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Abstract 

We present new evidence on disaggregated profit and loss (P/L) and Value-at-Risk (VaR) 

forecasts obtained from a large international commercial bank.  Our dataset includes the actual 

daily P/L generated by four separate business lines within the bank.  All four business lines are 

involved in securities trading and each is observed daily for a period of at least two years.  Given 

this unique dataset, we provide an integrated, unifying framework for assessing the accuracy of 

VaR forecasts. We use a comprehensive Monte Carlo study to assess which of these many tests 

have the best finite-sample size and power properties. Our desk-level data set provides 

importance guidance for choosing realistic P/L generating processes in the Monte Carlo 

comparison of the various tests.  The CaViaR test of Engle and Manganelli (2004) performs best 

overall but duration-based tests also perform well in many cases. 
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1. Introduction 

In the financial services industry, a primary concern of money managers is the on-going 

level of risk in their portfolios.  For decades the textbook measure of portfolio risk was the 

standard deviation or “volatility”.  However, by the 1990’s banks began widespread adoption of 

Value-at-Risk (VaR) as an internal definition of portfolio risk, where the VaR is defined as the 

lower end of a 99
 
percent confidence interval. It is now arguably the single most prevalent 

financial risk measure used in banking and is becoming increasingly common even in 

nonfinancial firms (see, for example, Jorion (2006) for an extensive overview of VaR). 

The widespread use of VaR as an internal measure of risk was given regulatory 

recognition under the 1996 Market Risk Amendment to the Basel Accord.  Under this system, 

banks are allowed to have their regulatory required capital based on the bank’s own internal VaR 

forecasts.  

While VaR began as way to measure risk, it is now also used as a management tool. A 

large bank has a fixed amount of capital which can be allocated by management to traders. In 

order to manage overall risk, each trader is typically given a trading limit of some kind. Those 

trading limits are now typically based on the trader’s portfolio VaR.  To a certain extent, traders 

and portfolio managers even use VaR to guide portfolio choice. If a manager observes VaR 

increasing, it may signal an undesired increase in risk and trigger the closing of a position. 

For all these reasons, both financial services firms themselves as well as Federal Reserve 

and FDIC Regulators have an enormous incentive to make sure bank’s VaR forecasts are 

accurate.  

In this paper we provide an integrated, unifying framework for assessing the accuracy of 

VaR forecasts. Our approach includes the existing tests proposed by Christoffersen (1998) and 

Christoffersen and Pelletier (2004) as special cases.  In addition, we describe some new tests 

which are suggested by our framework.   

In order to provide guidance as to which of these many tests have the best finite-sample 

size and power properties, we conduct a thorough Monte Carlo horserace where the profit and 

loss (P/L) generating processes are based on four real P/L series.  

We obtained the actual daily profit and loss generated by four separate business lines or 

“desks” from a large, international commercial bank.  Each of the business line’s P/L series is 

observed daily for a period of more than two years. While of interest in its own right, the desk-
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level data set also provides important guidance for choosing realistic P/L generating processes in 

our Monte Carlo comparison of backtesting methods.   

In addition to the daily P/L data, we obtained the corresponding daily, 1-day ahead VaR 

forecasts computed using Historical Simulation.  For each business line within the bank, and for 

each day, the VaR forecasts are estimates of the 1% lower tail.  Our data set complements that of 

Berkowitz and O’Brien (2002) who obtained daily bank-wide P/L and VaR data, but who were 

not able to obtain any information on separate business lines within the same bank. In recent 

work, Perignon, Deng and Wang (2006), and Perignon and Smith (2006) also analyze bank-level 

VaRs. They find that one-day ahead VaR based on Historical Simulation is the industry standard. 

For the longer horizons required by supervisory bodies, such as ten-day ahead, banks typically 

simply use the square root of ten to scale the one-day ahead VaR. 

 Our umbrella framework for testing the accuracy of a Value-at-Risk (VaR) model is 

based on the observation that the VaR forecast is a (one-sided) interval forecast. Violations – the 

days on which portfolio losses exceed the VaR – should therefore be unpredictable. In particular, 

the violations form a martingale difference sequence. The martingale hypothesis has a long and 

distinguished history in economics and finance (see Durlauf (1991)).  

 As a result of this extensive toolkit, we are able to cast all existing methods of evaluating 

VaR under a common umbrella of martingale tests.  This immediately suggests several testing 

strategies.  The most obvious is a test of whether any of the autocovariances are nonzero. The 

standard approach to test for uncorrelatedness is by estimating the sample autocovariances or 

sample autocorrelations. In particular, we suggest the well-known Ljung-Box test of the violation 

sequence’s autocorrelation function. 

The second set of tests are inspired by Campbell and Shiller (1987) and Engle and 

Manganelli (2004). If the violations are a martingale difference sequence, then they should be 

uncorrelated by any transformation of the variables available when the VaR is computed. It 

suggests a regression of the violations/non-violations on their lagged values and other lagged 

variables such as the previous day’s VaR. 

 A third set of tests are adapted from Christoffersen and Pelletier (2004) who focus on 

hazard rates and durations.  These tests are based on the observation that the number of days 

separating the violations (i.e., the durations) should be unpredictable.  
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 Lastly, a fourth set of tests is taken from Durlauf (1991). He derives a set of tests of the 

martingale hypothesis based on the spectral density function. This approach has several features 

to commend it. Unlike variance ratio tests, spectral tests have power against any linear 

alternative of any order. Spectral density tests have power to detect any second moment 

dynamics. Variance ratio tests are typically not consistent against all such alternatives.  

Because the violation of the VaR is, by construction, a rare event, the effective sample 

size in realistic risk management settings can be quite small. It follows that we cannot rely on the 

asymptotic distribution of the tests to conduct inference. We instead rely on Dufour (2006)’s 

Monte Carlo testing technique which yields tests with exact level, irrespective of the sample size 

and the number of replications used. Our results suggest that the CaViaR test of Engle and 

Manganelli (2004) performs best overall but that duration-based tests also perform well in many 

cases. 

 The paper proceeds as follows. In Section 2 we discuss the use of VaR as a managerial 

and operational tool within financial services firms. In Section 3, we present the actual desk-level 

daily P/Ls and VaRs from several business lines from a large international bank. Section 4 gives 

an overview of existing methods for backtesting VaR estimates and it suggests a few new 

approaches as well. Section 5 presents the results of a detailed horserace among the methods in 

terms of size and power properties in finite sample.  In Section 6, we report the results from 

applying the test to our unique desk-level data sample and we also assess the ability of VaRs to 

forecast P/L volatility.   

 

2. VaR as a Managerial Tool 

The one-day 1% VaR of a given portfolio is a dollar amount, such that daily portfolio 

loss will be worse than the VaR only 1% of the time. This provides a simple one-dimensional 

snapshot of the downside risk of the profit and loss distribution.  This simplicity is a key reason 

for its widespread adoption, although it clearly represents a somewhat limited amount of 

information about the P/L distribution.  A key advantage of VaR is that it does not rely on any 

assumptions of asset return normality.  
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A. Risk Controls using VaR  

A typical large commercial or investment bank will have its trading operations organized 

in a set of trading desks. The organization typically includes a desk for equities, one for 

currencies, a fixed-income desk, and a derivatives desk. The risk management team in the bank 

has to monitor in real time that each trading desk stays within the predefined risk limits imposed 

by management.  

Before the advent of VaR such risk limits were typically set in the form of notional limits 

and/or stop–loss limits. Examples of notional limits include a maximum allowed amount 

invested in a particular currency, in bonds of a certain maturity, or in equities from a particular 

industry. Such notional limits are problematic for several reasons including the fact that they are 

not easily comparable across asset classes.   

The stop-loss limits instead force the desk to unwind positions when the accumulated loss 

on a position as reached a preset level. Stop-loss limits are comparable across assets but they 

suffer from being backward-looking in nature, only measuring risk once the loss is realized.  

Using VaR limits as risk controls has the advantage that a forward-looking risk measure 

is used. The VaR is forward looking by definition as it reports for example the maximum loss 

over the next day with 99% probability. Empirical evidence on the forward-looking nature of 

VaR estimates is provided in Taylor (2005) who shows how VaR estimates can be used to 

forecast future volatility. Furthermore, VaR limits are comparable across asset classes as the 

VaR of a position reflects both the notional size of the position as well as the risk per dollar 

invested. Blanco and Blomstrom (1999) provide a more detailed discussion of the advantages of 

VaR-based risk limits.  

 

B. VaR-based Portfolio Choice 

VaR-based risk controls as described above form a passive use of VaR.  That is, it does 

not inform the trading desk how to optimally trade when facing VaR risk limits nor does it tell 

management how to set optimal VaR-based limits.  

In theory, VaR can be used for portfolio choice if it is used as a constraint for the optimal 

investment policy. For example, optimal portfolio weights can be found by maximizing the 

expected return or expected utility of terminal wealth subject to a maximum VaR.  Basak and 
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Shapiro (2001) have argued on theoretical grounds against the use of VaR as portfolio 

optimization constraint because it can encourage excessive risk-taking as VaR does not penalize 

extreme losses. They recommend using an Expected Shortfall also known as a CVaR constraint 

instead.  Alexander and Baptista (2004) also compare the use of VaR and CVaR constraints in 

portfolio selection and find that CVaR generally dominates VaR except in the absence of a risk-

free asset.  

However, these critiques of VaR as a portfolio optimization constraint have since been 

challenged in Cuoco, He and Issaenko (2008). They show that if the VaR is recomputed 

dynamically using available information, as is realistic, then the risk exposure of a trader using 

VaR constraints is always lower than the unconstrained trader.  

 

C. Regulatory Uses 

Under U.S. banking regulations, commercial banks engaged in trading risky financial 

assets are required to maintain a minimal level of safe assets as a cushion against unforeseen 

risk. Since the 1996 Market Risk Amendment to the Basel Accord, qualifying banks can opt to 

set this required capital level as a function of their VaR. Banks are permitted to use their own 

internal models to calculate their VaR.  Backtesting has been given further relevance by its 

prominence in the discussion of the Supervisory Review Process (the Second Pillar) in Basel II 

(Basel Committee on Banking Supervision, 2004).   

While no particular technique for backtesting is currently suggested in the Basel Accord, 

Lopez (1999) notes that the required capital for market risk includes a multiplier based on the 

unconditional number of VaR violations.  In this paper, we develop backtesting techniques that 

assess both the unconditional VaR and bunching in VaR violations.  The results of our horserace 

show the potential for supervisor endorsement of these more advanced backtesting technique.  

 

3. Desk Level P&L and VaR at a Commercial Bank 

We collected the actual daily profit and loss (P/L) generated by four separate business 

lines from a large, international commercial bank. The P/L is based on the change in position 

values recorded at the close of each day and it does not include brokerage fees or commissions. 
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Each series is constructed and defined in a consistent manner but the series are normalized to 

protect the bank’s anonymity.
1
  

For two of the business lines, we have over 600 daily observations while for the other 

two we have over 800 observations yielding a panel of 2,930 observations. All four business 

lines are involved in securities trading but the exact nature of each business line is not known to 

us. We do know that there is very little overlap in assets across business lines. We also know that 

the different business lines are run by different employees and that all business lines rely on 

Historical-Simulation-based VaR systems for risk management. We do not observe the aggregate 

P&L summed across the business desks.  

In addition to the daily revenue data, we obtained the corresponding 1-day-ahead Value-

at-Risk forecasts.  The VaR forecasts are estimates of the 99% lower tail and are calculated for 

each business line within the bank. The bank relies on Historical Simulation for computing VaR.  

Suppose revenue is denoted by Rt.  The p percent Value-at-Risk (VaR) is the quantity 

VaRt such that  

(1)   

where  is the risk manager’s time-t information set.  The VaR is the p
th

 percentile of the return 

distribution. The probability p is referred to as the coverage rate. By definition, the coverage rate 

is the probability that the lower tail VaR will be exceeded on a given day.  

In our dataset the tail percentile of the bank’s VaR is set at p =.01 which yields a one-

sided, 99% confidence interval.  This is quite far in the tail but is typical of the VaR forecasts at 

commercial bank (e.g., Berkowitz and O’Brien (2002)).  

The daily P/L (dashed) and associated VaR (solid) are plotted over time in Figure 1. 

Business line 1 is observed from January 2, 2001 through June 30, 2004, business line 2 is 

observed from April 2, 2001 and lines 3 and 4 from January 3, 2002. Several interesting 

observations are apparent in Figure 1. First, notice that bursts of volatility are apparent in each of 

the P/L series (e.g. mid-sample for line 1 and end-sample for line 2) but these bursts are not 

necessarily synchronized across business lines. Second, note the occasional and very large spikes 

in the P/Ls. These are particularly evident for line 1 and 2. Third, the bank VaRs exhibit 

considerable short-term variability (line 3), sometimes they show persistent trends away from the 

                                                
1
 The normalization that we employ does not imply the P/L variance is one. However, the data is normalized by a 

constant and thus does not affect our results or the analysis in any way. 
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P/Ls (line 1) and even what looks like regime-shifting without corresponding moves in the 

associated P/L (line 2). This can happen in a case where the bank took a large position on an 

asset that had volatile P/L in the recent past, thus not affecting the current business line's P/L but 

increasing its Historical Simulation VaR which is based on reconstructed—or pseudo—P/L 

series.  

Table 1 reports the first four sample moments of the P/Ls and VaRs along with the exact 

number of daily observations. Of particular interest are the skewness and kurtosis estimates. 

Skewness is evident in business line 1 (negative) and line 2 (positive) but much less so in 

business lines 3 and 4. Excess kurtosis is evident in all four business lines and dramatically so in 

lines 1 and 2. The skewness statistics confirm the occasional spikes in the P/Ls in Figure 1. For 

completeness, the descriptive statistics for the VaRs are also reported in Table 1.  

The occasional bursts of volatility apparent in the P/Ls in Figure 1 are explored further in 

Figure 2 where we demean the P/Ls and plot their daily absolute values over time. While the 

spikes in P/Ls dominate the pictures, episodes of high volatility are evident in each of the series, 

although perhaps less so in business line 3. 

Violations of the VaR should be happening randomly over time and should not be 

clustered over time. For example, if it can be predicted that volatility will be increasing in the 

near future, then the model used to compute the VaR should take this information into account 

and adjust the VaR accordingly. In other words, if the model used to compute the VaR is 

correctly specified, then violations should only happen because of unpredictable events.  

 

4. A Unified Framework for VaR Evaluation 

Under the 1996 Market Risk Amendment to the Basel Accord effective in 1998 

qualifying financial institutions have the freedom to specify their own model to compute their 

Value-at-Risk.  It thus becomes crucially important for regulators to assess the quality of the 

models employed by assessing the forecast accuracy—a procedure known as “backtesting”. The 

non-regulatory uses of VaR presented in Section 2 also call for their accurate measurements. 

The accuracy of a set of VaR forecasts can be assessed by viewing them as one-sided 

interval forecasts.  A violation of the VaR, also called a “hit”, is defined as occurring when the 

ex post return is lower than the VaR.  Specifically, we define violations  
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(2)   

i.e. a sequence of zeros and ones.  By definition, the conditional probability of violating the VaR 

should always be 

(3)   

for every time-t. The critical upshot is that no information available to the risk manager at the 

time the VaR was made should be helpful in forecasting the probability that the VaR will be 

exceeded. If it were, then this information should be incorporated into constructing a better VaR 

with unpredictable violations. We will refer to tests of this property as conditional coverage (CC) 

tests.  

 An unconditional coverage (UC) test of whether , under the assumption 

that the violations are independent, was developed in Kupiec (1995). The UC test rejects the null 

of an accurate VaR if the actual fraction of VaR violations in a sample is statistically different 

than p. We may expect Kupiec’s test to have lower power than other tests considered in our 

study since it cannot capture time series dependence in the violations. 

 

A.  Autocorrelation Tests 

Christoffersen (1998) notes that property (3) implies that any sequence of violations, {It}, 

should be an i.i.d. Bernoulli random variable with mean p.  In order to formally test this, 

Christoffersen (1998) embeds the null hypothesis of an i.i.d. Bernoulli within a general first-

order Markov process.  

If {It} is a first-order Markov process the one-step-ahead transition probabilities 

 are given by  

(4)    

where  is the transition . 

Under the null, the violations have a constant conditional mean which implies the two 

linear restrictions, .  A likelihood ratio test of these restrictions can be computed 

from the likelihood function 
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where  denotes the number of observations with a following a  and  is the number of , 

i.e. is the number of ones or zeros in the sample.  

 We note that all the tests we consider are carried out conditioning on the first observation. 

While the tests all have know asymptotic distributions we will rely on finite sample p-values as 

discussed below. 

In this paper, we extend and unify the existing tests by noting that the de-meaned 

violations { } form a martingale difference sequence (m.d.s.).  By definition of the 

violation, equations (2)-(3) immediately imply that  

(5)   

where  is the information set of the risk manager up to time-t.  The de-meaned violations form 

an m.d.s.  with respect to the time-t information set.  This will be an extremely useful property 

because it implies that the violation sequence is uncorrelated at all leads and lags. For any 

variable Zt in the time-t information set, we then must have, 

(6)    

which is familiar as the basis of GMM estimation.  

This motivates a variety of tests which focus on the white noise or martingale property of 

the sequence.  Since white noise has zero autocorrelations at all leads and lags, the violations can 

be tested by calculating statistics based on the sample autocorrelations.   

Thus, specifying Zt to be the most recent de-meaned violation, we have  

(7)  .  

The violation sequence has a first-order autocorrelation of zero, under the null.  It is this property 

which is exploited by the Markov test of Christoffersen (1998).  

More generally, if we set Zt = It-k  for any k!0,  

(8)    

which says that the de-meaned violation sequence is in fact white noise. We write this null 

hypothesis compactly as   

(9)  . 
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A natural testing strategy is to check whether any of the autocorrelations are not zero.  

Under the null all the autocorrelations are zero 

 

and the alternative hypothesis of interest is that  

 

The Portmanteau or Ljung-Box statistics, for example, have known distribution which 

can be compared to critical values under the white noise null.  The Ljung-Box statistic is a joint 

test of whether the first m autocorrelations are zero.  We can immediately make this into a test of 

a VaR model by calculating the autocorrelations of and then calculating  

 

which is asymptotically chi-square with m degrees of freedom.  

We may also want to consider whether violations can be predicted by including other 

data in the risk manager’s information set such as past returns.  Under the null hypothesis, it 

must be that  

(10) .  

for any non-anticipating function g(").    

In analogy with Engle and Manganelli (2004), we might consider the nth-order 

autoregression 

(11)  

where we set  and n=1.  

Estimating this autoregression by ordinary least squares would leave us having to deal 

with heteroskedasticity to make valid inference because the hit sequence is binary. We instead 

assume that the error term ut has a logistic distribution and we estimate a logit model. We can 

then test with a likelihood ratio test if the  coefficients are statistically significant and whether 

Pr(It = 1) = e
"
 /(1 + e

"
) = p. We refer to this test as the CaViaR test of Engle and Manganelli.  
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B.  Hazard Rates and Tests for Clustering in Violations 

 Under the null that VaR forecasts are correctly specified, the violations should occur at 

random time intervals.  Suppose the duration between two violations is defined as 

(12)       

where  denotes the day of the violation number .  The duration between violations of the VaR 

should be completely unpredictable.  There is an extensive literature on testing duration 

dependence (e.g., Kiefer (1988), Engle and Russel (1998), Gourieroux (2000)) which makes this 

approach particularly attractive.   

Christoffersen and Pelletier (2004) and Haas (2005) apply duration-based tests to the 

problem of assessing VaR forecast accuracy.  In this section we expand upon their methods.  The 

duration-based tests can be viewed as another procedure for testing whether the violations form a 

martingale difference sequence.  

Using the Bernoulli property, the probability of a violation next period is exactly equal to 

.  The probability of a violation in d periods is 

(13) . 

Under the null of an accurate VaR forecast, the violations are distributed  

.   

This allows us to rewrite (13) as  

   

(14) . 

Equation (14) says that the density of the durations declines geometrically under the null 

hypothesis.  

 A more convenient representation of the same information is given by transforming the 

geometric probabilities into a flat function.  The hazard rate defined as  

(15)  

is such a transformation.  Writing out the hazard function  explicitly  
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(16)  

collapses to a constant after expanding and collecting terms.  

 We conclude that under the null, the hazard function of the durations should be flat and 

equal to p.   Tests of this null are constructed by Christoffersen and Pelletier (2004).  They 

consider alternative hypothesis under which the violation sequence, and hence the durations, 

display dependence or clustering.  The only (continuous) random distribution without duration 

dependence is the exponential, thus under the null hypothesis the distribution of the durations 

should be 

  

The most powerful of the two alternative hypotheses they consider is that the durations follow a 

Weibull distribution where 

  

This distribution is able to capture violation clustering.  When , the hazard, i.e. the 

probability of getting a violation at time  given that we did not up to this point, is a decreasing 

function of . 

It is also possible to capture duration dependence without resorting to the use of a 

continuous distribution. We can introduce duration dependence by having non-constant 

probabilities of a violation,  

  

where 

  

In this case, one must specify how these probabilities vary with .  We will set 

  

with  in order to implement the test. We refer to this as the Geometric test below. 

 Except for the first and last duration the procedure is straightforward, we just count the 

number of days between each violation. We then define a binary variable Ci which tracks 

whether observation i is censored or not. Except for the first and last observation, we always 
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have . For the first observation if the hit sequence starts with 0 then  is the number of 

days until we get the first hit. Accordingly  because the observed duration is left-censored. 

The procedure is similar for the last duration. If the last observation of the hit sequence is 0 then 

the last duration, , is the number of days after the last 1 in the hit sequence and  

because the spell is right-censored.   

 The contribution to the likelihood of an uncensored observation is its corresponding 

p.d.f. For a censored observation, we merely know that the process lasted at least  or  

days so the contribution to the likelihood is not the p.d.f. but its survival function 

. Combining the censored and uncensored observations, the log-likelihood is 

  

Once the durations are computed and the truncations taken care of, then the likelihood ratio tests 

can be calculated in a straightforward fashion. The null and alternative hypotheses for the test is 

  

The only added complication is that the ML estimates are no longer available in closed form, 

they must be found using numerical optimization. 

 

C. Spectral Density Tests 

Another method for testing the martingale property is to examine the shape of the spectral 

density function.  There is a long standing literature on using the spectral density for this purpose 

because white noise has a particularly simple representation in the frequency domain -- its 

spectrum is a flat line (e.g., Durlauf (1991)).  Statistical tests are constructed by examining if the 

sample spectrum is “close” to the theoretical flat line.  

The spectral density function is defined as a transformation of the autocovariance 

sequence, 

(17) . 
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For a white noise process, all the autocovariances equal zero for any k#0.  This means that for 

the hit sequence the spectral density collapses to  

(18)  

for all .   

The spectral density function is constant and proportional to the variance.  Equivalently, 

the spectral distribution function is a 45° line.  The asymptotic theory centers on the convergence 

of the random, estimated spectral density function using a functional central limit theorem.   

The sample spectrum (or periodogram) is given by replacing the population 

autocovariances with the finite-sample estimates, 

(19)  

which should be approximately a flat line.   

It is often convenient to de-mean the sample spectral density and take the partial sums  

(20)  

for each frequency .  The  are deviations of the sample spectral distribution from 

the 45 degree line. If the violations are white noise, the deviations should be small.  

Durlauf (1991) derives the asymptotic distribution of a variety of statistics based on these 

deviations.  The Cramér-Von Mises (CVM) test statistic is the sum of squared deviations 

(21)  

and it converges to a known distribution whose critical values can be tabulated numerically.   

Another common test statistic dates to Bartlett, who showed the supremum 

(22)  

converges to the Kolmogorov-Smirnov (KS) statistic.   

 These test statistics have several attractive features. Unlike some tests of white noise 

(e.g., variance ratio tests), spectral tests have power against any linear alternative of any order.  

That is, the test has power to detect any second moment dynamics (see Durlauf, (1991)).  Both 
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the CVM and KS statistics diverge asymptotically if It is any stationary process which is not 

white noise. 

 

D. Multivariate Tests 

The tests described above only use information about one hit sequence at a time. In a case 

where we have Values-at-Risk and P/L for different business lines we might be interested in 

jointly testing if property (3) holds for all the hit sequences. In this way, we could hope that the 

tests would have more power because we would be effectively increasing the sample size. 

A first approach to study simultaneously the hit sequences could be to simply “stack” the 

series together, assuming that the series are independent across desks (separate realizations from 

the same process). For the Ljung-Box test we could compute the autocorrelations using all the 

series, treating them as multiple non-overlapping sequences from the same underlying process. 

For likelihood-based tests such as the duration tests in Section B, we could sum the log-

likelihoods for each series. All the above are based on a likely unrealistic independence 

assumption. 

A second approach would be to capture the dependence across the series by considering 

multivariate generalizations of the previous tests. Recall from equation (3) that no information 

available to the risk manager at the time the VaR is made should be helpful in forecasting a VaR 

violation. Thus, if the VaR models are correctly specified, then past observations from the hit 

sequence of one business line, which are clearly available to the risk manager, should not help 

predict violations of another business line. One could then consider using multivariate Box-

Pierce tests as in Lütkepohl (1993, Section 4.4), or multivariate spectral test as in Paramasamy 

(1992). Duration-based tests could be extended by considering competing risk models following 

Cameron and Trivedi (2005, Chapter 19). Perhaps the easiest way to use information from all the 

business lines is offered by the regression approach of the CaViaR test. We can simply use 

variables from other business lines, such as their P/L’s as explanatory variables. The Conditional 

Coverage test would then consist in testing that the coefficients of the explanatory variables 

(such as P/L’s) are zero and the probability of getting a violation is equal to p. For the Kupiec 

test, a multivariate version of the unconditional coverage test is developed in Perignon and Smith 

(2007). 
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5. Size and Power Properties 

 Given the large variety of backtesting procedures surveyed in Section 3, it is important to 

give risk managers guidance as to their comparative size and power properties in a controlled 

setting. 

 

A. Effective Size of the Tests  

In order to assess the size properties of the various methods, we simulate i.i.d. Bernoulli 

samples with probabilities p = 1% and 5% respectively.  For each Bernoulli probability, we 

consider several different sample sizes, from 250 to 1500.  Rejection rates under the null are 

calculated over 10,000 Monte Carlo trials.  If the asymptotic distribution is accurate in the 

sample sizes considered then the rejection frequencies should be close to the nominal size of the 

test, which we set to 10%. In the CaViaR test we generate the required VaR regressors via a 

GARCH model with innovations that are independent of the simulated hit sequence. This way 

we perform a test that is true to the CaViaR idea while ensuring that the null hypothesis is true.  

Table 2 contains the actual size of the conditional coverage (CC) tests when the 

asymptotic critical values are used. The number of observations in each simulated sample is 

reported in the first column. The top panel shows the finite sample test sizes for a 1% VaR. We 

see that the LB(1) test tends to be undersized and the LB(5) oversized in finite samples. The 

Markov is somewhat undersized and the Weibull test oversized. The Geometric test is extremely 

oversized for the smallest sample. The CaViaR test is undersized. The CVM test is undersized 

for the smallest sample size and oversized for the larger samples. Finally, the Kupiec (1995) 

unconditional test and the KS test have good size properties beyond the smallest sample sizes. 

 The results in the bottom panel cover the 5% VaR. In this case the LB(1) test is slightly 

undersized whereas the LB(5) is very close to the desired 10%. The Markov and Weibull tests 

are both oversized. The Geometric is somewhat undersized, whereas the Kupiec, CaViaR, KS 

and CVM tests now are very close to the desired 10% level.  

 The overall conclusion from Table 2 is that for small sample sizes and for the 1% VaR 

which is arguably the most common in practice, the asymptotic critical values can be highly 

misleading. When computing power below we therefore rely on the Dufour (2006) Monte Carlo 

testing technique which is described in detail in Section 6.  
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B. Finite Sample Power of the Tests  

 In order to perform a power comparison, we use a flexible and simple GARCH 

specification as a model of the P/L process.  GARCH models are some of the most widely used 

models for capturing variance dynamics in daily asset returns. See Andersen et al (2006) for a 

recent survey. We estimate the parameters for each business line separately in order to model the 

volatility persistence in each series. 

The GARCH model allows for an asymmetric volatility response or “leverage effect”. In 

particular, we use the NGARCH(1,1)-t(d) specification, 

  

where Rt+1 is the daily demeaned P/L and the innovations zt are drawn independently from a 

Student's t(d) distribution.  The Student-t innovations enable the model to capture some of the 

additional kurtosis.  

 Table 3 reports the maximum likelihood estimates from the GARCH model for each 

business line. As usual we get a small but positive ! and a " much closer to 1. Variance 

persistence in this model is given by  .  It is largest in business lines 2 and 4 which 

confirm the impression provided by Figure 2. The last three lines of Table 3 report the log 

likelihood values for the four GARCH models along with the log likelihood values for the case 

of no variance dynamics, where ! = " = ! = 0. 

 Looking across the four GARCH estimates we see that Desk 1 is characterized by a large 

! and small d which suggests large kurtosis. Desk 2 is characterized by high variance persistence 

and high unconditional kurtosis from the low d. Desk 3 has an unusually large negative ! which 

suggests that a positive P/L increases volatility by more than a negative P/L of the same 

magnitude. Desk 4 has an unusually large unconditional volatility and a relatively high 

persistence as noted earlier. Overall, our GARCH estimates are similar to ones obtained by 

Perignon and Smith (2008) with aggregate bank data but our estimates of the Student’s t(d) 

degree of freedom are in the lower range of the usual values obtained with various financial 

returns.  

 For the power simulation exercise, we will assume that the correct data-generating 

processes are the four estimated GARCH processes.  We must also choose a particular 
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implementation for the VaR calculation.  Following industry practice (see Perignon and Smith 

(2006)) and the approach used by the bank that provided us with the VaR data in Figure 1, we 

rely on Historical Simulation or “bootstrapping”.  The Historical Simulation VaR on a certain 

day is simply the unconditional quantile of the past Te daily observations.  Specifically 

  

 For the purposes of this Monte Carlo experiment, we choose Te=250 corresponding to 

250 trading days. The VaR coverage rate p we study is either 1% (as in Section 3) or 5%. We 

look at one-day ahead VaR again as in Section 3. When computing the finite-sample p-values we 

use 9,999 simulations and we perform 10,000 Monte Carlo simulations for each test. Section 6 

provides the details of the p-value simulation. 

 Table 4 shows the finite sample power results, based on a 10% significance level, for the 

1% VaR from Historical Simulation for various samples sizes when using the GARCH DGP 

processes corresponding to each of the four business lines. 

 For all the sample sizes in all the four business lines in Table 4, the CaViaR test performs 

the best. For business line 1, the LB(5), the KS and the CVM tests perform well also. For 

business line 2, the Geometric test also performs well. For business line 3 only the CaViaR test 

has good power. For business line 4, the LB(5) and the KS tests perform well in addition to the 

CaViaR test.  

 Consider next Table 5 which shows reports the finite sample power calculations for the 

5% VaR. For business line 1 the LB(5) and the CaViaR are best. For business line 2 the CaViaR 

test is best for small samples but the Geometric test is best for the larger sample sizes we 

examine. For business line 3 the power is again low everywhere except for the CaViaR test. For 

business line 4 the CaViaR is again best for small samples and the Geometric is best for large 

samples. 

 Considering Tables 4 and 5 overall it appears that the CaViaR test is best for 1% VaR 

testing whereas for 5% VaR testing the Geometric test is sometimes better than CaViaR. It is 

also important to note that in business line 3 where all the tests have trouble showing power only 

the CaViaR test has a decent performance. Clearly, these results suggest that the CaViaR test 

should be included in any arsenal of backtesting procedures. 

 The Kupiec test does not perform well under our simulation setup. This result is expected 

considering the Historical Simulation model used to compute the VaR. Historical Simulation is 
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by design tracking an unconditional quantile using a non-parametric approach. The major source 

of misspecification in this case is in the dynamics of the VaR because it is only coming from the 

rolling window and the Kupiec test cannot detect this. 

 Tables 4 and 5 provide a couple of other conclusions. First, it is clear that the LB(5) test 

is better than LB(1) and Markov test. This is perhaps to be expected as the dependence in the hit 

sequence is not of order 1 here.  Second, the Geometric test is substantially better than the 

Weibull test. This is also to be expected as the latter wrongly assumes a continuous distribution 

for the duration variable. 

 Overall the power of the best conditional tests is quite impressive.  The CaViaR tests 

display strong power to reject inaccurate VaR, especially compared to the unconditional test. 

This is important because regulatory capital includes a penalty if the unconditional number of 

exceptions is too high, so the charge for an inaccurate VaR is implicitly dependent on an 

unconditional test.  No formal backtesting method is currently recommended under the Basel 

Accord, but the evidence presented here strongly suggests a method long the lines of the CaViaR 

method rather than a method based on the unconditional violation rate.  

 

C. Feasibility Ratios  

 For transparency we report in Table 6 the fraction of simulated samples from Tables 4 

and 5 where each test is feasible. We only report sample sizes 250, 500, and 750 for the 1% VaR 

and 250 for the 5% VaR as the other sample sizes had no omitted sample paths in our 

experiment.  Table 4 shows that only in the case of 1% VaR and samples of 250 observations is 

the issue non-trivial. In those cases the issue is most serious for the Weibull and Geometric tests. 

That conclusion also holds when considering the bottom panel in Table 6 which reports the 

fraction of feasible samples from the size calculations in Table 2. We do not report results for the 

Kupiec test since it can always be computed. 

 

6. Results for Desk-level Data 

In Table 7 we report the results from applying our tests to the actual observed sequences 

of P/Ls and Historical Simulation VaRs from the four business lines. As in the power 

calculations above we make use of the Dufour (2006) Monte Carlo testing technique which 

yields tests with correct level, regardless of sample size. 
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For the case of a continuous test statistic, the procedure is the following. We first 

generate  independent realizations of the test statistic, . We denote by  the 

test statistic computed with the original sample. Under the hypothesis that the risk model is 

correct, we know that the hit sequence is i.i.d. Bernoulli with the mean equal to the coverage 

rate. We thus benefit from the advantage of not having nuisance parameters under the null 

hypothesis. 

We next rank in non-decreasing order and obtain the Monte Carlo p-

value , where 

  

and 

                        . 

The indicator function I(") takes on the value one if true and the value zero otherwise. We reject 

the null hypothesis if  is less or equal than the prespecified significance level. 

When working with binary sequences, there is a non-zero probability of obtaining ties 

between the test values obtained with the sample and the simulated data. The tiebreaking 

procedure is as follows: For each test statistic, , we draw an independent 

realization of a uniform distribution on the  interval. Denote these draws by 

. We obtain the Monte Carlo p-value by replacing  with 

  

There are two additional advantages of using a simulation procedure. The first is that 

possible systematic biases, for example arising from the use of a continuous distribution to study 

discrete processes, are accounted for since they will appear both in  and . The second is 

that Monte Carlo testing procedures are consistent even if the parameter value is on the boundary 

of the parameter space. The bootstrap procedures on the other hand could be inconsistent in this 

case. 
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In Table 7 we report the results from applying our tests to the actual observed sequences 

of P/Ls and VaRs from the four business lines. In addition to the eight univariate test analyzed in 

the Monte Carlo study in Tables 2-6, we add a multivariate CaViaR test denoted CavMult in 

Table 7. The test is run for each business line using the hit sequence as the regressand, but it uses 

the ex-ante VaRs from all the four business lines as regressors.  

We find no rejections in the first two business lines using the univariate tests, but note 

that the CavMult test rejects the VaR in business line 2. Six tests including the Kupiec test reject 

the VaR in business line 3 using a 10% significance level. Note also that in business line 3, we 

were unable to calculate the Weibull and the Geometric tests. This is due to the fact that business 

line 3 only had one VaR hit in the sample as reported in Table 1. In business line 4, two of the 

tests reject the risk model. 

Thus, when backtesting actual VaRs we reject their statistical accuracy for 3 out of 4 

business lines. For business line 1, the VaR based on a 250-day Historical simulation approach 

appears to works well. The same cannot be said for the other three business lines. Our backtests 

indicate that the VaR models for lines 2 through 4 are stastistically inaccurate and may need 

modification. 

 Our dataset also allow us to explore how well this bank is able to forecast their portfolio 

risk at the business line level. In the spirit of the Mincer and Zarnowitz (1969) method used in 

the forecasting literature, we can regress the absolute value of the P/L on the corresponding VaR. 

From Taylor (2005), we know that the VaR should be proportional to the standard deviation so 

the from this regression is an indication of how much of the variability in the P/L could be 

forecasted by the computation of the VaR. In Table 8 we present three sets of values for each 

business line. The first  is the one obtained when regressing the business line’s absolute P/L 

on its VaR (computed with Historical Simulation) plus an intercept. To help us assess how big 

the first is we simulate absolute P/L data from the GARCH models used in Section 5 and we 

report the for the following two regression of absolute P/L’s on the 1% one-day ahead VaR 

obtained with either (i) Historical Simulation with a 250-day rolling window (ii) the true VaR. 

The first number is the  we would expect to obtain with the true data and the second is an 

indication of the upper bound we could obtain. 

Our result suggest that at the business line level the bank forecasts risk as well as, if not 

better than, we would expect given the Historical Simulation method used to compute VaR. For 
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three of out four business lines the  obtained with the real data is significantly higher than the 

one obtained with simulated data and Historical Simulation. But these  are much smaller than 

the ones where we use the true GARCH-based VaR in the regression (except for business line 3 

where GARCH may fit poorly), indicating that the bank’s risk management system could quite 

likely be improved by incorporating dynamic volatility into the VaR computations.  

 

7.  Conclusions 

The uses of VaR in banking are many and varied. All VaR applications share, however, 

the need for constant evaluation of the accuracy of the VaR risk measures reported. This is true 

regardless of whether the VaR is used in a passive or active way, and whether it is use in internal 

operations or externally for regulatory purposes.  

The widespread and sudden losses experienced by financial services firms during the 

1998 “Currency Crisis”, the 2000-2001 internet bubble, and the current collapse of collateralized 

debt securities, all serve to highlight the importance of making sure that risk measures are 

accurately calculated. While having accurate VaR measures may not prevent volatility, accurate 

VaRs can be used to calculate risk levels and the appropriate amount of safe capital.  Similarly, 

VaR measures cannot prevent traders from experiencing losses, but they can provide 

management with a sense of how risky their traders are behaving and VaR-based trading limits 

can be instituted to control overall risk. Using new desk-level P/Ls from four business lines in a 

large international commercial bank we find evidence of volatility dynamics and non-normality 

in the desk-level data. Volatility dynamics are not captured in Historical Simulation and may 

therefore cause clustering in VaR violations.  

Formal backtesting techniques show the clustering is severe enough that we can reject the 

accuracy of the VaR models for two of the four business lines.  A third business line VaR is 

rejected by the Kupiec test of unconditional coverage. This suggests that the set of VaR problems 

discussed here can successfully be detected by external bank regulators and internal risk auditors 

in real-world situations. Since no formal backtesting method is currently recommended under the 

Basel Accord, the evidence presented here strongly suggests a possible direction for 

improvements to future regulatory schemes.  Regulators may benefit from adopting an approach 

along the lines of the CaViaR method rather than a method based on the unconditional violation 

rate.  
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Figure 1: P/Ls and 1-day, 1% VaRs for Four Business Lines 

 

 

 

Notes to Figure: We plot the P/Ls (dashed lines) and 1-day, 1% VaRs (solid lines) from the four 

business lines.  
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Figure 2: Absolute Demeaned P/Ls for Four Business Lines 

 

 

 

Notes to Figure: We subtract the sample mean from each of the four P/Ls in Figure 1 and plot the 

absolute value of these demeaned P/Ls. 

 

 

 



Desk 1 Desk 2 Desk 3 Desk 4

Number of Observations 873 811 623 623

Mean 0.1922 1.5578 1.8740 3.1562

Standard Deviation 2.6777 5.2536 1.6706 9.2443

Skewness -1.7118 1.5441 0.5091 -0.1456

Excess Kurtosis 24.2195 19.8604 2.0060 3.6882

Desk 1 Desk 2 Desk 3 Desk 4

Number of Observations 873 811 623 623

Mean -7.2822 -16.3449 -3.2922 -24.8487

Standard Deviation 3.1321 10.5446 1.1901 6.6729

Skewness -0.3038 -1.3746 -0.6529 -0.3006

Kurtosis -0.1525 1.6714 -0.0133 -0.1211

Observed Number of Hits 9 5 1 4

Expected Number of Hits 9 8 6 6

Table 1: P/Ls and VaRs for Four Business Lines: Descriptive Statistics

P/Ls

VaRs

Notes to Table: We report various descriptive statistics for the daily P/Ls and daily 

1%, 1-day VaRs for each desk. The number of Hits refers to the number of days on 

which the ex post loss exceeded the ex ante VaR. 



Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.025 0.100 0.050 0.110 0.531 0.046 0.039 0.052 0.122

500 0.044 0.134 0.068 0.176 0.233 0.069 0.066 0.112 0.068

750 0.067 0.165 0.066 0.162 0.158 0.070 0.092 0.124 0.100

1000 0.076 0.147 0.076 0.157 0.119 0.067 0.094 0.125 0.117

1250 0.102 0.146 0.055 0.128 0.111 0.075 0.112 0.140 0.116

1500 0.101 0.131 0.064 0.127 0.095 0.071 0.112 0.137 0.121

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.081 0.108 0.128 0.134 0.098 0.093 0.102 0.106 0.115

500 0.068 0.101 0.128 0.125 0.076 0.103 0.091 0.083 0.098

750 0.069 0.102 0.166 0.140 0.068 0.102 0.097 0.086 0.115

1000 0.089 0.097 0.209 0.142 0.072 0.113 0.095 0.095 0.112

1250 0.092 0.093 0.161 0.149 0.061 0.121 0.096 0.098 0.104

1500 0.087 0.098 0.152 0.160 0.063 0.114 0.095 0.097 0.095

Table 2: Size of 10% Asymptotic CC Tests

1 % VaR

5 % VaR

Notes to Table: We simulate i.i.d. Bernoulli variables to assess the size properties of the various 

asymptotic backtesting procedures. LB(1) and LB(5) are Ljung-Box with 1 and 5 lags. Markov is a 

first-order Markov test. Weibull and Geometric are duration based tests. Caviar is a regression-based 

test. KS is Kolmogorov-Smirnov, and CVM is Cramer-von-Mises. Kupiec is a test of unconditional 

coverage. Please see the text for details on each test.



Desk 1 Desk 2 Desk 3 Desk 4

d 3.808 3.3183 6.9117 4.7017

θ -0.245 0.5031 -0.9616 0.0928

β 0.7495 0.9284 0.8728 0.9153

α 0.1552 0.0524 0.0261 0.0723

ω 0.5469 0.2154 0.2127 1.6532

Variance Persistence 0.9140 0.9941 0.9230 0.9882

Unconditional Stdev 2.5220 6.0233 1.6624 11.8478

LogL -1360.76 -1781.25 -825.87 -1855.98

LogL (HomoSked.) -1401.64 -1843.49 -831.46 -1877.73

P-value 0.0000 0.0000 0.0108 0.0000

Table 3: P/L GARCH Model Parameters and Properties

Notes to Table: Using Maximum likelihood we estimate on each desk P/L an 

asymmetric GARCH(1,1) model with standardized Student's t(d) distributed 

innovations. The P-value reports the significance level of a test of homoskedastic 

t(d) returns against the heteroskedastic GARCH-t(d) alternative. 



Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.196 0.320 0.186 0.143 0.326 0.420 0.327 0.331 0.129

500 0.229 0.420 0.191 0.144 0.264 0.429 0.411 0.356 0.061

750 0.300 0.476 0.190 0.147 0.276 0.539 0.461 0.408 0.036

1000 0.371 0.519 0.168 0.182 0.342 0.618 0.508 0.473 0.025

1250 0.434 0.564 0.187 0.228 0.370 0.682 0.542 0.503 0.025

1500 0.446 0.603 0.202 0.244 0.410 0.737 0.585 0.564 0.023

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.231 0.232 0.211 0.137 0.365 0.451 0.278 0.266 0.207

500 0.220 0.296 0.190 0.156 0.368 0.430 0.315 0.269 0.144

750 0.237 0.332 0.181 0.180 0.387 0.480 0.341 0.281 0.097

1000 0.281 0.361 0.173 0.218 0.421 0.532 0.390 0.323 0.070

1250 0.281 0.400 0.160 0.265 0.475 0.580 0.381 0.327 0.090

1500 0.280 0.423 0.160 0.304 0.507 0.617 0.426 0.371 0.085

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.077 0.117 0.073 0.079 0.137 0.333 0.113 0.116 0.069

500 0.068 0.153 0.063 0.074 0.081 0.329 0.128 0.108 0.024

750 0.090 0.160 0.053 0.054 0.055 0.410 0.126 0.112 0.015

1000 0.106 0.146 0.036 0.051 0.044 0.526 0.137 0.121 0.011

1250 0.131 0.127 0.039 0.049 0.047 0.611 0.137 0.130 0.009

1500 0.147 0.126 0.031 0.042 0.038 0.686 0.150 0.147 0.005

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.250 0.264 0.234 0.159 0.406 0.471 0.313 0.302 0.213

500 0.240 0.337 0.214 0.184 0.414 0.452 0.382 0.298 0.160

750 0.280 0.382 0.204 0.212 0.429 0.510 0.403 0.322 0.114

1000 0.333 0.419 0.202 0.267 0.503 0.574 0.449 0.375 0.085

1250 0.317 0.458 0.196 0.343 0.544 0.612 0.455 0.392 0.112

1500 0.329 0.510 0.202 0.389 0.597 0.655 0.488 0.427 0.114

Notes to Table: We simulate hit sequences from GARCH P/Ls and Historical Simulation VaRs to 

assess the power properties of the tests. LB(1) and LB(5) are Ljung-Box with 1 and 5 lags. Markov is 

a first-order Markov test. Weibull and Geometric are duration based tests. Caviar is a regression-based 

test. KS is Kolmogorov-Smirnov, and CVM is Cramer-von-Mises. Kupiec is a test of unconditional 

coverage. Please see the text for details on each test.

Business Line 4

Table 4: Power of 10% Finite Sample CC Tests on 1% VaR in Four Business Lines

Business Line 1

Business Line 2

Business Line 3



Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.296 0.385 0.205 0.161 0.319 0.447 0.349 0.344 0.157

500 0.391 0.528 0.214 0.183 0.447 0.517 0.443 0.464 0.069

750 0.436 0.633 0.226 0.231 0.568 0.611 0.532 0.553 0.033

1000 0.484 0.696 0.251 0.270 0.679 0.692 0.586 0.607 0.019

1250 0.543 0.762 0.294 0.325 0.756 0.761 0.665 0.675 0.013

1500 0.593 0.815 0.328 0.379 0.819 0.851 0.720 0.722 0.010

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.259 0.358 0.340 0.322 0.422 0.583 0.390 0.383 0.371

500 0.342 0.508 0.298 0.366 0.581 0.617 0.448 0.449 0.257

750 0.376 0.597 0.272 0.435 0.693 0.662 0.504 0.506 0.201

1000 0.419 0.658 0.276 0.487 0.784 0.702 0.558 0.549 0.164

1250 0.466 0.721 0.310 0.548 0.842 0.741 0.625 0.609 0.140

1500 0.504 0.781 0.335 0.606 0.900 0.819 0.681 0.655 0.140

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.108 0.113 0.082 0.068 0.089 0.299 0.099 0.099 0.057

500 0.103 0.120 0.065 0.040 0.064 0.351 0.105 0.112 0.014

750 0.103 0.125 0.062 0.034 0.049 0.430 0.106 0.116 0.005

1000 0.113 0.123 0.062 0.031 0.052 0.511 0.102 0.107 0.002

1250 0.114 0.125 0.069 0.029 0.044 0.583 0.113 0.122 0.001

1500 0.107 0.125 0.065 0.033 0.053 0.713 0.117 0.116 0.001

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM Kupiec

250 0.288 0.393 0.331 0.326 0.446 0.590 0.409 0.393 0.353

500 0.353 0.536 0.282 0.386 0.626 0.625 0.470 0.474 0.235

750 0.398 0.637 0.267 0.465 0.746 0.672 0.545 0.540 0.171

1000 0.443 0.705 0.278 0.540 0.838 0.729 0.606 0.592 0.150

1250 0.501 0.769 0.317 0.613 0.888 0.768 0.667 0.658 0.125

1500 0.548 0.824 0.361 0.677 0.936 0.837 0.734 0.713 0.132

Notes to Table: We simulate hit sequences from GARCH P/Ls and Historical Simulation VaRs to 

assess the power properties of the tests. LB(1) and LB(5) are Ljung-Box with 1 and 5 lags. Markov is 

a first-order Markov test. Weibull and Geometric are duration based tests. Caviar is a regression-based 

test. KS is Kolmogorov-Smirnov, and CVM is Cramer-von-Mises. Kupiec is a test of unconditional 

coverage. Please see the text for details on each test.

Business Line 4

Table 5: Power of 10% Finite Sample CC Tests on 5% VaR in Four Business Lines

Business Line 1

Business Line 2

Business Line 3



VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM

1% 250 0.9081 0.9081 0.9006 0.6974 0.8322 0.8998 0.9081 0.9081

1% 500 0.9984 0.9984 0.9974 0.9852 0.9918 0.9974 0.9983 0.9979

1% 750 1.0000 1.0000 1.0000 0.9998 0.9999 1.0000 0.9999 1.0000

5% 250 0.9998 0.9998 0.9998 0.9984 1.0000 0.9996 0.9999 1.0000

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM

1% 250 0.8693 0.8693 0.8643 0.6691 0.8167 0.8634 0.8693 0.8693

1% 500 0.9916 0.9916 0.9928 0.9654 0.9824 0.9925 0.9927 0.9929

1% 750 0.9996 0.9996 0.9999 0.9986 0.9996 0.9997 0.9997 0.9997

5% 250 0.9965 0.9965 0.9949 0.9881 0.9942 0.9958 0.9963 0.9973

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM

1% 250 0.9356 0.9356 0.9371 0.7077 0.8477 0.9362 0.9356 0.9356

1% 500 0.9990 0.9990 0.9998 0.9916 0.9943 0.9994 0.9990 0.9990

1% 750 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000 1.0000 1.0000

5% 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM

1% 250 0.8659 0.8659 0.8660 0.6775 0.8169 0.8645 0.8659 0.8659

1% 500 0.9935 0.9935 0.9940 0.9694 0.9839 0.9944 0.9941 0.9946

1% 750 0.9999 0.9999 0.9999 0.9989 0.9996 1.0000 0.9997 0.9997

5% 250 0.9974 0.9974 0.9971 0.9895 0.9938 0.9972 0.9963 0.9957

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM

1% 250 0.9190 0.9190 0.9190 0.6896 0.7119 0.9189 0.9190 0.9190

1% 500 0.9937 0.9937 0.9937 0.9619 0.9664 0.9938 0.9937 0.9937

1% 750 0.9992 0.9992 0.9992 0.9949 0.9964 0.9994 0.9992 0.9992

5% 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notes to Table: We report the fraction of simulations where the hit sequence allowed us to compute the 

test statistic. LB(1) and LB(5) are Ljung-Box with 1 and 5 lags. Markov is a first-order Markov test. 

Weibull and Geometric are duration based tests. Caviar is a regression-based test. KS is Kolmogorov-

Smirnov, and CVM is Cramer-von-Mises. Please see the text for details on each test.

Power Simulation: Business Line 4

Size Simulation

Table 6: Fraction of Samples where Test is Feasible. 1% and 5% VaR

Power Simulation: Business Line 1

Power Simulation: Business Line 2

Power Simulation: Business Line 3



LB(1) LB(5)  Markov Weibull Geometric Caviar VIX KS CVM CavMult Kupiec

Test Value 0.096 0.483 0.196 1.014 1.290 3.227 0.521 18.748 2.438 3.721 0.008

P-Value 0.460 0.551 0.963 0.662 0.376 0.278 0.832 0.324 0.395 0.614 0.911

LB(1) LB(5)  Markov Weibull Geometric Caviar VIX KS CVM CavMult Kupiec

Test Value 0.032 0.159 1.458 3.634 3.838 4.856 2.187 11.500 1.350 12.462 1.395

P-Value 0.825 0.838 0.320 0.235 0.125 0.131 0.411 0.467 0.562 0.040 0.259

LB(1) LB(5)  Markov Weibull Geometric Caviar VIX KS CVM CavMult Kupiec

Test Value 0.002 0.008 6.849 NaN NaN 7.561 27.303 70.365 70.365 9.800 6.846

P-Value 0.992 0.992 0.018 0.033 0.014 0.053 0.024 0.103 0.009

LB(1) LB(5)  Markov Weibull Geometric Caviar VIX KS CVM CavMult Kupiec

Test Value 0.026 38.572 0.975 4.424 4.997 4.104 3.430 19.627 5.236 9.352 0.923

P-Value 0.785 0.009 0.369 0.172 0.060 0.177 0.284 0.182 0.180 0.118 0.330

Notes to Table: We report the test statistics using the hit sequences from the actual P/Ls and VaRs from the four business 

lines. LB(1) and LB(5) are Ljung-Box with 1 and 5 lags. Markov is a first-order Markov test. Weibull and Geometric are 

duration based tests. Caviar is a regression-based test. KS is Kolmogorov-Smirnov, and CVM is Cramer-von-Mises. 

Kupiec is a test of unconditional coverage. The CavMult test uses the ex-ante VaR from all four business lines in a Caviar 

test. Please see the text for details on each test. 

Table 7: Backtesting Actual VaRs from Four Business Lines

Business Line 4

Business Line 1

Business Line 2

Business Line 3



Business Line 1 R
2

Real data 0.0360

Simulated data and HS VaR 0.0015

Simulated data and true VaR 0.0812

Business Line 2 R
2

Real data 0.0694

Simulated data and HS VaR 0.0438

Simulated data and true VaR 0.1415

Business Line 3 R
2

Real data 0.0148

Simulated data and HS VaR 0.0009

Simulated data and true VaR 0.0080

Business Line 4 R
2

Real data 0.0191

Simulated data and HS VaR 0.0185

Simulated data and true VaR 0.1211

Table 8: Forecasting Portfolio Risk

Notes to Table: For each business line we first regress the 

absolute observed P/L on the observed VaR ("Real data"). In 

the second regression we fit simulated GARCH P/L data on a 

250-day Historical Simulation VaR. In the third regression 

we fit the same simulated P/L data on the true simulated 

GARCH VaR. All regressions include a constant term.
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