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Abstract

State-of-the-art stochastic volatility models generate a �volatility smirk� that explains why

out-of-the-money index puts have high prices relative to the Black-Scholes benchmark. These

models also adequately explain how the volatility smirk moves up and down in response to

changes in risk. However, the data indicate that the slope and the level of the smirk �uctuate

largely independently. While single-factor stochastic volatility models can capture the slope of

the smirk, they cannot explain such largely independent �uctuations in its level and slope over

time. We propose to model these movements using a two-factor stochastic volatility model.

Because the factors have distinct correlations with market returns, and because the weights of

the factors vary over time, the model generates stochastic correlation between volatility and

stock returns. Besides providing more �exible modeling of the time variation in the smirk, the

model also provides more �exible modeling of the volatility term structure. Our empirical results

indicate that the model improves on the benchmark Heston model by 24% in-sample and 23%

out-of-sample. The better �t results from improvements in the modeling of the term structure

dimension as well as the moneyness dimension.
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1 Introduction

An extensive empirical literature has documented the empirical biases of the Black-Scholes (1973)

option valuation model for the purpose of the valuation of equity index options. Most prominently

amongst these biases, observed market prices for out-of-the-money put prices (and in-the-money call

prices) are higher than Black-Scholes prices. This stylized fact is known as the volatility �smirk.�

Implied volatilities for at-the-money options also contain a term structure e¤ect that cannot be

explained by the Black-Scholes model.

Perhaps the most popular approach to modeling the smirk is the use of stochastic volatility

models that allow for negative correlation between the level of the stock return and its variance.1

This negative correlation captures the stylized fact that decreases in the stock price are associated

with larger increases in variance than similar stock price increases (Black (1976), Christie (1982)).

This stylized fact is known as the leverage e¤ect. The leverage e¤ect is important for equity index

option valuation, because it increases the probability of a large loss and consequently the value

of out-of-the-money put options. The leverage e¤ect induces negative skewness in stock returns,

which in turn yields a volatility smirk.

The stochastic volatility models of Hull and White (1988), Melino and Turnbull (1990), and

Heston (1993) allow for nonzero correlation between the level of the stock return and its variance.

Several papers have documented that stochastic volatility models are helpful in modeling the smirk,

and that the modeling of the leverage e¤ect is critical in this regard (e.g., see Bakshi, Cao, and Chen

(1997), Bates (2000), Chernov and Ghysels (2000), Jones (2003), Nandi (1998), and Pan (2002)).

Stochastic volatility models can also address term structure e¤ects by modeling mean reversion in

the variance dynamic. Consequently many papers use a single-factor stochastic volatility model as

the starting point for more complex models.2

Single-factor stochastic volatility models can generate smiles and smirks. However, these models

are overly restrictive in their modeling of the relationship between the volatility level and the slope

of the smirk. The data suggest that the shape of the smile is largely independent of the volatility

level. There are low volatility days with a steep volatility slope as well as a �at volatility slope, and

also high volatility days with steep and �at volatility slopes. A single-factor stochastic volatility

model can generate steep smirks or �at smirks at a given volatility level, but cannot generate both

for a given parameterization. In a purely cross-sectional analysis, this is not a problem, because

we can estimate di¤erent parameter values for the one-factor model to calibrate the time-varying

nature of the cross-section. However, when estimating model parameters using multiple cross-

sections of option contracts, a one-factor model has a structural problem. If its parameters are

geared towards explaining a slope of the smirk that is on average high over the sample, it will

1For early stochastic volatility models see for example Hull and White (1987), Scott (1987), and Wiggins (1987).
2See for instance the extensive literature on jump models. Bakshi, Cao and Chen (1997), Bates (1996, 2000),

Broadie, Chernov and Johannes (2007), Eraker (2004), and Pan (2002) compare the empirical �t of the Heston

(1993) model with more complex models that contain di¤erent types of jumps in returns and volatility.
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result in large model error on those days that the slope of the smirk is relatively �at, and vice

versa. Another way to understand this restrictiveness is that in single factor stochastic volatility

models, the correlation between variance and stock returns is constant over time, and this limits

the model�s ability to capture the time-varying nature of the smirk. To date, we do not have a

good understanding of how incorporating stochastic correlation can improve the performance of

benchmark stochastic volatility models such as Heston (1993).

This paper uses a straightforward way to incorporate a stochastic correlation by using multiple

stochastic volatility factors. We demonstrate that two-factor models have much more �exibility

in controlling the level and slope of the smirk. An additional advantage is that two-factor models

also provide more �exibility to model the volatility term structure. In our empirical estimates, one

of the factors has high mean reversion and determines the correlation between short-term returns

and variance. The other factor has lower mean reversion and determines the correlation between

long-term returns and variance. We implement and test a two-factor stochastic volatility model

that builds on the valuation results in Heston (1993) to maintain a closed-form solution for option

prices and remain computationally tractable. We test this model in- and out-of-sample, and we

pay particular attention to model parsimony in order to improve out-of-sample performance.

We implement and test the multifactor volatility model using 1990-2004 data on European

call options on the S&P500. We split up our data set into �fteen samples that each contain one

year of options data. We therefore perform �fteen in-sample exercises and then evaluate the �rst

fourteen sets of parameter estimates one-year out of sample. We �nd that in-sample the implied

volatility root mean squared error of the multifactor model is 24% lower than that of the one-factor

Heston (1993) model. Out-of-sample, the two-factor model improves on the one-factor model by

23%. This remarkable consistency between the in-sample and out-of-sample results suggests that

the more richly parameterized two-factor model�s improvement over the one-factor model does not

merely arise from over�tting.

To provide more insight into the di¤erences in pricing performance, we extensively investigate

along which dimensions the estimated two-factor model di¤ers from the one-factor model. We �nd

that the two-factor model substantially improves on the one-factor model in the term structure

dimension as well as in the moneyness dimension. We also demonstrate that the modeling of

conditional skewness and kurtosis in the standard one-factor model is extremely restrictive, and that

estimated conditional higher moments are highly correlated with the estimated conditional variance.

In contrast, the two-factor model allows for more �exibility in modeling conditional skewness and

kurtosis for given levels of conditional variance, which is consistent with the �nding that the slope

of the smirk evolves largely independently from the level of the volatility.

In the option literature, Taylor and Xu (1994) use a two-factor model to uncover short-run and

long-run variance expectations in foreign exchange markets. Bates (2000) conducts an extensive

empirical analysis of a large class of option pricing models using 1988-1993 S&P500 futures op-

tion data. Among other things, he documents the negative skew in post-1987 index option data,
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and compares the performance of stochastic volatility models with the performance of stochastic

volatility models augmented with Poisson-normal jumps. His investigation is related to this paper:

he evaluates the empirical performance of a two-factor stochastic volatility model, and investigates

whether jumps and additional stochastic volatility factors are substitutes. Bates (2000) concludes

that stochastic volatility models cannot reconcile return data and option data, even with two sto-

chastic volatility factors, and that jumps are needed.

Our focus is on explaining why a two-factor model works better than a one-factor model for

the purpose of option pricing, by emphasizing its features for modeling the moneyness and term

structure dimensions. We directly focus on the modeling of the risk-neutral distribution, and do

not discuss the link between physical and risk-neutral distribution, therefore side-stepping one of

the main motivations for including jumps in the model, as discussed by Bates (2000). While we

do compare the statistical �t of the models, we put more emphasis on the underlying stylized facts

that result in an improved statistical �t. In line with this approach, we conduct an extensive out-

of-sample exercise to corroborate that the improved in-sample �t is due to the improved modeling

of these stylized facts, rather than to a simple increase in the number of model parameters.3

It is perhaps somewhat surprising that multifactor models have not yet become more popular in

the option valuation literature. In the yield curve literature, which uses models with a mathematical

structure similar to those in the option valuation literature, the use of multifactor models of the

short rate is widespread. In fact, it is widely accepted in the literature that one factor is not

su¢ cient to capture the time variation and cross-sectional variation in the term structure. The

consensus seems to be that a minimum of three factors are needed.4 Option valuation and term

structure modeling have a lot in common: in both cases one faces the demanding task of providing

a good empirical �t to the time-series as well as the cross-sectional dimension using tractable,

parsimonious models. We therefore believe that the use of multifactor models is as critical for the

equity option valuation literature as it is for the term structure literature, and that in the future

multifactor models may become as widespread in the option valuation literature as they now are

in the term structure literature.5

3See also Alizadeh, Brandt and Diebold (2002), Chernov, Gallant, Ghysels and Tauchen (2003), and Christo¤ersen,

Jacobs, Ornthanalai and Wang (2008) for related work. Eraker (2004) and Du¢ e, Pan and Singleton (2000) suggest

the potential usefulness of our approach. Carr and Wu (2007) model stochastic skewness in currency options using a

di¤erent approach.
4See Litterman and Scheinkman (1991) for a characterization of the number of factors needed to model the term

structure. See Pearson and Sun (1994) for an early example of multifactor term structure models, and Du¤ee (1999)

and Dai and Singleton (2000, 2002, 2003) for further applications. Du¢ e and Kan (1996) and Dai and Singleton

(2000) provide widely used classi�cations of multifactor term structure models.
5 If anything, modeling equity options is probably more challenging than modeling the term structure because

modeling the cross-sectional dimension for equity options requires the modeling of moneyness e¤ects as well as

maturity e¤ects. On the other hand, the multifactor stochastic volatility models considered in this paper di¤er from

multifactor term structure models in the sense that the one factor stochastic volatility model can itself be considered

as a two-factor model, with the �rst factor being provided by the stock return.
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In the equity index option valuation literature, the de�ciencies of the one-factor stochastic

volatility model have traditionally been addressed by adding a jump process to the return dynamic.6

This paper does not question the usefulness of this approach. Instead, we surmise that adding

additional factors to the volatility process is an alternative way of addressing model de�ciencies.7

Our paper does not investigate whether multifactor models or jump processes are more appropriate

for modeling option data, or if indeed both features are useful. That particular empirical question

has to be decided by an out-of-sample comparison between jump models and multifactor stochastic

volatility models, and such a comparison is beyond the scope of this paper.

The paper proceeds as follows: In Section 2 we conduct a principal component analysis as well

as some regression analysis to motivate the use of multiple volatility factors, and discuss some

stylized facts in the data. In Section 3 we present a two-factor stochastic volatility process which

has the potential to match the empirical regularities found in Section 2. We then use the model

to illustrate some critical di¤erences between one- and two-factor models. In Section 4 we present

the estimation strategy and assess the empirical �t of the model using S&P500 index options in-

and out-of-sample. Section 5 further explores the empirical results, and Section 6 concludes. We

include additional conditional moment diagnostics in the appendix.

2 Option Data Exploration

In this section, we �rst describe the option data and then perform a principal components analysis

on the implied volatility surface. Finally, we study time series patterns in the level and slope of

the option implied volatility smirk.

2.1 Option Data

For our empirical investigation, we use data on European S&P500 call options from 1990 through

2004. The data from 1990 through 1995 are from the Berkeley Option Data base and the data from

1996 through 2004 are from OptionMetrics. We use closing option quotes from the Chicago Board

Options Exchange each Wednesday. From the bid and ask quotes, mid-quotes are calculated as

simple averages. Each option quote is matched with the underlying index level which is adjusted

for dividends, by subtracting the present value of the future realized �ow of dividends between the

quote date and the maturity date of the option.8 T-bill rates are used for this purpose. The risk-
6See for example Andersen, Benzoni and Lund (2002), Bakshi, Cao and Chen (1997), Bates (1996, 2000), Broadie,

Chernov and Johannes (2007) Carr and Wu (2004), Chernov, Gallant, Ghysels and Tauchen (2003), Eraker, Johannes

and Polson (2003), Eraker (2004), Pan (2002), Santa-Clara and Yan (2009), and Huang and Wu (2004). Huang and

Wu (2004) consider a two-factor volatility model driven by Levy processes.
7 Interestingly, recent research has investigated the importance of jump processes for modeling the term structure

of interest rates. See for example Johannes (2004). This paper complements this line of research by using an approach

that is more typical of the existing empirical research on term structure models and applying it to the valuation of

equity options.
8This procedure follows Harvey and Whaley (1992a and b).
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free rate for each option maturity is calculated via interpolation of available T-bill rates. Options

with less than seven days to maturity are omitted from the sample, as are options with extreme

moneyness, and options which violate various no-arbitrage conditions. These �ltering rules follow

Bakshi, Cao and Chen (1997).

Table 1 summarizes our data set of 38,258 contracts. Panels A through C in Table 1 are split

up into four (calendar) days-to-maturity (DTM) categories and six moneyness (S=X) categories.

Panel A reports the number of contracts in each category, Panel B reports the average call price

in each category, and Panel C gives the average Black-Scholes implied volatility in each category.

The systematic and well-known volatility �smirk�across moneyness is evident from each column

in Panel C. While the smirk is most dramatic for the short-maturity options, it is present in each

maturity category.

Figure 1 presents our option data from a di¤erent perspective. For each of the 776 avail-

able Wednesdays in the 1990-2004 sample, the circles represent the average implied Black-Scholes

volatility. The average is taken across maturities and strike prices. For comparison, the solid line

represents the one-month, at-the-money VIX volatility index. It is clear that our sample adequately

captures the time-variation in the overall market, showing high volatility around the �rst Gulf War,

as well as during the 1998 LTCM debacle and the 2000-2002 stock market downturn. The VIX and

average IVs are slightly di¤erent because the IV from our data is a simple average across maturities

and moneyness each day.

2.2 Principal Components Analysis

Our objective here is to investigate whether the data support multiple variance factors, without

relying on any particular option valuation model. This is not straightforward, because by de�nition

the stock return variance is a latent factor. We circumvent the unobservability of the return variance

by using an observable proxy. In particular, we investigate the number of factors in the implied

Black-Scholes variance.9 While this approach clearly has some limitations, it is meant to provide

an exploration of the need for multiple factors, and is not meant to substitute for a more detailed

statistical analysis.

Table 2 reports the results of a principal component analysis of Black-Scholes implied variances.

To facilitate the interpretation of the principal component analysis, it is not performed on the raw

data but on a standardized variance surface. This variance surface is constructed as follows. In a

�rst stage, we �t a quadratic polynomial in maturity and moneyness for each day in the dataset.

In the second stage, we use these estimates to generate a standardized variance surface using �ve

di¤erent levels of moneyness (0:9; 0:95; 1; 1:05 and 1:1) and �ve di¤erent maturities (30 days, 60

9While Black-Scholes implied standard deviation is more extensively used as a measure of stock return variability

than Black-Scholes implied variance, we report a principal component analysis of variance because the latent factors

in the subsequent model are variances and not standard deviations. An analysis of Black-Scholes implied volatilities

yielded very similar results.
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days, 90 days, 180 days and 270 days).

Table 2 reports the loadings on the �rst four principal components and the fraction of the

variance explained by each of these four components. The most important conclusion is that the

�rst component explains over 90% of the variation in the data, and that the �rst two components

together explain over 95% of the variation in the data. The results therefore seem to suggest that

a two-factor model may be a good representation of the data.

The �rst principal component has relatively similar weights for all 25 data series. The top-left

panel of Figure 2 represents this component over time, and it is closely related to the average

implied volatility (see Figure 1). Recall that the level of the implied variance is simply the average

of the implied variances across moneyness and maturity on a given day. The top-right panel of

Figure 2 shows the second component over time. The loadings of the second principal component

on the twenty-�ve data series are not as uniform as is the case for the �rst principal component.

Table 2 shows that it has large positive loadings on in-the-money calls with short maturities and

negative loadings on most other options. It is therefore to be expected that the second principal

component combines maturity and moneyness e¤ects.

In summary, subject to the caveat that this approach can only be interpreted as a preliminary,

model-free gauge of the option price dynamics, we �nd that a principal component analysis of

implied Black-Scholes variances reveals that a stochastic volatility model with two factors is likely

to capture a lot of the variation in the data. Empirically, the question is whether such a richer model

results in a better �t than a one-factor model? It is especially important to consider out-of-sample

exercises. After all, the two-factor model can simply be seen as nesting the one-factor model, and

therefore it should provide a better in-sample �t. Whether this more richly parameterized model

provides reliable enough improvements to improve the out-of-sample �t constitutes a much more

stringent test.

2.3 The Level of Volatility and the Slope of the Smirk

In order to illustrate the advantages o¤ered by a two-factor model, we start by characterizing a

simple stylized fact of the volatility smirk: the slope of the smirk is largely independent of the level

of volatility. This was �rst noticed by Derman (1999), who documents that the slope of the smirk

changes little when volatility changes. However, to the best of our knowledge this stylized fact

is not extensively documented elsewhere, and we therefore perform a simple empirical exercise to

provide additional evidence.

On each Wednesday in the 1990-2004 sample, we regress the implied volatilities of all option

contracts on that Wednesday on a constant and the natural logarithm of the contract�s moneyness.

The estimate of the intercept can be interpreted as the volatility level for that day and the estimated

coe¢ cient on the moneyness can be interpreted as the steepness of the slope. The bottom two panels

of Figure 2 presents the results of this analysis. First, comparing the time series of the intercepts

in the bottom-left panel with Figure 1 reveals that the estimated volatility levels are very reliable.
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A visual inspection of the bottom two panels suggests that the slope evolves quite independently

from the volatility level. The estimated slope coe¢ cients vary signi�cantly over time, but these

changes are not necessarily related to sharp increases or decreases in the volatility level. Moreover,

when the index falls (for example in 1998 and in 2001-2002) the volatility increases but there does

not seem to be a change in the estimated slope coe¢ cients. We have also computed the correlation

between the intercept and the slope on a expanding window of data starting with the �rst thirty

observations. The absolute value of the correlation is never very large, and it is at times positive

and at other times negative. The maximum over the �fteen years turns out to be 21% and the

minimum is -26%.

Comparing the top and bottom row of panels in Figure 2 we see that to a large extent the

level and slope factors correspond to the principal components. The time-series correlation be-

tween the �rst principal component (top-left) and the volatility level factor (bottom-left) is 98%.

The correlation between the second principal component (top-right) and the volatility slope factor

(bottom-right) is 65%. This level and slope interpretation gives a more intuitive understanding of

the �uctuations in option prices. The challenge is to build a model that explains these features in

economic terms.

3 The Two-Factor Model

We now present the two-factor model and provide some intuition for the model. Consider �rst the

one-factor Heston (1993) model which is one of the most popular models in the option valuation

literature. This model is given by10

dS = rSdt+
p
V Sdz1 (1)

dV = (a� bV )dt+ �
p
V dz2 (2)

where the correlation between z1 and z2 is �:11

Suppose now instead that the variance of the risk-neutral, ex-dividend stock price process is

determined by two factors

dS = rSdt+
p
V1Sdz1 +

p
V2Sdz2 (3)

dV1 = (a1 � b1V1)dt+ �1
p
V1dz3 (4)

dV2 = (a2 � b2V2)dt+ �2
p
V2dz4 (5)

We assume z1 and z2 are uncorrelated. Note that the variance of the stock return is the sum of the
10Due to our choice of estimation method, we only require the risk-neutral process. Risk-neutralization in this

model can be motivated in the usual way by specifying a representative agent with logarithmic utility. See for

instance Lewis (2000).
11The square root process can access zero with positive probability if �2 > 2a: In this case we assume a standard

re�ecting barrier at the origin.
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two variance factors

V art[dS=S] = (V1 + V2)dt � V dt (6)

In addition, we assume the following stochastic structure: z1 has correlation �1 with z3, and z2
has correlation �2 with z4, but z1 is uncorrelated with z4, z2 is uncorrelated with z3, and z3 is

uncorrelated with z4. In other words, the variance is the sum of two uncorrelated factors that may

be individually correlated with stock returns.

For option valuation, we need to determine the characteristic function of the log-spot price,

x = ln(S). Generalizing the results in Heston (1993), the characteristic function satis�es

Et[exp (i�x(t+ �))] = S (t)
i� f(V1; V2; � ; �); (7)

where

f(V1; V2; � ; �) = exp(A(� ; �) +B1(� ; �)V1 +B2(� ; �)V2);

A(� ; �) = r�i� +
a1
�21

�
(b1 � �1�1�i+ d1)� � 2 ln

�
1� g1 exp(d1�)

1� g1

��
+
a2
�22

�
(b2 � �2�2�i+ d2)� � 2 ln

�
1� g2 exp(d2�)

1� g2

��
;

Bj(� ; �) =
bj � �j�j�i+ dj

�2j

�
1� exp(dj�)
1� gj exp(dj�)

�
;

gj =
bj � �j�j�i+ dj
bj � �j�j�i� dj

;

dj =
q
(�j�j�i� bj)2 + �2j (�i+ �2):

Note that the Bj(� ; �) terms are identical to their one-dimensional counterpart in Heston (1993),

and A(� ; �) = r�i� plus the sum of two terms that are identical to their one-dimensional counter-

part.

Using these results, European call options can be valued via Fourier inversion by inserting the

probabilities

P1 =
1

2
+
1

�

Z 1

0
Re

"
ei� ln(S(t)=X)f(V1; V2; � ; �+ 1)

i�S(t)er�

#
d� (8)

P2 =
1

2
+
1

�

Z 1

0
Re

"
ei� ln(S(t)=X)f(V1; V2; � ; �)

i�

#
d� (9)

into the option valuation formula

C(t) = S(t)P1 �Xe�r�P2: (10)
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The two integrals can be combined into one, which may yield a more computationally e¢ cient

call option valuation formula. We get

C(t) =
1

2

�
S(t)�Xe�r�

�
+
e�r�

�

Z 1

0
Re

"
ei� ln(S(t)=X)f(�+ 1)

i�
� Xe

i� ln(S(t)=X)f(�)

i�

#
d�: (11)

See for example Heston and Nandi (2000). Lewis (2000) suggests a further simpli�cation of the

integrand which requires integration in the complex plane.

3.1 Stochastic Correlation

For each factor, the covariance with the stock return is given by

Covt[dS=S; dVj ] = �j�jVjdt (12)

The covariance of stock returns with overall variance is given by

Covt[dS=S; dV ] = (�1�1V1 + �2�2V2)dt (13)

and the variance of the variance is

V art[dVt] =
�
�21V1 + �

2
2V2
�
dt (14)

It must be noted that although �1 and �2 on the one hand, and �1 and �2 on the other hand, may

not di¤er much for certain parameter sets, these relatively small di¤erences yield large �uctuations

in the paths of Covt(dS=S; dV ) and V art(dV ), and also in the higher moments of returns. The

appendix contains plots of these conditional moments using the parameter values estimated below.

The correlation between the stock return and variance is determined by �1 and �2, and depends

on the current levels of the factors. Note that this implies that the leverage correlation in the

two-factor model is given by

Corrt[dS=S; dV ] =
�1�1V1 + �2�2V2p
�21V1 + �

2
2V2
p
V1 + V2

dt (15)

While this model is conceptually fairly straightforward, it holds promise to resolve existing biases in

option valuation because of its �exibility. For the purpose of modeling moneyness e¤ects, note that

the correlation of stock returns with overall variance depends on the current levels of the factors.

Hence, this model displays not only stochastic variance, but also stochastic correlation between

stock return and variance, and this feature potentially enables the model to capture �uctuations

in option skewness. For the purpose of modeling term structure e¤ects, one of the factors can

have relatively �fast� mean-reversion (high b) to determine short-run variance, while the other

factor can have relatively �slow� mean-reversion (low b) to determine long-run variance. The

di¤erent implications of these factors can also be in�uenced by interactions between mean reversion

parameters and the parameters that determine the third and fourth moment of returns (� and �).
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Figure 3 provides additional intuition for the two-factor model�s properties by documenting

how the correlation between stock returns and variance changes over time, given the estimates

obtained in Table 3, which will be discussed in detail below. Each year uses a di¤erent set of

parameter estimates, corresponding to the �fteen sets of results reported in Table 3. We also graph

the constant within-year correlation for the one-factor model.

Figure 3 clearly demonstrates that time-varying correlation is an important model feature. Note

from (15) that the correlation between stock returns and variance is not restricted to lie in between

the correlations between the stock return and the respective variance factors. Note that de�ning

the variance ratio VR = V1=V and recalling V = V1 + V2, we can write

Corrt[dS=S; dV ] =
V [VR (�1�1 � �2�2) + �2�2]

V
q
VR
�
�21 � �22

�
+ �22

=
VR (�1�1 � �2�2) + �2�2q

VR
�
�21 � �22

�
+ �22

(16)

which is independent of the level of V . If �1�1 < �2�2 then the correlation has its minimum at �1
when VR = 1. The maximum can be found by taking the �rst derivative of the correlation w.r.t.

VR and setting it to zero. We get

V �R =
:5
�
�21 � �22

�
�2�2 � (�1�1 � �2�2)�22

:5 (�1�1 � �2�2)
�
�21 � �22

� (17)

Figure 4 shows the correlation as a function of VR using the following parameters, �1 = 2:0,

�1 = �0:9, �2 = 0:2; and �2 = �0:8. Notice in particular that that while the parameter estimates
for �1 and �2 may both be close to �1, the overall conditional correlation Corrt[dS=S; dV ] is not
restricted to be between these parameter estimates.

3.2 Expected Future Spot Variances

The two-factor model has the potential to improve on the �t of the one-factor model by allowing

for richer modeling of maturity and moneyness e¤ects. While the improvements in the moneyness

dimension are a bit more subtle, the improvements in the maturity dimension are relatively easy to

understand. Because the one-factor model has only one parameter to capture mean reversion to

the unconditional variance, the patterns for the term structure of conditional variance are rather

limited. The two-factor model has two parameters capturing the mean reversion of each of the

factors. Dependent on the size of each of the two factors, this can lead to very rich patterns in the

term structure of the conditional variance.

The formula for expected future spot variance in the two-factor model is

Et [V (t+ �)] =
a1
b1
+

�
V1 �

a1
b1

�
exp(�b1�) +

a2
b2
+

�
V2 �

a2
b2

�
exp(�b2�)
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Figure 5 presents a parametric example where we plot the expected future variance over a two-

year horizon using a number of di¤erent combinations of initial spot variances, V1 and V2 in the

two-factor model.

For the one-factor model (solid line), we use a long run variance a=b of 0:04 and a mean reversion

coe¢ cient b of 2. For this particular example, the spot variance is taken to be 0:03. For the one-

factor model, the expected future variance converges monotonically to the long-run variance. To

make the comparison with the two-factor model as straightforward as possible, we let the mean

reversion coe¢ cients for the variance factors be b1 = 2 and b2 = 10, but we take the long run

variance to be the :02 for each factor so that the total long run variance is the same as in the

one-factor model.

We generate di¤erent term structures of expected future variances for the two-factor model

(dashed lines) by simply varying the levels of the two spot variances. The spot variance for the

�rst factor V1 is 0, :01, :02, and :03 respectively, and the second spot variance V2 = 0:03� V1 in all
cases so as to �x the overall spot variance at :03 as in the one-factor model. It can be seen that

the two-factor model can lead to many di¤erent patterns for expected future variances, including

monotonically increasing expected variances, but also expected variances that �rst increase and

subsequently decrease and vice versa.

3.3 Can Stochastic Volatility Models Capture Independent Movements in the
Level and Slope of the Volatility Smirk?

Movements in the level and slope of the volatility smirk are largely uncorrelated. We perform a

few simple simulation exercises to demonstrate that one-factor stochastic volatility models have

di¢ culty to model this simple stylized fact. The model�s problems can be illustrated in several

ways, but a particularly simple example is the following. Consider the volatility smirks on four

di¤erent days in the sample in Figure 6. The smirk is subject to strong term structure e¤ects,

but the smirks in Figure 6 are for options with either 23 or 29 days to maturity and are therefore

comparable. The �gure includes two relatively low volatility days: August 16, 1995 and February

15, 1995. October 24, 1990 and September 26, 1990 are relatively high volatility days. Figure 6

therefore illustrates that to �t these cross-sections of option contracts simultaneously, a model has

to be able to accommodate both high and low smirk slopes on low volatility days, as well as high

and low smirk slopes on high volatility days.

Figure 7 demonstrates that the two-factor volatility model has the potential to provide this

�exibility, whereas the one-factor model does not. The dashed lines in Figure 7 represent implied

volatilities for the two-factor model. In each case, the parameterization for the model is the fol-

lowing: b1 = 2:597, a1=b1 = 0:053, �1 = 0:280, �1 = �0:834, b2 = 2:597, a2=b2 = 0:053, �2 = 3:667,
�2 = �0:957 which are motivated by the empirical results below. The only di¤erence for the two-
factor model is that for the two pictures on the left the factor spot variances are V1 = V and V2 = 0,

whereas in the two pictures on the right they are V2 = V and V1 = 0. We conduct two experiments
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for each parameterization: in the two top pictures of each panel, the initial variance V is 0:03, and

in the two bottom pictures of each panel the initial variance V is 0:07.

The one-factor model cannot capture these moneyness patterns. In Panel A, the one-factor

model is calibrated on the two-factor data represented in the pictures on the left, in which the �rst

component drives the results. In Panel B, the one-factor model is calibrated on the two-factor data

represented in the pictures on the right, in which the second component drives the results. When

the one-factor model is calibrated to capture a steep smirk, it cannot capture a �at smirk, and vice

versa. In other words, the one-factor model can generate steep smirks or �at smirks at a given

volatility level, but cannot generate both for a given parameterization. In a purely cross-sectional

analysis, this is not a problem, because we can estimate di¤erent parameter values for the one-

factor model to calibrate the time-varying nature of the cross-section. However, in most recent

empirical exercises in the academic �nance literature, the emphasis is (justi�ably) on demonstrating

the ability of the model to capture a variety of di¤erent cross-sections with �xed model parameters.

Parameters are estimated using multiple cross-sections of option contracts, while iterating on the

underlying return data to link the cross-sections. A one-factor model has a structural problem in

this type of exercise. If its parameters are geared towards explaining a slope of the smirk that is on

average high over the sample, it will result in large model error on those days that the slope of the

smirk is relatively �at, and vice versa.

4 Empirical Methodology and Results

In this section we implement the two-factor stochastic volatility model using our data set on S&P500

options, and we compare the models�empirical performance with that of the standard one-factor

Heston (1993) model.

4.1 Estimation Methodology

When implementing the SV models, one is confronted with the challenge of jointly estimating

the model�s structural parameters, � = fai; bi; �i; �igi=1;2, as well as the spot volatilities fVi(t)gi;t.
Various approaches are available in the literature. One popular approach treats the spot volatilities

as just another parameter which is re-estimated daily. This approach is followed for example by

Bakshi, Cao, and Chen (1997). Other approaches �lter volatility using the time series of underlying

returns, which ensures consistency between the physical and risk-neutral measures. This is done

in a Bayesian setting in Jones (2003) and Eraker (2004). Andersen, Benzoni and Lund (2002)

and Chernov and Ghysels (2000) use an E¢ cient Method of Moments approach, Pan (2002) uses

the Generalized Method of Moments, Carr and Wu (2007) use a Kalman �lter approach, and

Christo¤ersen, Jacobs, and Mimouni (2008) and Johannes, Polson and Stroud (2008) use particle

�ltering.

In this paper, we use a modi�cation of the approach taken by Bates (2000), who estimates the
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structural parameters and spot volatilities using option data only in an iterative two-step procedure.

This approach is also used by Huang and Wu (2004). Consider a sample of T Wednesdays of options

data. In our implementation we choose T = 52, which corresponds to a calendar year. Given a set

of starting values for � and fVi(t)g, the iterative procedure proceeds as follows.
Step 1 : For a given set of structural parameters, �, solve T sum of squared pricing error

optimization problems of the form:n
V̂1(t); V̂2(t)

o
= argmin

NtX
j=1

(Cj;t � Cj(�; V1(t); V2(t)))2=V ega2j;t; t = 1; 2; :::; T: (18)

where Cj;t is the quoted price of contract j on day t and Cj(�; V1(t); V2(t)) is the corresponding

model price. Nt is the number of contracts available on day t. V egaj;t is the Black-Scholes sensitivity

of the option computed using the implied volatility from the market price of the option, Cj;t:

Step 2 : For a given set of spot variances fV1(t); V2(t)g obtained in Step 1, solve one aggregate
sum of squared pricing error optimization problem of the form:

�̂ = argmin
NX
j;t

(Cj;t � Cj(�; V1(t); V2(t)))2=V ega2j;t (19)

where N =
PT
t=1Nt.

The procedure iterates between Step 1 and Step 2 until no further signi�cant decreases in

the overall objective in Step 2 are obtained. Note that while each function evaluation requires re-

computing the model option price for every option involved, the closed-form characteristic functions

above guarantee that these calculations can be done in an expedient fashion. Furthermore, the two-

step procedure is remarkably well-behaved. Convergence is achieved in just a few iterations within

each step and overall convergence also requires only few iterations between Step 1 and Step 2.12

The modi�cation vis-a-vis Bates (2000) arises from the rescaling of option pricing errors by

1=V egaj;t. The resulting objective function can be viewed as an approximation to implied volatility

errors. We can think of the model price of the option as an approximation to the market price

using a �rst order approximation around implied Black-Scholes volatility

Cj(�; V1(t); V2(t)) � Cj;t + V egaj;t (�j;t � �j;t(�; V1(t); V2(t)))

where �j;t and �j;t(�; V1(t); V2(t)) are implied Black-Scholes volatilities from the market price and

the model price respectively, and where V egaj;t is the Black-Scholes sensitivity of the option price

with respect to volatility, computed using �j;t. Using this approximation, we can assess model �t

using the implied volatility root mean squared error (IV RMSE) loss function as follows

IV RMSE �

vuut 1

N

NX
j;t

(�j;t � �j;t(�; V1(t); V2(t)))2 �

vuut 1

N

NX
j;t

(Cj;t � Cj(�; V1(t); V2(t)))2=V ega2j;t

12One potential disadvantage of this approach vis-a-vis some of the other procedures discussed above is that no

consistency is imposed between the properties of the variance factors and the estimated time series of spot variances.
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The approximation to the implied volatility errors is extremely useful in large scale empirical

estimation exercises such as ours, where the Black-Scholes inversion of model prices becomes very

costly numerically. This approximation has also been used in Carr and Wu (2007) and Trolle and

Schwartz (2008) among others.

4.2 Parameter Estimates and In-Sample Results

We present parameter estimates and in-sample results for the one-factor and the two-factor model.

The iterative two-step estimation routine is applied for each of the �fteen calendar years in our

sample. The resulting thirty sets of parameter estimates are reported in Table 3. Note that for

expositional reasons Table 3 reports on the ratio of coe¢ cients a=b rather than a. The ratio a=b is

equal to the unconditional annual variance for the one-factor model and to the mean of the variance

factor in the two-factor case.

Consider �rst the one-factor model. The one-factor model does an excellent job of capturing

the overall level of volatility. The weekly time-series correlation between the volatility level factor

(from Section 2.2) and estimates of the one-factor V is 95%. But the one-factor model does not

capture the slope. The correlation between the volatility slope factor and the one-factor V is only

1%.

The parameters for the one-factor model are intuitively plausible and quite stable across esti-

mation years. The mean-reversion of variance parameter b is typically between 1.5 and 3.5, which

means that the half-life of variance shocks is between 3 and 8 months. The unconditional variance

a=b is between 0.02 and 0.05, the volatility of variance � is between 0.4 and 0.8, and the correla-

tion � between returns and return variance is between -0.8 and -0.5. The overall implied volatility

root-mean-squared error (IV RMSE) in percent is between 0.879% (in 2003) and 2.898% (in 1993).

The overall in-sample IV RMSE is 1.995% across the six years, which is quite impressive in a data

set with an average observed implied volatility of 18.5% (see Table 1).

Consider next the two-factor model. The purpose of the second factor is to capture independent

movements in options prices. The correlation between the �rst principal component (from Section

2.2) and the sum of the factor estimates V1 + V2 is 88%, and the correlation between the volatility

level factor (from Section 2.3) and the sum of the factors is 87%. The two factors are able to explain

more than just the volatility level. The correlation between the second principal component and

the di¤erence of the two factors V1 � V2 is 62%, and the correlation between the slope factor and
the di¤erence of the two factors is 51%. Since this correlation is only 1% in the one-factor model,

the second factor is important to capture these independent movements in option prices. Once

again, we want to emphasize that the objective of the principal components analysis is merely to

provide a crude and model-free way to capture option prices dynamics. Nevertheless, we think the

relationships between the principal components and the stochastic volatility factors are suggestive

of the �exibility provided by the two-factor model.

A consistent �nding across estimation years is that one of the factors is slowly mean-reverting,
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with b between 0.14 and 0.30, and that the second factor mean-reverts quicker�sometimes dramat-

ically so�in all of the sample years. Notice also that the slowly mean-reverting �rst factor has a

higher volatility of variance than the second factor in each of the estimation years. The in-sample

�t of the two-factor model is impressive. The penultimate column in Panel B of Table 3 reports

the IV RMSE and the third-last column in Panel A normalizes the two-factor IV RMSE by the

IV RMSE of the one-factor model. The IV RMSE improvement is between 41% in 2000 and

12% in 1990. The overall IV RMSE of the two-factor model is 1.51%, or 24.1% below the overall

IV RMSE of the one-factor model.

Bates (2000) estimates a two-factor model using 1988-1993 S&P500 futures option prices. He

obtains one set of estimates using the entire sample, and the estimates are as follows: a1 = 0:028,

b1 = 0:00, �1 = 1:039, �1 = �0:775, a2 = 0:130, b2 = 5:58, �2 = 0:667, �2 = �0:382. In comparison,
the averages of our estimates in Table 3 are a1=b1 = 0:007, b1 = 0:179, �1 = 3:667, �1 = �0:957,
a2=b2 = 0:114, b2 = 1:303, �2 = 0:280, �2 = �0:834. Bates�(2000) estimates imply a2=b2 = 0:233,
but we cannot compute his a1=b1. There are of course many potential reasons why his estimates

are di¤erent from ours, not in the least the very di¤erent data sets. However, there are some

striking similarities. In both cases the factor with the highest mean reversion has a smaller � and

a smaller (in absolute value) �, indicating this factor is a less important driver of skewness and

kurtosis. However, in our case the di¤erences between �1 and �2 are larger than in Bates (2000)

and the di¤erences between �1 and �2 are smaller. It is also noteworthy that our (absolute values

of) estimates of �1 and �2 are much larger than those of Bates (2000), perhaps indicating more

negative skewness in the data.

Table 4 reports on in-sample IV RMSE by moneyness and maturity. We report the IV RMSE

for the one-factor model (Panel A), the IV RMSE for the two-factor model (Panel B), and the ratio

of the two-factor to one-factor IV RMSE in Panel C. Notice that the ratio IV RMSE is below one

for every maturity category (last row of Panel C) and also below one for every moneyness category

(last column of Panel C). Looking across all moneyness and maturity bins, it is clear that the

improvements tend to be the largest for short-maturity options that are not close to at-the-money.

The one-factor model performs best only for in-the-money calls with 90-180 days to maturity. The

two-factor model dominates in all the other moneyness/maturity combinations.

Figure 8 further documents the di¤erences between the in-sample IV RMSEs of the models by

graphing the average weekly IV RMSE over the 1990-2004 sample for the one-factor model and

the ratio of the two-factor IV RMSE to the one-factor IV RMSE. The analysis is in-sample: for

each year, the corresponding parameters from Table 3 are used. Notice that the ratio IV RMSEs

in the lower panel are almost always less than one, so that the improvement in the two-factor model

is not con�ned to a particular time period in our sample. Moreover, episodes of 50% improvement

in IV RMSE over the one-factor model occur throughout the sample.
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4.3 Out-of-Sample Results

Our out-of-sample results are obtained as follows. For each but the �nal year of the sample, we use

the in-sample structural parameters � in Table 3 and Step 1 described in Section 4.1 to compute

the out-of-sample spot volatilities for the following year. The overall sum of squared pricing errors

is then simply calculated as the sum of the 52 sums of squares from Step 1. This out-of-sample

implementation follows Huang and Wu (2004).

Table 3 shows the out-of-sample IV RMSEs year-by-year for the two models. Consider �rst

the benchmark one-factor model. Note �rst that the in-sample IV RMSEs are always lower than

any of the corresponding out-of-sample IV RMSEs in the same row. This is reassuring, because

it demonstrates that the estimation routine is satisfactory. More interestingly, note also that the

out-of-sample IV RMSEs are often quite close to the in-sample value.

Comparing the one-factor model with the two-factor model in the penultimate column of Panel

A in Table 3, we see that the two-factor model performs better than the one-factor model out-

of-sample in each of the fourteen years in our out-of-sample period. The average improvement in

IV RMSE o¤ered by the two-factor model is 23.8%. The smallest improvement occurs in 1991, at

13.2%, and the largest improvement occurs in 1996, at 37.7%.

4.4 Ad-Hoc Benchmark Models

While the out-of-sample performance of the two-factor model is impressive relative to the one-

factor model, the question arises whether the one-factor model is a good choice of benchmark.

There are two ways to address this question. First, there are not many structural option pricing

models available in the literature that robustly improve upon the out-of-sample performance of

the Heston (1993) model. Models that contain Poisson jumps in returns and/or volatility may

signi�cantly improve on the in-sample performance of the Heston (1993) model, but the out-of-

sample improvements are modest or non-existing (see for example Bakshi, Cao and Chen (1997) and

Eraker (2004)).13 Option valuation models that are based on Levy processes for the underlying seem

to be more successful out-of-sample (see Huang and Wu (2004) and Carr and Wu (2007)). While

it is always di¢ cult to compare the performance of models estimated using di¤erent techniques, as

well as across data samples, our simple two-factor model seems to improve on the performance of

the one-factor Heston (1993) model by at least the same amount as the most sophisticated jump

models.

Figure 9 addresses the appropriateness of the benchmark in a di¤erent way, by comparing the

annual in-sample IV RMSE from Table 3 with two often used ad-hoc benchmark models. The

�rst ad-hoc benchmark, labeled �Black-Scholes�is implemented by setting the spot volatility each

Wednesday equal to the average implied BS volatility for that day. Thus, while retaining the

13Broadie, Chernov and Johannes (2007) show that when restricting certain parameters to be equal to estimates

from historical returns, adding Poisson jumps to a stochastic volatility model improves option �t.
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structure of the Black-Scholes (BS) pricing formula, it allows for time-varying volatility via weekly

re-estimation. Clearly, both stochastic volatility models we consider perform well in comparison

with this benchmark.

The second benchmark, labeled �Ad Hoc�, is the model used in Dumas, Fleming and Whaley

(1998), which regresses implied BS volatilities on a second order polynomial in strike price and

maturity. Dumas, Fleming and Whaley (1998) �nd that this method outperforms the deterministic

volatility models they consider in their paper. Notice that the two stochastic volatility models we

consider outperform the ad-hoc BS benchmark in the early part of the sample but the Ad-Hoc

model slightly outperforms the SV models in the latter part of the sample.

Christo¤ersen and Jacobs (2004) show that when the ad-hoc model is implemented via mini-

mization of the loss function subsequently used in model evaluation, the �t of the ad-hoc model

improves drastically. Note that we are using an (approximate) implied volatility loss function when

estimating the SV models, and therefore the estimation and evaluation criteria are closely aligned

when using the standard ad-hoc model from Dumas, Fleming and Whaley (1998).

5 Model Properties

We have argued that two-factor models are more �exible than one-factor models for the purpose

of modeling moneyness e¤ects, as well as for the purpose of modeling the volatility term structure.

In Section 4, we compared the pricing performance of the one-factor and two-factor models, and

our empirical results con�rm that the two-factor models provide a better �t. While these types of

comparisons are critical, they do not highlight the model features that enable the model to �t the

data better.

Figure 3 documents the time-varying correlation property of the two-factor model. In the

appendix, we show that while the spot variance paths are similar across the one-factor and two-

factor models, the spot covariance between returns and variance di¤ers across models as does

the spot variance of variance. We also show in the appendix that the one-factor and two-factor

models di¤er substantially in terms of the �exibility o¤ered to model the conditional skewness and

kurtosis at various horizons, and the one-factor model seems constrained in this respect. Conditional

dynamics therefore suggest that the improved �t of the two-factor model is partly due to the

improved modeling of higher conditional moments.

However, we have not yet directly related the improvement in �t to the modeling of the smirk

and the volatility term structure. In this section, we explore the empirical results in more detail and

try to provide more intuition for the di¤erences in empirical performance by discussing the models�

ability to capture these stylized facts. The dotted line in the top panel of Figure 10 shows the

correlation between the volatility level and the slope of the volatility smirk by regressing implied

volatilities on a given day on an intercept and log moneyness year-by-year. The dashed and solid

lines show the correlation based on the same regression analysis, except that the implied volatilities
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used in the regressions are not those implied by the data, but are based on the option prices

predicted by the one-factor and two-factor models respectively. This analysis therefore investigates

whether the two-factor model better matches the correlations in the data. Figure 10 shows that

the two-factor model matches the empirical correlation much better than the one-factor model,

particularly in the early parts of the sample when the data-based correlation is positive and the

one-factor model correlation is negative.14

It could be argued that regressing implied volatilities on log moneyness may lead to noisy

results, because signi�cant maturity e¤ects are not �ltered out. The bottom panel of Figure 10

therefore repeats the analysis of the top panel but implied data and model volatilities are regressed

on ln [S=(X exp(�r�))] =
p
� , to remove maturity e¤ects. While the correlations are somewhat

di¤erent, the two-factor model again captures the patterns in the data much better than the one-

factor model. The one-factor model consistently generates correlations between volatility level and

slope that are below the correlations in the data. The two-factor model tracks the data correlation

very well throughout the �fteen-year sample.

In Figure 11, we compute the absolute correlation between the variance factors and the time

series for the level and slope of the smirk, as computed by regressing the implied volatilities on

a given Wednesday on moneyness corrected for maturity ln [S=(X exp(�r�))] =
p
� . We report the

results on a year-by-year basis, because the parameter estimates are on a year-by-year basis.

The top panel of Figure 11 reports results for the variance level. The solid line indicates that the

variance factor in the one-factor model is highly correlated with the time series for the level. The

dashed line indicates that in the two-factor model, the multiple correlation between the variance

level and the two factors is high as well. The bottom panel reports the correlation between the

slope of the smirk and the variance factors. The solid line again denotes the one-factor model

and the dashed line the multiple correlation for the two-factor model. Note that the slope of the

smirk is captured quite well when using the two-factor model, but considerably less convincingly

by the one-factor model. Altogether, Figure 11 indicates that the two-factor model is better at

capturing the slope of the smirk, even if the multiple correlation coe¢ cient indicates that some of

the variation in the smirk remains unexplained, especially in the early part of the sample.

Figure 12 reports on a similar analysis. Instead of regressing implied volatilities on moneyness,

we regress on a constant and maturity using only at-the-money options. Some important conclusions

obtain. Again the two models are fairly close in capturing the level of at-the-money variance (top

panel). However, the two-factor model (dashed line) is better than the one-factor model (solid line)

at capturing the slope of the term structure (bottom panel), particularly in the early and middle

parts of the sample.

14We also compared the performance of the one-factor and two-factor models by conducting a principal component

analysis on the �tted data. The variation in the �tted data explained by the �rst, second, and third factor is 95.95%,

3.35%, and 0.36% in the case of the one-factor model, and 94.62%, 3.42%, and 1.35% in the case of the two-factor

model. The patterns generated by the two-factor model are therefore closer to those in the data (see Table 2), but

the di¤erences between the models are not large along this dimension.
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When combining the �ndings from Figures 11 and 12 we arrive at the following conclusions.

First, the two-factor model o¤ers more �exibility than the one-factor model for modeling the ma-

turity dimension as well as the moneyness dimension. Second, although the two-factor model

substantially outperforms the one-factor model, the two-factor model seems to encounter some dif-

�culty in capturing moneyness e¤ects in the earlier part of the sample. This suggests that an even

richer model may be needed.

6 Summary and Conclusion

This paper investigates a tractable model for equity index option valuation that allows for rich

modeling of term structure and moneyness e¤ects. It is important to have simple yet robust

models that are relevant from a theoretical as well as a practical perspective, and we believe

that the two-factor SV model satis�es this criterion. We �nd that adding volatility factors to

an existing framework, and exploiting the pricing results of Heston (1993), greatly improves the

model�s �exibility to capture the volatility term structure. Moreover, we demonstrate that the

two-factor model is more �exible in capturing largely independent �uctuations in the level and the

slope of the volatility smirk, which are inextricably linked in the one-factor Heston model.

We are not the �rst to suggest the use of multiple volatility factors, but our discussion of the

role of multiple factors in capturing term structure and moneyness e¤ects is novel. This explains

why one-factor models are unable to account for some important stylized facts in index option data.

The in-sample and out-of-sample performance of the two-factor model, which is at par with the

most sophisticated models currently available in the literature, forcefully illustrates the power of

the multifactor approach.

The paucity of multifactor volatility models in the option valuation literature is remarkable when

one considers the related empirical literature on yield curve modeling. The theoretical models and

empirical techniques used in the option valuation literature are closely related to those used in

the yield curve literature. Interestingly, almost every paper in the yield curve literature uses a

multifactor model, and in fact three-factor models have become the standard. We speculate that

in the future, multifactor models may become as important for the equity option literature as they

are for the term structure literature.

A number of extensions to the analysis in this paper may prove worthwhile. First, it may prove

interesting to compare the relative value of adding jump components and additional variance factors

to a stochastic volatility model. The resulting models may have di¤erent implications for the mod-

eling of term structure and moneyness e¤ects, and their performance may di¤er in-sample as well

as out-of-sample. Second, an integrated analysis of multifactor models using options data as well

as underlying returns ought to be done. Following the observations of Bates (1996) and Broadie,

Chernov and Johannes (2007), it will be of particular interest to investigate the model�s pricing

performance when imposing consistency between physical and risk-neutral estimates. Third, the
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focus of our empirical analysis is to convince the reader that a second factor allows for more real-

istic modeling of conditional higher moments, which improves the modeling of term structure and

moneyness e¤ects. We leave open the question if additional factors are needed, and how they would

improve pricing performance. The out-of-sample performance of such models is of particular inter-

est, because often richly parameterized models perform poorly out-of-sample. Fourth, our analysis

also does not address the interesting question of how the dynamics of the di¤erent factors ought to

be speci�ed. We intentionally choose a simple speci�cation to obtain a closed-form solution. In the

term structure literature, recent empirical studies have demonstrated that multifactor models with

some square-root factors and some Gaussian factors outperform multifactor models with multiple

square-root factors. Also, while the variance factors in the model are assumed to be uncorrelated

in order to obtain a closed form solution, correlated factors may improve model �t.

In summary, our paper argues that we need multifactor models to capture some of the most

salient stylized facts in index option prices. We hope that our results will lead to a more extensive

search for an even better multifactor model.
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Figure 1: Average Implied Volatility in S&P500 Option Data and the CBOE VIX.
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Notes to �gure: The circles plot the average implied Black-Scholes volatility each Wednesday during

1990-2004. The average is taken across maturities and strike prices using the call options in our

data set. For comparison, the solid line shows the one-month, at-the-money VIX volatility index

retrieved from www.cboe.com.
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Figure 2: Principal Components for Implied Variance and Weekly Regressions on Moneyness
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Notes to �gure: The top two panels plot the �rst and second principal component for the implied

S&P500 index variance during 1990-2004. The principal component analysis is performed using

implied variances for each Wednesday during 1990-2004. In a �rst stage, a quadratic polynomial

in maturity and moneyness is �t for each Wednesday, using data for all available moneyness and

maturity. In a second stage, these estimates are used to generate a variance surface with standard-

ized moneyness and maturity. The principal component analysis is performed on this standardized

variance surface. The bottom two panels are obtained by regressing implied volatilities for all avail-

able contracts on a given day on an intercept and log moneyness. The resulting coe¢ cients can be

interpreted as the volatility level and the slope of the smirk on that day.
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Figure 3: Conditional Correlation between Stock Returns and Volatility.
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Notes to �gure: We plot correlation between stock returns and variance. We compute the correlation

on a year-by-year basis using the parameter estimates from Table 3. We report the time-varying

correlation for the two-factor model, as well as the constant (within the year) correlation for the

one-factor model.
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Figure 4: Conditional Correlation as a Function of the Variance Ratio.
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Notes to Figure: The conditional correlation between return and variance, Corrt[dS=S; dV ], is

plotted against the variance ratio, V1=V , where V = V1 + V2. The parameter values are �1 = 2:0,

�1 = �0:9, �2 = 0:2; and �2 = �0:8.
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Figure 5: Expected Future Variance in the One-Factor (solid) and Two-Factor (dashed) Models.
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Notes to �gure: We plot the expected future spot variance over a two-year horizon using parameter-

izations for the one-factor and two-factor models. For the one-factor model, the long run variance

a=b is 0:04, the mean reversion coe¢ cient b is 2, and the spot variance V is 0:03. For the two-factor

model, the long run variance is also 0:04, the mean reversion coe¢ cient for the �rst variance factor

b1 is 2 and for the second variance component b2 is 10. The long run mean is :02 for both factors.

The spot variances for the �rst factor V1 are 0, :01, :02, and :03 respectively, and the second spot

variance V2 is 0:03� V1 in all cases.
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Figure 6: Volatility Smirks for Selected Days and Maturities.
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Notes to �gure: We plot the volatility smirk for call options with either 23 or 29 days to maturity

on four di¤erent days: August 16, 1995, a low volatility day with a �at smirk, February 15, 1995,

a low volatility day with a steep smirk, September 26, 1990, a high volatility day with a �at smirk,

and October 24, 1990, a high volatility day with a steep smirk.
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. Figure 7.A: Volatility Smirks for the One-Factor (solid) and Two-Factor (dashed) Models.
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. Figure 7.B: Volatility Smirks for the One-Factor (solid) and Two-Factor (dashed) Models.

0.9 1 1.1

0.1
0.2

0.3

0.4

Im
pl

ie
d 

V
ol

0.9 1 1.1

0.1
0.2

0.3

0.4

Im
pl

ie
d 

V
ol

0.9 1 1.1

0.1

0.2

0.3

0.4

Moneyness (S/X)

Im
pl

ie
d 

V
ol

0.9 1 1.1

0.1

0.2

0.3

0.4

Moneyness (S/X)

Im
pl

ie
d 

V
ol

Notes to �gure: The dashed lines represent the volatility smirk for options with 30 days to maturity

using the following parameterization of the two-factor model: b1 = 2:597, a1=b1 = 0:053, �1 = 0:280,

�1 = �0:834, b2 = 2:597, a2=b2 = 0:053, �2 = 3:667, �2 = �0:957: In the top pictures of each panel,
the initial variance is 0:03, in the bottom pictures of each panel the initial variance is 0:07. In the

pictures on the left the spot variance factors are V1 = V and V2 = 0, in the pictures on the right

we have V2 = V and V1 = 0. In Panel A, the one-factor model is calibrated on the two-factor

data represented in the pictures on the left. In Panel B, the one-factor model is calibrated on the

two-factor data represented in the pictures on the right.
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Figure 8: Weekly In-Sample Root Mean Squared Error (IV RMSE). 1990-2004.
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Notes to �gure: The top panel shows the weekly root mean squared option valuation error (IV RMSE)

for the one-factor model. The bottom panel shows the ratio of the IV RMSEs for the two-factor

and one-factor models.
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Figure 9: IV RMSE from Stochastic Volatility Models versus Black-Scholes and Ad-Hoc Models.
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Notes to �gure: We plot the in-sample IV RMSE year-by-year for four models. The Black-Scholes

benchmark is calculated using a di¤erent volatility each week, but keeping that volatility constant

across the contracts observed in a given week. The Ad-Hoc benchmark is calculated as in Dumas,

Fleming and Whaley (1998) by regressing implied volatility on a second order polynomial in the

strike price and maturity.

34



Figure 10: Correlation between the Volatility Level and the Slope of the Volatility Smirk.
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Notes to �gure: We compute the correlation between the volatility level and the slope of the smirk

on a year-by-year basis. The volatility level and the slope are obtained by regressing implied

volatility on a measure of moneyness. In the top panel, implied volatilities are regressed on simple

log moneyness. In the bottom panel, implied volatilities are regressed on log moneyness normalized

by maturity. The dots denote correlations from data IVs, the solid line denotes IVs from the

one-factor model, and the dashes denote IVs from the two-factor model.
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Figure 11: Absolute Correlation of Variance Factors with Volatility Level and Slope of the Smirk.
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Notes to �gure: On a year-by-year basis, we compute the absolute correlation between the time-

series of the variance factors and the level and slope of the smirk obtained by regressing implied

volatility on moneyness. Moneyness is normalized by maturity. For the two-factor model, we

compute the multiple correlation coe¢ cient obtained by regressing either level or slope of the smirk

on both factors.
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Figure 12: Absolute Correlation of Variance Factors with Volatility Level and At-the-Money Term

Structure Slope.
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Notes to �gure: On a year-by-year basis, we compute the absolute value of the correlation between

the time-series of the variance factors and the level and slope of the at-the-money term structure

obtained by regressing implied volatility on maturity. Only contracts with moneyness between 0.96

and 1.04 are used in the regressions. For the two-factor model, we compute the multiple correlation

coe¢ cient obtained by regressing either level or slope of the term structure on both factors.
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DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
S/X<0.975 625 3,859 3,188 3,770 11,442

0.975<S/X<1 1,247 3,189 1,174 987 6,597
1<S/X<1.025 1,319 2,685 1,023 811 5,838

1.025<S/X<1.05 1,027 1,937 821 562 4,347
1.05<S/X<1.075 778 1,475 688 500 3,441

S/X>1.075 1,338 2,324 1,625 1,306 6,593
All 6,334 15,469 8,519 7,936 38,258

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
S/X<0.975 3.41 10.01 16.78 30.40 18.25

0.975<S/X<1 9.63 21.96 33.45 56.22 26.80
1<S/X<1.025 19.89 31.57 40.45 56.29 33.92

1.025<S/X<1.05 31.72 41.38 47.41 62.11 42.92
1.05<S/X<1.075 42.71 52.18 54.40 66.88 52.62

S/X>1.075 55.76 61.99 63.42 72.13 63.09
All 28.54 31.97 36.81 47.67 35.74

Table 1: S&P500 Index Call Option Data. 1990-2004.

Panel A. Number of Call Option Contracts

Panel B. Average Call Price

Panel C. Average Implied Volatility from Call Options
DTM<30 30<DTM<90 90<DTM<180 DTM>180 All

S/X<0.975 16.22 16.06 16.25 16.89 16.39
0.975<S/X<1 15.95 17.08 17.30 18.14 17.06
1<S/X<1.025 17.48 17.93 17.77 17.93 17.80

1.025<S/X<1.05 19.44 18.83 18.45 18.09 18.81
1.05<S/X<1.075 22.80 19.95 18.98 18.55 20.20

S/X>1.075 32.39 22.48 19.75 18.87 23.10
All 21.17 18.28 17.68 17.67 18.50

Notes to Table: Our sample consists of European call options written on the S&P500 index. We use closing 
quotes on every Wednesday during the January 1, 1990 to December 31, 2004 period. The moneyness and 
maturity filters used by Bakshi, Cao and Chen (1997) are applied here as well. The implied volatilities are 
extracted using the Black-Scholes formula.
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Maturity
S/K (days) First Second Third Fourth
0.90 30 0.139 0.072 0.307 0.286
0.90 60 0.141 0.027 0.275 0.179
0.90 90 0.143 -0.014 0.244 0.075
0.90 180 0.147 -0.105 0.151 -0.190
0.90 270 0.139 -0.107 0.049 -0.312
0.95 30 0.167 0.111 0.285 0.205
0.95 60 0.168 0.048 0.249 0.082
0.95 90 0.168 -0.009 0.214 -0.030
0.95 180 0.166 -0.137 0.121 -0.256
0.95 270 0.151 -0.162 0.039 -0.260
1.00 30 0.199 0.176 0.206 0.118
1.00 60 0.199 0.085 0.169 -0.012
1.00 90 0.198 0.004 0.135 -0.118
1.00 180 0.189 -0.175 0.055 -0.259
1.00 270 0.166 -0.227 0.005 -0.119
1 05 30 0 236 0 285 0 024 0 053

Table 2: Principal Component Analysis of Implied Variance. 

Principal Components

1.05 30 0.236 0.285 0.024 0.053
1.05 60 0.235 0.149 -0.002 -0.069
1.05 90 0.233 0.030 -0.026 -0.152
1.05 180 0.216 -0.222 -0.067 -0.157
1.05 270 0.185 -0.309 -0.063 0.147
1.10 30 0.277 0.463 -0.341 0.069
1.10 60 0.277 0.249 -0.329 -0.023
1.10 90 0.274 0.071 -0.320 -0.060
1.10 180 0.251 -0.289 -0.275 0.117
1.10 270 0.212 -0.422 -0.188 0.596

90.790 4.759 2.885 0.887

Notes to Table: We report factor loadings and percentage of variance explained by the first 
four principal components. The principal component analysis is performed using implied 
variances for each Wednesday during 1990-2004. In a first stage, a quadratic polynomial in 
maturity and moneyness is fit for each Wednesday, using data for all available moneyness 
and maturity.  In a second stage, these estimates are used to generate a variance surface with 
standardized moneyness and maturity. The principal component analysis is performed on this 
standardized variance surface.

Explained by PC:



Year b a/b σ ρ In-Smpl Out-Smpl In-Smpl Out-Smpl
1990 1.9561 0.0593 0.8516 -0.6717 2.1149 NA 0.8757 NA 2,857
1991 2.4240 0.0442 0.5834 -0.6957 2.1080 2.3052 0.7488 0.8681 2,974
1992 2.5476 0.0375 0.5519 -0.6865 2.0033 2.0432 0.7127 0.8861 3,345
1993 2.6846 0.0254 0.5105 -0.6703 2.8983 3.0412 0.8016 0.7843 3,578
1994 4.4324 0.0233 0.4560 -0.8519 2.8183 2.8504 0.7950 0.8004 4,297
1995 2.5070 0.0190 0.5597 -0.5061 2.3416 2.5352 0.6360 0.6873 4,701
1996 3.1798 0.0298 0.5823 -0.5619 1.0477 1.3212 0.6109 0.6231 1,558
1997 2.1672 0.0528 0.6018 -0.5666 1.3907 1.7610 0.7520 0.6234 2,214
1998 1.8315 0.1029 0.8079 -0.7521 1.5289 2.1847 0.7945 0.7943 2,062
1999 2.1310 0.1091 0.7552 -0.7404 1.1587 1.3933 0.8605 0.7681 1,883
2000 2.5751 0.0678 0.6561 -0.6975 0.9527 1.5845 0.5892 0.7406 1,817
2001 3.8191 0.0564 0.6489 -0.7410 0.9880 1.0848 0.7101 0.7499 1,627
2002 3.3760 0.0532 0.5973 -0.7725 1.1585 1.2022 0.6364 0.6365 1,609
2003 1.7201 0.0691 0.6837 -0.5939 0.8788 1.0039 0.6868 0.6581 1,845
2004 1.6048 0.0464 0.3796 -0.7670 1.1839 1.5452 0.7205 0.6362 1,891
Total 1.9945 2.1670 0.7587 0.7721 38,258

Table 3: Parameter Estimates and Option Fit.

Panel A: One-Factor Stochastic Volatility Model
Parameter Estimates IVRMSE Number 

of obs
Ratio: 2F/1F

Panel B: Two-Factor Stochastic Volatility Model

Year b1 a1/b1 σ1 ρ1 b2 a2/b2 σ2 ρ2 In-Smpl Out-Smpl
1990 0.2370 0.0227 1.0531 -0.7695 8.4983 0.0273 0.6827 -0.8417 1.8520 NA
1991 0.2966 0.0197 1.8157 -0.8575 4.4513 0.0319 0.3360 -0.6057 1.5784 2.0012
1992 0.2022 0.0051 6.2755 -0.9670 0.7424 0.0684 0.2740 -0.8040 1.4277 1.8104
1993 0.2000 0.0052 5.2500 -0.9666 0.6131 0.0569 0.2123 -0.8216 2.3233 2.3852
1994 0.1668 0.0050 9.4346 -0.9877 0.2098 0.1633 0.1706 -0.9364 2.2406 2.2816
1995 0.2061 0.0050 6.8941 -0.9206 1.4677 0.0242 0.2413 -0.7512 1.4893 1.7424
1996 0.2101 0.0052 2.0149 -0.9684 0.5561 0.0575 0.1868 -0.7978 0.6400 0.8233
1997 0.1397 0.0053 1.5423 -0.9914 0.1878 0.1648 0.1239 -0.8928 1.0457 1.0979
1998 0.1374 0.0051 2.1196 -0.9917 0.6247 0.1733 0.3965 -0.9117 1.2147 1.7354
1999 0.1388 0.0051 1.9895 -0.9917 0.7322 0.1736 0.3828 -0.9108 0.9970 1.0702
2000 0.1404 0.0052 1.9382 -0.9915 0.3542 0.1690 0.2292 -0.9024 0.5614 1.1735
2001 0.1433 0.0054 1.9115 -0.9911 0.2347 0.1655 0.2047 -0.8983 0.7016 0.8135
2002 0.1491 0.0058 1.9754 -0.9902 0.1855 0.1607 0.1715 -0.8896 0.7373 0.7652
2003 0.1638 0.0032 8.8078 -0.9838 0.4625 0.1198 0.3976 -0.6569 0.6036 0.6607
2004 0.1500 0.0059 1.9829 -0.9902 0.2335 0.1621 0.1971 -0.8918 0.8529 0.9830
Total 1.5133 1.6733

First Factor Estimates Second Factor Estimates IVRMSE

Notes to Table: Each model is estimated year-by-year using the Wednesday closing option quotes from Table A.1. 
The structural parameters reported above and the weekly spot volatilities are estimated using the iterative two-step 
method outlined in Section 4. The in sample root mean squared errors (RMSE) are calculated using the Black-Scholes 
Vega approximation to IVRMSE. The Ratio IVRMSE is calculated by normalizing each two-factor IVRMSE with the 
IVRMSE from the one-factor model. 

y



DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
S/X<0.975 1.9400 1.2418 0.8903 0.9328 1.1105

0.975<S/X<1 1.6819 1.0346 0.8160 0.9331 1.1406
1<S/X<1.025 1.4368 0.9272 0.8328 0.9080 1.0478

1.025<S/X<1.05 2.3232 0.9579 0.8722 0.9930 1.3983
1.05<S/X<1.075 3.9814 1.4389 0.9198 1.1553 2.1988

S/X>1.075 7.1687 3.0466 1.4555 1.7891 3.8545
All 3.8776 1.5689 1.0087 1.1343 1.9945

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
S/X<0.975 1.3562 0.8718 0.7250 0.8457 0.8596

0.975<S/X<1 1.3198 0.7753 0.6754 0.7530 0.8865
1<S/X<1.025 1.2765 0.7554 0.7425 0.7854 0.9016

1.025<S/X<1.05 1.8250 0.8851 0.8930 0.8582 1.1755
1.05<S/X<1.075 2.6039 1.2217 1.0500 0.9725 1.5908

S/X>1 075 5 1843 2 2435 1 4724 1 5963 2 8754

Table 4: IVRMSE and Ratios by Moneyness and Maturity. 1990-2004. In-Sample.

Panel A. IVRMSE from One-Factor Model.

Panel B. IVRMSE from Two-Factor Model.

S/X>1.075 5.1843 2.2435 1.4724 1.5963 2.8754
All 2.8132 1.1871 0.9514 1.0022 1.5133

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
S/X<0.975 0.6991 0.7021 0.8143 0.9066 0.7741

0.975<S/X<1 0.7847 0.7494 0.8277 0.8069 0.7772
1<S/X<1.025 0.8884 0.8147 0.8915 0.8650 0.8605

1.025<S/X<1.05 0.7855 0.9240 1.0238 0.8643 0.8407
1.05<S/X<1.075 0.6540 0.8490 1.1416 0.8417 0.7235

S/X>1.075 0.7232 0.7364 1.0116 0.8923 0.7460
All 0.7255 0.7567 0.9432 0.8836 0.7587

Notes to Table: We use the parameter estimates in Table 3 to compute the implied volatility 
root mean squared option valuation error (IVRMSE) for various moneyness and maturity bins. 
Panel A reports the IVRMSE for the one-factor model. Panel B reports IVRMSE from the two-
factor model. Panel C reports the ratio of the IVRMSE from the two-factor model to the 
IVRMSE from the one-factor model.

Panel C. IVRMSE Ratio: Two-Factor Model over One-Factor Model.
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