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Abstract

We provide results for the valuation of European style contingent claims for a large class

of speci�cations of the underlying asset returns. Our valuation results obtain in a discrete

time, in�nite state-space setup using the no-arbitrage principle and an equivalent martin-

gale measure. Our approach allows for general forms of heteroskedasticity in returns, and

valuation results for homoskedastic processes can be obtained as a special case. It also

allows for conditional non-normal return innovations, which is critically important because

heteroskedasticity alone does not su¢ ce to capture the option smirk. We analyze a class

of equivalent martingale measures for which the resulting risk-neutral return dynamics are

from the same family of distributions as the physical return dynamics. In this case, our

framework nests the valuation results obtained by Duan (1995) and Heston and Nandi

(2000) by allowing for a time-varying price of risk and non-normal innovations. We provide

extensions of these results to more general equivalent martingale measures and to discrete

time stochastic volatility models, and we analyze the relation between our results and those

obtained for continuous time models.
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A contingent claim is a security whose payo¤ depends upon the value of another underlying

security. A valuation relationship is an expression that relates the value of the contingent claim

to the value of the underlying security and other variables. The most popular approach for

valuing contingent claims is the use of a Risk Neutral Valuation Relationship (RNVR).

Most of the literature on contingent claims and most of the applications of the RNVR have

been cast in continuous time. While the continuous-time approach o¤ers many advantages, the

valuation of contingent claims in discrete time is also of substantial interest. For example, when

hedging option positions, rebalancing decisions must be made in discrete time, and in the case of

American and exotic options, early exercise decisions must be made in discrete time. However,

by far the most important advantage of working in discrete time is econometric convenience.

It is di¢ cult to estimate continuous-time processes, because of the complexity of the resulting

�ltering problem for processes that adequately capture stylized facts, such as Heston�s (1993a)

stochastic volatility model. In contrast, for many of the models we study in this paper, the

resulting �ltering problem is extremely simple.

Because of the econometric convenience, most of the stylized facts characterizing underlying

securities have been studied in discrete-time models. One very important feature of returns

is conditional heteroskedasticity, which can be addressed in the GARCH framework of Engle

(1982) and Bollerslev (1986).1 Presumably, because of this evidence, most of the recent empirical

work on discrete-time option valuation has also focused on GARCH processes.2 The GARCH

model amounts to an in�nite state space setup, with the innovations for underlying asset returns

described by continuous distributions. In this case the market is incomplete, and it is in general

not possible to construct a portfolio containing combinations of the contingent claim and the

underlying asset that make the resulting portfolio riskless.3

To obtain a RNVR, the GARCH option valuation literature builds on the approach of Ru-

binstein (1976) and Brennan (1979), who demonstrate how to obtain RNVRs for lognormal and

normal returns in the case of constant mean return and volatility, by specifying a representative

agent economy and characterizing su¢ cient conditions on preferences. For a given dynamic of

the underlying security, speci�c assumptions have to be made on preferences in order to obtain a

1See for example French, Schwert and Stambaugh (1987) and Schwert (1989) for early studies on stock returns.
The literature is far too voluminous to cite all relevant papers here. See Bollerslev, Chou and Kroner (1992) and
Diebold and Lopez (1995) for reviews on GARCH modeling.

2See Bollerslev and Mikkelsen (1996), Satchell and Timmermann (1996), Garcia and Renault (1998), Heston
and Nandi (2000), Christo¤ersen and Jacobs (2004), Christo¤ersen, Heston and Jacobs (2006), and Barone-Adesi,
Engle and Mancini (2008) for applications to option valuation.

3In a discrete time �nite state space setting, Harrison and Pliska (1981) provide the mathematical framework
to obtain the existence of the risk neutral probability measure, to demonstrate uniqueness in the case of complete
markets, and to get a RNVR for any contingent claim. See also Harrison and Kreps (1979), Cox, Ross and
Rubinstein (1979) and Cox and Ross (1976) for discrete-time �nite state-space approaches.

2



risk neutralization result.4 The �rst order condition resulting from this economy yields an Euler

equation that can be used to price any asset. For lognormal stock returns and a conditionally

heteroskedastic (GARCH) volatility dynamic, the standard result is the one in Duan (1995).

Duan�s result relies on the existence of a representative agent with constant relative risk aversion

or constant absolute risk aversion.5

Because it is di¢ cult to characterize the general equilibrium setup underlying a RNVR, very

few valuation results are currently available for heteroskedastic processes with non-normal in-

novations.6 In this paper, we argue that it is possible to investigate option valuation for a

large class of conditionally non-normal heteroskedastic processes, provided that the conditional

moment generating function (MGF) exists. It is also possible to accommodate a large class of

time-varying risk premia. Our framework di¤ers from the approach in Brennan (1979) and Duan

(1995), and is more intimately related to the approach adopted in continuous-time option valua-

tion: we only use the no-arbitrage assumption and some technical conditions on the investment

strategies to show the existence of an RNVR. We demonstrate the existence of an EMM and

characterize it, without �rst making an explicit assumption on the utility function of a represen-

tative agent. We then show that the price of the contingent claim de�ned as the expected value

of the discounted payo¤ at maturity is a no-arbitrage price and characterize the risk-neutral

dynamic. We provide results for GARCH processes and for more general discrete-time stochastic

volatility models. We also analyze several important limit results for the discrete-time processes

we consider, and we discuss the relationships between risk-neutralization in these models and

continuous-time stochastic volatility models.

Why are we able to provide more general valuation results than the existing literature? In

our opinion, the analysis in Brennan (1979) and Duan (1995) addresses two important questions

simultaneously: First, a mostly technical question that characterizes the risk-neutral dynamic

and the valuation of options; second, a more economic one that characterizes the equilibrium

underlying the valuation procedure. The existing discrete-time literature for the most part has

viewed these two questions as inextricably linked, and has therefore largely limited itself to

(log)normal return processes as well as a few special non-normal cases. Our paper di¤ers in a

4Brennan (1979) characterizes the bivariate distribution of returns on aggregate wealth and the underlying
asset under which a risk-neutral valuation relationship obtains in the homoskedastic case. Camara (2003) uses
this approach to obtain valuation results for transformed normal dynamics of returns and state variables. See
also Schroder (2004).

5See also Amin and Ng (1993) who study the heteroskedastic case by making an assumption on the bivariate
distribution of the stochastic discount factor and the underlying return process.

6Duan, Ritchken and Sun (2005) analyze a heteroskedastic model with Poisson-normal innovations and Duan
(1999) analyzes a conditionally fat-tailed heteroskedastic model. Christo¤ersen, Heston and Jacobs (2006) use a
heteroskedastic return dynamic with inverse Gaussian innovations. Other studies analyze non-normal innovations.
Madan and Seneta (1990) use the symmetric and i.i.d. variance gamma distribution. Heston (1993b) presents
results for the gamma distribution and Heston (2004) analyzes a number of in�nitely divisible distributions.
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subtle but important way from most existing studies. We argue that it is possible and desirable to

treat these questions one at a time. We do not attempt to characterize the preferences underlying

the risk-neutral valuation relationship. Instead, we assume a class of Radon-Nikodym derivatives

and search for an EMM within this class. This allows us to provide some general results on the

valuation of options under conditionally non-normal asset returns without fully characterizing

the economic environment. We also show how the normal model and available conditional non-

normal models are special cases of our setup.

The same approach of separating these two questions occurs in the literature on option valu-

ation using continuous-time stochastic volatility models, such as for instance in Heston�s (1993a)

model. These models yield di¤erent equivalent martingale measures for di¤erent speci�cations

of the volatility risk premium. For a given speci�cation of the volatility risk premium, one can

�nd an EMM and characterize the risk-neutral dynamic using Girsanov�s theorem. To derive

this result, and to value options, there is no need to explicitly characterize the utility function

underlying the volatility risk premium. The latter task is very interesting in its own right, but

di¤ers from characterizing the risk-neutral dynamic and the option value for a given physical re-

turn dynamic.7 The latter is a purely mathematical exercise. The former provides the economic

background behind a particular choice of volatility premium, and therefore helps us understand

whether a particular choice of functional form for the risk premium, which is often made for

convenience, is also reasonable from an economic perspective.

The paper proceeds as follows. In Section 1 we de�ne a class of heteroskedastic stock return

processes, and we characterize the condition for an EMM for this class of processes. We then show

su¢ cient conditions for an EMM to exist and we derive the risk neutral distribution of returns. In

Section 2 we further discuss the choice of EMM in Section 1, and introduce a more general class

of EMMs. Section 3 derives the no-arbitrage option price corresponding to the EMM. Section

4 discusses several special cases of return dynamics that can be analyzed using our approach.

Section 5 provides continuous-time limits of a number of important models. Section 6 introduces

an extension to discrete-time stochastic volatility models and compares it with the benchmark

continuous time model. Section 7 concludes.

1 Conditionally Heteroskedastic Models

In Section 1.1 we de�ne the stock price process that we use in Sections 1 through 5. This process

is able to accommodate the class of ARCH and GARCH processes. In Sections 1.2-1.6, we

then analyze the risk-neutralization of this stock price process using a particularly convenient

candidate Radon-Nikodym derivative.

7See for instance Heston (1993a) and Bates (1996, 2000) for a discussion.
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We use P to describe the physical distribution of the states of nature. The �nancial market

consists of a zero-coupon risk-free bond index and a stock. The dynamics of the bond are

described by the process fBtgTt=0 normalized to B0 = 1 and the dynamics of the stock price by
fStgTt=0. The information structure is given by the �ltration F = fFtj t = 0; :::; Tg generated by
the stock and the bond process.

1.1 The stock price process

The underlying stock price process is assumed to follow the conditional distribution D under the

physical measure P . We write

Rt � ln
�

St
St�1

�
= �t � 
t + "t "tjFt�1 � D(0; �2t ) (1.1)

where St is the stock price at time t, and �2t is the conditional variance of the log return in period

t. The mean correction factor, 
t, is de�ned from

exp (
t) � Et�1 [exp ("t)]

and it serves to ensure that the conditional expected gross rate of return, Et�1 [St=St�1], is equal

to exp(�t). More explicitly,

Et�1 [St=St�1] = Et�1 [exp (�t � 
t + "t)] = exp(�t)

() exp(
t) = Et�1 [exp ("t)]

Note that our speci�cation (1.1) does not restrict the risk premium in any way, nor does it assume

conditional normality.

For now, we follow most of the existing discrete-time empirical �nance literature by focusing

on conditional means �t and conditional variances �
2
t that are Ft�1 measurable. We will relax

this assumption in Section 6. We do not constrain the interest rate rt to be constant. It is

instead assumed to be an element of Ft�1 as well. This setup is able to accommodate the class

of ARCH and GARCH processes proposed by Engle (1982) and Bollerslev (1986) and used for

option valuation by Amin and Ng (1993), Duan (1995, 1999), and Heston and Nandi (2000).

Our results also hold for di¤erent types of GARCH speci�cations, such as the EGARCH model

of Nelson (1991) or the speci�cation of Glosten, Jagannathan and Runkle (1993).

In the following, we show that we can �nd an EMM by de�ning a probability measure that

makes the discounted security process a martingale. We derive more general results on option

valuation for heteroskedastic processes compared to the available literature, because we focus
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on the narrow question of option valuation while ignoring the economic question regarding the

preferences of the representative agent that support this valuation argument in equilibrium.

We use a no-arbitrage argument that is similar to the one used in the continuous-time lit-

erature. We �rst prove the existence of an EMM. Subsequently we demonstrate the existence

of a RNVR by demonstrating that the price of the contingent claim, de�ned as the expected

value of the discounted payo¤ at maturity, is a no-arbitrage price under this EMM.8 The proof

uses an argument similar to the one used in the continuous-time literature, but is arguably

more straightforward as it avoids the technical issues involved in the analysis of local and super

martingales.

1.2 Specifying an equivalent martingale measure

The objective in this section is to �nd a measure equivalent to the physical measure P that makes

the price of the stock discounted by the riskless asset a martingale. An EMM is de�ned as long

as the Radon-Nikodym derivative is de�ned. We start by specifying a candidate Radon-Nikodym

derivative of a probability measure. We then show that this Radon-Nikodym derivative de�nes

an EMM that makes the discounted stock price process a martingale. This result in turn allows

us to obtain the distribution of the stock return under this EMM.

For a given predetermined sequence, f�tg, we de�ne the following candidate Radon-Nikodym
derivative

dQ

dP

����Ft = exp
 
�

tX
i=1

(�i"i +	i (�i))

!
(1.2)

where 	t (u) is de�ned as the natural logarithm of the moment generating function

Et�1 [exp(�u"t)] � exp (	t (u))

Note that we can think of the mean correction factor in (1.1) as 
t = 	t (�1). Note also that in
the normal case we have 	t (u) = 1

2
�2tu

2 and 
t = 	t (�1) = 1
2
�2t .

We can now show the following lemma

Lemma 1 dQ
dP

��Ft is a Radon-Nikodym derivative

8Duan (1995) refers to RNVR as Local RNVR in the case of GARCH. The reason for the distinction is that
(under normality) the conditional volatility is identical under the two measures only one period ahead. In the
remainder of the paper we will drop this distinction for ease of exposition. We emphasize that the result that
the conditional volatility di¤ers between the two measures for more than one period ahead is to be expected as
volatility is random in this case. This feature is very similar to the continuous time case, which has random
volatility for any horizon.
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Proof. We need to show that dQ
dP

��Ft > 0 which is immediate. We also need to show that

EP0
�
dQ
dP

��Ft� = 1: We have
EP0

�
dQ

dP

����Ft� = EP0

"
exp

 
�

tX
i=1

(�i"i +	i (�i))

!#
:

Using the law of iterative expectations we can write

EP0

�
dQ

dP

����Ft� = EP0

"
EP1 :::E

P
t�1 exp

 
�

tX
i=1

(�i"i +	i (�i))

!#

= EP0

"
EP1 :::E

P
t�2 exp

 
�

t�1X
i=1

�i"i �
tX
i=1

	i (�i)

!
EPt�1 exp (��t"t)

#

= EP0

"
EP1 :::E

P
t�2 exp

 
�

t�1X
i=1

�i"i �
tX
i=1

	i (�i)

!
exp (	t (�t))

#

= EP0

"
EP1 :::E

P
t�2 exp

 
�

t�1X
i=1

�i"i �
t�1X
i=1

	i (�i)

!#

Iteratively, using this result we get

EP0

�
dQ

dP

����Ft� = EP0 [exp (��1"1 �	1 (�1))]

= exp (�	1 (�1)) exp (	1 (�1)) = 1

and the lemma obtains.

We are now ready to show that we can specify an EMM using this Radon-Nikodym derivative.

Proposition 1 The probability measure Q de�ned by the Radon-Nikodym derivative in (1.2) is

an EMM if and only if

	t (�t � 1)�	t (�t)� 
t + �t�
2
t = 0 (1.3)

where �t =
�t � rt
�2t

.

Proof. We need EQ
�
St
Bt

����Ft�1� = St�1
Bt�1

or equivalently EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = 1. We have
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EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = EP

" 
dQ
dP

��Ft
dQ
dP

��Ft�1
!

St
St�1

=
Bt
Bt�1

�����Ft�1
#

= EP

" 
dQ
dP

��Ft
dQ
dP

��Ft�1
!

St
St�1

exp(�rt)
�����Ft�1

#
= EP [exp (��t"t �	t (�t)) exp(�t � 
t + "t) exp(�rt)jFt�1]
= exp (�	t (�t) + �t � rt � 
t)E

P [exp ((1� �t) "t) jFt�1]
= exp (�	t (�t) + �t � rt � 
t +	t (�t � 1))

Thus Q is a probability measure that makes the stock discounted by a riskless asset a martingale

if and only if

	t (�t � 1)�	t (�t)� 
t + �t�
2
t = 0 (1.4)

This result implies that we can construct an EMM by choosing the sequence f�tg to make (1.4)
hold.9

1.3 Solving for the EMM

In this section we develop various results on the existence of a solution to (1.4), conditional on

our assumption regarding the family of Radon-Nikodym derivatives.

Note �rst that in the conditional normal special case we get the solution to be the well-known

price of risk �t = �t = (�t � rt) =�
2
t . Note also that if we additionally specify the conditional

mean of the excess return to be a¢ ne in �2t , so that �t = rt + ��2t , then �t is simply a constant

�.

When allowing for conditional non-normal returns, we need to put some structure on 	t (:)

in order to analyze the existence of a solution to (1.4). In Section 4 below we consider some

important non-normal special cases where an explicit solution for �t can be found. More generally,

we provide the following result.

Proposition 2 If 	 is strictly convex, twice di¤erentiable, and tends to in�nity at the boundaries
of its domain (u1; u2) where u1 + 1 < u2, then there exists a solution to equation (1.4). This

solution is unique. Note that u1 and u2 are not restricted to be �nite.

Proof. See the Appendix.
Proposition 2 provides a set of su¢ cient, not necessary, conditions for a unique solution to

exist within the class of Radon-Nikodym derivatives de�ned by (1.2). A similar result can be

9See Shiryaev (1999) for an introduction to the conditional use of the Radon-Nikodym derivative.
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obtained assuming that 	 is strictly concave. However, the parametric examples we consider

below are part of the class of in�nitely divisible distributions, thus ensuring that strict convexity

holds (Feller, 1968), and therefore the strict convexity assumption in Proposition 2 is more

realistic for our purposes.10 In Section 4 below, we discuss the other conditions in Proposition 2

on a case-by-case basis, and thus verify that overall these conditions are very reasonable.

In the absence of su¢ cient conditions, an approximate solution to the EMM equation in (1.4)

can be obtained from the second-order approximations

	t (�t � 1) � 	t (0) + 	
0
t (0) (�t � 1) + 1

2
	00t (0) (�t � 1)

2

	t (�t) � 	t (0) + 	
0
t (0) �t +

1
2
	00t (0) �

2
t

From the de�nition of the mean-zero shock "t we have that 	0t (0) = Et�1 ["t] = 0, and 	00t (0) =

V art�1 ["t] = �2t , so that the approximation along with the EMM condition (1.4) gives us

�t �
�t � rt
�2t

+
1

2
� 
t
�2t

(1.5)

Notice that this approximation is exact in the normal case, where 
t =
1
2
�2t and �t = (�t � rt) =�

2
t :

This approximate solution can be used in place of the exact solution, or it can be used as a starting

value in a numerical search for the exact �t.

Note �nally that (1.4) suggests that the problem of �nding a solution for �t can be circum-

vented altogether if one is willing to put more structure on the return process in (1.1). If the

conditional return mean is speci�ed as follows

�t = rt +	t (�t)�	t (�t � 1) + 
t, (1.6)

then the EMM condition in (1.4) is trivially satis�ed for any value of �t. Thus �t can be set to

a constant �, to be estimated as part of the return dynamic. This approach is viable but su¤ers

from the drawback that the return mean dynamic is now motivated by convenience rather than

empirical relevance. Note that in the normal case this approach yields

Rt = rt +	t (�)�	t (� � 1) + "t "tjFt�1 � N(0; �2t )

= rt + ��2t � 1
2
�2t + "t

which corresponds to an a¢ ne risk premium.

We emphasize that the uniqueness result in Proposition 2 and the solution strategies in (1.5)

10Gourieroux and Monfort (2007) provide similar conditions in a setup with a stochastic discount factor. They
do not relate their result to the class of ini�nitely divisible distributions.
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and (1.6) are conditional on the assumption on the Radon-Nikodym derivative in (1.2) and are

therefore not fully general. In Section 2 we present a more general result, but we are not able to

completely characterize the class of all possible RN derivatives.

1.4 Characterizing the risk-neutral distribution

When pricing options using Monte Carlo simulation, knowing the risk neutral distribution is

valuable. In this section, we derive an important result that shows that for the class of models we

investigate and using the class of Radon-Nikodym derivatives in (1.2), the risk neutral distribution

is from the same family as the original physical distribution.

We �rst need the following lemma where we recall that 	t (u) denotes the one-day log con-

ditional moment generating function

Lemma 2
EQt�1 [exp (�u"t)] = exp (	t (�t + u)�	t (�t))

Proof.

EQt�1 [exp (�u"t)] = EP

" 
dQ
dP
jFt

dQ
dP
jFt�1

!
exp(�u"t)jFt�1

#
= EP [exp (��t"t �	t (�t)) exp(�u"t)jFt�1]
= exp (	t (�t + u)�	t (�t))

From this lemma, if we de�ne 	Qt (u) to be the log conditional moment generating function

under the risk neutral probability measure, then we have

	Qt (u) = 	t (�t + u)�	t (�t) (1.7)

While other candidate risk-neutral log MGFs are available, corresponding to other choices of

Radon-Nikodym derivatives, this particular speci�cation is extremely convenient because for

many physical innovation distributions, it provides a tractable risk-neutral distribution, building

on the work of Esscher (1932).11 From this we can derive

EQt�1 ["t] =
@	Qt (�u)

@u

�����
u=0

= �	0t (�t)

11For applications of the Esscher transform in option valuation, see Buhlmann, Delbaen, Embrechts and
Shiryaev (1996, 1998), Gerber and Shiu (1994), and Siu, Tong and Yang (2004). See Dai and Singleton (2006)
for an application to term structure models.
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De�ne the risk neutral innovation

"�t � "t � EQt�1 ["t] = "t +	
0
t (�t) (1.8)

The risk-neutral log conditional moment generating function of "�t , labeled 	
Q�
t (u), is then

	Q�t (u) = �u	0t (�t) + 	
Q
t (u) (1.9)

We are now ready to show the following

Proposition 3 If the physical conditional distribution of "t is an in�nitely divisible distribution
with �nite second moment, then the risk-neutral conditional distribution of "�t is also an in�nitely

divisible distribution with �nite second moment.

Proof. See the Appendix.
In the special case of the normal distribution we get simply

"�t = "t +	
0
t (�t) = "t + �t � rt

and 	Q�t (u) = 1
2
�2tu

2 so that the risk-neutral innovations are normal and correspond to the

physical innovations shifted by the equity risk premium. In the more general case, the relationship

between physical and risk-neutral innovations is not necessarily this simple.

Because of the one-to-one mapping between moment generating functions and distribution

functions, the proposition can be used to derive speci�c parametric risk-neutral distributions

consistent with the parametric physical distributions assumed by the researcher.

1.5 Characterizing the risk-neutral conditional variance

The conditional risk-neutral variance, ��2t , is of particular interest in the dynamic heteroskedastic

models we consider. It can be obtained by taking the second derivative of the risk neutral log

conditional moment generating function 	Q�t (u) and evaluating it at u = 0. Using equations

(1.9) and (1.7) we get

��2t =
@2	Q�t (�u)

@u2

�����
u=0

= 	00t (�t)

Recall that by de�nition, the conditional variance under the physical measure is �2t = 	00t (0).

Thus in general we have the following relationship between the (one day ahead) conditional

variances under the two measures

��2t = �2t
	00t (�t)

	00t (0)
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For conditionally normal returns, we have 	t (u) = 1
2
�2tu

2 and �t = (�t � rt) =�
2
t , so that

	00t (�t) = 	00t (0) and thus �
�2
t = �2t , but this will not generally be the case for non-normal

distributions. Non-normality drives an additional wedge between the physical and risk-neutral

conditional variances. Interestingly, this phenomenon is often observed empirically, as physical

volatility measures from historical returns are systematically lower than risk-neutral volatilities

implied from options. See for example Carr and Wu (2009).

We can use our results to provide some more insight into this wedge between one day ahead

physical and risk-neutral conditional variances. Consider the following approximation to the

risk-neutral variance

��2t = 	
00
t (�t) � 	00t (0) + 	000t (0)�t +

	0000t (0)

2
�2t

Denoting conditional skewness by skewt and conditional excess kurtosis by kurtt, we have

	000t (0) = �skewt�3t and 	0000t (0) = kurtt�
4
t . Therefore

��2t � �2t � skewt�
3
t�t +

kurtt
2

�4t�
2
t (1.10)

From (1.5), �t can be thought of as a modi�ed Sharpe ratio, and will generally be positive.

Therefore, from (1.10), the risk neutral variance will always be larger than the historical variance

if conditional skewness is negative and/or excess kurtosis is positive.

Furthermore, we can characterize the risk-neutral conditional variance dynamic. As an exam-

ple, start from the simple GARCH(1,1) dynamic of Bollerslev (1986) for the physical conditional

variance

�2t = �0 + �1�
2
t�1 + �2�

2
t�1"

2
t�1 (1.11)

which can be shown to lead to the risk-neutral variance dynamic

��2t = �0;t + �1;t�
�2
t�1 + �2;t

�
"�t�1 �	0(�t�1)

�2
where

�0;t = �0
	00t (�t)

	00t (0)
; �1;t = �1

	00t (�t)

	00t (0)

	00t�1(0)

	00t�1(�t�1)
; �2;t = �2

	00t (�t)

	00t (0)

Under normality �0;t = �0, �1;t = �1, and �2;t = �2, and therefore

��2t = �0 + �1�
�2
t�1 + �2

�
"�t�1 �	0(�t�1)

�2
(1.12)

Taking into account that under normality we also have ��2t = �2t , this can be re-written as

�2t = �0 + �1�
2
t�1 + �2

�
"�t�1 �	0(�t�1)

�2
(1.13)
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Note that (1.13) can also be derived by using the expression for the risk-neutral innovation (1.8)

in (1.11). This derivation does not depend on normality. Therefore, (1.13) holds in general but

it is only under normality that the risk-neutral variance (1.12) follows the same dynamic with

the same coe¢ cients, which is consistent with the �nding that ��2t = �2t for conditionally normal

returns. We will discuss the implications of conditionally non-normal returns further below, and

give explicit examples of non-normal distributions that generate the interesting and important

empirical feature that physical and risk-neutral one day ahead conditional variances di¤er.

1.6 Characterizing risk-neutral conditional skewness

We can also derive a useful result on risk-neutral skewness. Using

	000t (0) = �skewt�3t and 	000t (�t) = �skew�t��3t

as well as

	000t (�t) � 	000t (0) + 	0000t (0) �t and 	0000t (0) = kurtt�
4
t

we get that

�skew�t��3t � �skewt�3t + kurtt�
4
t�t

skew�t � skewt

�
�t
��t

�3
� kurtt

�4t�t
��3t

Note that for the empirically relevant case where �t � ��t , we have skewt
�
�t
��t

�3
� skewt.

Therefore skew�t � skewt for the empirically relevant case where the price of risk �t � 0 and

kurtt � 0.

2 Generalized EMMs and Option Price Bounds

While the one-shock stock price processes in Section 1.1, and the GARCH processes nested in

it, imply an incomplete-markets setup, we do obtain a unique price conditional on the choice of

Radon-Nikodym derivative. Clearly therefore there have to be other valid prices corresponding

to other choices of Radon-Nikodym derivative. We now characterize EMMs corresponding to

other classes of Radon-Nikodym derivatives.
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2.1 Generalized EMMs in GARCH models

We use the dynamic of the stock price process under the physical measure in (1.1), with 	t (u)

the natural logarithm of the moment generating function. In order to allow for as much generality

as possible while still staying in our framework, we de�ne a class of Radon-Nikodym derivatives

de�ned by a general log-MGF under Q, call it 
t (u). We then show which restrictions need to

be placed on 
t (u) in order for it to result in a proper EMM.

First, de�ne the following candidate Radon-Nikodym derivative for a given predetermined

sequence of log moment generating functions f
t (u)g, which is Ft�1 adapted,

dQ

dP

����Ft = tY
j=1

R +1
�1 exp (�iu"j + 
j (�iu)) duR +1
�1 exp (�iu"j +	j (�iu)) du

(2.1)

Lemma 3 dQ
dP

��Ft is a Radon-Nikodym derivative

Proof. We need to show that dQ
dP

��Ft > 0. For each j, exp (
j (�iu)) is a characteristic function
which is absolutely integrable over (-1; +1). Using the inversion formula (Lukacs (1970, p.
33)), qj ("j) = 1

2�

R +1
�1 exp (�iu"j + 
j (�iu)) du is the corresponding density function. Similarly

pj ("j) =
1
2�

R +1
�1 exp (�iu"j +	j (�iu)) du is a density function. Therefore

dQ

dP

����Ft = tY
j=1

qj ("j)

pj ("j)

We have dQ
dP

��Ft > 0 because density functions are always positive. We also need to show

EP0
�
dQ
dP

��Ft� = 1: We have
EP0

�
dQ

dP

����Ft� = EP0

"
tY
j=1

qj ("j)

pj ("j)

#
:

Using the law of iterated expectations we have

EP0

�
dQ

dP

����Ft� = EP0

"
EP1 :::E

P
t�1

tY
j=1

qj ("j)

pj ("j)

#

= EP0

"
EP1 :::E

P
t�2

t�1Y
j=1

qj ("j)

pj ("j)
EPt�1

qt ("t)

pt ("t)

#

Note

EPt�1
qt ("t)

pt ("t)
=

Z
qt ("t)

pt ("t)
pt ("t) d"t
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Therefore EPt�1
qt("t)
pt("t)

=
R
qt ("t) d"t = 1 and

EP0

�
dQ

dP

����Ft� = EP0

"
EP1 :::E

P
t�2

t�1Y
j=1

qj ("j)

pj ("j)

#

Iteratively using this result we get

EP0

�
dQ

dP

����Ft� = EP0

�
q1 ("1)

p1 ("1)

�
= 1

and the lemma obtains.

We are now ready to show the restriction required on 
t (u) so that we can specify an EMM

using this Radon-Nikodym derivative.

Proposition 4 The probability measure Q de�ned by the Radon-Nikodym derivative in (2.1) is

an EMM if and only if


t (�1)� 
t + �t�
2
t = 0 (2.2)

where �t =
�t � rt
�2t

.

Proof. We need EQ
�
St
Bt

����Ft�1� = St�1
Bt�1

or equivalently EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = 1. We have
EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = EP

" 
dQ
dP

��Ft
dQ
dP

��Ft�1
!

St
St�1

=
Bt
Bt�1

�����Ft�1
#

= EP

" 
dQ
dP

��Ft
dQ
dP

��Ft�1
!

St
St�1

exp(�rt)
�����Ft�1

#

= EP
�
qt ("t)

pt ("t)
exp(�t � 
t + "t) exp(�rt)

����Ft�1�
= exp (�t � rt � 
t)E

P

�
exp ("t)

qt ("t)

pt ("t)
jFt�1

�
= exp (�t � rt � 
t)

Z
exp ("t)

qt ("t)

pt ("t)
pt ("t) d"t

= exp (�t � rt � 
t)

Z
exp ("t) qt ("t) d"t

= exp (�t � rt � 
t + 
t (�1))
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since by de�nition 
t (u) is the log-MGF which corresponds to the density qt ("t). By taking logs

the lemma obtains.

This result shows that a Radon-Nikodym derivative can be de�ned such that any log-MGF


t (u) satisfying equation (2:2) will provide a suitable EMM. The result implies that a wide class

of EMMs are possible.

Note that while (2.2) characterizes a more general class of EMMs compared with the result

in (1.3), it is still conditional on the choice of Radon-Nikodym derivative in (2.1). We are not

able to completely characterize the class of potential Radon-Nikodym derivatives for the general

class of distributions considered in this paper.

2.2 Nesting the linear EMM

We now demonstrate how the class of Radon-Nikodym derivatives in Section 1.2, which is linear

in the stock return innovation, is nested in the class of Radon-Nikodym derivatives discussed

above. For a given sequence, f�tg, we restrict the function 
t (u) in (2.1) as follows


t (u) = 	t (u+ �t)�	t (�t) (2.3)

Note that this particular risk-neutral log MGF 
t (u) corresponds to the 	
Q
t (u) de�ned in (1.7).

The condition (2.2) becomes

	t (�t � 1)�	t (�t)� 
t + �t�
2
t = 0 (2.4)

which is equal to (1.3). Substituting (2:3) in (2.1) gives

dQ
dP
jFt

dQ
dP
jFt�1

=

R +1
�1 exp (�iu"t +	t (�iu+ �t)�	t (�t)) duR +1

�1 exp (�iu"t +	t (�iu)) du

= exp (�	t (�t))
R +1
�1 exp (�iu"t +	t (�iu+ �t)) duR +1

�1 exp (�iu"t +	t (�iu)) du

= exp (��t"t �	t (�t))
R +1
�1 exp (�i (u+ i�t) "t +	t (�i (u+ i�t))) duR +1

�1 exp (�iu"t +	t (�iu)) du

= exp (��t"t �	t (�t))
R +1
�1 exp (�iu�"t +	t (�iu�)) du�R +1
�1 exp (�iu"t +	t (�iu)) du

= exp (��t"t �	t (�t))

where we have used the fact that i2 = �1, as well as a change of measure, u� = u+ i�t. Note that

this result corresponds exactly to the assumption on the Radon-Nikodym derivative in (1.2).
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We have thus demonstrated how the class of Radon-Nikodym derivatives in (1.2) obtains

as a special case of the general characterization of the class of Radon-Nikodym derivatives in

(2.1). In Section 1.4 above, and below in Section 4, we demonstrate that this special case is of

great interest because it allows us to characterize the risk-neutral dynamics in closed form for a

large class of return innovations. Such characterizations are as a rule not possible with the more

general class of Radon-Nikodym derivatives. However, given that Radon-Nikodym derivatives

typically used in empirical work are of the form in (1.2), and that the resulting risk-neutralizations

have some empirical shortcomings, it may be of interest to analyze richer speci�cations of the

Radon-Nikodym derivative.

2.3 A quadratic EMM under conditional normality

We now analyze a somewhat more general case that still allows for some analytical results.

Speci�cally, we analyze the case of a quadratic rather than linear EMM, but we restrict ourselves

to normally distributed innovations.

For a given sequence f�1;t; �2;tg, consider the following candidate Radon-Nikodym derivative

dQ

dP

����Ft = exp
 
�

tX
i=1

�
�1;i"i + �2;i"

2
i + g

�
�1;i; �2;i; �

2
i

��!
(2.5)

By solving the EMM equation, EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = 1, we can show that the probability

measure Q de�ned by the Radon-Nikodym derivative in (2.5) is an EMM if and only if

g
�
�1;i; �2;i; �

2
i

�
=

1

2

�
�21;i�

�2
i � ln

�
�2i =�

�2
i

��
, where (2.6)

��2i = V arQi�1 ("i) =
�2i

1 + 2�2;i�2i
, and (2.7)

�1;i =

�
�i
�2i
� ri
��2i

�
+ 2

�
�i �

1

2
�2i

�
�2;i (2.8)

An interesting feature of this EMM is that we get a wedge between the physical and risk-

neutral variance�an empirically observed fact�even when assuming conditional normality of re-

turns. In this case the wedge is driven by the quadratic term, �2;t, in the pricing kernel. Recall

that in Section 1.5 above a wedge was created by non-normality in the conditional return distri-

bution.

Note that we have two EMM parameters, �1;i and �2;i; but only one equation de�ning �1;i as

a function of �2;i. In order to complete the model we could impose that the proportional wedge

between ��2t and �2t is constant. If we for example set �
2
t=�

�2
t = ��, we get �2;t = 1

2
(�� � 1) =�2t .
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Next we consider how this quadratic case �ts into our general setup discussed in Section 2.1.

Since we are working with normal innovations, we can use the inversion formula to write

dQ
dP
jFt

dQ
dP
jFt�1

=
qt ("t)

pt ("t)
=

1
��t
p
2�
exp

�
�1
2
("t+�

�
t )
2

��2t

�
1

�t
p
2�
exp

�
�1
2

"2t
�2t

� = exp

 
�1
2

("t + ��t )
2

��2t
+
1

2

"2t
�2t
+ ln

�
�t
��t

�!

= exp

�
��1;t"t � �2;t"

2
t + ln

�
�t
��t

�
� ��2t
2��2t

�
where ��t is the risk-neutral mean of "t and where

�1;t =
��t
��2t
, and �2;t =

1

2

�
1

��2t
� 1

�2t

�
From normality we have that 
t (�1) = 1

2
��2t � ��2t and from the EMM condition in (2:2) we

have that 
t (�1) = �t � rt � 1
2
�2t . These equations provide an expression for the risk-neutral

mean of "t in the quadratic model

��t = �t � rt +
1

2

�
��2t � �2t

�
(2.9)

Using this equation for ��t and the equation for �2;t in the equation for �1;t yields (2:8).

We have thus shown how in the normal case the quadratic EMM in (2.5) is a special case of

the general class of EMMs de�ned by (2.1). Note also that by setting �2;t = 0, we obtain the

a¢ ne EMM as a special case.

2.4 Market incompleteness and bounds on option prices

Market incompleteness results in a wide range of available Radon-Nikodym derivatives and thus

multiple EMMs and option prices. In order to illustrate this incompleteness consider Figure

1. We use the linear and quadratic EMMs to compute the price of a one-month-to-maturity,

at-the-money call option with an underlying asset price of 100. We assume a risk-free rate of

5%, an underlying mean asset return of 10% and a physical asset volatility of 20% per year. In

the quadratic EMM we let the ratio of the physical to risk-neutral variance, �2=��2 = �� vary

from 0.5 to 1. Figure 1 shows how the option price from the quadratic EMM depends critically

on �� and thus �2 in (2.5). The horizontal line shows the option price from the linear EMM

where �� = 1 and �2 = 0. Figure 1 shows that the range of option prices can be wide even when

staying within the quadratic class of EMMs. This illustrates the potential of non-linear EMMs

to explain outstanding empirical puzzles such as the high prices of deep out-of-the-money index

put options.
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The literature on option pricing bounds provides ways to quantify the degree of market

incompleteness. Key early papers in this literature include Perrakis and Ryan (1984), Levy

(1985), and Ritchken (1985) who all applied single-period models. Perrakis (1986) and Ritchken

and Kuo (1988) extended this work to a multi-period setting, and Constantinides, Jackwerth and

Perrakis (2009) contain a recent application to S&P500 index options. These papers proceed by

considering a portfolio of an option, an underlying asset and a risk-free bond and derive bounds

on the option price without assuming a particular EMM but instead relying only on the principle

of stochastic dominance. The bounds are de�ned so that observing an option price outside the

bounds would induce a stochastically dominating trading strategy.

While the work in this literature has evolved to allow for trading costs and other frictions (see

Constantinides and Perrakis, 2002, 2007) until recently the results were developed in an i.i.d.

setting, thus ruling out the GARCH e¤ects considered in this paper. However, current work by

Oancea and Perrakis (2007) extends the stochastic dominance approach to derive intervals of

admissible option prices using bounds allowing for GARCH e¤ects. In contrast with the i.i.d.

case, in the GARCH case it is necessary to assume that the representative investor has constant

relative risk aversion.

The recent so-called good-deal bounds approach of Cochrane and Saa-Requejo (2000) presents

another interesting venue for generating option pricing bounds.12 Good-deal bounds are derived

using a distance measure between a given stochastic discount factor (SDF) and a benchmark SDF.

This approach has been adapted to option pricing under continuous-time stochastic volatility by

Bondarenko and Longarela (2004). We can show that it is possible in the discrete GARCH

framework to derive good-deal bounds on option prices when using a quadratic EMM.13

3 The Valuation of European Style Contingent Claims

In a general return model with time-varying conditional mean and volatility and non-normal

shocks, we have characterized conditions under which there exists an EMM Q that makes the

stock discounted by the riskless asset a martingale.

We now turn our attention to the pricing of European style contingent claims. Existing

papers on the pricing of contingent claims in a discrete-time in�nite state space setup, such as

the literature on GARCH option pricing in Duan (1995), Amin and Ng (1993) and Heston and

Nandi (2000) value such contingent claims by making an assumption on the bivariate distribution

of the stock return and the endowment, or an equivalent assumption. While this approach, which

most often amounts to the characterization of the equilibrium that supports the pricing, is an

12See Bjork and Slinko (2006) for a generalization, and Bernardo and Ledoit (2000) for a related approach.
13This result is available from the authors upon request.
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elegant way to deal with the incompleteness that characterizes these markets, we argue that it

is not strictly necessary to characterize the equilibrium. Instead, we adopt an approach which

is more prevalent in the continuous-time literature, and proceed to pricing derivatives using a

no-arbitrage argument alone.

To understand our approach, the analogy with option valuation for the stochastic volatility

model of Heston (1993a) is particularly helpful. In this incomplete markets setting, an in�nity

of no-arbitrage contingent claims prices exist, one for every di¤erent speci�cation of the price of

risk. When one �xes the price of volatility risk, however, there is a unique no-arbitrage price. For

the purpose of option valuation, one can simply pick a price of volatility risk, and the resulting

valuation exercise is purely mechanical.

The question whether a particular price of risk is reasonable is of substantial interest in its

own right, and an analysis of the representative agent utility function that support a particular

price of risk is very valuable. However, this question can be analyzed separately from the option

valuation problem. For the heteroskedastic discrete-time models we consider, a similar remark

applies. The link between our approach and the utility-based approach in Brennan (1979),

Rubinstein (1976) and Duan (1995) is that assumptions on the utility function are implicit in

the speci�cation of the risk premium in the return dynamic in our case.14 The representative

agent preferences underlying this assumption are of interest, but it is not necessary to analyze

them in order to value options.

We have already found an EMM Q. We therefore want to demonstrate that the price at time

t is de�ned as

Ct = EQ
�
CT (ST )

BT
Bt

����Ft� :
The proof proceeds in a number of steps and requires de�ning a number of concepts that

are well-known in the literature. Fortunately, even though our methodology closely follows the

continuous-time case, we economize on the number of technical conditions in the continuous-time

setup, such as admissibility, and avoid the concepts of local martingale and super martingale.

The reason is that the integration over an in�nite number of trading times in the continuous-time

case is replaced by a �nite sum over the trading days in discrete time.

De�nitions

1. We denote by �t, �t and  t the units of the stock, the contingent claim and the bond held

at date t. We refer to the Ft predictable processes �t; �t and  t as investment strategies.

14See Bick (1990) and He and Leland (1993) for a discussion of assumptions on the utility function implicit in
the speci�cation of the return dynamic for the market portfolio. We proceed along the lines of Jacod and Shiryaev
(1998), and Shiryaev (1999).
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2. The value process

Vt = �tSt + �tCt +  tBt

describes the total dollar amount available for investments at date t.

3. The gain process

Gt =

t�1X
i=0

�i(Si+1 � Si) +

t�1X
i=0

�i(Ci+1 � Ci) +

t�1X
i=0

 i(Bi+1 �Bi):

captures the total �nancial gains between dates 0 and t.

4. We call the process f�t; �t;  tg
T�1
t=0 a self �nancing strategy if and only if Vt = Gt 8t =

1; :::; T:

5. The de�nition of an arbitrage opportunity is standard: we have an arbitrage opportunity

if a self �nancing strategy exists with either V0 < 0; VT � 0 a.s. or V0 � 0; VT > 0 a.s.

6. We denote the discounted stock price at time t as SBt =
St
Bt
and the discounted contingent

claim as CBt = Ct
Bt
. Similarly, the discounted value process is denoted V B

t = Vt
Bt
and the

discounted gain process GBt =
Gt
Bt
:

Note that for a self �nancing strategy, we have V B
t = GBt because Vt = Gt and Bt > 0:

Furthermore, we can show the following.

Lemma 4 For a self �nancing strategy we have

GBt =
t�1X
i=0

�i(S
B
i+1 � SBi ) +

t�1X
i=0

�i(C
B
i+1 � CBi ) 8t = 1; :::; T

Proof. The proof involves straightforward but somewhat cumbersome algebraic manipulations
of the above de�nitions. See the Appendix for the details.

We know that under the EMM we de�ned, the stock discounted by the risk free asset is a

martingale. We now need to show that the contingent claims prices obtained by computing the

expected value of the �nal payo¤ discounted by the risk free asset also constitute a martingale

under this EMM.

Lemma 5 The stochastic process de�ned by the discounted values of the candidate contingent
claims prices is an Ft martingale under the EMM.
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Proof. We de�ned our candidate process for the contingent claims price under the EMM as

Ct = EQ
h
CT (ST )
BT

Bt

���Fti : The process for the discounted values of the contingent claims prices is
then de�ned as

CBt �
Ct
Bt
= EQ

�
CT (ST )

BT

����Ft�
We use the fact that the conditional expectation itself is a Q martingale. This in turn follows

from the law of iterated expectations and the European style payo¤ function. Taking conditional

expectations with respect to Fs on both sides of the above equation yields

EQ
�
Ct
Bt

����Fs� = EQ
�
EQ
�
CT (ST )

BT

����Ft�����Fs� 8t > s

Now using the law of iterated expectations we get

EQ
�
Ct
Bt

����Fs� = EQ
�
CT (ST )

BT

����Fs� = Cs
Bs
= CBs 8t > s

which gives the desired result.

Lemma 6 Under the EMM de�ned by (1.2), the discounted gain process is a martingale.

Proof. Under the EMM Q, the process
�
SBt
	T
t=1

is a Q martingale. Using a standard property

of martingales the process de�ned as SSBt =
Pt�1

i=0 �i(S
B
i+1�SBi ) then is a Q martingale, since the

investment strategy �t is included in the information set.
15 Furthermore, from Lemma 5 we get

that
�
CBt
	T
t=1
is also a Q martingale. Then using the fact that �t is an Ft predetermined process

and using the same martingale property as above we get that the process CCBt =
Pt�1

i=0 �i(C
B
i+1�

CBi ) is a Q martingale. Then since from Lemma 4 the discounted gain process
�
GBt
	T
t=1

is the

sum of two Q martingales, SSBt and CC
B
t , it is itself a Q martingale.

At this stage, we have all the ingredients to show the following result.

Proposition 5 If we have an EMM that makes the discounted price of the stock a martingale,

then de�ning the price of any contingent claim as the expected value of its payo¤, taken under

this EMM and discounted at the riskless interest rate, constitutes a no-arbitrage price.

Proof. From Lemma 6GBt is aQmartingale. Because we are considering self �nancing strategies
we get that V B

t is a martingale. We prove the absence of arbitrage by contradiction. If we assume

the existence of an arbitrage opportunity, then there exists a self �nancing strategy with type 1

15Note that because we are working in discrete time there is no need to investigate the integrability of SSBt .
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arbitrage (V0 < 0; VT � 0 a.s.) or type 2 arbitrage (V0 � 0; VT > 0 a.s.). Both cases lead to

a clear contradiction. Consider type 1 arbitrage: we start from the existence of a self �nancing

strategy with V0 < 0 that ends up with a positive �nal value. V0 < 0 implies that V B
0 < 0

since the numeraire is always positive by de�nition. Also since VT � 0 we have V B
T � 0. Taking

expectations and using the fact that V B
t is a Q martingale yields V B

0 = EQ0 [V
B
T ] � 0. This is a

contradiction because we assumed that we start with a negative value V0 < 0: A similar argument

works for type 2 arbitrage. Thus, the Ct from the EMM Q must be a no-arbitrage price.

In summary, we have demonstrated that in a discrete-time in�nite state space setting, if we

have an EMM that makes the underlying asset price a martingale, then the expected value of

the payo¤ of the contingent claim taken under this EMM, discounted at the riskless asset, is

a no-arbitrage price. In Section 1.2, we derived such an EMM. Altogether, we have therefore

demonstrated that for any contingent claim paying a �nal payo¤ CT (ST ) the current price Ct
can be computed as

Ct = EQ
�
CT (ST )

BT
Bt

����Ft� :
4 Important Special Cases

In this section we demonstrate how a number of important existing models are nested in our

setup, using the class of linear Radon-Nikodym derivatives in (1.2). We �rst consider various

speci�cations of the equity risk premium in the conditional normal setting. We then consider

two conditional non-normal speci�cations relying on inverse Gaussian shocks and Poisson jumps

respectively.

4.1 Flexible risk premium speci�cations

One of the advantages of our approach is that we can allow for general speci�cations of the

time-varying equity risk premium. Here we discuss some potentially interesting ways to specify

the risk premium in the return process for the underlying asset. In order to demonstrate the

link with the available literature and for computational simplicity, we assume conditional normal

returns, although this assumption is by no means necessary.

The conditional normal models in the Duan (1995) and Heston and Nandi (2000) models are

special cases of our set-up. In our notation, Duan (1995) assumes

rt = r; and �t = r + ��t
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which in our framework corresponds to a Radon-Nikodym derivative of

dQ

dP

����Ft = exp
 
�

tX
i=1

�
"i
�i
�+

1

2
�2
�!

and risk neutral innovations of the form

"�t = "t + ��t:

Heston and Nandi (2000) instead assume

rt = r; and �t = r + ��2t +
1

2
�2t

which in our framework corresponds to a Radon-Nikodym derivative of

dQ

dP

����Ft = exp
 
�

tX
i=1

 �
�+

1

2

�
"i +

1

2

�
�+

1

2

�2
�2i

!!

and risk neutral innovations of the form

"�t = "t + ��2t +
1

2
�2t :

However, many empirically relevant cases are not covered by existing theoretical results. For

example, in the original ARCH-M paper, Engle, Lilien and Robins (1987) �nd the strongest

empirical support for a risk premium speci�cation of the form

�t = rt + � ln (�t) +
1
2
�2t

which cannot be used for option valuation using the available theory. In our framework it simply

corresponds to a Radon-Nikodym derivative of

dQ

dP

����Ft = exp
 
�

tX
i=1

 
� ln (�i) +

1
2
�2i

�2i
"i +

1

2

�
� ln (�i) +

1
2
�2i

�2i

�2
�2i

!!

and risk neutral innovations

"�t = "t + � ln (�t) +
1
2
�2t

Our approach allows for option valuation under such speci�cations whereas the existing literature

does not.
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4.2 Conditionally inverse Gaussian returns

Christo¤ersen, Heston and Jacobs (2006) analyze a GARCH model with an inverse Gaussian

innovation, yt � IG(�2t=�
2). We can write their return dynamic as

Rt = r +
�
� + ��1

�
�2t + "t, where (4.1)

"t = �yt � ��1�2t (4.2)

and where the conditional return variance, �2t , is of the GARCH form. The inverse Gaussian

belongs to the class of in�nitely divisible distributions, which yields the strict convexity in Propo-

sition 2, and the other conditions of Proposition 2 are also satis�ed.

From the MGF of an inverse Gaussian variable, we can derive the conditional log MGF

	t (u) =

�
u+

1�
p
1 + 2u�

�

�
�2t
�

The EMM condition

	t (�t � 1)�	t (�t)�	t (�1) + �t�2t = 0

is now solved by the constant

�t = � =
1

2�

"
(2 + ��3)

2

4�2�2
� 1
#
;8t

which in turn implies that the EMM is given by

dQ

dP

����Ft = exp

 
�

tX
i=1

�
�"i +

�
� +

1�
p
1 + 2��

�

�
�2i
�

�!
= exp

�
��t"t � �t�2t

�
where "t = 1

t

Pt
i=1 "i, �

2
t =

1
t

Pt
i=1 �

2
i , and � =

�
�
+ 1�

p
1+2��
�2

.

These expressions can be used to obtain the risk-neutral distribution from Christo¤ersen,

Heston and Jacobs (2006) using the results in Section 1. Recall that in general the risk neutral

log MGF is

	Q�t (u) = �u	0t (�) + 	t (� + u)�	t (�)

In the GARCH-IG case we can write

	Q�t (u) =

�
u+

1�
p
1 + 2u��

��

�
��2t
��
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where

�� =
�

1 + 2��
and ��2t =

�2t

(1 + 2��)
3=2

which indicates that generally the risk-neutral variance will be di¤erent from the physical vari-

ance. The risk neutral return model can be written as

Rt � ln
�

St
St�1

�
= r �	Q�t (�1) + "�t = r +

�
�� + ���1

�
��2t + "�t

where

�� =
1� 2�� �

p
1� 2��

��2
and "�t = ��y�t � ���1��2t

The risk neutral process thus takes the same form as the physical process, con�rming Proposition

3 in Section 1.4.

4.3 Conditionally Poisson-normal jumps

Another interesting model that can be nested in our framework is the heteroskedastic model with

Poisson-normal innovations in Duan, Ritchken and Sun (2005).16 For expositional simplicity,

we consider the simplest version of the model. More complex models, for instance with time-

varying Poisson intensities, can also be accommodated. The conditions of Proposition 2 can

again readily be veri�ed, in part because the Poisson-normal is part of the class of in�nitely

divisible distributions.

We can write the underlying asset return as

Rt = �t + "t, where

"t = �t (Jt � #��)

where Jt is a Poisson jump process with Nt jumps each with distribution N (��; �'2) and jump

intensity #. The conditional return variance equals (1 + # (��2 + �'2))�2t ; where �
2
t is of the

GARCH form. The log return mean �t is a function of �2t as well as the jump and risk premium

parameters.

We can derive the conditional log MGF as

	t (u) = ln(Et�1 [exp (�u�t (Jt � #�))])

= u#��t +
1

2
u2�2t + #

�
exp

�
��u�t +

1

2
�'2u2�2t

�
� 1
�

16Maheu and McCurdy (2004) consider a di¤erent discrete-time jump model but do not use it for option
valuation.
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The approach taken in Duan et al (2005) corresponds to �xing �t = � and setting

�t = r +	t (�)�	t (� � 1)

which in turn implies that the EMM is given by

dQ

dP

����Ft = exp
 
��t"t � �#�t�t �

1

2
t�2�2t + #t� #

tX
i=1

exp

�
���i�i +

1

2
�'2�2i�

2
i

�!

where "t and �2t are the historical averages as above.

We can again show that the risk-neutral distribution is from the same family as the physical

distribution

	Q�t (u) = lnEQt�1 [exp (�u"�t )]

= u#�t�
�
t�t +

1

2
u2�2t + #�t

�
exp

�
���tu�t +

1

2
�'2u2�2t

�
� 1
�

where

#�t = # exp

�
����t +

1

2
�'2�2�2t

�
and ��t = �� �'2�t�

Note that in this model the mapping between the risk-neutral and physical returns is

"�t = "t +	
0
t (�) = "t + �t (#��� #�t�

�
t )

and the mapping between the physical and risk-neutral conditional variance is

��2t = �2t + #�t�
2
t

�
�'2 + ��2t

�
5 Some Continuous-Time Limits

In order to anchor our work in the continuous-time literature we now explore the links be-

tween some of the discrete-time models we have analyzed above and standard continuous-time

models. We study three important cases: a homoskedastic model with normal innovations, a ho-

moskedastic model with non-normal (inverse Gaussian) innovations, and a heteroskedastic model

with normal innovations.
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5.1 Homoskedastic normal returns

Consider the homoskedastic i.i.d. normal model for a given discrete-time interval �,

Rt = ln (St)� ln (St��) = ��� 1
2
�2�+ �

p
�zt ztjFt�1 � N(0; 1) (5.1)

and for simplicity also consider a constant risk-free rate. The EMM condition (1.4) is solved by

choosing a constant � = (�� r)=�2, and the discrete-time risk-neutral dynamic is given by

ln (St)� ln (St��) = r�� 1
2
�2�+ �

p
�z�t z�t jFt�1 � N(0; 1) (5.2)

The continuous-time limit of this risk-neutral process is given by

d(ln(St)) =
�
r � 1

2
�2
�
dt+ �dz�(t)

where z�(t) is a Wiener process under Q. This is the risk-neutral process in the Black-Scholes-

Merton (BSM) model. In the di¤usion limit the options are thus priced using the BSM formula.

Consider a European option with strike price K and T � t =M� days to maturity. The call

price can be written as

C�;t = e�rM�StE
Q
t

�
eRt;M I[Rt;M > ln(K=St)]

�
� e�rM�KPQt [Rt;M > ln(K=St)]

where Rt;M = ln (St+M�)�ln (St) and where I [�] is the indicator function. Under the assumption
of an i.i.d. normal risk-neutral process in (5.2) we can rewrite the call price as

C�;t = e�rM�StP1;t;� � e�rM�KP2;t;�

where

P1;t;� = erM��

 
ln(St=K) +

�
r + 1

2
�2
�
�M

�
p
�M

!
; P2;t;� = �

 
ln(St=K) +

�
r � 1

2
�2
�
�M

�
p
�M

!

where � is the c.d.f. of the standard normal distribution.

Note therefore that for the i.i.d. normal discrete-time process, using the parameterization in

(5.1), and given the choice of Radon-Nikodym derivative (and thus EMM), the option value is

equal to the BSM price for any �.
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5.2 Homoskedastic inverse Gaussian returns

Consider now a homoskedastic version of the inverse Gaussian (IG) model in (4.1) written for a

discrete-time interval �,

Rt = r�+
�
�(�) + �(�)�1

�
�2(�) + "t

"t = �(�)yt � �(�)�1�2(�)

yt � IG

�
�2(�)

�2(�)

�
As shown above for the heteroskedastic IG case, the risk neutral return distribution is in the

same family as the historical model, and can be written as follows

Rt = r�+
�
��(�) + ��(�)�1

�
��2(�) + "�t

"�t = ��(�)y�t � ��(�)�1��2(�)

y�t
Q� IG

�
��2(�)

��2(�)

�
where

��(�) =
�(�)

1 + 2�(�)�(�)

��2(�) =
�2(�)

(1 + 2�(�)�(�))3=2

��(�) =
1� 2��(�)�

p
1� 2��(�)

��(�)2

and where �(�) solves (1.4) and is given by

�(�) =
1

2�(�)

"
(2 + �(�)2�(�)3)

2

4�(�)2�(�)2
� 1
#

Consider a European option with strike price K and T � t = M� days to maturity. The call

price can be written as

C�;t = e�rM�StP1;t;� � e�rM�KP2;t;� (5.3)
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The formulas for P1;t;� and P2;t;� can be computed using Fourier inversion of the risk-neutral log

MGF of 	Q�t;M (u)

P1;t;� =
erM�

2
+

Z +1

0

Re

24exp
�
	Q�t;M (�1� iu)� iu ln

�
K
St

��
i�u

35 du
P2;t;� =

1

2
+

Z +1

0

Re

24exp
�
�iu ln

�
K
St

�
+	Q�t;M (�iu)

�
i�u

35 du
where

	Q�t;M (u) � ln
�
EQt [exp (uRt;M)]

�
= �

�
r�+ �(�)�2(�)

�
Mu+

h�
1�

p
1 + 2u��(�)

�
��2(�)M

i
��(�)2

Christo¤ersen, Heston and Jacobs (2006) show that in the heteroskedastic case, the stochastic

volatility model in Heston (1993a) with perfectly correlated shocks can be obtained as a limit of

the IG-GARCH model when � and �(�) go to zero.17 This limit obtains when using a particular

parameterization for the IG-GARCH model and the parameterization �(�) = ���(�)�1 for the
return mean, where � can be interpreted as the price of equity risk. As the homoskedastic IG

model is a special case of the IG-GARCH model it will converge to the homoskedastic Heston

(1993a) process which is simply the geometric Brownian motion underlying the Black-Scholes

model. The continuous-time limit of the risk-neutral process is thus again given by

d(ln(St)) =
�
r � 1

2
�2
�
dt+ �dz�(t)

Figure 2 illustrates the convergence of the homoskedastic IG option price in (5.3) to the

BSM price when � goes to zero. In the �gure we plot the ratio of the homoskedastic IG option

price to the Black-Scholes price against the number of trading intervals per day. We use r = 0,

K = 100, S = 100;M� = 180. We let �(�) = ��, �2(�) = �2�, and set ��2 = :07 to match

a 7% equity risk premium. Return volatility is set to 10% per year (�2 = :01) in the top row

and 20% in the bottom row (�2 = :04). The IG parameter � is set so as to generate a daily

skewness of -1 in the left column and -0.5 in the right column. The �gure shows that even for

these relatively high levels of skewness the convergence of the skewed IG discrete-time option

price to the Black-Scholes option price is quite rapid.

17Christo¤ersen, Heston and Jacobs (2006) also show that an alternative pure jump limit can be obtained in
the inverse Gaussian model.
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5.3 Heteroskedastic normal returns

Consider the Heston and Nandi (2000) model

Rt = r�+ ��2t + �tzt (5.4)

�2t+� = ! + ��2t + �(zt � %�t)
2

De�ning vt+� = �2t+�=�, we have

vt+� = !v + �vt + �v (zt � %v
p
vt)

2 (5.5)

with !v = !=�, �v = �=� and %v = %
p
�. The conditional correlation is

Corrt�� (vt+�; Rt) = �
sign(%v)

p
2%2vvtp

1 + 2%2vvt

so that the correlation goes to plus or minus one when the interval shrinks to zero. Using the

parameterization �(�) = 1
4
&2�2, �(�) = 0, !(�) = (�� � 1

4
&2)�2, and %(�) = 2

&�
� �

&
, and

following Foster and Nelson (1994), Heston and Nandi derive the di¤usion limit for the physical

process

d ln(St) = (r + �v)dt+
p
vdz (5.6)

dv = �(� � v)dt+ &
p
vdz

which corresponds to a special case of the stochastic volatility model in Heston (1993a) with

perfectly correlated shocks to stock price and volatility.

The Heston-Nandi discrete-time option price is

Ct;� = StP1;t;� � e�rM�KP2;t;�

where the formulas for P1;t;� and P2;t;�, which rely on Fourier inversion, are provided in Heston

and Nandi (2000).

Note that markets are complete in the limiting case with � = �1 because there is only one
source of uncertainty. Below we analyze the more general case of a discrete-time two-shock

stochastic volatility model and its continuous-time limit where �1 < � < 1, which implies that

markets are incomplete even in continuous time.

Figure 3 shows the convergence of the Heston and Nandi (2000) discrete-time GARCH option

price to the continuous-time SV option price in Heston (1993a). We plot the ratio of the Heston
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and Nandi (2000) price to the Heston (1993a) price as the number of trading intervals until

maturity gets large. We use r = 0, K = 100, S = 100, M� = 180, � = 2, and shock correlation

� = �1. Return volatility is set to 10% per year (v = � = :01) in the top row and 20% in the

bottom row (v = � = :04). The volatility of volatility parameter & is set to 0.1 in the left column

and 0.2 in the right column.

Figure 3 indicates that convergence is very fast, suggesting that the added incompleteness

arising from discrete time is minimal. By comparison, convergence is slower in Figure 2 because

of the conditional skewness in the discrete-time process. Note that following Heston and Nandi

(2000), Figure 3 has trading intervals until maturity (180 days) on the horizontal axis whereas

Figure 2 has trading intervals per day on the horizontal axis. Thus convergence is indeed ex-

tremely fast in Figure 3.

6 Stochastic Volatility Models

In this section, we �rst develop a discrete-time two-shock stochastic volatility model and derive

its continuous-time limit. Subsequently we compare the risk neutralization for this model with

the risk neutralization in the continuous-time SV model, and we discuss risk neutralization

in the GARCH model as a special case of this approach. We also discuss the issue of market

incompleteness and the resulting non-uniqueness of option prices, again by discussing similarities

and di¤erences between the continuous- and discrete-time setups.

6.1 A discrete-time stochastic volatility model

Popular continuous-time stochastic volatility models such as Heston (1993a) contain two (cor-

related) innovations, whereas the GARCH processes considered in this paper contain a single

innovation. Nelson (1991) and Duan (1997) derive a continuous-time two-innovation stochastic

volatility model as the limit of a GARCH model, but as noted by Corradi (2000) for instance,

a given discrete-time model can have several continuous-time limits and vice versa.18 As shown

above, Heston and Nandi (2000) derive a limit to their proposed GARCH process that contains

two perfectly correlated shocks. This limit amounts to a one-shock process, and is therefore

intuitively similar to a GARCH process.

With this in mind, we now analyze the limits of a class of discrete-time stochastic volatility

processes, which contain two (potentially correlated) shocks.19 We derive the continuous-time

18See also Nelson and Foster (1994), Foster and Nelson (1996), Nelson (1996) and Ritchken and Trevor (1999)
for limit results.
19See Ghysels, Harvey and Renault (1995) for a review of discrete-time stochastic volatility models. See Feunou

and Tedongap (2009) for a recent discrete-time multifactor stochastic volatility model.
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limits for these processes, and then analyze the GARCH limit as a special case.

Consider the return and volatility dynamics

Rt = ln(St=St�1) = �t + �tz1;t

�2t+1 = f(�2t ; z2;t)

where

zt � (z1;t; z2;t)0 � N

  
(0; 0)0;

 
1 �

� 1

!!!
The log MGF is given by

	t(u1; u2) = log[Et�1(exp(�u1z1;t � u2z2;t))] =
1

2

�
(u1 + �u2)

2 +
�
1� �2

�
u22
�

By analogy with the one-shock linear case (1.2), we de�ne the following Radon-Nikodym deriv-

ative
dQ

dP
jFt = exp

 
�

tX
i=1

(�1;iz1;i + �2;iz2;i +	i(�1;i; �2;i))

!
(6.1)

Using an approach similar to the one-shock case, one can show that the probability measure Q

de�ned by the Radon-Nikodym derivative is an EMM if and only if

	t(�1;t � �t�2;t)�	t(�1;t; �2;t) + �t � r =
1

2
�2t � (�1;t + ��2;t)�t + �t � r = 0 (6.2)

This is one equation in two unknowns, namely �1;t and �2;t. Thus the second shock provides a

new source of non-uniqueness to be discussed further below.

The risk neutral log MGF is given by

EQt�1[exp(�u1z1;t � u2z2;t)] = EPt�1

" 
dQ
dP
jFt

dQ
dP
jFt�1

!
exp(�u1z1;t � u2z2;t)

#
= exp(	t(u1 + �1;t; u2 + �2;t)�	t(�1;t; �2;t))

where

zt = (z1;t; z2;t)
0 Q� N

  
(��1;t � ��2;t;��1;t�� �2;t)

0;

 
1 �

� 1

!!!
(6.3)

We now illustrate this risk-neutralization for a speci�c parametric example

Rt = r + ��2t �
1

2
�2t + �tz1;t (6.4)

�2t+1 = ! + ��2t + �(z2;t � %�t)
2
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The dynamic in (6.4) can be thought of as a stochastic volatility (two-shock) generalization of

the GARCH dynamic in Heston and Nandi (2000). According to (6.3) the risk-neutral model is

given by

Rt = r � 1
2
�2t + �tz

�
1;t (6.5)

�2t+1 = ! + ��2t + �(z�2;t � �1;t�� �2;t � %�t)
2

where

z�t =

 
z�1;t = z1;t + �1;t + ��2;t

z�2;t = z2;t + �1;t�+ �2;t

!
Q� N

  
(0; 0)0;

 
1 �

� 1

!!!
In the one-shock GARCH case above, we could simply solve (1.4) by choosing the scalar �t as a

function of the GARCH parameters. Determining �1;t and �2;t in a model with two innovations is

somewhat more complex, but the intuition underlying the procedure is critical to understanding

the link with the continuous-time literature. From (6.2) and (6.4) we have �1;t + �2;t� = ��t.

We then note that if we want to preserve the a¢ ne structure in (6.5) we need �2;t = �2�t, which

yields the risk neutral dynamic

Rt = r � 1
2
�2t + �tz

�
1;t (6.6)

�2t+1 = ! + ��2t + �(z�2;t � %��t)
2

with %� = % + �2(1 � �2) + ��. The condition on the price of risk needed to preserve the a¢ ne

structure is similar to the one usually used in the Heston (1993a) model. Note that conditional on

the assumption regarding the price of volatility risk, Proposition 2 can be generalized to address

existence and uniqueness of a solution to (6.2).

Note that while �, which is the price of equity risk, can be estimated from returns, �2, which

arises from the new separate volatility shock, is not identi�ed from the return on the underlying

asset only. It must be estimated using returns as well as option prices. This is of course also

the case in continuous-time SV models. The analysis is therefore very similar to the one usually

employed in continuous time.

Using an approach similar to that taken in Heston and Nandi (2000), option valuation in

this discrete-time SV model can be done via Fourier inversion of the conditional characteristic

function.
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6.2 A di¤usion limit of the discrete-time stochastic volatility model

We �rst write the discrete-time stochastic volatility model as

Rt = r�+ ��2t �
1

2
�2t + �tz1;t (6.7)

�2t+� = ! + ��2t + �(z2;t � %�t)
2 (6.8)

Reparameterizing vt+� = �2t+�=�, we have

vt+� = !v + �vt + �v (z2;t � %v
p
vt)

2 (6.9)

with !v = !=�, �v = �=� and %v = %
p
�.

Following Heston and Nandi (2000) we use the parameterization �(�) = 1
4
&2�2, �(�) = 0,

!(�) = (�� � 1
4
&2)�2, and %(�) = 2

&�
� �

&
. As �! 0 the dynamic in (6.7) and (6.9) converges

to

d ln(St) = (r + �vt �
1

2
vt)dt+

p
vtdz1 (6.10)

dvt = �(� � vt)dt+ &
p
vtdz2

where z1 and z2 are two Wiener processes such that dz1dz2 = ��dt. Note that the discrete-time
conditional correlation is given by

corrt�� (vt+�; Rt) = �
�sign(%v)

p
2%2vvtp

1 + 2%2vvt

As � ! 0, the variance asymmetry parameter %v(�) approaches positive or negative in�nity,

and therefore the correlation approaches � or �� in the limit. Also, as � ! 0, the risk neutral

discrete-time stochastic volatility model (6.6) converges to the following dynamic

d ln(St) = (r � 1
2
vt)dt+

p
vtdz

�
1 (6.11)

dvt = [�(� � vt) + &(�2(1� �2) + ��)vt]dt+ &
p
vtdz

�
2

where z�1 and z
�
2 are two Wiener processes such that dz

�
1dz

�
2 = ��dt.

6.3 The relationship with the continuous-time a¢ ne SV model

Both (6.10) and (6.11) are square root stochastic volatility models of the type proposed by Heston

(1993a). We now link our discrete-time stochastic volatility model and its risk-neutralization to
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the conventional risk-neutralization in the Heston (1993a) model. Assume for simplicity that

the parameterization of the conditional mean dynamic under the physical measure is given by

(6.10). Heston (1993a) proposes the following risk neutralization20

d ln(St) = (r � 1
2
vt)dt+

p
vtdz

�
1 (6.12)

dvt = [�(� � vt)� &��vt]dt+ &
p
vtdz

�
2

where z�1 and z
�
2 are two Wiener process under the risk neutral probability Q and

dz�1 = dz1 +

�
�� 1

2

�
p
vtdt (6.13)

dz�2 = dz2 + ��
p
vtdt

In the discrete-time stochastic volatility model, the parameter � in (6.4) captures the price of

equity risk, and �2 captures the price of volatility risk. In the Heston model, the price of equity

risk � plays the same role as in the discrete-time model, and we have also a price of volatility risk

�� which ensures the a¢ ne structure of the risk-neutral process. Comparing (6.12) and (6.11),

we �nd

�� = �2(1� �2) + ��: (6.14)

which amounts to the assumption on the price of risk used in Pan (2002). Note that for � = 0,

the continuous-time price of volatility risk �� is not related to �, but is simply equal to the

discrete-time price of volatility risk �2. Moreover, this mapping between the price of volatility

risk in discrete-time and continuous-time stochastic volatility models also provides insight into

the relationship between the discrete-time GARCH model and the available continuous-time

literature. While the GARCH model contains a single innovation, it can usefully be thought of

as a special case of the two-shock discrete-time stochastic volatility model in (6.5), for � = 1

(or � = �1). In this case, from (6.14), �� = � (or ��). Because the GARCH model contains a
single shock, the speci�cation of the equity risk premium � does double duty: it also implicitly

de�nes the price of volatility risk, which is perfectly correlated with the price of equity risk

by design. In other words, the GARCH return dynamic implicitly makes an assumption about

the volatility risk premium. The parameter governing the equity risk premium also determines

the volatility risk premium. Strictly speaking therefore, in the case of the GARCH model the

only assumption we make in our approach is on the form of the Radon-Nikodym derivative.

All other assumptions needed for risk-neutral valuation are implicit in the speci�cation of the

20Notice that for ease of interpretation, in our notation the price of volatility risk �� has been rescaled by 1=&
compared to the notation in Heston (1993a).

36



return dynamic. Put di¤erently, some important assumptions on the equilibrium supporting the

valuation problem are implicitly incorporated in the risk premium assumption for the return

dynamic.

6.4 Stochastic volatility and GARCH

The discussion above indicates that while it is useful to distinguish between one-shock and two-

shock models, our analysis of discrete-time GARCH option valuation models is very similar to

the analysis of continuous-time SV option valuation models. Most existing papers on option

pricing in discrete time assume normally distributed returns and, in the words of Rubinstein

(1976), �complete� the markets by assuming a representative agent with certain preferences,

such as for instance constant relative risk aversion.21 Our approach, much like the one used

in the continuous-time stochastic volatility literature, is to let the researcher specify an empiri-

cally realistic return dynamic for the underlying asset, and subsequently provide an equivalent

martingale measure that enables option pricing using a no-arbitrage argument. Proposition 1

provides the form of the EMM and Proposition 5 provides the no-arbitrage option pricing result.

Whereas the assumption on the representative agent�s utility function �completes�the market

in the standard normal discrete-time setting, the Radon-Nikodym derivative �completes� the

market in our setup. Conditional on the choice of Radon-Nikodym derivative which is linear in

the return innovation, our approach provides a unique EMM.

The only di¤erence between GARCH option valuation and option valuation with stochas-

tic volatility is that GARCH models can be viewed as special cases of discrete-time stochastic

volatility models. In the GARCH model, one parameter determines the volatility risk premium

as well as the equity risk premium, and therefore the volatility risk premium is implicitly spec-

i�ed by the GARCH dynamic. This is consistent with the interpretation of the GARCH model

as a one-shock model with perfectly correlated equity and volatility innovations.22

Section 2 illustrates that it is possible to generalize the EMM speci�cation, although in most

cases it is not straightforward to obtain analytical results. We therefore limit our discussion to

the case of the quadratic EMM with normal innovations in Section 2.3, which contains the linear

EMM as a special case. This indicates that the uniqueness result obtained for the GARCH model

discussed above is due to the choice of the linear EMM. In the more general quadratic case, we

obtain an in�nite number of valid EMMs, as illustrated in Figure 1.

21See for example Rubinstein (1976), Brennan (1979), and Duan (1995).
22While it could be argued that this structure limits the usefulness of the GARCH model, one has to keep in

mind that this structure is exactly what makes the GARCH model econometrically tractable. Indeed, the success
of the GARCH model in modeling returns, and its growing popularity in modeling options, are precisely due to
the fact that despite its simple structure it provides a very good �t.
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7 Conclusion

This paper provides valuation results for contingent claims in a discrete-time in�nite state space

setup. Most of our analysis focuses on a class of Radon-Nikodym derivatives for which the risk

neutral return dynamic is the same as the physical dynamic for a wide class of processes, but

with a di¤erent parameterization which we are able to characterize completely. We also discuss

more general choices of Radon-Nikodym derivatives. Our valuation argument applies to a large

class of conditionally normal and non-normal stock returns with �exible time-varying mean and

volatility, as well as a potentially time-varying price of risk. This setup generalizes the result in

Duan (1995) in the sense that we do not restrict the returns to be conditionally normal, nor do

we restrict the price of risk to be constant.

Our results apply to some of the most widely used discrete-time processes in �nance, such as

GARCH processes. We also apply our approach to the analysis of discrete-time processes with

multiple innovations, such as discrete-time stochastic volatility processes. To provide intuition for

our �ndings, we extensively discuss the relationship between our results and existing results for

continuous-time stochastic volatility models, which can be derived as limits of our discrete-time

dynamics.

Our results suggest a number of interesting avenues for further research. First, an extensive

empirical comparison of option valuation with non-normal and heteroskedastic innovations should

prove interesting. Combining non-normality and heteroskedasticity attempts to correct the biases

associated with the conditionally normal GARCH model. These biases are similar to those

displayed by the Heston (1993a) model, which the continuous-time literature has sought to

remedy by adding (potentially correlated) jumps in returns and volatility.23 A comparison with

these models may prove valuable. Second, it is well-known that the risk-neutralization of existing

models is not satisfactory from an empirical perspective.24 The implications of alternative Radon-

Nikodym derivatives for the option valuation models�empirical performance therefore ought to

be studied. A comparison between linear and quadratic EMMs for normal innovations may

provide a valuable starting point. Third, while we advocate separating the valuation issue and

the general equilibrium setup that supports it, the general equilibrium foundations of our results

are of course very important. It may prove possible to characterize the equilibrium setup that

gives rise to the risk neutralization proposed for some of the processes considered in this paper.

However, this is by no means a trivial problem, and it is left for future work.

23See for example Bakshi, Cao and Chen (1997), Bates (2000), Broadie, Chernov and Johannes (2007), Carr
and Wu (2004), Eraker, Johannes and Polson (2003), Eraker (2004), Huang and Wu (2004) and Pan (2002).
24See for example Broadie, Chernov and Johannes (2007).
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Appendix
Proof of Proposition 2
De�ne f(�) = 	(�) � 	(� � 1). Existence is obtained if f(�) can take any real value.

Uniqueness is demonstrated if f(�) = E [R� r] � � has a unique solution for any given value of

�. By assumption, 	 tends to in�nity at the boundaries of its domain, therefore 	(u1) = +1
and 	(u2) = +1. 	 is also continuous because it is twice di¤erentiable on its domain. The

domain of f(�) is (u1 + 1; u2). Since 	 is continuous f(:) is also continuous. We get

f(u1 + 1) = 	(u1 + 1)�	(u1) = �	(u1) = �1
f(u2) = 	(u2)�	(u2 � 1) = 	(u2) = +1

since 	(u1) = +1 and 	(u2) = +1. Hence f(:) is continuous and can attain �1 or +1.
Thus there exists a value � in the domain of the continuous function f(:) such that f(�) = � for

any value � 2 (�1;+1). Furthermore, we have that f 0(u) = 	0(u) � 	0(u � 1). Convexity of
	 implies that 	0(:) is increasing. Thus, if f 0(u) = 	0(u)�	0(u� 1) > 0, then f(:) is increasing.
Therefore, f(:) is increasing and continuous, which implies that f(:) is a bijection, and uniqueness

follows.

Proof of Lemma 4
For a self �nancing strategy we have

Gt+1 = Vt+1 = �t+1St+1 + �t+1Ct+1 +  t+1Bt+1

= �tSt+1 + �tCt+1 +  tBt+1

We also have

Gt =
t�1X
i=0

�i(Si+1 � Si) +
t�1X
i=0

�i(Ci+1 � Ci) +
t�1X
i=0

 i(Bi+1 �Bi):

It follows that

Gt+1 �Gt = �t(St+1 � St) + �t(Ct+1 � Ct) +  t(Bt+1 �Bt)

We can trivially also write

GBt+1 �GBt = GBt+1 �GBt +

�
Gt+1
Bt

� Gt+1
Bt

�
| {z }

=0
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This implies that

GBt+1 �GBt = (�tSt+1 + �tCt+1 +  tBt+1)

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(�t(St+1 � St) + �t(Ct+1 � Ct) +  t(Bt+1 �Bt))

= �t

�
St+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(St+1 � St)

�
+�t

�
Ct+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(Ct+1 � Ct)

�
+ tBt+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
 t(Bt+1 �Bt)| {z }

=0

Then

GBt+1�GBt = �t

�
St+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(St+1 � St)

�
+�t

�
Ct+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(Ct+1 � Ct)

�

= �t(S
B
t+1 � SBt ) + �t(C

B
t+1 � CBt ) +

�
�t
St+1
Bt

� �t
St+1
Bt

�
+

�
�t
Ct+1
Bt

� �t
Ct+1
Bt

�
and therefore

GBt+1 �GBt = �t(S
B
t+1 � SBt ) + �t(C

B
t+1 � CBt ): 8t = 1; :::; T � 1

Because G0 = GB0 = 0 the discounted gain can be written as the sum of past changes

GBt =
t�1X
i=0

(GBi+1 �GBi ) 8t = 1; :::; T:

Therefore the discounted gain can be written

GBt =
t�1X
i=0

�i(S
B
i+1 � SBi ) +

t�1X
i=0

�i(C
B
i+1 � CBi )

and the proof is complete.

Proof of Proposition 3
From Lukacs (1970), page 119, we have the Kolmogorov canonical representation of the log-

moment generating function of an in�nitely divisible distribution function. This result stipulates

that a function 	 is the log-moment generating function of an in�nitely divisible distribution
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with �nite second moment if, and only if, it can be written in the form

	(u) = �uc+
Z +1

�1

�
e�ux � 1 + ux

� dK (x)
x2

where c is a real constant while K (u) is a nondecreasing and bounded function such that

K (�1) = 0: Applying this theorem gives the following form for 	t (u) ;

	t (u) = �uct�1 +
Z +1

�1

�
e�ux � 1 + ux

� dKt�1 (x)

x2
(7.1)

where ct�1 is a random variable known at t�1; and Kt�1 (x) is a function known at t�1, which is
nondecreasing and bounded so thatKt�1 (�1) = 0: Using relation (1:9) and the characterization
(7:1) we can write 	Q�t (u) as

	Q�t (u) =

Z +1

�1

�
e�ux � 1 + ux

� dK�
t�1 (x)

x2

where

K�
t�1 (x) =

Z x

�1
e��tydKt�1 (y)

This implies that

K�
t�1 (�1) = 0

K�
t�1 (x) is obviously non-decreasing since Kt�1 (x) is non-decreasing, K�

t�1 (1) < 1, because
Kt�1 (1) <1, and e��ty is a decreasing function of y which converge to 0: Recall that �t is the
generalized price of risk, which is positive and known at time t� 1.
In conclusion we have constructed a constant c�t�1 (= 0) and a non-decreasing bounded

function K�
t�1 (x) ; with K

�
t�1 (�1) = 0; such that

	Q�t (u) = �uc�t�1 +
Z +1

�1

�
e�ux � 1 + ux

� dK�
t�1 (x)

x2
:

Hence, according to the Kolmogorov canonical representation, the conditional distribution of "�t
is in�nitely divisible.

41



References

Amin, K., and V. Ng. 1993. ARCH Processes and Option Valuation. Working Paper, University

of Michigan.

Bakshi, C., C. Cao, and Z. Chen. 1997. Empirical Performance of Alternative Option Pricing

Models. Journal of Finance 52:2003-49.

Barone-Adesi, G., R. Engle, and L. Mancini. 2008. A GARCH Option Pricing Model in Incom-

plete Markets. Review of Financial Studies 21:1223-58.

Bates, D. 1996. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche

Mark Options. Review of Financial Studies 9:69-107.

Bates, D. 2000. Post-�87 Crash Fears in the S&P 500 Futures Option Market. Journal of Econo-

metrics 94:181-238.

Bates, D. 2003. Empirical Option Pricing: a Retrospection. Journal of Econometrics 116:387-404.

Bernardo, A., and O. Ledoit. 2000. Gain, Loss, and Asset Pricing. Journal of Political Economy

108:144-72.

Bick, A. 1990. On Viable Di¤usion Price Processes of the Market Portfolio. Journal of Finance

45:673-89.

Bjork, T., and I. Slinko. 2006. Towards a General Theory of Good-Deal Bounds. Review of

Finance 10:221-60.

Black, F., and M. Scholes. 1973. The Pricing of Options and Corporate Liabilities. Journal of

Political Economy 81:637-59.

Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econo-

metrics 31:307-27.

Bollerslev, T., R. Chou, and K. Kroner. 1992. ARCH Modelling in Finance: A Review of the

Theory and Empirical Evidence. Journal of Econometrics 52:5-59.

Bollerslev, T., M. Gibson, and H. Zhou. 2005. Dynamic Estimation of Volatility Risk Premia

and Investor Risk Aversion from Option-Implied and Realized Volatilities. Working Paper, Duke

University.

Bollerslev, T., and H.O. Mikkelsen. 1996. Long-Term Equity AnticiPation Securities and Stock

Market Volatility Dynamics. Journal of Econometrics 92:75-99.

42



Bondarenko, O., and I. Longarela. 2004. Benchmark Good Deal Bounds: an Application to

Stochastic Volatility Models of Option Pricing. Working Paper, Stockholm School of Economics.

Brennan, M. 1979. The Pricing of Contingent Claims in Discrete-Time Models. Journal of Fi-

nance 34:53-68.

Broadie, M., M. Chernov, and M. Johannes. 2007. Model Speci�cation and Risk Premia: Evi-

dence from Futures Options. Journal of Finance 62:1453-90.

Buhlmann, H., F. Delbaen, P. Embrechts, and A. Shiryaev. 1996. No-Arbitrage, Change of

Measure and Conditional Esscher Transforms. CWI Quarterly 9:291-317.

Buhlmann, H., F. Delbaen, P. Embrechts, and A. Shiryaev. 1998. On Esscher Transforms in

Discrete Finance Models. ASTIN Bulletin 28:171�86.

Camara, A. 2003. A Generalization of the Brennan-Rubinstein Approach for the Pricing of

Derivatives. Journal of Finance 58:805-819.

Carr, P., and L. Wu. 2004. Time-Changed Levy Processes and Option Pricing. Journal of Fi-

nancial Economics 17:113�41.

Carr, P., and L. Wu. 2009. Variance Risk Premia. Review of Financial Studies 22:1311-41.

Christo¤ersen, P., S. Heston, and K. Jacobs. 2006. Option Valuation with Conditional Skewness.

Journal of Econometrics 131:253-84.

Christo¤ersen, P., and K. Jacobs. 2004. Which GARCH Model for Option Valuation? Manage-

ment Science 50:1204-21.

Cochrane, J., and J. Saa-Requejo. 2000. Beyond Arbitrage: Good-Deal Asset Price Bounds in

Incomplete Markets. Journal of Political Economy 108:79-119.

Constantinides, G., J. Jackwerth, and S. Perrakis. 2009. Mispricing of S&P 500 Index Options.

Review of Financial Studies 22:1247-78.

Constantinides, G., and S. Perrakis. 2002. Stochastic Dominance Bounds on Derivative Prices

in a Multiperiod Economy with Proportional Transaction Costs. Journal of Economic Dynamics

and Control 26:1323-52.

Constantinides, G., and S. Perrakis. 2007. Stochastic Dominance Bounds on American Option

Prices in Markets with Frictions. Review of Finance 11:71-115.

43



Corradi, V. 2000. Reconsidering the Continuous-Time Limit of the GARCH(1,1) Process. Journal

of Econometrics 96:145-53.

Cox, J., and S. Ross. 1976. The Valuation of Options for Alternative Stochastic Processes. Journal

of Financial Economics 3:145-66.

Cox, J., S. Ross, and M. Rubinstein. 1979. Option Pricing: A Simpli�ed Approach. Journal of

Financial Economics 7:229-64.

Dai, Q., A. Le, and K. Singleton. 2006. Discrete-Time Dynamic Term Structure Models with

Generalized Market Prices of Risk. Working Paper, Stanford University.

Diebold, F., and J. Lopez. 1995. Modeling Volatility Dynamics, in K. Hoover (ed.), Macroecono-

metrics: Developments, Tensions and Prospects. Boston: Kluwer Academic Press.

Duan, J.-C. 1995. The GARCH Option Pricing Model. Mathematical Finance 5:13-32.

Duan, J.-C. 1997. Augmented GARCH(p,q) Process and Its Di¤usion Limit. Journal of Econo-

metrics 79:97-127.

Duan, J.-C. 1999. Conditionally Fat-Tailed Distributions and the Volatility Smile in Options.

Working Paper, University of Toronto.

Duan, J.-C., P. Ritchken, and Z. Sun. 2005. Jump Starting GARCH: Pricing and Hedging Options

with Jumps in Returns and Volatilities. Working Paper, University of Toronto.

Engle, R. 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of

UK In�ation. Econometrica 50:987-1008.

Engle, R., D. M. Lilien, and R.P. Robins. 1987. Estimating Time Varying Risk Premia in the

Term Structure: The ARCH-M Model. Econometrica 55:391-407.

Engle, R., and V. Ng. 1993. Measuring and Testing the Impact of News on Volatility. Journal of

Finance 48:1749-78.

Eraker, B. 2004. Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and

Option Prices. Journal of Finance 59:1367-403.

Eraker, B., M. Johannes, and N. Polson. 2003. The Impact of Jumps in Volatility and Returns.

Journal of Finance 58:1269-300.

Esscher, F. 1932. On the Probability Function in the Collective Theory of Risk. Skandinavisk

Aktuarietidskrift 15:175-95.

44



Feller, W. 1968. An Introduction to Probability Theory and its Applications. John Wiley & Sons.

Feunou, B., and R. Tedongap. 2009. AMultifactor Stochastic Volatility Model with Time-Varying

Conditional Skewness. Working Paper, Department of Economics, Duke University.

Foster, D. P., and D.B. Nelson. 1996. Continuous Record Asymptotics for Rolling Sample Vari-

ance Estimators. Econometrica 64:139-74.

French, K., G. W. Schwert, and R. Stambaugh. 1987. Expected Stock Returns and Volatility.

Journal of Financial Economics 19:3-30.

Garcia, R., and E. Renault. 1998. A Note on Hedging in ARCH-type Option Pricing Models.

Mathematical Finance 8:153-61.

Gerber, H., and E. Shiu. 1994. Option Pricing By Esscher Transforms. Transactions of the Society

of Actuaries 46:99-191.

Glosten, L. R., R. Jagannathan, and D. Runkle. 1993. On the Relation between the Expected

Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance 48:1779-

801.

Ghysels, E., A. Harvey, and E. Renault. 1995. Stochastic Volatility, in G.S. Maddala and C.R. Rao

(eds.), Handbook of Statistics 14, Statistical Methods in Finance. North Holland: Amsterdam.

Gourieroux, C., and A. Monfort. 2007. Econometric Speci�cation of Stochastic Discount Factor

Models. Journal of Econometrics 136:509-30.

Harrison, M., and D. Kreps. 1979. Martingales and Arbitrage in Multi-period Securities Markets.

Journal of Economic Theory 20:381-408.

Harrison, M., and S. Pliska. 1981. Martingales and Stochastic Integrals in the Theory of Contin-

uous Trading. Stochastic Processes and their Applications 11:215�60.

He, H., and H. Leland. 1993. On Equilibrium Asset Price Processes. Review of Financial Studies

6:593-617.

Heston, S. 1993a. A Closed-Form Solution for Options with Stochastic Volatility with Applica-

tions to Bond and Currency Options. Review of Financial Studies 6:327-43.

Heston, S. 1993b. Invisible Parameters in Option Prices. Journal of Finance 48:933-47.

Heston, S. 2004. Option Valuation with In�nitely Divisible Distributions. Quantitative Finance

4:515-24.

45



Heston, S., and S. Nandi. 2000. A Closed-Form GARCH Option Pricing Model. Review of Fi-

nancial Studies 13:585-626.

Huang, J.-Z., and L. Wu. 2004. Speci�cation Analysis of Option Pricing Models Based on Time-

Changed Levy Processes. Journal of Finance 59:1405�39.

Jacod, J., and A. Shiryaev. 1998. Local Martingales and the Fundamental Asset Pricing Theorems

in the Discrete-Time Case. Finance and Stochastics 2:259-73.

Karatzas, I., and S. Shreve. 1998. Methods of Mathematical Finance. Springer-Verlag.

Levy, H. 1985. Upper and Lower Bounds of Put and Call Option Value: Stochastic Dominance

Approach. The Journal of Finance 40:1197-217.

Lukacs, E. 1970. Characteristic Functions. Gri¢ n: London.

Madan, D., and E. Seneta. 1990. The Variance Gamma Model from Share Market Returns.

Journal of Business 63:511-24.

Maheu, J., and T. McCurdy. 2004. News Arrival, Jump Dynamics and Volatility Components

for Individual Stock Returns. Journal of Finance 59:755�93.

Nelson, D. 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Economet-

rica 59:347-70.

Nelson, D. 1996. Asymptotically Optimal Smoothing with ARCH Models. Econometrica 64:561-

73.

Nelson, D., and D. Foster. 1994. Asymptotic Filtering Theory for Univariate ARCH Models.

Econometrica 62:1-41.

Oancea, I., and S. Perrakis. 2007. Stochastic Dominance and Option Pricing in Discrete and

Continuous Time: an Alternative Paradigm. Working Paper, Concordia University.

Pan, J. 2002. The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-

Series Study. Journal of Financial Economics 63:3�50.

Perrakis, S. 1986. Option Bounds in Discrete Time: Extensions and the Pricing of the American

Put. Journal of Business 59:119-41.

Perrakis, S., and P. Ryan. 1984. Option Bounds in Discrete Time. Journal of Finance 39:519-25.

Ritchken, P. 1985. On Option Pricing Bounds. Journal of Finance 40:1219-33.

46



Ritchken, P., and S. Kuo. 1988. Option Bounds with Finite Revision Opportunities. Journal of

Finance 43:301-8.

Ritchken, P., and R. Trevor. 1999. Option Pricing Under GARCH and Stochastic Volatility.

Journal of Finance 54:377-402.

Rubinstein, M. 1976. The Valuation of Uncertain Income Streams and the Pricing of Options.

Bell Journal of Economics 7:407-25.

Satchell, S., and A. Timmermann. 1996. Option Pricing with GARCH and Systematic Consump-

tion Risk. Derivatives Use, Trading & Regulation, Part II 1:353-67.

Schroder, M. 2004. Risk Neutral Parameter Shifts and Derivatives Pricing in Discrete Time.

Journal of Finance 59:2375-402.

Schwert, G.W. 1989. Why Does Stock Market Volatility Change over Time? Journal of Finance

44:1115-53.

Shiryaev, A. 1999. Essentials of Stochastic Finance. Facts, Models, Theory. World Scienti�c.

Siu, T.K., H. Tong, and H. Yang. 2004. On Pricing Derivatives under GARCH Models: A

Dynamic Gerber-Shiu Approach. North American Actuarial Journal 8:17-31.

47



Figure 1: Option Prices from Linear and Quadratic EMMs.
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Notes to Figure: We use the linear and quadratic EMMs to compute the price of a one-month to

maturity, at-the-money call option with an underlying asset price of 100. We assume a risk-free

rate of 5%, an underlying asset mean return of 10% and a physical asset volatility of 20% per

year. In the quadratic EMM we let the ratio of the physical to risk-neutral variance, ��, vary

from 0.5 to 1.
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Figure 2: Convergence of Homoskedastic Inverse Gaussian to Black-Scholes Option Price
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Notes to Figure: We plot the ratio of the homoskedastic IG option price to the Black-Scholes

price as the number of trading intervals per day gets large. We use r = 0, K = 100, S =

100;M� = 180. We let �(�) = ��, �2(�) = �2�, and set ��2 = :07 to match a 7% equity

risk premium. Return volatility is set to 10% per year (�2 = :01) in the top row and 20% in the

bottom row (�2 = :04). The IG parameter � is set so as to generate a daily skewness of -1 in the

left column and -0.5 in the right column.

49



Figure 3: Convergence of GARCH to Stochastic Volatility Option Price

0 200 400 600 800
1

1.002

1.004

1.006

1.008

O
pt

io
n 

Pr
ic

e 
R

at
io

Trading Intervals Until Maturity

ς = 0.1, Annual Vol = 10%

0 200 400 600 800
1

1.005

1.01

1.015

Trading Intervals Until Maturity

ς  = 0.2, Annual Vol = 10%

0 200 400 600 800
1

1.005

1.01

1.015

O
pt

io
n 

Pr
ic

e 
R

at
io

Trading Intervals Until Maturity

ς = 0.1, Annual Vol = 20%

0 200 400 600 800
1

1.005

1.01

1.015

1.02

1.025

1.03

Trading Intervals Until Maturity

ς = 0.2, Annual Vol = 20%

Notes to Figure: We plot the ratio of the Heston and Nandi (2000) discrete-time GARCH

option price to the continuous-time SV option price in Heston (1993a) as the number of trading

intervals until maturity gets large. We use r = 0, K = 100, S = 100, M� = 180, � = 2, and

shock correlation � = �1. Return volatility is set to 10% per year (v = � = :01) in the top row

and 20% in the bottom row (v = � = :04). The volatility of volatility parameter & is set to 0.1

in the left column and 0.2 in the right column.
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