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This paper investigates whether the short term interest rate may explain the
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ied within the C-CAPM framework. Under the assumption that the product
of the relative risk aversion coefficient and the marginal utility is monotonic in
consumption, original results are derived that attest the existence of a relation
between the risk-free rate and the conditional second moments. The empirical
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1 Introduction

Models of the conditional second moments successfully fit and predict the un-

derlying unobservable variables by making use of the information contained in the

corresponding time series. While these models accurately describe and replicate the

phenomena, they do not provide further understanding of the latent mechanism and

the possible determinants behind it. In particular, the fundamental question that

remains unanswered is how time varying volatility and correlations relate to the state

of the economy and financial markets.

Various studies have investigated the link between the conditional variance of fi-

nancial returns and exogenous explanatory variables. Factors that may potentially

influence stock volatility have been considered by Schwert (1989). In particular, with

respect to the linkages between financial and macro volatility “the puzzle highlighted

by the results [..] is that stock volatility is not more closely related to other mea-

sures of economic volatility.” Nonetheless, economic recessions are found to be the

primary factor that drives fluctuations in volatility, a finding that is consistent with

a later study by Hamilton and Lin (1996). Economic recessions aside, King et al.

(1994) find that “...only a small proportion of the covariances between national stock

markets and their time-variation can be accounted for by observable economic vari-

ables. Changes in correlations between markets are driven primarily by movements in

unobservable variables.” Engle and Rangel (2008), separately model fast- and slow-

moving components of equity volatilities and find that the latter “...is greater when

the macroeconomic factors of GDP, inflation and short-term interest rates are more

volatile or when inflation is high and output growth is low.”

Other studies have considered the effects of news announcements on volatility.

Cutler et al. (1990) find that contemporaneous news events explain only a fraction

of volatility ex post. With respect to scheduled macroeconomic news announcements

on interest rate and foreign futures markets, Ederington and Lee (1993) observe that

“...volatility remains substantially higher than normal for roughly fifteen minutes and

slightly elevated for several hours.” Similarly, in Balduzzi et al. (2001) it is found

that “public news can explain a substantial fraction of price volatility in the after-

math of announcements...” and that “...volatility increase[s] immediately after the

announcements and persist for up to 60 minutes after the announcements.” Flem-

ing and Remolona (1999) distinguish between a first and a second stage after the

release of a major macroeconomic announcement and find that, in the latter, the an-
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nouncement induces price volatility persistence. Using intra-day data, Andersen and

Bollerslev (1998) “...conclude that these effects (release of public information and,

in particular, certain macroeconomic announcements) are secondary when explaining

overall volatility.”

This paper investigates whether the short term interest rate may explain the

movements observed in assets’ conditional variances and correlations. The theoreti-

cal connections between these seemingly different quantities are investigated within

the Consumption Capital Asset Pricing Model (C-CAPM) framework. The results

are derived under the unique assumption that the product of the relative risk aversion

coefficient and the marginal utility is a monotonic function of consumption. A logical

connection is showed to exist between the conditional expectation and the conditional

variance of the stochastic discount factor. Through the well established inverse rela-

tionship between the risk-free rate and the expected value of the discount factor, it is

possible then to characterize the stochastic discount factor’s conditional variance as

related to the interest rate. An analysis on the degree of association between asset re-

turns conditional second moments and the conditional variance of the discount factor

closes the sequence of effects beginning with interest rate variations and ending with

movements of variances and correlations. Under the stated assumption, the model

does not specify the sign of the response of the conditional moments to changes in the

risk-free rate. However, it does specify the conditions under which these quantities

will move in the same or opposite direction.

The parameterization of the conditional variance-covariance matrix as a function

of the interest rate and more generally of macroeconomic variables, requires the spec-

ification of a Multivariate GARCH (MGARCH) model suited for the inclusion of ex-

ogenous variables. This feature, however, brings about a series of complications due to

the necessity of preserving positive definiteness of the conditional variance-covariance

matrix. As a consequence, in most MGARCH models, the vector of exogenous de-

terminants must enter the dynamic equations through some quadratic form. Clearly,

this amounts to the imposition of undesirable restrictions on the functional form and

on the set of parameters.

The Sequential Conditional Correlations (SCC) methodology introduced by Pa-

landri (2009) ensures positive definiteness of the conditional correlation matrix under

the necessary and sufficient condition that each correlation and partial correlation

is bounded between plus and minus one. The associated bivariate Autoregressive

Conditional Correlation (ACC) model, based on the Fisher transformation of the
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correlations, satisfies the required bounds by construction and can therefore effort-

lessly accommodate the inclusion of exogenous variables.

The theoretical findings of the paper are confirmed by the empirical results on

165 stock returns quoted at the NYSE, involving 165 conditional variances and 13530

conditional correlations. Glosten et. al (1993) find that the short term interest rates

positively forecast stock market volatility. Using a large number of stocks, observed

for more than forty years, I find that the sign of the relationship between interest

rate and volatility varies from one asset to the other, as allowed by the theoretical

model. Similarly, the sign of the interest rate effects on the conditional correlations

is found to vary from one pair of assets to the other. The interest rate is found to be

a significant determinant of the assets’ conditional second moments even at the daily

frequency. However, it is at lower frequencies, and therefore over longer horizons,

that its importance overwhelms that of the purely dynamic components such as the

GARCH effects.

The paper is organized as follows. Sections 2 and 3 present the theoretical inves-

tigation of the C-CAPM, leading to the identification of the relationship between the

risk-free rate and the conditional second moments of assets’ returns. The dataset is

described in Section 4 followed by the description of the econometric model specify-

ing the conditional second moments as functions of exogenous variables in Section 5.

Details on the estimation are contained in Section 6. Section 7 presents the results

and Section 8 concludes. Appendix A contains the proof related to the covariance of

monotonic functions and Appendix B lays out the conditions for uniform ergodicity

of the Autoregressive Conditional Correlations model.

2 Stochastic Discount Factor and Risk-Free Rate

Consider a representative agent with preferences described by a differentiable util-

ity function u with u′ > 0 and u′′ < 0. The asset pricing restrictions for the net return

ri,t+1 satisfy:

Et [mt+1 (1 + ri,t+1)] = 1 (1)

where Et is the time t conditional expectation, mt+1 = β u′(ct+1)
u′(ct)

is the stochastic

discount factor, ct+1 next period’s consumption and β the inter-temporal discount

factor.

The risk-free rate pays the net return rf,t+1 with certainty and may therefore be

pulled out of the conditional expectation in equation (1) from which it follows that
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the product of the expected value of the stochastic discount factor and the risk-free

gross return (1 + rf,t+1) equals one. Movements in Et[mt+1] imply movements in

the opposite direction for the risk-free rate. Furthermore, since the first is not an

observable quantity, its levels and variations may be inferred from observations of

the latter. Equation (1) does not seem to suggest any other immediate relationship.

In particular, between rf,t+1 and higher order conditional moments of the random

variable mt+1.

To unravel possible links between the first and the second order moments of the

stochastic discount factor and therefore the risk-free rate, a simple stylized economy

is analyzed. The underlying assumptions are:

(i) The log-consumption process at time t + 1 has a stochastic growth rate with

time t conditional mean µt, time t conditional variance σ2
t and independent

and identically distributed standardized innovations zt+1 with support in R and

density p(z) :

ct+1 = ct · exp{µt + σtzt+1} (2)

(ii) The product of the relative risk aversion γ(c) and the marginal utility u′ is a

monotonic function of consumption:

d

dc
[γ(c) · u′(c)] = v(c) (3)

with either:

(iia) v(c) ≤ 0 , ∀c ∈ R+ −→ −u′′′(c)·c
u′′(c) ≥ 1 , ∀c ∈ R+

(iib) v(c) ≥ 0 , ∀c ∈ R+ −→ −u′′′(c)·c
u′′(c) ≤ 1 , ∀c ∈ R+

Assumption (i) is a general statement about the dynamic properties of consump-

tion growth rate. Assumption (ii) allows to establish precise relationships between

the conditional first two moments of the stochastic discount factor. For three times

differentiable utility functions, the monotonicity assumption (ii) may be interpreted

in terms of restrictions on the curvature of the utility function. Furthermore, assump-

tion (ii) may be seen as an extension of the Constant Relative Risk Aversion (CRRA)

utility function. Assumption (iia) admits relative risk aversion that is decreasing in

consumption, constant and increasing at a rate bounded above by the decrease in the

marginal utility. Relative risk aversion increasing at a rate bounded below by the

decrease in the marginal utility is consistent with Assumption (iib).
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A comparative statics approach may be used to conduct a qualitative analysis

of the effects of variations in the first two conditional moments of consumption’s

growth rate on the first two conditional moments of the stochastic discount factor.

Let νt and s2
t denote, respectively, the conditional expectation and variance of mt+1.

Differentiating these moments with respect to consumption’s conditional mean µt and

standard deviation σt yields:

∂νt

∂µt

= β · Et

[
−γ(ct+1)u

′(ct+1)

u′(ct)

]
(4)

∂νt

∂σt

= β · COVt

[
−γ(ct+1)u

′(ct+1)

u′(ct)
, zt+1

]
(5)

∂s2
t

∂µt

= 2β2 · COVt

[
−γ(ct+1)u

′(ct+1)

u′(ct)
,
u′(ct+1)

u′(ct)

]
(6)

∂s2
t

∂σt

= 2β2 · COVt

[
−γ(ct+1)u

′(ct+1)zt+1

u′(ct)
,
u′(ct+1)

u′(ct)

]
(7)

where COVt is the time t conditional covariance.

Signing derivative (4) is straightforward as the random variable inside the expec-

tation only takes negative values: ∂νt/∂µt < 0. Derivatives (5) and (6) may be easily

signed recalling that monotonic non-decreasing functions of the random variable X

exhibit positive covariances as proved in Appendix A. In particular, by assumption

(i) consumption is an increasing function of the innovation zt+1. Together with as-

sumption (ii) this implies that the first term inside the covariances of equations (5)

and (6) are either increasing (iia) or decreasing (iib) functions of zt+1. It follows

immediately that either ∂νt/∂σt > 0 (iia) or ∂νt/∂σt < 0 (iib). The second term in

equation (6) is decreasing in zt+1 and hence either ∂s2
t/∂µt < 0 (iia) or ∂s2

t/∂µt > 0

(iib). Derivative (7) may be signed in a similar manner by letting z∗ be the value of

the innovation zt+1 such that:

γ(c(z∗))u′(c(z∗))z∗ = Et[γ(ct+1)u
′(ct+1)zt+1] (8)

The right hand side of equation (8) is either negative (iia) or positive (iib): notice

the opposite sign with respect to the derivative in (5). Since the coefficient of relative

risk aversion and the marginal utility are positive, equation (8) implies that z∗ < 0

(iia) or z∗ > 0 (iib). Let’s consider the case in which (iia) holds and rewrite the

expected value of the deviations from the mean as the sum of three integrals over
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disjoint subsets: ∫ z∗

−∞
[γu′z − Et(γu

′z)]p(z)dz + (9)∫ 0

z∗
[γu′z − Et(γu

′z)]p(z)dz + (10)∫ +∞

0

[γu′z − Et(γu
′z)]p(z)dz = 0 (11)

The derivative of γu′z with respect to z is equal to:

dγu′z

dz
=
d(γu′)

dz
· z + γu′ (12)

The product γu′ is positive and by assumptions (i) and (iia) is decreasing in z. There-

fore for any z ∈ (−∞, 0) the derivative in (12) is positive. Hence, ∀z ∈ (−∞, z∗)

the quantity [γu′z − Et (γu′z)] is negative and so is integral (9). For z ∈ (z∗, 0) the

sign of the derivative in (12) is still positive, making the integrand [γu′z − Et (γu′z)]

as well as the integral (10) positive. Finally, the integral in (11) is positive as both

terms of the integrand γu′z and −Et[γu
′z] are positive. Collecting positive terms:∫ +∞

z∗
[γu′z − Et(γu

′z)]p(z)dz = −
∫ z∗

−∞
[γu′z − Et(γu

′z)]p(z)dz (13)

Since u′ is decreasing in z, if multiplied by the integrands of (13) it yields:∫ +∞

z∗
u′[γu′z − Et(γu

′z)]p(z)dz < −
∫ z∗

−∞
u′[γu′z − Et(γu

′z)]p(z)dz∫
R
u′[γu′z − Et(γu

′z)]p(z)dz < 0 ⇒

COVt[u
′, γu′z] < 0 ⇒
∂s2

t

∂σt

> 0 (14)

It may be shown, mutatis mutandis, that the sign of derivative (7) is positive even

under assumption (iib). Table I reports the signs of the derivatives of the conditional

mean and variance of the stochastic discount factor with respect to the first two

conditional moments of income growth rate under assumptions (i) and (ii).

From the signs of derivatives (4)-(7) it is possible to determine the directions

of the adjustments of the first two conditional moments of the stochastic discount

factor resulting from variations in the conditional mean and variance of consumption’s

growth rate. Under assumption (i) and (iia), a higher (lower) µt and a lower (higher)
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σ2
t imply a lower (higher) Et[mt+1] and Vt[mt+1]. Since the risk-free rate moves in the

opposite direction of the conditional expectation of mt+1, it follows that an increase

(decrease) in the level of the risk-free rate is associated to a decrease (increase) in

the conditional variance of the stochastic discount factor. Under assumptions (i)

and (iib), instead, higher (lower) µt and σ2
t imply lower (higher) Et[mt+1] and higher

(lower) Vt[mt+1]. In turn, this implies that an increase (decrease) in the risk-free rate

is associated with an increase (decrease) in the conditional variance of mt+1.

3 Risky Assets and Stochastic Discount Factor

The next period return on any risky asset i can be decomposed into a part corre-

lated with the stochastic discount factor and a conditionally orthogonal idiosyncratic

part:

ri,t+1 = ai,t + bi,t ·mt+1 + σi,t · εi,t+1 (15)

with Et [εi,t+1] = 0, Et

[
ε2i,t+1

]
= 1 and Et [mt+1 · εi,t+1] = 0 by construction. Since

non-linear relations between the risky returns and the stochastic discount factor may

only be approximated by such one-factor model, as a result, the conditional variance

σ2
i,t of the residuals will in general be a function of the conditional moments of mt+1.

Imposing the asset pricing restrictions (1) on the time t conditional projection (15)

yields:

ri,t+1 =
1− νt − bi,t (s2

t + ν2
t )

νt

+ bi,t ·mt+1 + σi,t · εi,t+1

=
1− νt − bi,ts

2
t

νt

+ bi,t (mt+1 − νt) + σi,t · εi,t+1 (16)

where νt and s2
t are the conditional mean and variance of the stochastic discount

factor. The conditional variance of ri,t+1 is equal to:

Vt [ri,t+1] = b2i,t · s2
t + σ2

i,t (17)

Thus, in general, changes in the first two conditional moments of the stochastic dis-

count factor may be seen as affecting the conditional variance of a risky asset through

three main channels: the factor loading bi,t, the conditional variance s2
t of mt+1 and

the conditional variance σ2
i,t of the projection residuals. Equation (17) outlines the

transmission mechanism between the moments of mt+1 and ri,t+1 while suggesting

that the direction and magnitude of such co-movements need not to be the same
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across assets. There is no transmission mechanism when equation (17) does not de-

pend on the moments of the stochastic discount factor. Specifically, this is the case

either when the conditional variance of the idiosyncratic term adjusts to offset the

effects of mt+1:

ri,t+1 = ai,t+1 + bi,t ·mt+1 +
(
Vt [ri,t+1]− b2i,ts

2
t

)1/2
εi,t+1 (18)

or when the factor loading adjusts:

ri,t+1 = ai,t+1 ±
(
Vt [ri,t+1]− σ2

i,t

)1/2
[
mt+1 − νt

st

]
+ σi,t · εi,t+1 (19)

or when a combination of both effects takes place.

For the simple one-factor model with constant factor loading and σ2
i,t that does

not depend on the conditional moments of mt+1:

Vt [ri,t+1] = b2i s
2
t + σ2

i,t (20)

from which it is possible to establish very precisely that an increase in the conditional

variance of the stochastic discount factor produces an increase in the conditional

variance of the risky asset. Therefore, under assumptions (i) and (iia), in periods of

high (low) interest rates the stock market’s volatility will be relatively low (high).

On the contrary, under assumptions (i) and (iib), periods of high (low) interest rates

should be accompanied by a relatively high (low) stock market’s volatility.

Let
◦
ri,t+1 be a risky return standardized by its conditional mean and variance:

◦
ri,t+1= ρi,m,t·

◦
mt+1 +

(
1− ρ2

i,m,t

)1/2 · ◦εi,t+1 (21)

where
◦
mt+1 is the standardized stochastic discount factor,

◦
εi,t+1 is the standardized

orthogonal residual and ρi,m,t, is the conditional correlation between mt+1 and the

return ri,t+1. The conditional correlation ρi,j,t between any two returns i and j is

then given by:

ρi,j,t = ρi,m,tρj,m,t + (1− ρ2
i,m,t)

1/2(1− ρ2
j,m,t)

1/2ρε
i,j,t (22)

where ρε
i,j,t is the conditional correlation between the components of the two returns

that are orthogonal to the stochastic discount factor. In general, variations in the first

two conditional moments of the stochastic discount factor translate into adjustments

of the conditional correlations of the assets and mt+1 and therefore of weights being

shifted between the standardized stochastic discount factor and the projection resid-

ual. This in turn will lead to a realignment of the conditional correlation between
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assets i and j. At the same time, the risk-free rate will also respond to the movements

in νt and s2
t and react accordingly.

In the one-factor model, the conditional correlation between asset i and j equals:

ρi,j,t =
bibjs

2
t[

b2i s
2
t + σ2

i,t

]1/2 ·
[
b2js

2
t + σ2

j,t

]1/2
(23)

and the derivative of the conditional correlation with respect to the conditional vari-

ance of mt+1 is:

∂ρi,j,t

∂s2
t

=
1

2
ρi,j,t ·

{
2

s2
t

− b2i[
b2i s

2
t + σ2

i,t

] − b2j[
b2js

2
t + σ2

j,t

]}

=
1

2
ρi,j,t ·

{
b2i s

2
tσ

2
j,t + b2js

2
tσ

2
i,t + 2σ2

i,tσ
2
j,t

s2
t ·

[
b2i s

2
t + σ2

i,t

]
·
[
b2js

2
t + σ2

j,t

]}
∝ ρi,j,t (24)

Assets that pay a positive risk-premium have negative factor loadings (bi < 0, bj < 0)

and are therefore positively correlated (ρi,j,t > 0). From equation (24) it follows that

an increase (decrease) in the conditional variance of the stochastic discount factor

results in an increase (decrease) in the correlation between assets. This effect is due

to the fact that an increase (decrease) in s2
t is the same as an increase (decrease)

in the magnitude of the loadings on the standardized factor
◦
mt+1. The immediate

consequence is that these assets will exhibit conditional correlations that move in the

same direction of s2
t and therefore in the opposite direction of the risk-free rate under

(i)+(iia) and in the same direction under (i)+(iib).

4 Data

The analysis is based on 165 asset returns quoted at the New York Stock Ex-

change1 spanning from January 1962 through December 2006. Source of raw daily

closing prices and factors to adjust for splits is the CRSP database. The returns

characteristics have been studied at six different frequency levels beginning with the

daily frequency which comprises 11,327 time series observations per asset. Lower fre-

quency returns have been constructed by aggregating the daily returns over 5, 20, 40,

80 and 120 days corresponding roughly to 1 week, 1, 2, 4 and 6 months respectively.

For each frequency, all possible aggregation schemes have been considered, resulting

1The list of ticker symbols may be found in Table III
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in 5 subsamples of 2,264 observations, 20 subsamples of 565 observations, 40 subsam-

ples of 282 observations, 80 subsamples of 140 observations and 120 subsamples of 93

observations. The index a = 1, ..., A is used to refer to a particular subsample with

A being the aggregation level: 1, 5, 20, 40, 80 or 120 days. In each subsample a, the

non-overlapping aggregate time interval has been normalized to unity so that a time

index may be defined as t = 1, ..., T where T is the floor of (11327 − A + 1)/A. As

for the corresponding time intervals, in each subsample returns do not overlap. The

cross-sectional dimension is spanned using the index i = 1, ..., 165 and the returns are

therefore denoted by ri,a,t.

The 1-Year Treasury Constant Maturity Rate is used as a proxy for the risk-free

rate. Observations are at the daily frequency over the same 45 year period. Instead

of aggregating to generate lower frequency returns, only the most recent observation

within each time interval is selected. In particular, the time t, a-th aggregate return of

asset i over A days ri,a,t ≡
(
ri,a+A(t−1) + · · ·+ ri,a+At−1

)
is associated to the risk-free

rate rf,a+At−1. Thus, for the given aggregate risky return, lags of the constant maturity

rate have been defined to be rf,a,t−1 ≡ rf,a+A(t−1)−1 at one lag, rf,a,t−2 ≡ rf,a+A(t−2)−1

at two lags, etc. In this way, rather than the cumulated interest rate, only the most

recent and available level of rf will be used as a covariate, consistently with the

argument that it is the most informative about the current conditional moments of

the stochastic discount factor.

The time dimension should be long enough to make the potential findings robust

to spurious local relations. On the other hand, the size of the cross-section should

ensure that the results do not pertain to few assets alone. Of the companies listed

in the NYSE directory2 167 have been quoted continuously for the selected 45 year

period. Among these, two have been excluded from this study due to corrupted price

listings in the CRSP database at the time of the download3. Increasing the time

dimension signifies reducing the cross-section in the same way as increasing the cross-

section reduces the time dimension: fewer assets have been quoted for longer periods

of time. 165 assets observed from 1962 to 2006 seem a reasonable compromise with

the trade-off between the two dimensions.

2www.nyse.com
3Corrupted data files regard Exelon Corporation (EXC) and Ameren Corporation (AEE) which

did not cover the whole sample period. Moreover, EXC contained fragments of price listings of Peco
Energy Co. (PE) while AEE contained fragments of Union Electric Co. (UEP).

11



4.1 Polynomial Regressions

The one lag constant maturity rate, as previously defined, is used to construct a

base of orthogonal polynomials for each of the aggregation levels. The risky returns

are projected on such space by means of ordinary least squares. The optimal degree

of the polynomial for each of the 165 assets is determined on the basis of the Schwarz

Information Criterion (SIC):

ri,a,t =
P∑

p=0

cpxp,a,t−1 + εi,a,t (25)

where xp,a,t−1 is the time t−1 projection residual of rp
f,a,t−1 on {xl,a,t−1}p−1

l=0 and x0,a,t−1

is equal to one. These regressions will ensure that the potential links between the

assets’ conditional second moments and the risk-free rate are not due to the incorrect

exclusion of the interest rate from the specification of the conditional mean. The

summary statistics of the polynomial regressions are displayed in Table II where for

each series the degree of the polynomial has been determined using the SIC. For rela-

tively high frequencies, ranging from 1-day to 2-months returns, the interest rate did

not exhibit any economically significant explanatory power. At lower frequencies, 4-

and 6-months, mean and median R-square are below 5%. Nevertheless, the behaviour

of a few assets’ returns seems to be captured quite accurately by a non linear func-

tion, here approximated by the polynomial expansion, of the lag-one interest rate.

Whether the relatively high explanatory power of the interest rate, for some assets, is

structural or it is due to noise fitting is beyond the scope of this study. Here the poly-

nomial filtration is carried out to ensure that unaccounted first moment effects are not

carried over to the conditional second moments and, therefore, mistakenly detected as

second moment effects. Section 5 describes the models for the conditional variances

and correlations used as filters of the returns’ conditional variance-covariance matrix.

5 Multivariate Modeling

Let Ha,t be the (M ×M) conditional variance-covariance matrix of the time t M -

dimensional vector of residuals εa,t of a−aggregated asset returns. Bollerslev (1990)

and Engle (2002) have exploited the possibility of separating the conditional variances

from the conditional correlations:

Ha,t = Da,tRa,tDa,t (26)
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where Da,t is the (M ×M) diagonal matrix of time-varying standard deviations and

Ra,t is the (M ×M) matrix of conditional correlations. The Sequential Conditional

Correlations methodology allows to further decompose the conditional correlation

matrix into its constituting components: the K-matrices. In particular, any correla-

tion matrix may be expressed as the product of a sequence of K-matrices and that

the product of any sequence of K-matrices (with |ρ| < 1) is a correlation matrix4:

Ha,t = Da,t

( M−1∏
i=1

M∏
j=i+1

Ki,j,a,t

)( M−1∏
i=1

M∏
j=i+1

Ki,j,a,t

)′

Da,t (27)

The Ki,j,a,t matrices are lower triangular with generic element [row, col] given by:

Ki,j,a,t[row, col] =


ρi,j,a,t if row = j and col = i

(1− ρ2
i,j,a,t)

1/2 if row = j and col = j

I[row, col] otherwise

where I is the identity matrix and the element ρi,j,a,t is the time t correlation (i = 1)

or partial correlation (i > 1) between the time t returns of assets i and j. Thus,

SCC eliminates the dimensionality problem inherent to MGARCH models by making

it possible to separately model and estimate the elements ρi,j,a,t without violating

positive definiteness and without imposing parametric restrictions.

SCC converts the high-dimensional and intractable optimization problem associ-

ated with MGARCH modeling into a series of simple and feasible estimations. This

is done by working from the outside toward the inside of the specification in (27):

model and estimate the elements of Da,t and use it to standardize the data, model

and estimate the element of K1,2,a,t and use it to standardize the data, model and

estimate the element of K1,3,a,t etc.

Thanks to the SCC’s decomposition of the conditional correlation matrix, this

methodology results to be tailor made for parallel computing. A natural paralleliza-

tion consists in estimating the parameters of the correlations’ models from left to right

and top to bottom of the upper triangular part of the matrix Ra,t. Furthermore, the

rather loose sequentiality of SCC reduces to a negligible amount the nodes’ total

waiting times. Specifically, given that the elements of the first row of Ra,t may be

4The K-matrix decomposition is unique for given R, however a permutation of the order of the
series implies a permutation of the elements of R, leading to a different sequence of K-matrices.
Following Palandri (2009), in this study the 165 assets have been ordered in decreasing order of
total square correlation: Euclidean norms of the columns of the unconditional correlation matrix.
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estimated independently from each other as soon as any of the previously allocated

nodes becomes available it may be immediately reallocated. The generic element

ρi,j,a,t (where j > i) on the i-th row and j-th column may be estimated as soon as

ρi−1,i,a,t and ρi−1,j,a,t have been estimated. The estimations of the various specifica-

tions of the conditional correlation matrix have been carried out running parallel C++

code, using MPI5, on 2 Quad Core processors. Due to the mentioned loose sequential

structure of SCC, it has been possible to achieve a high efficiency of parallelization:

the master and the 7 nodes performed as 1 single node running approximately 7.5

times faster, corresponding to a reduction of more than 86% in total computing time

when benchmarked against a single node.

5.1 Models of the Conditional Variances

Section 3 establishes the existence of some type of relation between the conditional

variances of risky assets and the risk-free rate. To model such connection and evaluate

its statistical and economic significance, different univariate models are compared:

V0 : hi,a,t = ωi

V1 : hi,a,t = ωi + βihi,a,t−1 + αiε
2
i,a,t−1

V2 : lnhi,a,t = ωi + γi,1x1,a,t−1 + γi,2x2,a,t−1

V3 : lnhi,a,t = ωi + βi lnhi,a,t−1 + γi,1x1,a,t−1

V4 :


hi,a,t = νi,a,t · si,a,t

ln νi,a,t = ωi + δi ln νi,a,t−1 + γi,1x1,a,t−1 + γi,2x2,a,t−1

si,a,t = (1− βi − αi) + βisi,a,t−1 + αi

(
ε2i,a,t−1/νi,a,t−1

)
V0 describes constant conditional variances while specification V1 is the GARCH(1,1)

of Bollerslev (1986). Here, the conditional variance hi,a,t of asset i, in the a-th ag-

gregation scheme and at time t is a function of the squared residual ε2i,a,t−1 of the

same asset, same aggregation and at time t − 1. V2 and V3 are functionally simi-

lar to the ARCH of Engle (1982) and the GARCH specifications but with a crucial

difference: the lagged realizations, which do not enter the model, are replaced by

functions of the interest rate. In V2, the relationship between the risk-free rate and

asset i log-variance is approximated by a second degree polynomial. x1,a,t−1 refers

to the unaggregated and de-meaned interest rate observable just prior to time t in

5Message Passing Interface standard
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the a-th aggregation. Similarly, x2,a,t−1 refers to the component of the squared the

interest rate that is orthogonal to a constant and x1,a,t−1. In V3, instead, the asset’s

conditional log-variance is a linear function of the de-meaned interest rate, augmented

by a GARCH-type memory parameter. The magnitude of β will reflect the degree of

persistence in volatility as opposed to a specification like V2 in which any persistence

in the variance may arise solely from that of its covariates. Furthermore, the memory

parameter in V3 allows shocks to the interest rate to affect the conditional variances

over time as opposed to V2 where such effects exhaust in a single period. Finally, V4

includes both GARCH and interest rate effects in a specification that nests V0-V3.

5.2 Models of the Conditional Correlations

Within the SCC methodology, the conditional correlation matrix is decomposed

into its constituting elements: conditional correlations and partial correlations. It is

convenient, in this setting, to parameterize the Fisher transformation χi,j,a,t of the

conditional correlation ρi,j,a,t between assets i and j:

χi,j,a,t =
1

2
ln

(
1 + ρi,j,a,t

1− ρi,j,a,t

)
(28)

Mapping the interval (−1, 1) into (−∞,+∞), this transformation allows χi,j,a,t to

take any value on the real line. Thus, there will be no need to bound the process

by imposing constraints on the model’s parameters. These quantities are modeled by

the bivariate specifications C0-C4 which closely resemble V0-V4 of the conditional

variances:

C0 : χi,j,a,t = ωi,j

C1 : χi,j,a,t = ωi,j + θi,jψi,j,a,t−1

C2 : χi,j,a,t = ωi,j + γi,j,1x1,a,t−1 + γi,j,2x2,a,t−1

C3 : χi,j,a,t = ωi,j + δi,jχi,j,a,t−1 + γi,j,1x1,a,t−1

C4 : χi,j,a,t = ωi,j + δi,jχi,j,a,t−1 + θi,jψi,j,a,t−1 + γi,j,1x1,a,t−1 + γi,j,2x2,a,t−1

In C0, the conditional correlations are constant while in C1 their dynamics are de-

scribed by the Autoregressive Conditional Correlations (0,1) model which closely

resembles the GARCH(1,1)6. The variable ψi,j,a,t−1 is the Fisher transformation of

the time (t − 1) realized correlation φi,j,a,t−1. Since the latter is not observable it

6Similarities between the ACC(0,1) and GARCH(1,1) specifications are sketched in Appendix
B.1
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is estimated by means of an exponential smoothing, with parameter αi,j, of past

realizations:

ψi,j,a,t =
1

2
ln

(
1 + φi,j,a,t

1− φi,j,a,t

)
(29)

φi,j,a,t =
Qi,j,a,t[1, 2]√

Qi,j,a,t[1, 1] ·Qi,j,a,t[2, 2]
(30)

Qi,j,a,t = αi,jQi,j,a,t−1 + (1− αi,j)εi,j,a,tε
′
i,j,a,t (31)

εi,j,a,t is the bi-dimensional vector containing εi,a,t and εj,a,t. The (2 × 2) matrix

Qi,j,a,t is the exponential smoothing of the underlying variance-covariance matrix.

It should be noticed that, as a consequence of the volatility filtration, the elements

on the main diagonal have a conditional mean of one. From the smoothed variance-

covariance matrix the corresponding correlation φi,j,a,t is computed and then its Fisher

transformation ψi,j,a,t. The conditions for uniform ergodicity of the ACC model are

derived in Appendix B.2. C2 and C3 are the transposition to the modeling of the

conditional correlations of V2 and V3 respectively. Similarly to V2 and V3, shocks

to the interest rate have an instantaneous effect on the conditional correlations in C2

while it is spread over time in C3. C4 includes both autoregressive and interest rate

effects in a parameterization that nests C0-C3.

6 Estimation

The parameters of the models for the conditional variances and conditional corre-

lations are estimated by GMM based on the scores of Gaussian likelihood functions.

In particular, there are M scores pertaining to the variance models and M(M − 1)/2

scores pertaining to the correlation models. The score-based moment conditions aris-

ing from the SCC methodology give rise to a block-triangular system of equations.

Standard GMM estimates are obtained by setting all moment conditions to zero and

simultaneously solving for the whole set of parameters. However, given the block-

triangular structure of the moment conditions, this is the same as solving for one set

of moments at the time. The equivalence between the simultaneous and the step-by-

step solution allows the SCC estimation to fall within the GMM framework. Nev-

ertheless, the theoretical convenience of standard GMM asymptotics does not solve

the practical issues related to the computation of the parameters’ variance-covariance

matrix. Especially the estimation of the variance of the moments as the average of
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the outer-products of the moment conditions: given that its dimensions are of order

M2, this matrix is not full rank for large cross-sections M > T 1/2.

6.1 Score of the Variances

Let εi be the (A ·T ×1) vector of residuals from the polynomial regression of asset

i: ε′i =
(
ε′i,1, ε

′
i,2, ..., ε

′
i,A

)
with ε′i,a = (εi,a,1, εi,a,2, ..., εi,a,T ). Then, the concentrated

log-likelihood Lc is:

Lc = − ln |Ωi| − ε′iΩ
−1
i εi (32)

where Ωi is the conditional variance-covariance matrix:

Ωi =


Ωi,1,1 Ωi,1,2 . . . Ωi,1,A

Ω′
i,1,2 Ωi,2,2 . . . Ωi,2,A

...
. . .

...

Ω′
i,1,A Ω′

i,2,A . . . Ωi,A,A


The Ωi,a,a are diagonal matrices of time-varying variances hi,a,t while the Ωi,a,l ma-

trices, with a 6= l, are bidiagonal and contain the time-varying covariances between

residuals overlapping across aggregation schemes. These covariances arise as the

byproduct of the different aggregation schemes and, with respect to this study, do not

contain any useful information. Hence, the matrix Ωi is replaced with the misspecified

block diagonal matrix Ω∗
i which disregards the artificially induced covariances:

Ω∗
i =


Ωi,1,1 0 . . . 0

0 Ωi,2,2 . . . 0
...

. . .
...

0 0 . . . Ωi,A,A


Hence, the log-likelihood becomes:

Lc = − ln |Ω∗
i | − ε′i [Ω

∗
i ]
−1 εi

= −
A∑

a=1

[
ln |Ωi,a,a|+ ε′i,aΩ

−1
i,a,aεi,a

]
= −

A∑
a=1

T∑
t=1

[
lnhi,a,t + ε2i,a,th

−1
i,a,t

]
(33)
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6.2 Score of the Correlations

Let η′i ≡
(
ε′i,1Ω

−1/2
i,1,1 , ε

′
i,2Ω

−1/2
i,2,2 , ..., ε

′
i,AΩ

−1/2
i,A,A

)
be the (A·T×1) vector of standardized

residuals. Specifically, ηi,a,t = h
−1/2
i,a,t · εi,a,t is homoscedastic with unit variance for any

aggregation level a. Letting η′i,j = (η′i, η
′
j), the joint concentrated log-likelihood is:

Lc = − ln |Qi,j| − η′i,jQ
−1
i,j ηi,j (34)

where Qi,j is the conditional variance-covariance matrix:

Qi,j =

 Qi,j,1,1 Qi,j,1,2

Q′
i,j,1,2 Qi,j,2,2


All elements on the main diagonals of Qi,j,1,1 and Qi,j,2,2 are equal to unity. The

off-diagonal elements contain time-varying correlations between different aggregation

schemes that would require modeling. However, these correlations are of no particular

interest as they are artificially induced by the aggregation schemes. The main diagonal

of Qi,j,1,2 contains the contemporaneous conditional correlations on which this part

of the analysis focuses while the off-diagonal elements of Qi,j,1,2 contain lead and lag

correlations induced by the aggregation of the data. Thus, Qi,j is replaced with the

misspecified matrix Q∗
i,j containing only the quantities of interest and ignoring all the

artificial features:

Q∗
i,j =

 I Q∗
i,j,1,2

Q∗
i,j,1,2 I


where Q∗

i,j,1,2 is the diagonal matrix of the conditional correlations ρi,j,a,t and its

inverse is equal to:

[
Q∗

i,j

]−1
=

 Q∗1,1
i,j Q∗1,2

i,j

Q∗1,2
i,j Q∗2,2

i,j

 =

 (I −Q2
i,j,1,2)

−1 −Qi,j,1,2(I −Q2
i,j,1,2)

−1

−Qi,j,1,2(I −Q2
i,j,1,2)

−1 (I −Q2
i,j,1,2)

−1


The concentrated log-likelihood is then equal to:

Lc = − ln |Q∗
i,j| − η′i,j

[
Q∗

i,j

]−1
ηi,j

= − ln |I −Q∗
i,j,1,2 ·Q∗

i,j,1,2| − η′iQ
∗1,1
i,j ηi − 2η′iQ

∗1,2
i,j ηj − η′jQ

∗2,2
i,j ηj

= − ln |I −Q∗
i,j,1,2 ·Q∗

i,j,1,2| −
A∑

a=1

T∑
t=1

(
η2

i,a,t − 2ρi,j,a,tηi,a,tηj,a,t + η2
j,a,t

)(
1− ρ2

i,j,a,t

)
= − ln

A∏
a=1

T∏
t=1

(
1− ρ2

i,j,a,t

)
−

A∑
a=1

T∑
t=1

(ηj,a,t − ρi,j,a,tηi,a,t)
2 + η2

i,a,t(
1− ρ2

i,j,a,t

)
= −

A∑
a=1

T∑
t=1

[
ln

(
1− ρ2

i,j,a,t

)
+

(ηj,a,t − ρi,j,a,tηi,a,t)
2

1− ρ2
i,j,a,t

]
(35)
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The sum of the η2
i,a,t terms, on the fourth line, is dropped from the concentrated

log-likelihood as it does not depend on ρi,j,a,t.

6.3 Estimation Strategy

For a cross-section of dimensions M , the number of correlations and partial cor-

relations to be estimated is 0.5 ·M(M − 1), corresponding to 13, 530 elements for

the 165 assets considered in this study. Given that some of these correlations may

be constant, it would be appropriate to treat them as such rather than impose a dy-

namic specification to all the elements of Rt. The estimation strategy takes this into

account pre- and post-estimation. Pre-estimation, a Lagrange Multiplier (LM) test is

carried out to test the null hypothesis of constant correlations against the appropriate

alternative. In particular, the LM tests are:

LM1 :

 H0 : ρi,j,a,t = ωi,j,a

H1 : ρi,j,a,t = f(εi,a,t−1 · εj,a,t−1)

LM2 :

 H0 : ρi,j,a,t = ωi,j,a

H1 : ρi,j,a,t = f(x1,a,t−1)

The LM1 test is carried out when the model of choice is C1 while LM2 is carried out

when the models of choice are C2 and C3. If, based on the outcome of the test, the

null may not be rejected, ρi,j,a,t is set to a constant while in case of rejection, model

estimation is carried out. In the latter case, the estimated model is then compared

to a constant correlation model in terms of the Schwartz Information Criteria (SIC)

and the best specification is selected.

To select the best specification among C0-C4 both tests have been carried out and

the following strategy adopted:

1) Estimate C0 if cannot reject LM1 and LM2

2) Estimate C1 if cannot reject LM2 but reject LM1

3) Estimate C2 and C3 if cannot reject LM1 but reject LM2

4) Estimate C1-C4 if reject LM1 and LM2

In 2), after C1 has been estimated, it is compared against C0 in terms of SIC and

the best model selected. In 3), the best SIC specification is selected among C0, C2
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and C3. Finally, in 4) all models are estimated and therefore the SIC-best is selected

among C0-C4.

Such strategy results in parsimonious specifications that still may explain very

well the variations in the conditional correlations. Furthermore, it should be noted

that the LM tests operate a preliminary skimming of the models which are ultimately

evaluated in terms of the SIC. This is the case due to the tendency of the LM tests

to over-reject the null hypothesis (constant correlations) and the fact that, for nested

models, the SIC corresponds to a Likelihood Ratio Test with very low significance

levels. Therefore, the situation in which SIC would have selected any C1-C4 but LM

testing turned in favor of C0 (and therefore inhibited further estimations according

to the proposed strategy) is rather unlikely.

7 Results

7.1 Conditional Variances

Models V1-V3 have been fitted to the projection residuals of the 165 asset returns

on the interest rate polynomial. For each asset and a given aggregation level, the

models were ranked according to the SIC and the percentage of times that each

model ranked first have been reported in Table IV. At the daily and weekly level,

the GARCH effects dominate and for none of the assets included in the sample the

conditional variance can be better explained in terms of interest rate movements.

Nevertheless, at the one and two months frequencies, while still dominated by the

GARCH effects, the interest effects slowly begin appearing. For the lowest frequencies

considered, four and six months, the aggregation reduced the idiosyncratic noise and

the associated GARCH effects. At the same time it allowed the relationship between

the assets’ volatilities and the risk-free rate to emerge in all their strength. What the

numbers further suggest is that on average both GARCH and interest rate effects are

present but while the first dominate at the high frequencies the second are stronger

at the low frequencies mainly due to the idiosyncratic noise reduction resulting from

the time aggregation of the returns.

The first three columns of Table IV draw a rough outline of which effect better de-

scribes the time varying variances at a given frequency. Introducing model V4 (which

nests V1-V3) in the comparison, allows to determine whether the variance component

explained by the interest rate is only a low-frequency phenomena or whether it is also

relevant at higher frequencies even if weaker than the GARCH component. For daily
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and weekly data, a model that includes both effects is preferred to the pure GARCH

V1 for nearly half and three quarters of the assets respectively. At the intermediate

frequencies of one and two months, V4 is the preferred model for more than 90%

of the assets. When the frequencies are lowered to four and six months and the

GARCH effects mitigate, for 15% to 20% of the assets a purely interest rate based

conditional variance model is preferred. Hence, both the GARCH and the risk-free

rate induced conditional variance components appear to be present in the 165 asset

returns considered.

The sign of the interest rate effects on the conditional variances are summarized

in Table V and Table VI for the V2 and V4 models respectively. For the observed

range, the functional form linking the conditional variance and the interest rate is

approximated by a parabola (∪), an upside down parabola (∩), an increasing con-

vex curve (y), an increasing concave curve (p), a decreasing convex curve (x) and a

decreasing concave curve (q).

The upside down parabola (∩) is the functional form that overall best approxi-

mates the response of the conditional variances to the interest rates. In particular, it

is the shape taken by the polynomial in V2 for no less than two thirds of the assets.

The polynomial in V4 reproduces such shape for approximately half of the assets at

high frequencies and no less than three quarters of the assets at lower frequencies.

Hence, for most of the returns considered, the conditional variances are lower, ceteris

paribus, either when the interest rate is low or when it is high. It should be noted that

the vertices of the parabolic approximations are not the same across assets. There-

fore, an increase in the level of the interest rate will result in a higher conditional

variance for some assets while lower for others.

7.2 Conditional Correlations

Tables VII-IX report the estimation results of the conditional correlation matrices

for the 165 assets when the variances are modeled by V1-V3 respectively. Specifically,

in Table VII, V1 is modeled for all the conditional variances. In the first panel are the

results when the constant conditional correlation model C0 is estimated. In such case

there are 13,530 parameters, corresponding to the number of correlations among the

the 165 assets, at any frequency. The reported log-likelihood and SIC values are com-

puted on the data standardized by the conditional variances estimated by V1. Panels

2-4 report the results for the conditional correlations modeled by C1-C3 respectively.

According to the chosen information criteria, the purely dynamic model C1 is to be
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preferred at high frequencies (1-5 days), C2 at low frequencies (80-120 days) and C3

for medium frequencies (20-40 days). In Table VIII, the conditional variances are

modeled by V2 and the resulting conditional correlations are best describer by C2

at low frequencies (40-120 days) and C3 at high frequencies (1-20 days). When the

variances are estimated by V3, as in Table IX, C2 is generally the preferred model

at low frequencies (1, 80 and 120 days) and C3 is preferred at high frequencies (5-40

days). Hence, the correlations’ results are quite robust to the choice of the model for

the conditional variances V1-V3 and point to the fact that the second degree poly-

nomial of C2 is generally a better description of the time-varying correlations at low

frequencies while the memory parameter of C3 helps to better fit the data at high

frequencies. From the reported results, it is also clear that regardless of the choice of

the model for the conditional variances, at low frequencies the interest rate is better

at describing the evolution of the correlations than the purely dynamic GARCH-like

model C1. Thus, Tables VII-IX clearly indicate that interest rate effects are present

in the conditional correlations and that, at low frequencies, they provide a better

description of the time-varying correlations than the dynamic model V1.

Table X reports the results of the model obtained selecting the best variance

specification for each asset among V0-V4 and the best specification for each pair of

conditional correlations and partial correlations among C0-C4, in terms of the SIC.

The so obtained model is preferred to the constant correlation model C0 at any of

the considered frequencies. It should be noted that, consistently with the findings

in Tables VII-IX, the overall number of parameters of the preferred model increases

as the frequency of the data decreases. Given that for each of the estimated models

C0-C4 the number of parameters is fixed, it follows that at lower frequencies there

are less correlations and partial correlations that are best described by the constant

correlation specification C0. Hence, there are dynamic and interest rate effects in the

correlations that may be detected at low but not at high frequencies.

For the specification determined by the SIC, the distributions of the selected

conditional variance and correlation models are reported in Table IV and Table XI

respectively. Column C0 confirms that the number of correlations that are best

modeled as constant decreases as the frequency is also decreased. In particular, it is

somewhat striking that while at the daily frequency more than 95% of the correlations

and partial correlations are constant, at the 120-days frequency only 33% of them are

constant. The relative distribution of the selected models that allow for time-varying

correlations is reported in the lower panel of Table XI. At the daily frequency, more
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than half of the elements of the conditional correlation matrix are best modeled by a

purely dynamic model and less than 1% of such elements exhibit both dynamic and

interest rate effects as seen from column C4. At the weekly frequency, the dynamic

specification C1 is preferred in roughly 25% of the cases while the most general

specification C4 is preferred in no more than 2% of the cases. As the frequencies

are further lowered, the number of elements best described by C1 stabilizes around

17%. Conversely, C4 is increasingly selected as the best model at lower frequencies.

At 80 and 120 days more elements of the conditional correlation matrix exhibit both

dynamic and interest rate effects than just dynamic effects. The purely exogenous

models C2 and C3, in which the interest rate is the sole determinant of the level of the

correlations, are each selected as the best specifications in roughly 30% of the cases.

On the other hand, C2 exhibits a peak of preferences in the 5-20 days range, while

C1 exhibits a significant low of 15.64% at the daily frequency. Relatively to the time

varying components, the specifications C2-C4 which include interest rate effects are

preferred to C1 in terms of the SIC in more than 83% of the cases at frequemcies of

20-120 days. At the higher frequencies of 1 and 5 days, C2-C4 are selected in 46.21%

and 75.94% of the cases, respectively.

8 Conclusions

This paper extrapolates, within the C-CAPM framework, a theoretical connection

between the risk-free rate and the first two conditional moments of the stochastic

discount factor and through these, a connection with the conditional correlations

among assets. Under the stated assumption, the model does not provide specific

predictions about the reciprocal movements of the interest rate and the variances

and correlations but it does identify the conditions under which these quantities

will move in the same or in the opposite direction. A straightforward extension

to the bivariate Autoregressive Conditional Correlations model is introduced. This

allows for the inclusion of exogenous covariates in a way that is consistent with the

natural bounds of the correlations. Furthermore, in association with the Sequential

Conditional Correlations methodology, it will easily parameterize a positive definite

conditional correlation matrix as a function of exogenous variables. The empirical

analysis, conducted by modeling the 13539 correlations in the data set, confirms that

the interest rate is a determinant of the conditional second moments. Empirically,

the risk-free rate effects are found to be present at all frequencies and dominant at
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the low ones.

The inclusion of additional macroeconomic explanatory variables and further eval-

uations of the explanatory power of the interest rate are left as an area for future

research.

A Appendix

Theorem A.1. Let X be a continuous random variable and f, g be two non-constant,

monotonic non-decreasing functions of X. Then:

COV [f(X), g(X)] > 0 (36)

Proof of Theorem A.1: Define
◦
f= f −Ef and

◦
g= g−Eg. Since f, g are increasing

in X, ∃! x1 and x2 such that
◦
f (x1) = 0 and

◦
g (x2) = 0. Without loss of generality,

assume x1 ≤ x2 and let A = (−∞, x1], B = (x1, x2] and C = (x2,+∞). Then:

◦
f (x) ≤ 0 ; ∀x ∈ A
◦
f (x) > 0 ; ∀x ∈ B ∪ C
◦
g (x) ≤ 0 ; ∀x ∈ A ∪B
◦
g (x) > 0 ; ∀x ∈ C

The covariance between f, g may be rewritten as the expectation over disjoint sets:

COV [f(X), g(X)] = EA

[
◦
f
◦
g

]
+ EB

[
◦
f
◦
g

]
+ EC

[
◦
f
◦
g

]
> EA

[
◦
f
◦
g

]
+

◦
f (x2)EB

[◦
g
]

+ EC

[
◦
f
◦
g

]
> EA

[
◦
f
◦
g

]
+

◦
f (x2)EB

[◦
g
]
+

◦
f (x2)EC

[◦
g
]

> EA

[
◦
f
◦
g

]
+

◦
f (x2)EB∪C

[◦
g
]

> EA

[
◦
f
◦
g

]
+

◦
f (x2)

{
0− EA

[◦
g
]}

> 0 (37)

The last step is obtained by noticing that: in the set A, the random variable
◦
f
◦
g

is non-negative and therefore EA

[
◦
f
◦
g

]
> 0 ; in the set A, the random variable

◦
g is

non-positive and therefore −EA

[◦
g
]
> 0.
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B Appendix

B.1 Similarities between ACC and GARCH

Consider the ACC(1,1) model applied to the modeling of volatilities rather than

correlations. The time t conditional variance ht is then given by:

ht = ω + δht−1 + θψt−1 (38)

In this setting, the Fisher transformation of ACC may be simply replaced with the

identity function: ψt−1 = φt−1. Furthermore, φt−1 may be set equal to qt−1, where

the latter is the realization of the variance estimated by the exponential smoothing:

ψt−1 = αψt−2 + (1− α)ε2t−1 (39)

Substituting equation (39) in (38) yields:

ht = (1− α)ω + (α+ δ)ht−1 − αδht−2 + (1− α)θε2t−1 (40)

Hence, the ACC(1,1) model is the correlations’ analogue of the GARCH(1,2). In turn,

the ACC(0,1) specification at C1, with δ = 0, is the analogue of the GARCH(1,1).

B.2 Ergodicity of ACC

Consider the exponential smoothing with parameter α ∈ (0, 1) associated to the

ACC(1,1) specification:

qt = α · qt−1 + (1− α) ·


u2

i,t

ui,tuj,t

u2
j,t

 (41)

where qt ≡ vech(Qt) and uj,t = ρtui,t+(1−ρ2
t )

1/2εj,t with Et−1(u
2
i,t) = 1, Et−1(ε

2
j,t) = 1

and Et−1(ui,tεj,t) = 0. Then:

qt = α · qt−1 + (1− α) ·


1

ρt

1

 + (1− α) ·


u2

i,t − 1

ui,tuj,t − ρt

u2
j,t − 1

 (42)

and therefore:

qt = α · qt−1 + (1− α) ·


1

ρt

1

 + Zt (43)
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with Et−1(Zt) = 0. Letting IF (•) denote the inverse Fisher transformation:

qt = α · qt−1 + (1− α) ·


1

IF (χt)

1

 + Zt (44)

In the ACC(1,1):

χt = ω + δχt−1 + θψt−1

= ω + δχt−1 + θF (φt−1)

= ω + δχt−1 + θF (C(qt−1)) (45)

where F (•) is the Fisher transformation and C(•) is the function that computes the

correlation φt−1 from the vector of variances and covariances qt−1. Hence:

qt = α · qt−1 + (1− α) ·


1

IF [ω + δχt−1 + θF (C(qt−1))]

1

 + Zt (46)

From this and equation (45) it is possible to obtain the following nonlinear Markovian

representation:  qt

χt

 = f

 qt−1

χt−1

 +

 Zt

0

 (47)

The skeleton f(•) of the Markov chain has a unique fixed point.

Proof. Let q∗, ρ∗, φ∗, ψ∗ and χ∗ denote the fixed points of qt, ρt, φt, ψt and χt

respectively. From the exponential smoothing equation, it follows that q∗1 = 1, q∗2 = ρ∗

and q∗3 = 1. Then: φ∗ = ρ∗, ψ∗ = F (φ∗) = F (ρ∗) = χ∗. Substituted in the ACC(1,1)

equation it yields:

χ∗ = ω + δχ∗ + θχ∗

= ω(1− δ − θ)−1 (48)

The mapping of the skeleton has the whole Euclidean space as domain of attraction.
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Proof. Let the index n denote the mapping of the skeleton and consider, once again,

the exponential smoothing equation:

q2,n = αq2,n−1 + (1− α)ρn

ψn = F [αq2,n−1 + (1− α)ρn]

= F [αIF (ψn−1) + (1− α)IF (χn)] (49)

The Fisher transformation is an odd function, convex (concave) for positive (negative)

arguments:

ψn ≤ (>) αF [IF (ψn−1)] + (1− α)F [IF (χn)]

≤ (>) αψn−1 + (1− α)χn (50)

It follows that when ψt is positive (negative) the skeleton is bounded above (below)

by the following mapping:

ψn = αψn−1 + (1− α)χn (51)

Thus, the nonlinear mapping may be replaced by a linear mapping that bounds it.

Using the lag operators, the χ and ψ components may be rewritten as:

(1− δL)χn = ω + θψn−1 (52)

(1− αL)ψn−1 = (1− α)χn−1 (53)

from which it follows that:

χn = (1− α)ω + [α+ δ + (1− α)θ]χn−1 − αδχn−2 (54)

This is the skeleton of an AR(2). Under the following conditions, its domain of

attraction is the whole Euclidean:

αδ < 1

δ + θ < 1

δ +

(
1− α

1 + α

)
θ > −1 (55)

The ACC(1,1) process is uniformly ergodic.

Proof. Being bounded by an AR(2), the ACC(1,1) process automatically satisfies the

absorbing requirements of assumptions (A1)-(A5) of Theorem 3.3.2 of Chan and

Tong (2001) for uniform ergodicity.

27



Conditions for uniform ergodicity may be easily generalized to the ACC(p,q)

model even though they will not be available in an analytical form. In particular, the

mapping of the skeleton of an ACC(p,q) is bounded by:

χn = (1− α)ω +
m∑

i=1

φiχn−i (56)

with m = max(p+ 1, q) and

φi = δi − αδi−1 + (1− α)θi (57)

where δ0 = 0, δi = 0 ∀i > p and θi = 0 ∀i > q. Therefore, the ACC(p,q) is uniformly

ergodic when its parameters satisfy the analogous conditions of the associated AR(m).
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Table I: Signs of the Derivatives

(i) (i)+(ii) (i)+(iia) (i)+(iib)

dνt

dµt
< 0

dνt

dσt
> 0 < 0

ds2
t

dµt
< 0 > 0

ds2
t

dσt
> 0

Table II: Polynomial Regressions Summary Statistics.

Degree R-square

Freq. min mean median max min mean median max

1 0 0.01 0 1 0 0.00 0.00 0.00

5 0 0.24 0 2 0 0.00 0.00 0.00

20 0 0.97 0 8 0 0.00 0.00 0.03

40 0 1.52 1 9 0 0.01 0.00 0.04

80 0 2.42 2 16 0 0.02 0.01 0.21

120 0 3.30 3 18 0 0.03 0.02 0.29
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Table III: Symbols of Included Stocks

AA ABI ABT ADM AEP AME AP APD AVA AVT AYE

BA BAX BC BCO BGG BMY BWS CAT CBE CCK CEG

CHG CL CLF CMS CNP COP CPB CQB CR CSK CSL

CTB CVS CVX CW DD DE DIS DOV DOW DPL DTE

DUK EAS ED EDE EGN EIX EK EMR EQT ETN ETR

F FE FL FMC FOE FPL GAM GAP GCO GD GE

GIS GLW GM GMT GNI GR GT GXP GY HAL HMX

HNZ HP HPQ HRS HSC HSY IBM IDA ILA IP IR

IRF JCP JNJ K KO KR LG LMT LTR MDU MEE

MHP MMM MO MOT MRK MSB MUR NC NEM NFG NL

NOC OGE OKE OLN PBI PCG PE PEG PEO PEP PFE

PG PGN PNW PPG PPL PSD PVH R ROH ROK RSH

RTN SCG SCX SJI SLE SO SP STR SUN TKR TPL

TR TXN TXT TY UEP UGI UIS USG UTX UVV VAR

WAG WEC WGL WHR WR WWY WYE XEL XOM XRX Y

Table IV: Models of the Conditional Variance.
Schwartz Information Criterion preferred model. In columns V1-V3 the corresponding
models are SIC-compared and the relative percentages reported. Columns V1-V4 report
SIC-comparison percentages when the set of competing models is extended to the nesting
specification V4.

Freq. V1 V2 V3 V1 V2 V3 V4

1 100.00% 0.00% 0.00% 54.55% 0.00% 0.00% 45.45%

5 100.00% 0.00% 0.00% 26.67% 0.00% 0.00% 73.33%

20 94.54% 3.64% 1.82% 9.70% 0.00% 0.00% 90.30%

40 77.58% 16.36% 6.06% 2.43% 4.24% 0.00% 93.33%

80 44.85% 36.97% 18.18% 1.21% 13.94% 1.21% 83.64%

120 27.88% 46.67% 25.45% 0.61% 20.00% 2.42% 76.97%

31



Table V: Interest Rate Effects in V2.
Summary statistics of the functional form linking interest rates and conditional variances
in V2. Legend: parabola (∪), upside down parabola (∩), increasing convex curve (y),
increasing concave curve (p), decreasing convex curve (x) and decreasing concave curve (q).
Last column reports the number of times V2 is the Schwartz Information Criteria preferred
model in the comparison V1-V4.

Freq. ∪ ∩ y p x q Total

1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0

5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0

20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0

40 28.57% 71.43% 0.00% 0.00% 0.00% 0.00% 7

80 8.70% 69.57% 0.00% 21.73% 0.00% 0.00% 23

120 12.12% 78.79% 3.03% 6.06% 0.00% 0.00% 33

Table VI: Interest Rate Effects in V4.
Summary statistics of the functional form linking interest rates and conditional variances
in V4. Legend: parabola (∪), upside down parabola (∩), increasing convex curve (y),
increasing concave curve (p), decreasing convex curve (x) and decreasing concave curve (q).
Last column reports the number of times V4 is the Schwartz Information Criteria preferred
model in the comparison V1-V4.

Freq. ∪ ∩ y p x q Total

1 21.33% 48.00% 16.00% 14.67% 0.00% 0.00% 75

5 21.49% 57.02% 9.92% 11.57% 0.00% 0.00% 121

20 6.04% 79.87% 4.03% 6.71% 2.01% 1.34% 149

40 5.19% 85.07% 2.60% 5.19% 1.95% 0.00% 154

80 5.80% 88.41% 2.17% 0.72% 1.45% 1.45% 138

120 8.66% 80.32% 1.57% 4.72% 3.94% 0.79% 127
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Table VII: Models of the Conditional Correlations
Panels C0-C3 report the number of parameters, log-likelihood and SIC values for the corre-
sponding specifications of the whole conditional correlation matrix when all the conditional
variances are filtered using specification V1.

Correlations: C0 Correlations: C1

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 13,530 -717,375 1,561,050 14,002 -709,720 1,550,150

5 13,530 -574,216 1,274,720 14,540 -565,270 1,266,260

20 13,530 -361,317 848,987 16,368 -343,848 840,422

40 13,530 -195,129 516,456 16,784 -172,894 502,335

80 13,530 20,380 85,292 17,230 36,522 87,480

120 13,530 212,957 -299,960 17,490 216,039 -269,252

Correlations: C2 Correlations: C3

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 14,046 -713,428 1,557,970 14,020 -714,046 1,558,970

5 15,622 -561,507 1,268,830 15,660 -560,781 1,267,730

20 21,724 -286,726 776,154 22,408 -282,330 773,745

40 25,096 -59,987 354,050 25,802 -54,449 349,559

80 27,430 210,482 -165,412 27,830 260,590 -153,902

120 28,210 415,177 -567,738 28,626 393,193 -519,898
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Table VIII: Models of the Conditional Correlations
Panels C0-C3 report the number of parameters, log-likelihood and SIC values for the corre-
sponding specifications of the whole conditional correlation matrix when all the conditional
variances are filtered using specification V2.

Correlations: C0 Correlations: C1

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 13,530 -690,873 1,508,050 13,940 -687,104 1,504,340

5 13,530 -559,592 1,245,470 14,736 -551,778 1,241,100

20 13,530 -353,250 832,745 16,430 -332,470 818,245

40 13,530 -187,707 501,611 16,964 -163,768 485,763

80 13,530 20,673 84,707 17,438 36,417 89,626

120 13,530 205,703 -285,451 17,698 207,453 -250,150

Correlations: C2 Correlations: C3

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 14,312 -684,692 1,502,980 14,264 -684,899 1,502,950

5 16,248 -542,060 1,235,700 16,194 -539,873 1,230,900

20 22,232 -270,711 748,863 22,562 -267,486 745,493

40 25,300 -46,213 328,406 25,936 -43,864 329,693

80 27,208 218,968 -184,453 27,802 208,927 -158,836

120 28,116 423,935 -586,130 28,264 387,125 -511,133
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Table IX: Models of the Conditional Correlations
Panels C0-C3 report the number of parameters, log-likelihood and SIC values for the corre-
sponding specifications of the whole conditional correlation matrix when all the conditional
variances are filtered using specification V3.

Correlations: C0 Correlations: C1

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 13,530 -691,499 1,509,300 13,954 -688,028 1,506,310

5 13,530 -560,177 1,246,640 14,702 -552,499 1,242,220

20 13,530 -352,545 831,336 16,456 -332,324 818,195

40 13,530 -183,808 493,813 17,026 -159,991 478,788

80 13,530 33,948 58,156 17,528 52,147 59,005

120 13,530 227,194 -328,434 17,740 229,517 -293,887

Correlations: C2 Correlations: C3

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 14,286 -685,520 1,504,400 14,248 -686,030 1,505,060

5 16,332 -541,600 1,235,640 16,212 -540,186 1,231,690

20 22,246 -271,390 750,352 22,594 -268,624 748,068

40 25,188 -46,057 327,048 25,730 -41,133 322,256

80 27,422 225,525 -195,572 27,876 224,679 -189,652

120 28,170 430,025 -597,808 28,696 415,328 -563,516
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Table X: Models of the Conditional Correlations
For each asset the best SIC variance specification is selected among V0-V4. Left panel
reports results on the whole conditional correlation matrix when its elements are set to
constant. In the right panel, for each element of the conditional correlation matrix the best
SIC specification is selected among C0-C4.

Correlations: C0 Correlations: SIC best among C0-C4

Freq. Parameters Log-Lik SIC Parameters Log-Lik SIC

1 13,530 -761,423 1,559,150 14,377 -706,583 1,547,370

5 13,530 -574,129 1,274,550 17,070 -550,275 1,259,880

20 13,530 -365,413 857,072 27,181 -244,842 743,305

40 13,530 -210,527 529,251 32,419 -1,873 306,126

80 13,530 6,027 113,997 36,261 260,981 -184,137

120 13,530 187,091 -248,228 37,048 424,251 -503,611
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Table XI: Models of the Conditional Correlations
Schwartz Information Criterion preferred model. Top Panel: in columns C0-C4 the corre-
sponding models are SIC-compared and the relative percentages reported. Bottom Panel:
columns C1-C4 report SIC-comparison percentages relative to the time-varying elements of
the correlation matrix.

Freq. C0 C1 C2 C3 C4

1 96.87% 1.68% 0.95% 0.49% 0.01%

5 87.25% 3.07% 5.26% 4.20% 0.22%

20 54.71% 7.58% 17.74% 16.53% 3.44%

40 42.14% 9.56% 20.01% 20.33% 7.96%

80 34.62% 10.67% 20.90% 21.40% 12.41%

120 33.07% 11.11% 21.38% 21.12% 13.32%

1 - 53.79% 30.33% 15.64% 0.24%

5 - 24.06% 41.28% 32.93% 1.74%

20 - 16.74% 39.16% 36.50% 7.60%

40 - 16.53% 34.58% 35.14% 13.75%

80 - 16.32% 31.97% 32.73% 18.98%

120 - 16.60% 31.95% 31.56% 19.89%
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