
School of Economics and Management 
Aarhus University 

Bartholins Allé 10, Building 1322, DK-8000 Aarhus C 
Denmark 

 
 

  
 
 

 
 

 
 
 
 

 
 

CREATES Research Paper 2009-37 
 
 
 
 

Nearly Efficient Likelihood Ratio Tests 
of the Unit Root Hypothesis 

 
 

Michael Jansson and Morten Ørregaard Nielsen  

 



Nearly E¢ cient Likelihood Ratio Tests of the Unit Root Hypothesis�

Michael Janssony

UC Berkeley and CREATES
Morten Ørregaard Nielsen

Queen�s University and CREATES

August 31, 2009

Abstract. Seemingly absent from the arsenal of currently available
�nearly e¢ cient� testing procedures for the unit root hypothesis, i.e. tests
whose local asymptotic power functions are indistinguishable from the Gaussian
power envelope, is a test admitting a (quasi-)likelihood ratio interpretation. We
show that the likelihood ratio unit root test derived in a Gaussian AR(1) model
with standard normal innovations is nearly e¢ cient in that model. Moreover,
these desirable properties carry over to more complicated models allowing for
serially correlated and/or non-Gaussian innovations.
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1. Introduction
The unit root testing problem has been and continues to be a testing problem of
great theoretical interest in time series econometrics.1 In a seminal paper, Elliott,
Rothenberg, and Stock (1996, henceforth ERS) derived Gaussian power envelopes for
unit root tests and demonstrated by example that these envelopes are sharp in the
sense that �nearly e¢ cient�tests, i.e., tests whose local asymptotic power functions
are indistinguishable from the Gaussian power envelope, can be constructed. Subse-
quent research (e.g., Ng and Perron (2001)) has enlarged the class of tests whose local
asymptotic power functions are indistinguishable from the Gaussian power envelope,
but seemingly absent from the arsenal of currently available nearly e¢ cient testing

�We are grateful to Niels Haldrup, Søren Johansen, Tom Rothenberg, and participants at the
CREATES conference on Periodicity, Non-stationarity, and Forecasting of Economic and Financial
Time Series for comments and discussion, and to the Danish Social Sciences Research Council (FSE
grant no. 275-05-0220), the Social Sciences and Humanities Research Council of Canada (SSHRC
grant no. 410-2009-0183), and the Center for Research in Econometric Analysis of Time Series
(CREATES, funded by the Danish National Research Foundation) for �nancial support.

yCorresponding author. Address: University of California, Berkeley, Department of Economics,
508-1 Evans Hall #3880, Berkeley, CA 94720. Email: mjansson@econ.berkeley.edu

1For reviews, see Stock (1994), Phillips and Xiao (1998), and Haldrup and Jansson (2006).
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Likelihood Ratio Unit Root Tests 2

procedures is a test admitting a (quasi-)likelihood ratio interpretation. The purpose
of this paper is to propose such a test.
In models with an unknown mean and/or a linear trend, the class of tests attaining

the power envelopes does not contain the Dickey and Fuller (1979, 1981, henceforth
DF) tests (or their modi�cations, such as Phillips (1987a) and Phillips and Perron
(1988)). Therefore, although the DF tests can be given a likelihood ratio interpre-
tation it is perhaps not ex ante obvious that nearly e¢ cient likelihood ratio tests
even exist. The DF tests can be derived from a conditional likelihood, conditioning
being with respect to the initial observation. In the model considered by ERS the
initial observation is very informative about the parameters governing the determin-
istic component, so it seems plausible that a likelihood ratio test derived from the
full likelihood implied by an ERS-type model would have superior power properties
to those of the DF tests in models with deterministic components and this is exactly
what we �nd. Indeed, we �nd that a likelihood ratio test constructed in this way
does belong to the class of nearly e¢ cient tests.
Speci�cally, we consider the leading special case of the model in ERS, namely a

Gaussian AR(1) model with standard normal innovations and with presample obser-
vations assumed to be equal to their expected values. We examine the local power
properties of the likelihood ratio unit root test derived in this model and show that
it is nearly e¢ cient. Moreover, these desirable properties are found to be shared
by computationally simple likelihood ratio-type tests in models allowing for serially
correlated non-Gaussian innovations and presamble observations that deviate from
their expected values. More details will be provided below. We remark at the outset
that the new tests are related to, but distinct from, the DF-GLS tests of ERS, even
asymptotically. Again, more details will be provided below.
The remainder of the paper is organized as follows. Section 2 contains our results

on the likelihood ratio test for a unit root, with additional discussion and conclusions
in Section 3. Proofs of our results are provided in Section 4.

2. The Likelihood Ratio Test for a Unit Root
Section 2.1 studies likelihood ratio tests of the unit root hypothesis in the simplest
possible setting, namely the zero-mean Gaussian AR(1) model. Section 2.2 accommo-
dates a deterministic component, while extensions to models with serially correlated
and/or non-Gaussian errors are considered in Section 2.3.

2.1. No Deterministic Component. Suppose fyt : 1 � t � Tg is an observed
univariate time series generated by the zero-mean Gaussian AR(1) model

yt = �yt�1 + "t; (1)
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where y0 = 0 and "t � i:i:d:N (0; 1) :
The likelihood ratio test associated with the unit root testing problem

H0 : � = 1 vs. H1 : � < 1 (2)

rejects for large values of

LRT = max���1 LT (��)� LT (1) ;

where LT (�) = �
PT

t=1 (yt � �yt�1)
2 =2 is the log likelihood function.

De�ning (ST ; HT ) =
�
T�1

PT
t=2 yt�1�yt; T

�2PT
t=2 y

2
t�1

�
; the log likelihood func-

tion can be expressed as

LT (�) = LT (1) + T (�� 1)ST �
1

2
[T (�� 1)]2HT :

As a consequence, de�ning �c = T (��� 1) to obtain non-degenerate asymptotic behav-
ior, LRT admits the representation

LRT = max�c�0

�
�cST �

1

2
�c2HT

�
: (3)

The large sample behavior of the pair (ST ; HT ) is well understood. Under local-
to-unity asymptotics, with c = T (�� 1) held �xed as T !1;

(ST ; HT )!d (Sc;Hc) =

�Z 1

0

Wc (r) dWc (r) ;

Z 1

0

Wc (r)
2 dr

�
; (4)

where Wc (r) =
R r
0
exp [c (r � s)] dW (s) and W (�) is a standard Wiener process, e.g.,

Chan and Wei (1987) and Phillips (1987b). Theorem 1 gives the corresponding result
about the local-to-unity asymptotic behavior of the likelihood ratio statistic LRT :

Theorem 1. If fytg is generated by (1) and c = T (�� 1) is held �xed as T ! 1;
then LRT !d max�c�0 �c (�c) ; where

�c (�c) = �cSc �
1

2
�c2Hc:
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Theorem 1 follows from (3) ; (4) ; and the continuous mapping theorem (CMT)
applied to the functional f(s; h) = min(0; s)2=h. Speci�cally,

LRT = max�c�0

�
�cST �

1

2
�c2HT

�
=
min (ST ; 0)

2

2HT
!d

min (Sc; 0)2

2Hc

= max�c�0 �c (�c) ;

where the second and third equalities use simple facts about quadratic functions.
The implicit characterization of the weak limit of LRT as max�c�0 �c (�c) is employed
in anticipation of Theorem 2(b) below, which covers a case where no closed form
expression for the limiting random variable seems to be available.
In addition to facilitating the veri�cation of the continuity property required to

invoke the CMT, the closed form expression for max�c�0 �c (�c) enables us to address
the asymptotic optimality properties of the likelihood ratio test. For any � less than
Pr [S0 � 0] � 0:6827; the (asymptotic) size � likelihood ratio test rejects when LRT
exceeds kLR (�) ; where kLR (�) satis�es Pr [max�c�0 �0 (�c) > kLR (�)] = �: For any
such �; the local asymptotic power function (with argument c � 0) associated with
the size � likelihood ratio test is given by Pr [max�c�0 �c (�c) > kLR (�)], and coincides
with that of the size � test based on the DF t-statistic �̂DFT ; the reason being that
�̂DFT !d Sc=

p
Hc under the assumptions of Theorem 1. It therefore follows from

ERS�s results about the DF t-test that the likelihood ratio test is nearly e¢ cient in the
sense that its local asymptotic power function is indistinguishable from the Gaussian
power envelope, which (with argument c � 0) for tests with asymptotic level � is
given by Pr [�c (�c) > k�c (�)]j�c=c ; where k�c (�) satis�es Pr [�0 (�c) > k�c (�)] = �:

2.2. Deterministics. The near-e¢ ciency result for the test based on the DF t-
statistic does not extend to models with a constant mean or a linear trend (e.g., ERS).
It is therefore of interest to explore the local asymptotic power properties of likelihood
ratio tests in such models. Accordingly, suppose fyt : 1 � t � Tg is generated by the
Gaussian AR(1) model

yt = �
0dt + ut; ut = �ut�1 + "t; (5)

where dt = 1 or dt = (1; t)0 ; � is an unknown parameter, u0 = 0; and "t �
i:i:d:N (0; 1) :
In this case, the log likelihood function LdT (�) is conveniently expressed as

LdT (�; �) = �
1

2
(Y� �D��)

0 (Y� �D��) ;

where Y� = (y1; y2 � �y1; : : : ; yT � �yT�1)0 and D� = (d1; d2 � �d1; : : : ; dT � �dT�1)0 :
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The likelihood ratio test associated with the unit root testing problem (2) rejects for
large values of

LRdT = max���1;� L
d
T (��; �)�max� LdT (1; �)

= max���1 LdT (��)� LdT (1) ;

where

LdT (�) = max� LdT (�; �) = �
1

2
Y 0�Y� +

1

2

�
Y 0�D�

� �
D0
�D�

��1 �
D0
�Y�
�

is the pro�le log likelihood function obtained by maximizing LdT (�; �) with respect
to the nuisance parameter �: Unlike LT (�) = �Y 0�Y�=2; the pro�le log likelihood
function LdT (�) depends on � in a complicated way and no closed form expression for
LRdT will be available in general. This feature complicates, but does not prohibit, the
derivation of the asymptotic distribution of LRdT under local-to-unity asymptotics.

Theorem 2. Suppose fytg is generated by (5) and suppose c = T (�� 1) is held
�xed as T !1: Then:

(a) If dt = 1; then LRdT !d max�c�0 �c (�c) :

(b) If dt = (1; t)
0 ; then LRdT !d max�c�0 �

�
c (�c) ; where

��c (�c) = �c (�c) +
1

2

h
(1� �c)Wc (1) + �c

2
R 1
0
rWc (r) dr

i2
1� �c+ �c2=3 � 1

2
Wc (1)

2 :

The proof of Theorem 2 proceeds by showing that the likelihood ratio statistic
can be written as LRdT = max�c�0 F (�c;XT ) for some function F (�) and some random
vector XT ; where the latter satis�es a convergence property of the form XT !d Xc
under the assumptions of Theorem 2 and the functional max�c�0 F (�c; �) is continuous
on a set X satisfying Pr [Xc 2 X] = 1 (for every c � 0).
Because the pro�le log likelihood function LdT (�) is invariant under transformations

of the form yt ! yt + b
0dt; so is LRdT (and any other test statistic that can expressed

as a functional of LdT (�)): It therefore makes sense to compare the local asymptotic
power properties of the tests based on LRdT with ERS�s Gaussian power envelopes for
invariant tests.
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In the constant mean case, the envelope for invariant tests coincides with the
envelope for the model without deterministics. Similarly, it follows from Theorem 2(a)
that the local asymptotic power of the constant mean likelihood ratio test coincides
with the local asymptotic power of the no deterministics likelihood ratio test. The
constant mean likelihood ratio test therefore inherits the near optimality property of
its no deterministics counterpart.

FIGURE 1 ABOUT HERE

The local asymptotic power function (with argument c � 0) of the size � linear
trend likelihood ratio test is given by Pr [max�c�0 ��c (�c) > k

�
LR (�)] ; where k

�
LR (�)

satis�es Pr [max�c�0 ��0 (�c) > k
�
LR (�)] = �: Figure 1 plots this function for � = 0:05:

Also plotted in Figure 1 is the Gaussian power envelope, which (for size � tests) is
given by Pr [��c (�c) > k

�
�c (�)]j�c=c ; where k��c (�) satis�es Pr [��0 (�c) > k��c (�)] = �: As in

the no deterministics and constant mean cases, the local asymptotic power function
of the likelihood ratio test is indistinguishable from the Gaussian power envelope, so
near optimality claims can be made on the part of the likelihood ratio test also in the
linear trend case.
The near optimality properties of the likelihood ratio test are shared by two related

classes of tests proposed by ERS, namely the point optimal tests and DF-GLS tests.
The point optimal test statistics are of the form

P dT (�cERS) = LdT
�
1 + T�1�cERS

�
� LdT (1) ;

where �cERS is a negative constant. By construction, these tests attain the Gaussian
power envelope at c = �cERS: It was found by ERS that the choices �cERS = �7 and
�cERS = �13:5 produce nearly e¢ cient tests in the constant mean and linear trend
cases, respectively. De�ning ĉLR = argmax�c�0 LdT (1 + T�1�c) ; the likelihood ratio
test statistic can be expressed as LRdT = P dT (ĉLR) : Because ĉLR is random even in
the limit, the likelihood ratio test cannot be interpreted as an (asymptotically) point
optimal test.
In the model considered in this subsection, the DF-GLS test is asymptotically

equivalent to the test based on the test statistic

�̂DF�GLST (�cERS) = max��1 L
d
T

�
�; �̂T (�cERS)

�
� LdT

�
1; �̂T (�cERS)

�
;

where �cERS is a negative constant and �̂T (�cERS) is a plug-in estimator of � given by

�̂T (�cERS) = argmax� L
d
T

�
1 + T�1�cERS; �

�
=
�
D0
��D��

��1
(D��Y��)

���
��=1+T�1�cERS

:
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As with the point optimal tests, ERS recommend setting �cERS equal to �7 and �13:5
in the constant mean and linear trend cases, respectively. Under the assumptions
of Theorem 2(a), the likelihood ratio test is asymptotically equivalent to the DF-
GLS test in the constant mean case, since, for any �cERS � 0, �̂DF�GLST (�cERS) !d

max�c�0 �c (�c). In contrast, under the assumptions of Theorem 2(b), the asymptotic
properties of �̂DF�GLST (�cERS) depend on �cERS and the likelihood ratio test cannot be
interpreted as being asymptotically equivalent to a DF-GLS test in the linear trend
case.

2.3. Serial Correlation and Unknown Error Distribution. The results of
the preceding sections are mainly of theoretical interest, the reason being that the
assumptions made about the errors futg are implausible in many applications. Specif-
ically, the AR(1) speci�cation and the assumption that the innovations f"tg are gen-
erated by a known distribution are too restrictive for comfort and it is of interest to
relax them. To that end, suppose fyt : 1 � t � Tg is generated by the model

yt = �
0dt + ut; (1� �L) 
 (L)ut = "t; (6)

where dt = 1 or dt = (1; t)
0 ; � is an unknown parameter, 
 (L) = 1�
1L� : : :�
pLp

is a lag polynomial of (known, �nite) order p satisfying minjzj�1 j
 (z)j > 0; the initial
conditions are u0 = : : : = u�p = 0; and the "t are i:i:d: errors from a distribution
with mean zero and unknown variance �2:
It follows from ERS that if the errors are Gaussian, then the power envelopes

computed under the �as if�assumption that �2 and the coe¢ cients of 
 (L) are known
are attainable and coincide with the envelopes computed under the assumption that
�2 = 1 and 
 (L) = 1: Moreover, the Gaussian power envelopes can be attained
by means of procedures based on the Gaussian quasi-likelihood also when the error
distribution is non-Gaussian.2

We now discuss how to modify the test statistic LRdT in such a way that the mod-
i�ed tests attain the Gaussian power envelope in the more general model considered
in this subsection. The Gaussian quasi-log likelihood function can be expressed as

LdT
�
�; �;�2; 


�
= �T

2
log �2 � 1

2�2
(Y�;
 �D�;
�)

0 (Y�;
 �D�;
�) ;

where, setting y0 = : : : = y�p = 0 and d0 = : : : = d�p = 0; Y�;
 and D�;
 are matrices

2Relaxing the assumption of normality of the error distribution a¤ects the shape of the power
envelope in the model considered here, see Jansson (2008). To conserve space we make no attempt
to achieve full e¢ ciency also under departures from Gaussianity.
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with row t = 1; : : : ; T given by (1� �L) 
 (L) yt and (1� �L) 
 (L) d0t; respectively.
Consider a likelihood ratio-type test statistic of the form

cLRdT = max���1;� L
d
T

�
��; �; �̂2T ; 
̂T

�
�max� LdT

�
1; �; �̂2T ; 
̂T

�
= max���1 LdT

�
��; �̂2T ; 
̂T

�
� LdT

�
1; �̂2T ; 
̂T

�
;

where

LdT
�
�;�2; 


�
= �T

2
log �2 � 1

2�2
Y 0�;
Y�;
 +

1

2�2
�
Y 0�;
D�;


� �
D0
�;
D�;


��1 �
D0
�;
Y�;


�
;

while �̂2T and 
̂T are plug-in estimators of �
2 and 
 =

�

1; : : : ; 
p

�0
; respectively.

Being based on a plug-in version of LdT (�;�2; 
) ; the statistic cLRdT is straightfor-
ward to construct, requiring only maximization of LdT

�
�; �̂2T ; 
̂T

�
with respect to the

scalar parameter �: Based on the �ndings of ERS summarized in the second para-

graph of this subsection, the functional form of cLRdT is motivated by two conjectures
to be proved below. First, we base our formulation on a Gaussian quasi-likelihood
because we wish to attain the Gaussian power envelopes. Second, because the un-
known parameters �2 and 
 (L) can be treated as if they are known when deriving
Gaussian power envelopes, it should be possible to replace �2 and 
 (L) by reasonable
estimators in LdT (�; �;�

2; 
) without sacri�cing asymptotic e¢ ciency.

In particular, the test statistic cLRdT is asymptotically equivalent to LRdT under the
assumptions of Theorem 2 for consistent estimators of �2 and 
. Moreover, because
the Gaussian power envelopes are invariant with respect to �2 and 
 (L) ; and can be
attained by procedures based on the Gaussian quasi-likelihood also when the error

distribution is non-Gaussian, cLRdT is asymptotically pivotal in the sense that if fytg is
generated by (6) then its local-to-unity asymptotic distribution depends only on the
local-to-unity parameter c = T (�� 1) : The next result con�rms these conjectures
under fairly minimal assumptions about the estimators �̂2T and 
̂T :

Theorem 3. Suppose fytg is generated by (6) ; c = T (�� 1) is held �xed as T !1;
and

�
�̂2T ; 
̂T

�
!p (�

2; 
) : Then:

(a) If dt = 1; then cLRdT !d max�c�0 �c (�c) :

(b) If dt = (1; t)
0 ; then cLRdT !d max�c�0 �

�
c (�c) :
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Simulated critical values k�LR(�) associated with cLRdT are reported in Table 1.
TABLE 1 ABOUT HERE

The consistency requirement on the estimators �̂2T and 
̂T is mild. For instance,
it is met by

�̂2T =
1

T � p� 1

TX
t=p+2

(�yt � �̂0TZt)
2
; 
̂T = (0; Ip) �̂T ;

where

�̂T =

 
TX

t=p+2

ZtZ
0
t

!�1 TX
t=p+2

Zt�yt

!
; Zt = (1;�yt�1; : : : ;�yt�p)

0 :

The function LdT (�; �;�
2; 
) upon which the statistic cLRdT is based is a quasi-

likelihood in the usual sense that it is constructed under an �as if�assumption of nor-
mality on the part of the innovations "t: In addition, it is a quasi-likelihood in the sense
that the assumption u0 = : : : = u�p = 0 about the initial values can be interpreted as
an �as if�assumption that can be relaxed without invalidating the asymptotic results
of this section. Speci�cally, Theorem 3 remains valid (as does the method of its proof)
under the somewhat weaker assumption that max (ju0j ; : : : ; ju�pj) = op(

p
T ): On the

other hand, di¤erent distributional results and hence di¤erent local power properties
will generally be obtained if max (ju0j ; : : : ; ju�pj) 6= op(

p
T ), a feature that is shared

by the DF-GLS tests of ERS.3

3. Discussion and Conclusions
In this paper we have shown that the likelihood ratio unit root test derived in a
Gaussian AR(1) model with standard normal innovations is nearly e¢ cient in that
model. Moreover, these desirable properties are found to be shared by computation-
ally simple likelihood ratio-type tests in models allowing for serially correlated and/or
non-Gaussian innovations.
Although the tests based on cLRdT are virtually identical to the DF-GLS tests of

ERS in terms of local asymptotic power properties, the LR-type tests introduced
herein are conceptually distinct from the DF-GLS tests. Speci�cally, while both tests
achieve nuisance parameter elimination by �rst plugging in estimators of one subset

3For a more elaborate discussion of the role played by the initial values assumptions, see e.g.
ERS (p. 819), Müller and Elliott (2003), and Harvey, Leybourne, and Taylor (2009).
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of the nuisance parameters and then pro�ling out the remaining nuisance parameters,
the tests di¤er markedly with respect to the choice of nuisance parameters that are
being eliminated by plug-in and pro�ling, respectively. In the case of the DF-GLS
tests, the parameter � governing the deterministic component is eliminated using
a plug-in approach whereas the parameters (�2; 
) governing the scale and serial

correlation of the errors are eliminated by pro�ling. The statistic cLRdT ; in contrast,
is obtained by plugging in estimators of �2 and 
 and then pro�ling out �: Removing
(�2; 
) by plug-in is computationally convenient and can be motivated by statistical
considerations, as �2 and 
 are nuisance parameters that (unlike �) can treated �as
if�they are known when deriving local asymptotic power envelopes. In other words,cLRdT is obtained by plugging in those nuisance parameters which do not a¤ect local
asymptotic power, �2 and 
, and maximizing the likelihood fully over those nuisance
parameters which do in�uence local asymptotic power, namely �.
In addition to characterizing the asymptotic behavior of the likelihood ratio statis-

tics, the functionals max�c�0 �c (�c) and max�c�0 ��c (�c) can be interpreted as likelihood
ratio test statistics in the limiting experiments (in the sense of LeCam) associated
with maximal invariants for the model (5), see e.g. van der Vaart (1998). As a con-
sequence, our results shed light on the properties of these limiting experiments by
demonstrating that likelihood ratio tests (of H0 : c = 0 vs. H1 : c < 0) are nearly
e¢ cient in these experiments.
It would be of interest to conduct a thorough investigation of the �nite sample

properties of cLRdT ; including its sensitivity with respect to the choice of estimators �̂2T
and 
̂T : To conserve space we do not carry out such an investigation here, but it seems

worth remarking that preliminary Monte Carlo evidence suggests that cLRdT performs
well compared to DF-GLS when implemented with the abovementioned choice of�
�̂2T ; 
̂T

�
: Also left for future work is an extension of our theoretical results to tests of

cointegration. Like the DF tests for unit roots, the cointegration tests due to Johansen
(1988, 1991) are derived from a conditional likelihood and it would be of interest
to know if our qualitative �nding about the relative merits of likelihood ratio tests
derived from conditional and full likelihoods extends to tests of cointegration. Finally,
we remark that a possible advantage of the likelihood ratio tests analyzed here is that
extensions of our results to, e.g., alternative distributional assumptions or seasonal
unit roots, appear conceptually much simpler than a corresponding generalization of
the DF-GLS tests.

4. Proofs
4.1. Proof of Theorem 2. Because LdT (�) is invariant under transformations of
the form yt ! yt + b

0dt; we can assume without loss of generality that � = 0: The
proofs of parts (a) and (b) are very similar, the latter being slightly more involved,
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so to conserve space we omit the details for part (a).
Setting d0 = 0 and y0 = 0 and de�ning ~dTt = diag(1; 1=

p
T )dt; the linear trend

likelihood ratio statistic can be written as LRdT = max�c�0 F (�c;XT ) ; where

XT = (ST ; HT ; AT ; BT ) ;

AT = [AT (0) ; AT (1) ; AT (2)] ;

BT = [BT (0) ; BT (1) ; BT (2)] ;

for AT (0) =
PT

t=1�
~dTt�yt, AT (1) = 1

T

PT
t=1(�

~dTtyt�1 + ~dT;t�1�yt), AT (2) =
1
T 2

PT
t=1

~dT;t�1yt�1, BT (0) =
PT

t=1�
~dTt�~d

0
Tt, BT (1) =

1
T

PT
t=1(�

~dTt ~d
0
T;t�1+

~dT;t�1�~d
0
T;t),

BT (2) =
1
T 2

PT
t=1

~dT;t�1 ~d
0
T;t�1, and

F (�c; x) = �cs� 1
2
�c2h+

1

2
N (�c; a)0D (�c; b)�1N (�c; a)� 1

2
N (0; a)0D (0; b)�1N (0; a)

with

N (�c; a) = N [�c; a (0) ; a (1) ; a (2)] = a (0)� �ca (1) + �c2a (2) ;

D (�c; b) = D [�c; b (0) ; b (1) ; b (2)] = b (0)� �cb (1) + �c2b (2) :
It follows from standard results, e.g., Chan and Wei (1987) and Phillips (1987b),

that XT !d Xc = (Sc;Hc;Ac;B) under the assumptions of Theorem 2, where

Ac =
��

Y
Wc (1)

�
;

�
0

Wc (1)

�
;

�
0R 1

0
rWc (r) dr

��
;

B =
��

K 0
0 1

�
;

�
0 0
0 1

�
;

�
0 0
0 1=3

��
;

Y � "1 is a random variable independent of Wc (�) ; and K = 1 is a positive constant.
This convergence result implies in particular that F (�c;XT )!d F (�c;Xc) = ��c (�c) for
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every �c � 0 (under the assumptions of Theorem 2). Moreover, Pr [Xc 2 X] = 1 for
every c � 0; where X is the set of all quadruplets (s; h; a; b) satisfying s > �1=2;
h > 0; b = B; and

a =

��
r1

r2
p
2 (s+ 1)

�
;

�
0

r2
p
2 (s+ 1)

�
;

�
0

r3
p
h=3

��
for some (r1; r2; r3) 2 R� f�1; 1g � (0; 1) : The desired result therefore follows from
the CMT if max�c�0 F (�c; �) is continuous at every x0 2 X:
There exists an open set ~X � X and continuous functions fpi (�) : 1 � i � 6g and

fqi (�) : 0 � i � 4g de�ned on ~X such that if x 2 ~X; then F (�c; x) is a rational poly-
nomial function of �c of the form

F (�c; x) =

P6
i=1 pi (x) �c

iP4
i=0 qi (x) �c

i
;

where p6 (x) < 0 and
P4

i=0 qi (x) �c
i = det [D (�c; b)] is positive for every �c � 0:

Using these facts it is not hard to show that for every x0 2 X there is a �nite
constant M and an open set ~X0 � ~X containing x0 such that F (�c; x) is negative
whenever (�c; x) 2 (�1;�M) � ~X0: Because F (0; x) = 0; this fact implies that if
x 2 ~X0; then

max�c�0 F (�c; x) = max�M��c�0 F (�c; x) : (7)

Because F (�) is continuous on [�M; 0] � ~X0 and [�M; 0] is compact, it follows
from the theorem of the maximum, e.g., Stokey and Lucas (1989, Theorem 3.6),
that max�M��c�0 F (�c; �) is continuous on ~X0: The desired continuity property of
max�c�0 F (�c; �) follows from this result and the representation (7).

4.2. Proof of Theorem 3. As in the proof of Theorem 2, we assume without
loss of generality that � = 0 and give only the proof of part (b).
De�ning d̂Tt = 
̂T (1)

�1 diag(1; 1=
p
T )
̂T (L) dt and ŷTt = �̂

�1
T 
̂T (L) yt; the linear

trend likelihood ratio statistic can be written as cLRdT = max�c�0 F (�c; X̂T ); where

X̂T =
�
ŜT ; ĤT ; ÂT ; B̂T

�
;

(ŜT ; ĤT ) =

 
1

T �̂2T

TX
t=2

ŷT;t�1�ŷTt;
1

T 2�̂2T

TX
t=2

ŷ2T;t�1

!
;
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ÂT =
h
ÂT (0) ; ÂT (1) ; ÂT (2)

i
;

B̂T =
h
B̂T (0) ; B̂T (1) ; B̂T (2)

i
;

for ÂT (0) =
PT

t=1�d̂Tt�ŷTt, ÂT (1) =
1
T

PT
t=1(�d̂TtyT;t�1 + d̂T;t�1�ŷTt), ÂT (2) =

1
T 2

PT
t=1 d̂T;t�1ŷT;t�1, B̂T (0) =

PT
t=1�d̂Tt�d̂

0
Tt, B̂T (1) =

1
T

PT
t=1(�d̂Ttd̂

0
T;t�1+d̂T;t�1�d̂

0
T;t),

B̂T (2) =
1
T 2

PT
t=1 d̂T;t�1d̂

0
T;t�1, and F (�) is de�ned as in the proof of Theorem 2.

Theorem 3 now follows from the proof of Theorem 2 because routine calcu-
lations can be used to show that X̂T !d X̂c; where X̂c is de�ned as Xc in the
proof of Theorem 2, except that in this case the distribution of Y is that of a
linear combination of "1; : : : ; "p+1 (with coe¢ cients depending on 
1; : : : ; 
p) and

K =
�
1 + 
21 + : : :+ 


2
p

�
=
�
1 + 
1 + : : :+ 
p

�2
:
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Table 1: Quantiles of the distribution max�c�0 ��0(�c)

T 80% 85% 90% 95% 97:5% 99% 99:5% 99:9%
100 2:5041 2:8564 3:3411 4:1401 4:9067 5:8850 6:5997 8:1734
250 2:4702 2:8155 3:2928 4:0947 4:8783 5:8927 6:6522 8:3838
500 2:4595 2:8014 3:2750 4:0678 4:8479 5:8649 6:6254 8:3574
1000 2:4550 2:7951 3:2660 4:0546 4:8289 5:8352 6:5867 8:3097
1 2:4524 2:7925 3:2616 4:0481 4:8192 5:8232 6:5716 8:2905

Note: Entries for �nite T are simulated quantiles of LRdT with "t � i:i:d:N (0; 1) ;
t = 1; : : : ; T: Entries for T = 1 are simulated quantiles of max�c�0 ��c (�c), where
Wiener processes are approximated by 10; 000 discrete steps with standard Gaussian
white noise innovations. All entries are based on ten million Monte Carlo replications.
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Figure 1: Power envelope and asymptotic local power of LR test with a linear trend
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Note: Simulated power envelope and asymptotic local power function based on one
million Monte Carlo replications, where Wiener processes were approximated by T =
10; 000 discrete steps with standard Gaussian white noise innovations.
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