function de�ned as (5) over the admissible

parameter space. The extension of the DFT to the non-stationary case is based on the work of

Phillips (1999), Lahiri (2003), Dalla, Giraitis & Hidalgo (2006) and Abadir et al. (2007). De�ne the

pseudo spectral density of the (a; b)th element of the sequence fXtg � I(d0); where d0 = p0 + du and
du 2 (�1=2; 1=2)q as

fab(�) = j1� exp (i�)j�p
0
a�p0b fuab (�) ; j�j � �: (15)

From this de�nition it is clear that

fab(�) � Gab��d
0
a�d0bei(���)(d

0
a�d0b)=2; as �! 0+: (16)

Then following Abadir et al. (2007, Lemma 4.4), De�nition 1, and (9), the extended DFT has the

property that for the ath element of w(�j ; d0)

wa(�j ; d
0
a) = (1� exp(i�j))

�p0a !ua(�j); a = 1; :::; q; j = 1; :::; n; (17)

where !ua (�j) is the DFT of the ath stationary sequence of ut. From Abadir et al. (2007, Lemma

4.4(i)), it follows that

wxa(�j) = (1� exp(i�j))�p
0
aw

�p
0
axa
(�j)� exp(i�j)

p0aX
ra=1

(1� exp(i�j))�raw�raxa (18)

= (1� exp(i�j))�p
0
awua(�j)� exp(i�j)

p0aX
ra=1

(1� exp(i�j))�raw�raxa ; a = 1; :::; q; (19)

where the second equality follows from De�nition 1. Then the de�nition in (9) follows trivially. Denote

the rescaled extended DFT for the ath element by

vaj = va (�j ; d0) =
wa
�
�j ; d

0
a

�
(G0aa)

1=2 ei(���j)d
0
a=2�

�d0a
j

; a = 1; :::; q; 1 � j � m; (20)

where G0aa denotes the (a; a)th element of G
0. Given that the generating process is linear, equation (17)

and Lemma 4.6 in Abadir et al. (2007) show that the asymptotic behavior of the rescaled extended DFT

and periodogram is the same for all d0a 2 (�1=2;1) for a = 1; :::; q. Furthermore, given consistency,
d̂

p! d0 and the de�nition of the extended DFT, we get

w
�
�j ; d̂

�
p! w

�
�j ; d

0
�
: (21)

This follows because c(�j ; d) is a step function and therefore constant on the intervals d 2 (p� 1=2; p+ 1=2)q

for p 2 Nq0: This considerably eases the estimation as we are left with the same estimation procedure
as in the stationary case.
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If the process is stationary the ExtMLW estimator is identical to the MLW estimator of Shimotsu

(2007). Similarly to other semiparametric (univariate) estimators of Robinson (1995a), Andrews & Sun

(2004), and Abadir et al. (2007) this estimator is based on the whitening principle of the periodogram.

That is, similarly to the stationary case, Shimotsu (2007), the ExtMLW estimator is based on the

behavior of

�j = � (�j) =
Iu(�j)

fu(�j)
; 1 � j � m: (22)

Then given the spectral density of the second order stationary sequence futg ;(8), it follows that (see
Robinson (1995b, Theorem 2) and Shimotsu (2007)) for the (a; b)th element of �j

E
�
�abj

�
= 1 +O(j�1 log (j)); 8 1 � j � m; as n!1: (23)

Additionally, under regularity assumptions, see Lahiri (2003) and Abadir et al. (2007), the random

variable for the (a; b)th element also satisfy

var
�
�abj

�
� C; 8 1 � j � m; a; b = 1; :::; q; (24)

where C is a positive �nite constant and

cov
�
�abj ; �abs

�
! 0; for a; b = 1; :::; q; j; s!1 and j 6= s: (25)

In the proof to Lemma 4.6 in Abadir et al. (2007), the above equations are proven (for the univariate

case. The multivariate setting follows straightforwardly).

Then given the equations (23), (24) and (25), �j satisfy a weak law of large numbers (WLLN), i.e.

for the (a; b)th element

1

m

mX
j=1

�abj
p! 1; for a; b = 1; :::; q; as n!1: (26)

Given additional assumptions, this result is su¢ cient to ensure consistency of the estimator d̂. The

WLLN for the random variables �abj is equivalent to a WLLN for the random variables vajv�bj ; i.e.

1

m

mX
j=1

vajv
�
bj

p! 1; as n!1: (27)

Then given the nature of the spectral density (8) and (17)

vajv
�
bj = �abj (1 + o(1)) ; 8 1 � j � m; a; b = 1; :::; q; as n!1: (28)

Furthermore, given equation (23)

E
�
vajv

�
bj

�
� C; 8 1 � j � m; a; b = 1; :::; q: (29)

For a detailed decription of the extended DFT, see Phillips (1999), Lahiri (2003), Dalla et al. (2006),

and Abadir et al. (2007).
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4 Consistency

In this section, we introduce the assumptions needed to establish consistency. Let fuab (�) and G
0
ab

denote the (a; b)th element of fu (�) and G0, respectively. In general, the assumptions are multivariate

extensions of Assumptions A1-A4 of Robinson (1995a) and Assumptions 1, A, and B of Abadir et al.

(2007). They are similar to the assumptions imposed by Robinson (1995b), Lobato (1999), and

Shimotsu (2007). Assumptions 1 and 6 are analogous to Assumptions 1 and B in Abadir et al. (2007).

Assumptions 2-5 are identical to Assumptions 1-4 of Shimotsu (2007).

Assumption 1 D is a compact and convex subset of Rq and d0 2 D = [d1; d2]q � [�1=2;1]q where
d0 6= p0 � 1=2; p0 2 Nq:

Assumption 2 The spectral density of ut for the (a; b)th element is

fuab(�) = e
i(���)(dua�dub )=2G0ab�

�dua�dub + o
�
��d

u
a�dub

�
; as �! 0+; (30)

where dua 2 (�1=2; 1=2) and dub 2 (�1=2; 1=2); a; b = 1; :::; q.

This is a smoothness condition that imposes a rate of convergence for fuab (�), and this is more

restrictive than imposed by Robinson (1995b, Assumption 1).

Assumption 3 fXtg is generated by the linear process futg

ut = A(L)"t =

1X
j=0

Aj"t�j ;
1X
j=0

kAjk2 <1; (31)

where k�k denotes the supremum norm and E ["tj=t�1] = 0; E ["t"
0
tj=t�1] = Iq a.s. 8 t =

0;�1;�2; :::; and =t�1 is the �� �eld generated by f"s : s < tg. Furthermore, there exists a
scalar random variable " with E"2 < 1 such that for all � > 0 and some generic constant

K > 0; Pr(k"tk2 > �) � K Pr("2 > �):

Assumption 3 tells us that that Xt is generated by a linear fourth order stationary process ut.

Additionally, Assumption 3 allows for non-Gaussian processes.

Assumption 4 In some neighborhood (0; �) of the origin A(�) =
P1
j=0Aje

ij� is di¤erentiable and

d

d�
Aa(�) = O (kA(�)k =�) ; as �! 0+; (32)

where Aa(�) is the ath row of A (�).

Assumption 5 As n!1,
1

m
+
m

n
= o (1) : (33)

Assumption 5 imposes an upper bound on the the rate at which m can increase with n.
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Assumption 6 For m = o(n) the renormalized periodogram for the (a; b)th element, �0abj ; 8 1 � j �
m and a; b = 1; :::; q; satis�es a WLLN

1

m

mX
j=1

�0abj
p! 1; as m;n!1; (34)

where �0abj =
Iuab(�j)

�aj(dua)G
0
ab�

�
bj(d

u
b )
; 81 � j � m.

Assumption 6 is a consequence of equations (23), (24), and (25), and is a base for the consistency of

the proposed estimator, see the previous section. Furthermore, Assumption 6 states that if Assumption

2 and equation (17) hold then for the (a; b)th element

�0abj = �abj (1 + o(1)) ; 8 1 � j � m; as n!1: (35)

Furthermore, (23) implies that

E
�
�0abj

�
� C; 8 1 � j � m; as n!1; (36)

for a; b = 1; :::; q where C is a positive constant.

Under these assumptions we can setup the following theorem which delivers consistency of the

extended multivariate local Whittle estimator, d̂.

Theorem 1 Given De�nition 1 and assume that Assumptions 1 through 6 hold. Then, d̂
p! d0; as

n!1.

5 Asymptotic normality

In this section, we list some further assumptions which are needed in deriving asymptotic normality

of the proposed multivariate estimator. Assumptions 2�-4�are analogous to the ones found in Lobato

(1999) and Shimotsu (2007) in their derivation of asymptotic normality.

Assumption 1�Assume that Assumption 1 holds and d0 is an interior point of D.

Assumption 2�The spectral density of the stationary sequence futg is for � 2 (0; 2]

fuab(�)� ei(���)(d
u
a�dub )=2G0ab�

�dua�dub = O
�
��d

u
a�dub+�

�
; as �! 0+; (37)

where dua 2 (�1=2; 1=2) and dub 2 (�1=2; 1=2); a; b = 1; :::; q.

This Assumption is similar to the one used in Robinson (1995b, pp. 1056).

Assumption 3�Assume that Assumption 3 holds and further, we need

E ("at"bt"ct j=t�1 ) = �abc a.s.;

E ("at"bt"ct"dt j=t�1 ) = �abcd; 8t = 0;�1;�2; :::;

for a; b; c; d = 1; 2 where j�abcj <1 and j�abcdj <1.
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Assumption 4�As n!1,
1

m
+
m1+2� (logm)2

n2�
+
log n

m

= o (1) ; (38)

for any 
 > 0.

The bandwidth restriction in Assumption 4�is stronger than in e.g. Robinson (1995a) and Lobato

(1999) as we have an additional third term in eqn. (38) which is necessary in showing convergence of

the Hessian, see Shimotsu (2007).

Assumption 5�There exists a �nite real matrix H such that

�
�
�j ; (d

u)0
��1

A (�j) = H + o (1) ; as �j ! 0+;

for 1 � j � m.

Assumption 5�implies that HH 0 = 2�G0.

Theorem 2 Given De�nition 1 and assume that Assumption 4, 6, and 1�-5�hold. Then, as n!1,

m1=2
�
d̂� d0

�
d! N

�
0;
�1

�
; 
 = 2

�
G0 �

�
G0
��1

+ Iq +
�2

4

�
G0 �

�
G0
��1 � Iq�� ;

Ĝ
�
d̂
�

p! G0:

From the limiting distributional results, we can consider the null hypothesis of a linear set of q

restrictions, i.e.

W =
�
d̂� d

�0

̂
�
d̂� d

�
d! �2q ; (39)

where
�
d̂� d

�
is a q � 1 vector, 
̂ is the q � q covariance matrix obtained by replacing G0 in the

de�nition of the covariance matrix by the estimate Ĝ
�
d̂
�
. If we want to test for equality of the q

fractional integration parameters we can consider the following feasible test statistic

Wf =
�
T d̂
�0 �

T 
̂�1T 0
��1 �

T d̂
�

d! �2q�1; (40)

where we use the mean value of the estimates as an approximation of d in (39), and the (q � 1) � q
matrix T is de�ned with elements [T ]aa = 1� 1=q for a = 1; : : : ; q � 1 and �1=q elsewhere.3

3 In the simulation study and the empirical application we will use the �nite-sample approximation of the variance

covariance matrix in Theorem 2. This is done by multiplying equations (39) and (40) by a number cm de�ned as

cm =

mX
j=1

v2j ; vj = log �j �
1

m

mX
j=1

log �j :

This was shown by Hurvich & Chen (2000) (and also Shimotsu (2007)) to improve the �nite sample properties of the

test.
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6 Simulation study

We compare our derived estimators to the stationary multivariate local Whittle (MLW) estimator of

Shimotsu (2007). Of course it is an unfair comparison when we consider non-stationary values of d,

i.e. d � 1=2. But it is still of interest to see what happens with the precision of the MLW estimator

for these cases. We conjecture that as d > 1, the estimates of the fractional integration parameters

become severely negative biased and in�ation of the long-run variance as in the univariate setting,

see Phillips & Shimotsu (2004), Shimotsu & Phillips (2005), Abadir et al. (2007), and Nielsen (2008)

among others. Furthermore, we also compare the multivariate methods to univariate counterparts, i.e.

the local Whittle (LW) estimator of Robinson (1995a) and extended local Whittle (ExtLW) estimator

of Abadir et al. (2007) through a variance comparison.

6.1 Setup

This sections concerns the �nite sample performance of the extended multivariate local Whittle es-

timator (ExtMLW). We generate I(d) processes by truncating the moving average representation in

eqn. (1). Speci�cally,

Xt =

 
(1� L)�d1 0

0 (1� L)�d2

! 
u1t

u2t

!
I (t � 1) ; 

u1t

u2t

!
iid� N

 
0;

"
1 �

� 1

#!
;

where we generated n+2000 observations of Xt, and discard the �rst 2000 observations.4 The correla-

tion between u1t and u2t were set equal to 0; 0:4, and 0:8. We set the fractional parameters of interest

equal to (d1; d2) = f(0:2; 0:2) ; (0:2; 0:4) ; (0:2; 0:8) ; (0:8; 0:8) ; (1; 1) ; (1; 1:2) ; (1; 1:4) ; (1:4; 1:4)g: Sam-
ple size is set equal to n 2 f512; 1024g and bandwidth m = bnac where a 2 f0:5; 0:65g. The bias and
root mean squared error (RMSE) were computed using 1000 replications. Simulations were done in

Matlab v7.2. The optimization procedure was implemented using the Nelder-Mead simplex method

(fminsearch) for the multivariate estimators, whereas the univariate estimators used golden section

search and parabolic interpolation (fminbnd) to �nd a minimum. As initial values for the multivariate

estimators we used the univariate extended local Whittle (ExtLW) estimates of d1 and d2.

To conserve space we present only a subset of the results. The left-out results (univariate semi-

parametric estimates of bias and RMSE are similar to the ones obtained in Abadir et al. (2007) and

Nielsen (2008), and thefore omitted) are available upon request.

6.2 Simulation results

When there is no correlation between X1t and X2t, there is no e¢ ciency gain in using the semipara-

metric multivariate estimators. Furthermore, as futg is generated with no short-run contamination,
the precision of the semiparametric estimators should increase as a function of the bandwidth.

Insert Table 1 about here
4By discarding 2000 observations we should be able to approximate the Type I process to a desired degree of accuracy,

see Davidson & Hashimzade (2009).
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In Table 1, results with � = 0 are presented. For the stationary region the two multivariate

semiparametric estimators are seemingly unbiased, and we clearly see that the extended estimator is

(in a statistical sense) equal to their non-extended counterpart. The RMSE shows that the fractional

parameters are estimated quite accurately. Moving on to the non-stationary region, i.e. d � 1=2, we
see that the MLW estimates are unbiased and precise for d � 1, and that the bias of d̂MLW

2 increases

quite considerably as the true fractional integration parameter, d02, increases. This is to be expected

as we know that the LW estimator of Künsch (1987) and Robinson (1995a) is not consistent for d > 1

and the LW estimator is biased towards unity, thereby con�rming the results of Phillips & Shimotsu

(2004). It should be noted that the bias from estimation d2 does not have an impact on the estimation

of d1 for the MLW estimator (which also holds for increasing �). Not reported results show, in addition,

that the MLW parameter estimates of d1 and d2 are not as downward biased as the univariate LW

estimator. For example, in the case where d1 = d2 = 1:4 the bias for the LW estimator is double

that of the MLW estimator. For the ExtMLW estimator, regardless of which region we are in, the

estimator is unbiased and the RMSE indicates that the fractional parameter of interest is estimated

accurately. Additionally, the RMSE does not vary much in the given range of d. We conclude that

(as expected) there is not much gained e¢ ciency wise by doing multivariate estimation (when � = 0).

Insert Tables 2 and 3 about here

Looking at the case where � = 0:4 and � = 0:8, Tables 2 and 3, we observe the same magnitude

of bias and a bit lower RMSE than in Table 1. The more precision in the estimates is also seen when

comparing the variances of the univariate and multivariate estimators, as we get an e¢ ciency gain

from doing multivariate estimation. Concluding Tables 1-3, we see that the ExtMLW estimator is

unbiased and precise. There is an e¢ ciency gain in comparison to the univariate ExtLW estimator for

� > 0, and in addition the results are stable across d.

Insert Tables 4 and 6 about here

In Tables 4-6, we analyze the behavior of the long-run covariance matrixG. The ExtMLW estimates

are stable across d and the estimate of G becomes more precise for � = 0:4 and � = 0:8 in comparison

to when � = 0. This also holds for the absolute coherence (long-run correlation), i.e. jcj. Looking
at the MLW estimate of G, we know that the limiting distribution does not hold for non-stationary

values of d and this is especially evident when d2 > 1.

Insert Tables 7 and 8 about here

Table 7 displays the rejection frequency from testing the null hypothesis H0 : d1 = d01 and d2 = d
0
2

obtained at a 5% asymptotic critical value for n = 512 and n = 1024. Overall, the modi�ed Wald

statistic overrejects, and the overrejection gets less profound as the sample increases. In addition,

Table 8 contain results from a small power study where we test the null hypothesis d1 = d2 = 1

when d01 = 1 and d
0
2 2 f0:4; 0:7; 0:75; 0:80; 0:90; 0:95g. It is seen that the power increases as we move

away from the null and is increasing the sample size. Furthermore, when 3=4 < d02 < 1 the ExtMLW

outperforms the MLW estimator, which is expected.
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The simulation results for the MLW estimator is similar to that of Shimotsu (2007) for (d1; d2) 2
f(0:2; 0:2) ; (0:2; 0:4)g. Shimotsu (2007) compares his estimator with that of Lobato (1999) and shows
that because Lobato (1999) bases his estimator on (3), we get a downward bias in the o¤-diagonal ele-

ments of G. Therefore, the proposed extension of the estimator of Shimotsu (2007) will also outperform

the multivariate estimator of Lobato (1999) if we were to extend this to cover non-stationary values

of d. In addition, we could have included the univariate exact local Whittle estimator of Shimotsu &

Phillips (2005) in the above simulation experiments, but as the simulation experiments of the ExtLW

estimator in Abadir et al. (2007) are qualitatively similar to the results obtained for the exact local

Whittle estimator in Shimotsu & Phillips (2005), this is omitted.5 Furthermore, Shimotsu & Phillips

(2005) compare their univariate estimator to the tapered local Whittle estimator of Velasco (1999a)

and Hurvich & Chen (2000). They show that their estimator achieves a MSE reduction compared to

the tapered versions, and therefore the ExtLW also has a lower MSE than the tapered estimator.

7 Empirical application

There has been a lot of attention drawn to the analysis of exchange rate dynamics. A sound knowledge

of these dynamics are of interest as this is the basis for appropriate inference, modeling, and forecasting.

Several papers make it clear that the exchange rates can be well described as I (1) processes, e.g.

Baillie & Bollerslev (1989) using conventional unit root tests, whereas Baillie (1996), Nielsen (2004),

and Nielsen & Shimotsu (2007) �nd evidence of an unit root using methods that are robust to the

fractional alternative.

The contribution of this section is to analyze potential long memory in log spot exchange rates

and test if they share a common order of integration as this is a necessary condition for there to exist

potential (long-run) relations (see Baillie & Bollerslev (1989), Diebold, Gardeazabal & Yilmaz (1994),

Baillie & Bollerslev (1994), Nielsen (2004), and Nielsen & Shimotsu (2007) among others). We consider

monthly averages of noon buying rates for the log spot exchange rates of Germany, United Kingdom,

Japan, Canada, France, Italy, and Switzerland against the US Dollar. The data set is obtained from

the Federal Reserve Board of Governers G.5 release. The sample runs from January 1974 to December

2001 for a total of n = 336 observations. This is the same set of currencies considered in; Baillie &

Bollerslev (1989, 1994) and Diebold et al. (1994) who analyze daily observations running from March

1, 1980 until January 28, 1985, Kim & Phillips (2000) who considers quarterly observations from 1957

through 1997, and Nielsen (2004) and Nielsen & Shimotsu (2007) who analyze monthly observations

from January 1974 through December 2001.

Insert Figure 1 about here

Figure 1 shows a time series plot of the seven log spot exchange rates.

Insert Table 9 about here

Table 9 presents the fractional integration orders from the MLW and ExtMLW estimators. The

standard errors are reported in parentheses. We compute the estimates for two di¤erent bandwidth

5Because of the little impact that initial values and fractional di¤erencing have when the sample size is large.
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choices, i.e. m =
�
n0:5

�
and m =

�
n0:65

�
. The multivariate estimates clearly indicate that the

exchange rate dynamics are well described as I (1) processes.

Insert Table 10 about here

In Table 10 we display the estimated covariance matrix for the two multivariate semiparametric

estimators. From the asymptotics we know that the MLW estimator is not asymptotically normal

when the fractional orders of interest are in the non-stationary region6 which is also seen from the

simulation study (especially when d > 1) in the previous section. Therefore, most weight should be

put on the covariance estimates of the ExtMLW estimator.

Insert Table 11 about here

Table 11 reports the normalized Ĝ (the coherence at the zero frequency) which measures the long-

run correlation between the log spot exchange rates, and this can be seen as informal evidence of

the existence of potential long-run relations. First of all, the results are in some cases quit di¤erent

across the two estimators. E.g. for the MLW estimator the JPY/USD log spot exchange is negatively

correlated at the zero frequency with the CAD/USD, FRF/USD, ITL/USD, and GBP/USD log spot

exchange rates, whereas for the ExtMLW estimator this is only the case for the CAD/US when

m =
�
n0:5

�
. As we are in the non-stationary region we should put the emphazis on the results

obtained from the ExtMLW estimator. Looking at the zero frequency correlations it is clear that

the European currencies (as expected) have a high degree of coherence, which is a sign of potential

long-run relations between the log spot exchange rates.

Insert Table 12 about here

Table 12 tests the null hypothesis; H1 : d1 = d2 = ::: = d7 = 1 and H2 : d1 = d2 = ::: = d7. The

critical values of the test statistics are �27 (0:95) = 14:067 and �
2
6 (0:95) = 12:592. First, considering

the null H1, we can only reject that all seven fractional integration orders are identical to an unit root

in one case, i.e. for the MLW estimator when the bandwidth is equal to m =
�
n0:5

�
. Furthermore,

when considering the null H2 we cannot reject that the fractional integration estimates are identical.

Insert Figure 2 about here

In Figure 2, we present the multivariate estimates for m 2 f20; 21; :::; 100g of the GBP/USD log

spot exchange rate. It is obvious that increasing m inference becomes more accurate. But including

more and more frequencies we will include medium and short term behavior of the process, which

could bias our estimates, see e.g. Robinson (1994).

8 Concluding remarks

In this paper, we propose an extension of the multivariate local Whittle estimator of Shimotsu (2007)

to cover potentially non-stationary multivariate fractional integrated processes using the notion of the
6Presumably, it holds that the MLW is consistent for d 2 (�1=2; 1) and asymptotic normal for d 2 (�1=2; 3=4) as for

the univariate counterpart, which there is evidence of in the simulation study.
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extended DFT and periodogram. The multivariate framework is based on a spectral density that has

both a real and complex part even at the origin, and the long memory parameters a¤ect both the

slope and the phase of the spectral density at the origin. Consistency and asymptotic normality of

the estimator is shown. Furthermore, there is potentially considerable e¢ ciency gain over univariate

semipametric estimators depending on whether or not there is dependence between the fractionally

integrated processes.

A simulation study con�rms the asymptotic results. In addition, we have applied the proposed

multivariate semiparametric estimators the analysis of log exchange rates, con�rming that for the

given sample of log spot exchange rates they are well decribed as I (1) processes, and that there is a

high degree of coherence between the European currencies.

Appendix

The Appendix section is structured as follows: In the �rst section the proof to Theorem 1 and 2 are

given. Section 2 presents a technical lemma adapted from Abadir et al. (2007).

Proof of Theorems

Proof of Theorem 1. De�ne � = (�1; :::; �q) = d � d0, where d = (d1; :::; dq)0 and d =
�
d01; :::; d

0
q

�0,
and Sn (d) = Ln (d)� Ln

�
d0
�
. Then it su¢ ces to prove consistency that for any � > 0

Pr

�
inf

d:kd�d0k��:d2D
S (d) � �

�
! 1; (41)

as n!1 for some � > 0. Since m�1Pm
j=1 log

�
j
m

�
= �1 +O

�
m�1 logm

�
it follows that

Sn (d) = log detKn (d)� log detKn
�
d0
�
+ 2

qX
a=1

�a + o (1) ; (42)

where

Kn (d) =
1

m

mX
j=1

Re
h
Mj (d)

�
G0
��1

Ij (d)M
�
j (d)

i
; (43)

Mj (d) = diag (Mja (d)) ;Mja (d) = (j=m)
da ei(�j��)da=2;

and � denotes conjugate transpose. What we know is that by de�niton the extended periodogram

matrix is given by

Ij (d) = I (�j ; d) = w (�j ; d)w
� (�j ; d)

= (wx (�j) + c (�j ; d)) (w
x (�j) + c (�j ; d))

� :

Then, from Abadir et al. (2007, Lemma 4.4), it follows that for d0 = p0 + du

w
�
�j ; d

0
�
=
�
1� ei�j

��p0
wu (�j) : (44)
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Therefore, by setting � (�j ; d) = c (�j ; d)� c
�
�j ; d

0
�
we can write

Ij (d) =
�
w
�
�j ; d

0
�
+ � (d)

� �
w
�
�j ; d

0
�
+ � (d)

��
: (45)

We note that if d0 = p0 + du then by de�nition � (�j ; d) = 0 for d 2 Dp0 as c(�j ; d) is a step function.
Rewrite (43) as

Kn (d) =
1

m

mX
j=1

Re
h
Mj (d)

�
G0
��1 n�

w
�
�j ; d

0
�
+ � (d)

� �
w
�
�j ; d

0
�
+ � (d)

��o
M�
j (d)

i
; (46)

for d 2 D: Set

Fn (d) =
1

m

mX
j=1

Re
h
Mj (d)

�
G0
��1 �

w
�
�j ; d

0
�
w�
�
�j ; d

0
�	
M�
j (d)

i
; (47)

where we for d 2 Dp0 have that Kn(d) = Fn (d) as � (�j ; d) = 0. Now de�ne, because of the non-

uniform behavior of Ln (d), " > 0 and d" = d0 � 1�"
2 , where the ath element of ", is denoted "a > 0

which is chosen su¢ ciently small. Then from Lemma 1

Fn (d _ d") = �m
�
d0
�
(� (�")�M1 (�

") + op (1)) �
�
m

�
d0
�
; (48)

Kn (d) � (1 + op (1))� Fn (d _ d") ; (49)

where op (1)
p! 0, as n ! 1, uniformly on d 2 D, and �" = d _ d" � d0, � (�") and M1 (�

") are

de�ned to be matrices where the (a; b)th elements are e�i�(�
"
a��"b)=2 and (1 + �"a + �

"
b)
�1 =

R 1
0 x

�"a+�
"
bdx,

respectively, and �m
�
d0
�
= diag

�
�ma

�
d0a
��
;�ma

�
d0a
�
= �

�d0a
m ei(���j)d

0
a=2 for a = 1; :::; q. Hence, for

any " > 0

Sn (d) � log detFn (d _ d")� log detFn
�
d0
�
+ 2

qX
a=1

�a + op(1) (50)

= 2

qX
a=1

�a � log det (� (�")�M1 (�
")) + op(1); (51)

uniformly on d 2 D as

log detFn (d _ d�)� log detFn
�
d0
�
= log

�
detFn (d _ d")
detFn (d0)

�
= log

 
det
�
�m

�
d0
�
(� (�")�M1 (�

") + op (1)) �
�
m

�
d0
�	

det f�m (d0) (� (d0 � d0)�M1 (d0 � d0) + op (1)) ��m (d0)g

!

= log

�
det f� (�")�M1 (�

")g
det f� (d0 � d0)�M1 (d0 � d0)g

�
+ op (1)

= � log det f� (�")�M1 (�
")g+ op (1) :

Given Assumption 1, if d1 � d � d"; then 2
�
d _ d" � d0

�
= �1 + "; and therefore we have for the

(a; b)th element (the results of Abadir et al. (2007) hold for the ath element)

2 (�a + �b)� log
�
det
n
Re
h
e�i�(�

"
a��"b)=2 (1 + �"a + �

"
b)
�1
io�

(52)

� 2
��
d1 � d0a

�
+
�
d1 � d0b

��
� log

�
det
n
Re
h
e�i�("a�"b)=2 (1 + "a + "b)

�1
io�

� 1: (53)
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If instead d" � d � d2 then 2
�
d _ d" � d0

�
� 2

�
d" � d0

�
= �1 + ", and therefore we have for the

(a; b)th element

inf
fd"�d�d2;jd�d0j��g

2
��
da � d0a

�
+
�
db � d0b

��
�log

�
det
n
Re
h
e�i�(�a��b)=2 (1 + �a + �b)

�1
io�

� � (�) > 0;

(54)

as y � log (y + 1) > 0 for y 6= 0; y > �1. Then from (51), (52), and (54), we have shown that (41)

holds, and therefore the proof Theorem 1 is complete.

Proof of Theorem 2. To show asymptotic normality, observe that given the current as-

sumptions, we have that d̂
p! d0, together with d0 6= p � 1=2, p = �1; 0; 1; 2:::; and w (�j ; d) =

wX (�j) + c (�j ; d), implies that as n ! 1, w
�
�j ; d̂

�
� w

�
�j ; d

0
�
= op (1). This enables us to use

Shimotsu (2007) and his proof of asymptotic normality. The proof is analogous to Lobato (1999).

Therefore, as n!1, d̂ satis�es

0 =
@Ln (d)

@d

����
d̂

=
@Ln (d)

@d

����
d0
+

�
@2Ln (d)

@d@d0

����
�d

��
d̂� d0

�
;

where


 �d� d0

 � 


d̂� d0


. Therefore, the argument is that, d̂ is asymptotic normal with zero mean

and asymptotic variance, 
�1 where


 = 2

�
G0 �

�
G0
��1

+ Iq +
�2

4

�
G0 �

�
G0
��1 � Iq�� ;

if, for any q � 1 vector �, as n!1,

�0m1=2 @Ln (d)

@d

����
d0

=

qX
a=1

�am
1=2 @Ln (d)

@da

����
d0a

d! N
�
0; �0
�

�
; (55)�

@2Ln (d)

@d@d0

����
�d

�
p! 
: (56)

(55) is proved by using the score approximation arguments in Shimotsu (2007, A.2.1 (pp. 295-299)).

(56) is proved by using the Hessian approximation arguments in Shimotsu (2007, A.2.2 (pp. 299-302)).

This completes the proof.

Lemma

Lemma 1 Suppose assumptions of Theorem 1 hold. Then for any " > 0; as n ! 1; uniformly in
d 2 D it holds

det
n
��1m

�
d0
�
Fn (d) �

�
m

�
d0
��1o � det

n
�m

�
d0
��1

Fn (d _ d") ��m
�
d0
��1o

(57)

� det f� (�")�M1 (�
")g+ op (1) ; (58)

where

Fn (d) =
1

m

mX
j=1

Re
h
Mj (d)

�
G0
��1

wj
�
d0
�
w�j
�
d0
�
M�
j (d)

i
;

where Mj (d) = diag fMaj (d)g ;Maj (d) = (j=m)da ei(�j��)da=2 for a = 1; :::; q, wj
�
d0
�
= w

�
�j ; d

0
�
,

�" = d _ d" � d0 and � (�") and M1 (�
") are de�ned to be matrices where the (a; b)th elements are

e�i�(�
"
a��"b)=2 and (1 + �"a + �

"
b)
�1 =

R 1
0 x

�"a+�
"
bdx, respectively, and

det fKn (d)g � (1 + op (1)) det fFn (d _ d")g ; (59)
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where d" = d0 � 1�"
2 and op (1) ; uniformly in d 2 D, as n!1.

Proof. Proof of (58) follows from noting that for the ath element the proof follows from Abadir

et al. (2007) and noting that we get the extra complex term as we have moved from the univariate

fractional integrated model to the multivariate fractional integrated model. What is left is to prove

(58) for the (a; b)th element. Note that the (a; b)th element inside of Fn (d) is

1

m

mX
j=1

Re
h
(j=m)da+db ei(�j��)(da�db)=2

�
G0
��1

waj
�
d0
�
w�bj

�
d0
�i

=
1

m

mX
j=1

Re
h
�
�d0a�d0b
m ei(���j)(d

0
a�d0b)=2 (j=m)(�a+�b) ei(�j��)(�a��b)=2vajv

�
bj

i
� 1

m

mX
j=1

Re
h
(j=m)(da_d

"
a+db_d"b) ei(�j��)(da_d

"
a�db_d"b)=2vajv

�
bj

i
:

Since vajv�bj satis�es aWLLN argument, E
h
vajv

�
bj

i
� C; 1 � j � m and, we have that 2

�
d _ d" � d0

�
�

�1 + ", then by Abadir et al. (2007, Lemma 4.5)

1

m

mX
j=1

Re
h
�
d0a+d

0
b

m ei(���j)(d
0
a�d0b)=2 (j=m)(da_d

"
a+db_d"b) ei(�j��)(da_d

"
a�db_d"b)=2vajv

�
bj

i
=

1

m

mX
j=1

Re
h
(j=m)(�

"
a+�

"
b) ei(�j��)(�

"
a��"b)=2vajv

�
bj

i
p! 1

m

mX
j=1

Re
h
ei(�j��)(�

"
a��"b)=2

i Z 1

0
x�

"
a+�

"
b

=
1

m

mX
j=1

Re
h
ei(�j��)(�

"
a��"b)=2

i
(1 + �"a + �

"
b)
�1 ;

uniformly in d 2 D which proves (58). Proof of (59) follows from the proof in Abadir et al. (2007,

Lemma 4.2) for the ath diagonal element. For the (a; b)th element, we notice that to show (59), we

estimate for the (a; b)th element of Kn (d) is

1

m

mX
j=1

Re
h
(j=m)da+db ei(�j��)(da�db)

�
G0
��1 �

wj
�
d0
�
+ � (d)

� �
wj
�
d0
�
+ � (d)

��i
� 1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1 �

waj
�
d0
�
+ �aj (d)

� �
wbj

�
d0
�
+ � bj (d)

��i
� 1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

waj
�
d0
�
w�bj

�
d0
�i

� 2
m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

waj
�
d0
�
��bj (d)

i
+
1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

�aj (d) �
�
bj (d)

i
= Fab;n (d _ d")� 2Cab;n (d) +Bab;n (d) :
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That is,

Cab;n (d) =
1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

waj
�
d0
�
��bj (d)

i
;

Bab;n (d) =
1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

�aj (d) �
�
bj (d)

i
:

Next, we will show that

Cab;n (d) = op (1) (Fab;n (d _ d") +Bab;n (d)) ; (60)

uniformly in d 2 D, as n!1, which implies that

Kab;n (d) � (1 + op (1))Fab;n (d _ d") ;

uniformly in d 2 D as Bab;n (d _ d") � 0. To show (60) let d0 2 Dp0 , and since D is a �nite set, it

su¢ ces to show validity for d 2 Dp for any �xed integer p � �1. Set for the (a; b)th element

Bab (d) =

p0a_paX
ra=p0a^pa+1

p0b_pbX
rb=p

0
b^pb+1

Re
h
��ra�rbm ei(���j)(ra�rb)=2wrraX (0)w

�
rrbX (0)

i
,

if p 6= p0, and set Bab (d) = 0 if pa = p0a and pb = p0b . We will next show that, as n!1 9� > 0 :

1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

�aj (d) �
�
bj (d)

i

� �

p0a_paX
ra=p0a^pa+1

p0b_pbX
rb=p

0
b^pb+1

Re
h
��ra�rbm ei(���j)(ra�rb)=2wrraX (0)w

�
rrbX (0)

i
;

i.e.,

Bab;n (d) � �Bab (d) ; (61)

uniformly in d 2 D, and

1

m

mX
j=1

Re

��
�
d0a+d

0
b

m ei(�j��)(d
0
a�d0b)=2

�1=2
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

waj
�
d0
�
��bj (d)

�

= op (1)

0@ p0a_paX
ra=p0a^pa+1

p0b_pbX
rb=p

0
b^pb+1

Re
h
��ra�rbm ei(���j)(ra�rb)=2wrraX (0)w

�
rrbX (0)

i1A1=2 ;
i.e.,

Cab;n (d) = op (1) (Bab (d))
1=2 ; (62)

where op (1)! 0 in probability uniformly in d 2 D; as n!1. Then, by (58) (focusing on the (a; b)th
element) 9c > 0 :

1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)=2

�
G0
��1

waj
�
d0
�
w�bj

�
d0
�i

� c (1 + op (1))
1

m

mX
j=1

Re
h
�
�d0a�d0b
m ei(���j)(d

0
a�d0b)=2

i
;
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i.e.,

Fab;n (d _ d") � �ab;m
�
d0
�
��ab;m

�
d0
�
c (1 + op (1)) ;

uniformly in d 2 D. Therefore, (61) and (62) implies that

Cab;n (d) =
1

m

mX
j=1

Re
h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

waj
�
d0
�
��bj (d)

i

= op (1)

0@ 1
m

Pm
j=1Re

h
�
�d0a�d0b
m ei(���j)(d

0
a�d0b)=2

i
�
Pp0a_pa
ra=p0a^pa+1

Pp0b_pb
rb=p

0
b^pb+1

Re
h
��ra�rbm ei(���j)(ra�rb)=2wrraX (0)w

�
rrbX (0)

i 1A1=2

= op (1)

0@ 1
m

Pm
j=1Re

h
�
�d0a�d0b
m ei(���j)(d

0
a�d0b)=2

i
+
Pp0a_pa
ra=p0a^pa+1

Pp0b_pb
rb=p

0
b^pb+1

Re
h
��ra�rbm ei(���j)(ra�rb)=2wrraX (0)w

�
rrbX (0)

i 1A
= op (1)

0@ 1
m

Pm
j=1Re

h
(j=m)da+db ei(�j��)(da�db)=2

�
G0
��1

waj
�
d0
�
w�bj

�
d0
�i

+ 1
m

Pm
j=1Re

h
(j=m)da_d

"
a+db_d"b ei(�j��)(da_d

"
a�db_d"b)

�
G0
��1

�aj (d) �
�
bj (d)

i 1A
= op (1) (Fab;n (d) +Bab;n (d)) ;

uniformly in d 2 D, which proves (60), and hence completes the proof of the lemma. Now what is left
is to prove (61) and (62). (61) follows from extending eqn. (4.34) and using Lemma 4.3 in Abadir et al.

(2007) to take account of the phase shift from moving from the univariate setup to the multivariate

setup. (62) follows from eqn. (4.35)-(4.39) in Abadir et al. (2007).
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Figure 1: Time series plot of the CAN/USD, CHF/USD, FRF/USD, DEM/USD, ITL/USD,

JPY/USD, and GBP/USD log spot exchange rates.
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Figure 2: Plot of the extended multivariate local Whittle estimate of the log spot exchange rate of

British Pund against the US Dollar.
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Table 1: Simulation results for bias, RMSE, and variance comparison where m = n0:65 and � = 0
MLW ExtMLW Variance comparison

d1 d2 d1 d2

d1 d2 Bias RMSE Bias RMSE Bias RMSE Bias RMSE va r(LW )
va r(M LW )

va r(E x tLW )
va r(E x tM LW )

va r(E x tM LW )
va r(M LW )

Panel A : n = 512

0.2 0.2 �0:006 0:073 �0:007 0:074 �0:006 0:073 �0:007 0:074 (1:014; 1:001) (1:014; 1:001) (1:000; 1:000)

0.4 �0:009 0:075 �0:005 0:077 �0:009 0:075 �0:001 0:079 (1:011; 1:007) (1:011; 1:010) (0:999; 1:059)

0.8 �0:007 0:076 0:013 0:083 �0:007 0:076 �0:006 0:077 (1:016; 1:027) (1:011; 1:017) (0:995; 0:892)

0.8 0.8 0:011 0:081 0:009 0:078 �0:012 0:082 �0:012 0:078 (0:954; 0:991) (1:013; 1:025) (1:023; 0:979)

1 1 �0:011 0:071 �0:011 0:070 �0:012 0:079 �0:010 0:079 (0:977; 0:926) (1:015; 1:016) (1:243; 1:268)

1.2 0:007 0:065 �0:126 0:148 �0:011 0:074 �0:011 0:074 (0:923; 1:013) (1:005; 1:010) (1:287; 0:867)

1.4 0:009 0:073 �0:330 0:348 �0:015 0:081 �0:011 0:074 (1:063; 1:050) (1:003; 1:009) (1:217; 0:438)

1.4 1.4 �0:164 0:183 �0:158 0:177 �0:010 0:074 �0:007 0:073 (0:627; 0:522) (0:996; 1:010) (0:807; 0:820)

Panel B : n = 1024

0.2 0.2 �0:007 0:060 �0:007 0:060 �0:007 0:060 �0:007 0:060 (1:015; 1:006) (1:015; 1:006) (1:000; 1:000)

0.4 �0:005 0:058 0:000 0:061 �0:005 0:058 0:004 0:065 (1:019; 1:017) (1:019; 1:017) (0:999; 1:135)

0.8 �0:004 0:059 0:019 0:068 �0:004 0:059 �0:003 0:058 (1:004; 1:007) (1:004; 1:015) (0:999; 0:805)

0.8 0.8 0:017 0:064 0:015 0:064 �0:003 0:058 �0:006 0:060 (0:973; 0:953) (1:023; 1:006) (0:887; 0:907)

1 1 �0:007 0:053 �0:006 0:052 �0:009 0:059 �0:010 0:061 (0:926; 0:944) (1:011; 1:006) (1:260; 1:320)

1.2 0:009 0:054 �0:127 0:147 �0:009 0:059 �0:006 0:059 (1:016; 0:976) (1:011; 1:016) (1:176; 0:648)

1.4 0:015 0:060 �0:330 0:344 �0:008 0:059 �0:003 0:060 (1:212; 0:996) (1:003; 1:014) (1:018; 0:370)

1.4 1.4 �0:156 0:171 �0:154 0:168 �0:005 0:056 �0:002 0:058 (0:439; 0:423) (1:001; 1:005) (0:656; 0:714)

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively.

Table 2: Simulation results for bias, RMSE, and variance comparison where m = n0:65 and � = 0:4
MLW ExtMLW Variance comparison

d1 d2 d1 d2

d1 d2 Bias RMSE Bias RMSE Bias RMSE Bias RMSE va r(LW )
va r(M LW )

va r(E x tLW )
va r(E x tM LW )

va r(E x tM LW )
va r(M LW )

Panel A : n = 512

0.2 0.2 �0:005 0:072 �0:001 0:068 �0:005 0:072 �0:001 0:068 (0:832; 0:867) (0:832; 0:867) (1:000; 1:000)

0.4 �0:001 0:069 �0:002 0:072 0:000 0:070 0:001 0:075 (0:805; 0:813) (0:820; 0:837) (1:018; 1:088)

0.8 0:000 0:070 0:014 0:075 �0:004 0:069 �0:004 0:070 (0:836; 0:844) (0:807; 0:805) (0:965; 0:901)

0.8 0.8 0:011 0:074 0:013 0:073 �0:007 0:072 �0:006 0:069 (0:774; 0:799) (0:804; 0:799) (0:974; 0:924)

1 1 �0:008 0:063 �0:014 0:066 �0:008 0:068 �0:013 0:073 (0:845; 0:830) (0:832; 0:809) (1:158; 1:225)

1.2 0:000 0:067 �0:125 0:151 �0:009 0:069 �0:013 0:069 (0:916; 0:988) (0:770; 0:804) (1:014; 0:670)

1.4 0:001 0:071 �0:328 0:346 �0:011 0:069 �0:009 0:066 (1:063; 1:039) (0:832; 0:834) (0:938; 0:348)

1.4 1.4 �0:162 0:181 �0:162 0:181 �0:008 0:067 �0:009 0:067 (0:565; 0:581) (0:831; 0:817) (0:721; 0:679)

Panel B : n = 1024

0:2 0:2 �0:003 0:055 �0:005 0:053 �0:003 0:055 �0:005 0:053 (0:834; 0:785) (0:834; 0:785) (1:000; 1:000)

0:4 �0:004 0:054 0:000 0:054 �0:002 0:055 0:004 0:059 (0:839; 0:801) (0:863; 0:861) (1:029; 1:215)

0:8 0:001 0:055 0:014 0:060 �0:003 0:054 �0:003 0:055 (0:835; 0:826) (0:808; 0:806) (0:967; 0:885)

0:8 0:8 0:014 0:058 0:016 0:058 �0:005 0:053 �0:002 0:054 (0:774; 0:771) (0:810; 0:847) (0:881; 0:920)

1 1 �0:008 0:049 �0:007 0:048 �0:009 0:054 �0:007 0:053 (0:839; 0:800) (0:825; 0:799) (1:226; 1:259)

1:2 0:004 0:053 �0:130 0:149 �0:006 0:052 �0:007 0:053 (1:015; 0:980) (0:810; 0:831) (0:972; 0:525)

1:4 0:010 0:058 �0:329 0:345 �0:005 0:052 �0:004 0:051 (1:227; 1:037) (0:803; 0:803) (0:814; 0:244)

1:4 1:4 �0:151 0:166 �0:154 0:169 �0:002 0:050 �0:001 0:051 (0:434; 0:433) (0:775; 0:858) (0:520; 0:539)

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively.
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Table 3: Simulation results for bias, RMSE, and variance comparison where m = n0:65 and � = 0:8
MLW ExtMLW Variance comparison

d1 d2 d1 d2

d1 d2 Bias RMSE Bias RMSE Bias RMSE Bias RMSE va r(LW )
va r(M LW )

va r(E x tLW )
va r(E x tM LW )

va r(E x tM LW )
va r(M LW )

Panel A : n = 512

0.2 0.2 0:001 0:056 0:001 0:056 0:001 0:056 0:001 0:056 (0:529; 0:528) (0:529; 0:528) (1:000; 1:000)

0.4 �0:001 0:057 0:001 0:057 0:003 0:060 0:005 0:062 (0:576; 0:602) (0:654; 0:677) (1:135; 1:187)

0.8 0:014 0:060 0:017 0:066 0:002 0:058 0:003 0:061 (0:599; 0:649) (0:583; 0:620) (0:973; 0:900)

0.8 0.8 0:014 0:062 0:014 0:060 �0:005 0:059 �0:005 0:057 (0:562; 0:515) (0:609; 0:562) (0:944; 0:945)

1 1 �0:011 0:054 �0:012 0:056 �0:012 0:057 �0:014 0:059 (0:599; 0:622) (0:539; 0:571) (1:095; 1:123)

1.2 �0:024 0:067 �0:129 0:152 �0:010 0:059 �0:011 0:060 (0:830; 1:079) (0:559; 0:597) (0:855; 0:521)

1.4 �0:019 0:076 �0:333 0:352 �0:001 0:057 �0:002 0:058 (1:135; 1:097) (0:582; 0:631) (0:598; 0:267)

1.4 1.4 �0:160 0:176 �0:161 0:177 �0:007 0:057 �0:007 0:057 (0:452; 0:474) (0:575; 0:628) (0:579; 0:592)

Panel B : n = 1024

0.2 0.2 �0:001 0:045 �0:002 0:044 �0:001 0:045 �0:002 0:044 (0:570; 0:588) (0:570; 0:588) (1:000; 1:000)

0.4 0:001 0:044 0:002 0:045 0:003 0:047 0:005 0:049 (0:559; 0:589) (0:634; 0:616) (1:133; 1:176)

0.8 0:017 0:050 0:020 0:055 0:003 0:044 0:001 0:045 (0:670; 0:675) (0:583; 0:604) (0:869; 0:790)

0.8 0.8 0:017 0:050 0:017 0:049 �0:003 0:045 �0:003 0:044 (0:564; 0:550) (0:587; 0:574) (0:909; 0:933)

1 1 �0:008 0:043 �0:009 0:042 �0:010 0:045 �0:009 0:046 (0:588; 0:581) (0:560; 0:551) (1:101; 1:199)

1.2 �0:018 0:053 �0:130 0:150 �0:002 0:045 �0:002 0:044 (0:903; 1:099) (0:615; 0:590) (0:828; 0:343)

1.4 �0:016 0:060 �0:337 0:353 0:000 0:043 0:001 0:045 (1:255; 1:123) (0:586; 0:644) (0:561; 0:182)

1.4 1.4 �0:155 0:168 �0:151 0:164 �0:002 0:043 �0:002 0:042 (0:435; 0:366) (0:587; 0:577) (0:440; 0:460)

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively.

Table 4: Simulation results for the mean of 2�G and the mean of the coherence, c =
p
G212=G11G22

where m = n0:65 and � = 0
MLW ExtMLW

d1 d2 2�Ĝ11 2�Ĝ12 2�Ĝ22 ĉ 2�Ĝ11 2�Ĝ12 2�Ĝ22 ĉ

Panel A: n = 512
0.2 0.2 1:026 0:001 1:034 0:081 1:026 0:001 1:034 0:081

0.4 1:042 �0:003 1:050 0:079 1:042 �0:002 1:037 0:079

0.8 1:038 �0:002 1:154 0:078 1:039 �0:003 1:037 0:076

0.8 0.8 1:162 �0:003 1:165 0:127 1:064 0:000 1:051 0:078

1 1 2:068 0:013 2:085 0:280 1:060 �0:001 1:059 0:077

1.2 1:968 �0:141 11:95 0:401 1:050 0:001 1:060 0:079

1.4 1:906 0:624 189:79 0:474 1:058 0:002 1:070 0:076

1.4 1.4 110:44 �0:584 107:04 0:826 1:067 �0:003 1:059 0:078

Panel B: n = 1024
0.2 0.2 1.036 0.007 1.032 0.060 1.036 0.007 1.032 0.060

0.4 1.026 -0.002 1.025 0.059 1.026 -0.002 1.011 0.059
0.8 1.026 0.003 1.098 0.059 1.027 0.002 1.029 0.060

0.8 0.8 1.103 -0.003 1.126 0.106 1.027 0.003 1.038 0.062
1 1 2.115 -0.016 2.057 0.280 1.052 -0.001 1.050 0.059

1.2 1.911 0.026 16.09 0.411 1.044 -0.004 1.040 0.060
1.4 1.882 -0.108 267.84 0.487 1.047 -0.003 1.049 0.060

1.4 1.4 155.79 4.427 168.54 0.846 1.049 -0.003 1.042 0.060

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively. Furthermore, note that

2�G11 = 2�G22 = 1; 2�G12 = 2�G21 = �.
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Table 5: Simulation results for the mean of 2�G and the mean of the coherence, c =
p
G212=G11G22

where m = n0:65 and � = 0:4
MLW ExtMLW

d1 d2 2�Ĝ11 2�Ĝ12 2�Ĝ22 ĉ 2�Ĝ11 2�Ĝ12 2�Ĝ22 ĉ

Panel A: n = 512
0.2 0.2 1:027 0:406 1:012 0:399 1:027 0:406 1:012 0:399

0.4 1:008 0:408 1:037 0:400 1:004 0:404 1:022 0:399

0.8 1:016 0:406 1:143 0:380 1:029 0:413 1:031 0:402

0.8 0.8 1:162 0:461 1:155 0:395 1:045 0:419 1:037 0:402

1 1 2:161 0:876 2:106 0:439 1:049 0:421 1:056 0:402

1.2 2:046 1:911 13:43 0:489 1:052 0:429 1:064 0:406

1.4 1:888 4:013 168:83 0:491 1:056 0:431 1:073 0:405

1.4 1.4 106:76 45:60 107:73 0:837 1:070 0:431 1:060 0:405

Panel B: n = 1024
0.2 0.2 1:021 0:413 1:029 0:403 1:021 0:413 1:029 0:403

0.4 1:026 0:410 1:024 0:401 1:022 0:405 1:008 0:399

0.8 1:014 0:405 1:116 0:383 1:027 0:414 1:032 0:402

0.8 0.8 1:127 0:452 1:111 0:402 1:038 0:415 1:026 0:402

1 1 2:063 0:868 2:086 0:437 1:049 0:418 1:046 0:401

1.2 1:989 1:985 17:61 0:488 1:031 0:414 1:040 0:400

1.4 1:972 5:768 265:13 0:508 1:027 0:409 1:039 0:397

1.4 1.4 147:16 58:04 147:96 0:849 1:029 0:408 1:032 0:397

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively. Furthermore, note that

2�G11 = 2�G22 = 1; 2�G12 = 2�G21 = �.
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Table 6: Simulation results for the mean of 2�G and the mean of the coherence, c =
p
G212=G11G22

where m = n0:65 and � = 0:8
MLW ExtMLW

d1 d2 2�Ĝ11 2�Ĝ12 2�Ĝ22 ĉ 2�Ĝ11 2�Ĝ12 2�Ĝ22 ĉ

Panel A: n = 512
0.2 0.2 1:008 0:807 1:011 0:798 1:008 0:807 1:011 0:798

0.4 1:015 0:814 1:025 0:797 1:008 0:806 1:013 0:797

0.8 0:972 0:782 1:133 0:751 1:001 0:798 1:003 0:797

0.8 0.8 1:149 0:922 1:154 0:797 1:031 0:827 1:034 0:801

1 1 2:082 1:686 2:097 0:790 1:049 0:843 1:054 0:801

1.2 2:123 3:429 12:42 0:686 1:041 0:837 1:054 0:799

1.4 2:077 9:593 185:46 0:558 1:021 0:822 1:046 0:795

1.4 1.4 107:54 82:97 104:84 0:863 1:062 0:847 1:054 0:800

Panel B: n = 1024
0.2 0.2 1:019 0:817 1:020 0:801 1:019 0:817 1:020 0:801

0.4 1:003 0:802 1:012 0:796 0:997 0:797 1:003 0:796

0.8 0:965 0:776 1:096 0:758 1:006 0:808 1:016 0:799

0.8 0.8 1:106 0:883 1:100 0:798 1:021 0:816 1:018 0:800

1 1 2:050 1:643 2:061 0:778 1:042 0:830 1:037 0:798

1.2 2:118 3:962 16:40 0:684 1:018 0:814 1:022 0:797

1.4 2:189 12:84 292:01 0:581 1:014 0:812 1:024 0:797

1.4 1.4 149:98 117:58 149:46 0:877 1:042 0:833 1:039 0:800

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively. Furthermore, note that

2�G11 = 2�G22 = 1; 2�G12 = 2�G21 = �.

Table 7: Rejection frequency with 0:05 asymptotic critical value for m = n0:65

� = 0 � = 0:4 � = 0:8

d1 d2 WMLW WExtMLW WMLW WExtMLW WMLW WExtMLW

Panel A: n = 512
0.2 0.2 0:045 0:045 0:074 0:074 0:049 0:049

0.4 0:060 0:063 0:078 0:079 0:056 0:061

0.8 0:081 0:068 0:075 0:070 0:078 0:075

0.8 0.8 0:086 0:079 0:076 0:063 0:060 0:061

1 1 0:067 0:070 0:063 0:073 0:061 0:061

1.2 0:552 0:052 0:591 0:058 0:628 0:072

1.6 0:925 0:067 0:912 0:065 0:924 0:057

1.4 1.4 0:821 0:056 0:827 0:047 0:822 0:048

Panel B: n = 1024
0.2 0.2 0:068 0:068 0:080 0:080 0:053 0:053

0.4 0:064 0:064 0:066 0:068 0:070 0:071

0.8 0:094 0:063 0:090 0:080 0:106 0:065

0.8 0.8 0:092 0:058 0:102 0:065 0:086 0:056

1 1 0:045 0:062 0:041 0:069 0:057 0:071

1.2 0:682 0:070 0:722 0:057 0:739 0:064

1.4 0:957 0:058 0:948 0:057 0:953 0:058

1.4 1.4 0:948 0:041 0:931 0:044 0:931 0:051

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively. W denotes the modi�ed Wald statistic of Hurvich & Chen

(2000) for the di¤erent semiparametric multivariate estimators.
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Table 8: Rejection frequency with 0:05 asymptotic critical value for m = n0:65 where we test that

d1 = d2 = 1
� = 0 � = 0:4 � = 0:8

d1 d2 WMLW WExtMLW WMLW WExtMLW WMLW WExtMLW

Panel A: n = 512
1 0.40 1:000 1:000 1:000 1:000 1:000 1:000

0.70 0:938 0:959 0:967 0:990 1:000 1:000

0.75 0:814 0:886 0:864 0:938 0:991 1:000

0.80 0:589 0:696 0:697 0:815 0:952 0:996

0.90 0:201 0:294 0:215 0:321 0:469 0:683

0.95 0:089 0:137 0:099 0:138 0:150 0:248

Panel B: n = 1024
1 0.40 1:000 1:000 1:000 1:000 1:000 1:000

0.70 0:995 0:999 0:998 1:000 1:000 1:000

0.75 0:950 0:980 0:982 1:000 0:999 1:000

0.80 0:828 0:914 0:877 0:953 0:996 1:000

0.90 0:268 0:389 0:311 0:465 0:673 0:885

0.95 0:100 0:144 0:100 0:149 0:209 0:345

Notes: MLW and ExtMLW denote the multivariate local Whittle estimator of Shimotsu (2007) and our proposed

extended multivariate local Whittle estimator, respectively. W denotes the modi�ed Wald statistic of Hurvich & Chen

(2000) for the di¤erent semiparametric multivariate estimators.

Table 9: Long memory estimates
CAN SW FRA GER ITA JPN UK

Panel A: m =
�
n0:5

�
MLW 0:975

(0:059)
0:916
(0:052)

1:005
(0:049)

0:965
(0:052)

0:928
(0:048)

1:043
(0:061)

0:895
(0:063)

ExtMLW 1:178
(0:099)

1:011
(0:060)

1:129
(0:053)

1:052
(0:055)

1:082
(0:061)

1:197
(0:090)

0:996
(0:074)

Panel B: m =
�
n0:65

�
MLW 1:000

(0:037)
0:940
(0:034)

1:001
(0:033)

0:967
(0:034)

0:966
(0:032)

0:998
(0:040)

0:985
(0:041)

ExtMLW 1:017
(0:069)

0:972
(0:038)

1:061
(0:037)

1:014
(0:037)

1:020
(0:042)

1:045
(0:056)

1:026
(0:048)

Notes: The table shows long memory estimates from the MLW and ExtMLW estimators with standard errors in

parentheses.

Table 10: Estimated covariance matrix

̂MLW 
̂ExtMLW

Panel A : m =
j
n0:5

k
CAN SW FRA GER ITA JPN UK CAN SW FRA GER ITA JPN UK

CAN 0.063 0.029 0.031 0.028 0.037 0.028 0.031 0.097 0.012 0.015 0.012 0.013 0.016 0.011
SW 0.049 0.033 0.042 0.032 0.035 0.026 0.066 0.042 0.048 0.032 0.026 0.020
FRA 0.044 0.035 0.038 0.030 0.035 0.051 0.045 0.044 0.016 0.033
GER 0.049 0.032 0.033 0.027 0.055 0.039 0.021 0.025
ITA 0.042 0.031 0.034 0.069 0.010 0.039
JPN 0.067 0.022 0.148 0.019
UK 0.071 0.099

Panel B : m =
j
n0:65

k
CAN 0.060 0.030 0.032 0.030 0.035 0.026 0.034 0.101 0.015 0.014 0.024 0.016 0.023 0.025
SW 0.050 0.033 0.040 0.031 0.037 0.025 0.064 0.041 0.047 0.032 0.033 0.025
FRA 0.049 0.036 0.039 0.029 0.030 0.060 0.048 0.045 0.021 0.027
GER 0.050 0.032 0.033 0.026 0.059 0.037 0.024 0.027
ITA 0.045 0.029 0.035 0.077 0.013 0.037
JPN 0.069 0.022 0.139 0.015
UK 0.074 0.090

Notes: The table shows the estimated covariance matrix for the MLW and ExtMLW estimates.
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Table 11: Normalized G
Normalized ĜMLW Normalized ĜExtMLW

Panel A : m =
j
n0:5

k
CAN SW FRA GER ITA JPN UK CAN SW FRA GER ITA JPN UK

CAN 1.000 -0 .607 0.424 -0 .278 0.794 -0 .728 0.576 1.000 -0 .012 -0 .172 -0 .050 -0 .103 -0 .056 0.022
SW 1.000 0.225 0.856 -0 .294 0.764 -0 .050 1.000 0.856 0.914 0.709 0.484 0.564
FRA 1.000 0.617 0.826 -0 .184 0.807 1.000 0.929 0.884 0.376 0.705
GER 1.000 0.139 0.509 0.312 1.000 0.819 0.444 0.643
ITA 1.000 -0 .602 0.822 1.000 0.234 0.709
JPN 1.000 -0 .311 1.000 0.353
UK 1.000 1.000

Panel B : m =
j
n0:65

k
CAN 1.000 -0 .605 0.483 -0 .280 0.822 -0 .685 0.632 1.000 0.083 0.013 0.046 0.077 0.068 0.245
SW 1.000 0.172 0.844 -0 .357 0.813 -0 .053 1.000 0.856 0.905 0.734 0.607 0.639
FRA 1.000 0.577 0.799 -0 .131 0.762 1.000 0.924 0.840 0.508 0.647
GER 1.000 0.068 0.579 0.297 1.000 0.796 0.541 0.661
ITA 1.000 -0 .565 0.797 1.000 0.406 0.688
JPN 1.000 -0 .266 1.000 0.409
UK 1.000 1.000

Notes: The table shows the normalized long-run covariance matrix for the MLW and ExtMLW estimates.

Table 12: Wald statistics for testing the null hypothesis H1 and H2.
Bandwidth MLW ExtMLW

W1 W2 W1 W2

m =
�
n0:5

�
14.55� 14.09 13.65 11.03

m =
�
n0:65

�
7.85 7.49 8.20 7.73

Notes: W1
d! �27 (0:95) = 14:067 and W2

d! �26 (0:95) = 12:592.
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